JP2004126121A - Organic el display device - Google Patents

Organic el display device Download PDF

Info

Publication number
JP2004126121A
JP2004126121A JP2002288696A JP2002288696A JP2004126121A JP 2004126121 A JP2004126121 A JP 2004126121A JP 2002288696 A JP2002288696 A JP 2002288696A JP 2002288696 A JP2002288696 A JP 2002288696A JP 2004126121 A JP2004126121 A JP 2004126121A
Authority
JP
Japan
Prior art keywords
organic
display device
low
temperature polysilicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002288696A
Other languages
Japanese (ja)
Inventor
Atsushi Yoshizawa
吉澤 淳志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP2002288696A priority Critical patent/JP2004126121A/en
Priority to TW092126685A priority patent/TW200414796A/en
Priority to AU2003271068A priority patent/AU2003271068A1/en
Priority to PCT/JP2003/012405 priority patent/WO2004032103A1/en
Publication of JP2004126121A publication Critical patent/JP2004126121A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL display device where a low temperature polysilicon TFT and an organic EL element, which can be made with comparatively high density, are formed on a common substrate. <P>SOLUTION: In the organic EL display device, the organic EL element having a pair of confronted electrodes and an organic material layer containing an organic light emitting layer laminated between a pair of the electrodes is disposed at every light emitting part arranged in a matrix shape near an intersection of a power source line, a scanning line and a data line, which are formed on the substrate. Two or more switch circuits which are connected to the scanning line and the data line and which supply power from the power source line to the organic EL element in accordance with signals supplied from the lines are arranged between the power source line and the organic EL element by connecting them in parallel. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子及びホールの注入によって発光する有機化合物材料のエレクトロルミネッセンス(以下、ELともいう)を利用した有機EL材料の薄膜からなる発光層を備えている有機EL素子からなる複数の発光部が規則的に配置された表示配列を有する有機EL表示装置に関する。
【0002】
【従来の技術】
有機EL素子の複数をマトリクス状に配列して構成される有機EL表示装置は、低消費電力及び高表示品質並びに薄型化が可能なディスプレイとして注目されている。
有機EL素子は、例えばインジウム錫酸化物いわゆるITOからなる透明電極が形成されたガラス板などの透明基板上に、有機電子輸送層、有機発光層、有機ホール輸送層などの少なくとも1層の有機材料層、及び金属電極が積層された自発光素子として知られている。透明電極の陽極に正、金属電極の陰極に負の電圧を加えることにより、電荷が蓄積され、続いて素子固有の障壁電圧または発光閾値電圧を越えると、電流が流れ初め、この直流にほぼ比例した強度で発光する。
【0003】
有機EL素子を用いた表示パネルとして、有機EL素子を単にマトリクス状に配置した単純マトリクス型表示パネルと、マトリクス状に配置した有機EL素子の各々にトランジスタからなる駆動素子を加えたアクティブマトリクス型表示パネルがある。アクティブマトリクス型表示パネルは単純マトリクス型表示パネルに比べて、低消費電力であり、また画素間のクロストークが少ないなどの利点を有し、特に大画面ディスプレイや高精細度ディスプレイに適している。
【0004】
【発明が解決しようとする課題】
アクティブマトリクス駆動方式の表示装置は、発光部毎に、例えば低温ポリシリコンからなる薄膜トランジスタ(TFT)を用いてスイッチングによって画素毎に電流を供給して有機EL素子を発光させるようにしたものである。
有機EL表示装置としては大型ディスプレイパネルに対する需要が多いので、アクティブマトリクス型表示パネルの駆動トランジスタには、低温ポリシリコンTFTが有効である。
【0005】
しかしながら、低温ポリシリコンTFTを有機EL表示装置に適用する場合には次のような問題がある。例えば、大型基板上のポリシリコンTFTの良品比率を極めて高く維持しないと、発光部の欠落を引き起こし、製品の歩留まりが低下する。また、ポリシリコンTFTはチャネル部が多結晶であるので、単結晶シリコンTFTより電気特性バラツキが大きい。よって、低温ポリシリコンTFTをアクティブマトリクス駆動方式の有機EL表示装置の大型ディスプレイパネルに用いる場合、表示装置の高価格化は避けられない。
【0006】
そこで、本発明の解決しようとする課題には、比較的高密度で作成できる低温ポリシリコンTFT及び有機EL素子を共通の基板上に形成した有機EL表示装置を提供することが一例として挙げられる。
【0007】
【課題を解決するための手段】
請求項1記載の有機EL表示装置は、基板上に形成された電源ライン、走査ライン及びデータラインの交点近傍にマトリクス状に配置された発光部毎に、対向する1対の電極及び前記1対の電極の間に積層された有機発光層を含む有機材料層を有する有機EL素子が設けられた有機EL表示装置であって、各々が前記走査ライン及びデータラインに接続されかつこれらから供給される信号に対応して前記電源ラインから前記有機EL素子へ電力を供給する2以上のスイッチ回路が、前記電源ライン及び前記有機EL素子間に、並列接続して設けられていることを特徴とする。
【0008】
【発明の実施の形態】
以下に、本発明による実施形態を図面を参照しつつ説明する。
図1に、アクティブマトリクス駆動方式による実施形態の有機EL表示装置を示す。表示装置は、表示パネル101と、アドレスドライバ110と、データドライバ120と、コントローラ130と、を有している。
【0009】
表示パネル101は、図1に示すように、それぞれ所定間隔で平行に形成されているn本の走査ラインSL1〜SLnとそれぞれ所定間隔で平行に形成されているm本のデータラインDL1〜DLmとを備えており、走査ライン及びデータラインは所定間隔を隔てて互いに直角となるように形成されている。さらに、表示パネル101は、それぞれが走査ライン及びデータラインとの各交点に対応する部分に形成されているn×m個の発光部102を備えている。各走査ラインの一端はアドレスドライバ110に接続され、各データラインの一端はデータドライバ120に接続されている。
【0010】
アドレスドライバ110は、走査ラインSL1〜SLnに1本ずつ順に電圧を印加する。
データドライバ120は、発光部102を発光させるためのデータ電圧を、データラインDL1〜DLmに印加する。
コントローラ130は、アドレスドライバ110及びデータドライバ120に接続され、予め供給された画像データに従って、アドレスドライバ110及びデータドライバ120の動作を制御する。
【0011】
発光部102は、図2に示すように、それぞれが走査ラインSL及びデータラインDLにラインSsub及びDsubを介して接続されかつこれら走査ラインSL及びデータラインDLから供給される信号に対応して電源ラインVccLからラインVsubを介して有機EL素子15へ電力を供給する3つのスイッチ回路SWを備えている。3つのスイッチ回路SWは電源ラインVccL及び前記有機EL素子15の間に並列接続されている。
【0012】
スイッチ回路SWの各々は、図3に示すように、選択用トランジスタのアドレス用低温ポリシリコンTFT11と、駆動用トランジスタのドライブ用低温ポリシリコンTFT12と、コンデンサ13と、有機EL素子15と、から構成されている。
図2及び図3において、アドレス用低温ポリシリコンTFT11のゲート電極Gは、アドレス信号が供給される走査ラインSLにラインSsubを介して接続され、アドレス用低温ポリシリコンTFT11のソース電極Sはデータ信号が供給されるデータラインDLにラインDsubを介して接続されている。アドレス用低温ポリシリコンTFT11のドレイン電極Dはドライブ用低温ポリシリコンTFT12のゲート電極Gに接続され、コンデンサ13の一方の端子に接続されている。ドライブ用低温ポリシリコンTFT12のソース電極Sはコンデンサ13の他方の端子と共に電源ラインVccLにラインVsubを介して接続されている。ドライブ用低温ポリシリコンTFT12のドレイン電極Dは有機EL素子15の陽極にラインOUTを介して接続され、有機EL素子15の陰極は共通電極comに接続されている。
【0013】
図2に示す電源ラインVccL及び各有機EL素子15の陰極が接続された共通電極comは、これらに電力を供給する電圧源に接続されている。
この回路の発光制御動作について述べると、先ず、図1に示すアドレスドライバ110からスイッチ回路SWのアドレス用低温ポリシリコンTFT11のゲート電極Gにオン電圧が供給されると、アドレス用低温ポリシリコンTFT11はソース電極Sに供給されるデータの電圧に対応した電流をソース電極Sからドレイン電極Dへ流す。アドレス用低温ポリシリコンTFT11のゲート電極Gがオフ電圧であるとアドレス用低温ポリシリコンTFT11はいわゆるカットオフとなり、アドレス用低温ポリシリコンTFT11のドレイン電極Dはオープン状態となる。従って、アドレス用低温ポリシリコンTFT11のゲート電極Gがオン電圧の期間に、コンデンサ13は充電され、その電圧がドライブ用低温ポリシリコンTFT12のゲート電極Gに供給されて、ドライブ用低温ポリシリコンTFT12にはそのゲート電圧とソース電圧に基づいた電流がソース電極Sからドレイン電極Dへ流れ、ラインOUTを介して有機EL素子15を発光せしめる。また、アドレス用低温ポリシリコンTFT11のゲート電極Gがオフ電圧になると、アドレス用低温ポリシリコンTFT11はオープン状態となり、ドライブ用低温ポリシリコンTFT12はコンデンサ13に蓄積された電荷によりゲート電極Gの電圧が保持され、次の走査まで駆動電流を維持し、有機EL素子15の発光も維持される。
【0014】
かかる実施形態によれば、有機EL素子15を駆動するスイッチ回路SWの複数をを、電源ラインVccL及び有機EL素子15間に、並列接続して設けてあるので、有機EL表示装置の大型基板上にて大量のTFT作製工程途中においても、発光部あたり全てのTFTが同時に不良とならない限り、残存するTFTで有機EL素子15のスイッチング駆動が可能となるので、発光部の欠落発生が減少し、製品の歩留まりが向上する。
【0015】
有機EL表示装置の大型基板パネルを作る際に、ガラス基板にシリコン膜を塗布する工程には高温度を必要とする。アモルファスシリコンを使った通常のTFT基板では、ほぼ500度を越える温度で行なわれるが、これがポリシリコンTFT場合、さらに高温の1000度程度必要であり、耐熱性の高価な石英ガラスが要求されていた。
【0016】
比較的低温でポリシリコン膜の塗布を行なって作製しているTFTが低温ポリシリコンTFTであるが、具体的には、シリコン膜塗布に炉などを使うのではなく、シリコン膜を形成する際に例えばエキシマレーザーを使うなど部分的加熱方法が実行される。局所加熱でシリコンを瞬時に融解、結晶化させ、すなわち、瞬間的に溶融し冷却して結晶化が起こるため、基板の温度上昇を低く抑えることができる。このように、摂氏600度以下や450度以下というような低い温度でポリシリコン薄膜が形成できるようになり、その後の素子の形成方法はどんな方法でも構わないが、例えばスパッタ法、EB蒸着法、抵抗加熱蒸着法、CVD法、印刷法、などを組み合わせて用いることができる。パターン形成法も任意の方法で構わないが、例えばフォトエッチング法、マスク蒸着法、などを用いることができる。
【0017】
低温ポリシリコンTFTであれば、例えば光学ガラス、ガラス板とプラスチック板の張り合わせたものを基板として用いることができる。例えば、図4に示すように光透過性ガラス基板1上に、データラインDL及び走査ラインSLを埋設して配線し、それぞれに接続するラインDsub及びSsubをビア又はスルーホールとして配線し、その上に4つのスイッチ回路SWをそれぞれ図3に示す回路にて作製する。有機EL素子15の基板1側の電極は光透過性の材料例えばITOからなり、スイッチ回路SWの各々は基板1上の有機EL素子15の周囲に配置されている。このようにして、いわゆるボトムエミッション型の有機EL表示装置が得られる。
【0018】
なお、アドレス用低温ポリシリコンTFT11及びドライブ用低温ポリシリコンTFT12の各々は、例えばボトムゲート型の場合、基板1上にゲート電極が成膜され、その上にゲート絶縁膜が成膜され、その上に低温ポリシリコン膜が成膜され、その上に対向離間するようにソース電極及びドレイン電極がフォトリソグラフィやエッチング技術により形成され、その上に保護膜などが成膜される。ゲート電極によりソース電極及びドレイン電極の間に電界を印加せしめると、その間にチャネルを形成できるように構成されている。
【0019】
有機EL素子15は画素電極、有機材料層及び共通電極から構成される。有機材料層は、通常、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層など複数の層で構成されるが、少なくとも発光層を含んでいればよい。有機材料層はその発光色により画素毎に塗り分けられる。
図5に本発明の他の実施形態、いわゆるトップエミッション型の有機EL表示装置を示す。図示のように、有機EL素子15へ電力を供給する2つのスイッチ回路SWを基板1側に設け、その上に有機EL素子15を重ねて配置することもできる。図5と先の図1から図4で同一符号で示される部材は同一なので説明は省略する。この場合、共通電極comを光透過性材料で形成することが望ましい。この構造では、有機EL素子15の面積を大きくできるので開口率が高まるというメリットがある。
【0020】
コンデンサ、アドレス用低温ポリシリコンTFT及びドライブ用低温ポリシリコンTFTからなるスイッチ回路SWを形成後、画素電極15aとの接続部19を除き、保護絶縁膜を兼ねた平坦化層20を形成する。スイッチ回路SWのポリシリコンTFTによる凹凸があると、有機EL素子の画素電極と共通電極comが短絡しやすくなるため、平坦化層20はこの凹凸を滑らかに覆う必要がある。
【0021】
平坦化層20を形成後、スイッチ回路SWと接続して基板側の画素電極を形成、更に有機材料層、共通電極comを形成し、本発明による有機EL表示装置の表示パネルが完成する。
上記例では、有機EL素子を駆動するために最も単純な構成である2、3及び4トランジスタの場合を示したが、本発明は5以上のトランジスタを用いた素子にも適用できる。
【図面の簡単な説明】
【図1】本発明による実施形態の有機EL表示装置の表示パネルの構成を示すブロック図。
【図2】本発明による実施形態の有機EL表示装置の発光部を示すブロック回路図。
【図3】本発明による実施形態の有機EL表示装置の発光部におけるスイッチ回路を示す回路図。
【図4】本発明による他の実施形態の有機EL表示装置の発光部を示す概略斜視図。
【図5】本発明による他の実施形態の有機EL表示装置の発光部を示す概略一部切欠斜視図。
【符号の説明】
11 アドレス用低温ポリシリコンTFT
12 ドライブ用低温ポリシリコンTFT
13 コンデンサ
15 有機EL素子
101 表示パネル
102 発光部
110 アドレスドライバ
120 データドライバ
130 コントローラ
com 共通電極
D ドレイン電極
DL、DL1〜DLm データライン
G ゲート電極
S ソース電極
SL、SL1〜SLn 走査ライン
VccL 電源ライン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plurality of light-emitting portions including an organic EL element having a light-emitting layer formed of a thin film of an organic EL material utilizing electroluminescence (hereinafter, also referred to as EL) of an organic compound material which emits light by injection of electrons and holes. Is related to an organic EL display device having a display array arranged regularly.
[0002]
[Prior art]
2. Description of the Related Art An organic EL display device configured by arranging a plurality of organic EL elements in a matrix has attracted attention as a display capable of achieving low power consumption, high display quality, and thinness.
The organic EL element is formed by forming at least one organic material such as an organic electron transporting layer, an organic light emitting layer, and an organic hole transporting layer on a transparent substrate such as a glass plate on which a transparent electrode made of indium tin oxide (ITO) is formed. It is known as a self-luminous element in which layers and metal electrodes are stacked. When a positive voltage is applied to the anode of the transparent electrode and a negative voltage is applied to the cathode of the metal electrode, electric charge is accumulated.When the voltage exceeds the barrier voltage or light emission threshold voltage inherent to the device, a current starts to flow, and is approximately proportional to the direct current. Emit light at the specified intensity.
[0003]
As a display panel using organic EL elements, a simple matrix type display panel in which organic EL elements are simply arranged in a matrix, and an active matrix type display in which a driving element including a transistor is added to each of the organic EL elements arranged in a matrix. There is a panel. Active matrix display panels have advantages such as lower power consumption and less crosstalk between pixels than simple matrix display panels, and are particularly suitable for large-screen displays and high-definition displays.
[0004]
[Problems to be solved by the invention]
In the display device of the active matrix driving system, a current is supplied to each pixel by switching using a thin film transistor (TFT) made of, for example, low-temperature polysilicon for each light emitting unit, and the organic EL element emits light.
Since there is a great demand for a large display panel as an organic EL display device, a low-temperature polysilicon TFT is effective as a drive transistor of an active matrix display panel.
[0005]
However, when a low-temperature polysilicon TFT is applied to an organic EL display device, there are the following problems. For example, if the non-defective product ratio of polysilicon TFTs on a large-sized substrate is not maintained extremely high, the light emitting portion will be dropped, and the product yield will be reduced. In addition, since the polysilicon TFT has a polycrystalline channel portion, the variation in electrical characteristics is larger than that of a single-crystal silicon TFT. Therefore, when a low-temperature polysilicon TFT is used for a large-sized display panel of an organic EL display device of an active matrix drive system, an increase in the price of the display device cannot be avoided.
[0006]
Therefore, an object of the present invention is to provide, as an example, an organic EL display device in which a low-temperature polysilicon TFT and an organic EL element that can be formed at a relatively high density are formed on a common substrate.
[0007]
[Means for Solving the Problems]
2. The organic EL display device according to claim 1, wherein each of the light-emitting portions arranged in a matrix near the intersection of a power supply line, a scan line, and a data line formed on a substrate and a pair of electrodes facing each other. An organic EL display device provided with an organic EL element having an organic material layer including an organic light emitting layer stacked between the electrodes, each of which is connected to and supplied from the scanning line and the data line. Two or more switch circuits for supplying power from the power supply line to the organic EL element in response to a signal are provided in parallel between the power supply line and the organic EL element.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
FIG. 1 shows an organic EL display device according to an embodiment using an active matrix driving method. The display device includes a display panel 101, an address driver 110, a data driver 120, and a controller 130.
[0009]
As shown in FIG. 1, the display panel 101 includes n scan lines SL1 to SLn formed in parallel at a predetermined interval and m data lines DL1 to DLm formed in parallel at a predetermined interval. The scanning line and the data line are formed so as to be perpendicular to each other at a predetermined interval. Further, the display panel 101 includes n × m light emitting units 102 formed at portions corresponding to respective intersections with the scanning lines and the data lines. One end of each scanning line is connected to the address driver 110, and one end of each data line is connected to the data driver 120.
[0010]
The address driver 110 sequentially applies voltages to the scanning lines SL1 to SLn one by one.
The data driver 120 applies a data voltage for causing the light emitting unit 102 to emit light to the data lines DL1 to DLm.
The controller 130 is connected to the address driver 110 and the data driver 120, and controls operations of the address driver 110 and the data driver 120 according to image data supplied in advance.
[0011]
As shown in FIG. 2, the light emitting unit 102 is connected to the scanning line SL and the data line DL via the lines Ssub and Dsub, respectively, and supplies a power corresponding to signals supplied from the scanning line SL and the data line DL. Three switch circuits SW for supplying power from the line VccL to the organic EL element 15 via the line Vsub are provided. The three switch circuits SW are connected in parallel between the power supply line VccL and the organic EL element 15.
[0012]
Each of the switch circuits SW includes, as shown in FIG. 3, a low-temperature polysilicon TFT 11 for address of a selection transistor, a low-temperature polysilicon TFT 12 for drive of a drive transistor, a capacitor 13, and an organic EL element 15. Have been.
2 and 3, a gate electrode G of the low-temperature polysilicon TFT 11 for address is connected to a scan line SL to which an address signal is supplied via a line Ssub, and a source electrode S of the low-temperature polysilicon TFT 11 for address is connected to a data signal. Is supplied via a line Dsub to a data line DL to which the data is supplied. The drain electrode D of the low-temperature polysilicon TFT 11 for address is connected to the gate electrode G of the low-temperature polysilicon TFT 12 for drive, and is connected to one terminal of the capacitor 13. The source electrode S of the driving low-temperature polysilicon TFT 12 is connected to the power supply line VccL via the line Vsub together with the other terminal of the capacitor 13. The drain electrode D of the driving low-temperature polysilicon TFT 12 is connected to the anode of the organic EL element 15 via the line OUT, and the cathode of the organic EL element 15 is connected to the common electrode com.
[0013]
The common electrode com to which the power supply line VccL and the cathode of each organic EL element 15 shown in FIG. 2 are connected is connected to a voltage source that supplies power to them.
Describing the light emission control operation of this circuit, first, when an ON voltage is supplied from the address driver 110 shown in FIG. 1 to the gate electrode G of the addressing low-temperature polysilicon TFT 11 of the switch circuit SW, the addressing low-temperature polysilicon TFT 11 is turned on. A current corresponding to the voltage of the data supplied to the source electrode S flows from the source electrode S to the drain electrode D. When the gate electrode G of the low-temperature polysilicon TFT 11 for address is at an off-state voltage, the low-temperature polysilicon TFT 11 for address is cut off, and the drain electrode D of the low-temperature polysilicon TFT 11 for address is opened. Therefore, the capacitor 13 is charged during the period when the gate electrode G of the addressing low-temperature polysilicon TFT 11 is in the ON voltage, and the voltage is supplied to the gate electrode G of the driving low-temperature polysilicon TFT 12, and the voltage is supplied to the driving low-temperature polysilicon TFT 12. The current based on the gate voltage and the source voltage flows from the source electrode S to the drain electrode D, causing the organic EL element 15 to emit light through the line OUT. When the gate electrode G of the addressing low-temperature polysilicon TFT 11 is turned off, the addressing low-temperature polysilicon TFT 11 is in an open state. The driving current is maintained until the next scan, and the light emission of the organic EL element 15 is also maintained.
[0014]
According to this embodiment, a plurality of switch circuits SW for driving the organic EL element 15 are provided in parallel between the power supply line VccL and the organic EL element 15, so that a large number of switch circuits SW are provided on the large substrate of the organic EL display device. In the middle of a large number of TFT manufacturing steps, the switching driving of the organic EL element 15 can be performed with the remaining TFTs unless all the TFTs per light emitting portion are simultaneously defective, so that the occurrence of missing light emitting portions is reduced, Product yield is improved.
[0015]
When manufacturing a large-sized substrate panel of an organic EL display device, a process of applying a silicon film to a glass substrate requires a high temperature. In the case of a normal TFT substrate using amorphous silicon, it is performed at a temperature exceeding approximately 500 degrees C. However, in the case of a polysilicon TFT, a higher temperature of about 1000 degrees is required, and expensive heat-resistant quartz glass has been required. .
[0016]
The TFT manufactured by applying a polysilicon film at a relatively low temperature is a low-temperature polysilicon TFT. Specifically, when a silicon film is formed instead of using a furnace for coating the silicon film, A partial heating method is performed, for example, using an excimer laser. Since silicon is instantaneously melted and crystallized by local heating, that is, instantaneously melted and cooled to cause crystallization, the temperature rise of the substrate can be suppressed low. As described above, a polysilicon thin film can be formed at a low temperature of 600 degrees Celsius or less or 450 degrees Celsius or less, and any method of forming a device thereafter may be used. For example, a sputtering method, an EB vapor deposition method, A combination of a resistance heating evaporation method, a CVD method, a printing method, and the like can be used. The pattern formation method may be an arbitrary method, and for example, a photo etching method, a mask evaporation method, or the like can be used.
[0017]
In the case of a low-temperature polysilicon TFT, for example, an optical glass or a laminate of a glass plate and a plastic plate can be used as the substrate. For example, as shown in FIG. 4, the data line DL and the scanning line SL are buried and wired on the light transmissive glass substrate 1, and the lines Dsub and Ssub connected thereto are wired as vias or through holes, respectively. Next, four switch circuits SW are manufactured by the circuits shown in FIG. The electrode on the substrate 1 side of the organic EL element 15 is made of a light transmissive material, for example, ITO, and each of the switch circuits SW is arranged around the organic EL element 15 on the substrate 1. Thus, a so-called bottom emission type organic EL display device is obtained.
[0018]
For example, in the case of a bottom gate type, each of the low-temperature polysilicon TFT 11 for address and the low-temperature polysilicon TFT 12 for drive has a gate electrode formed on the substrate 1, a gate insulating film formed thereon, and a A low-temperature polysilicon film is formed thereon, and a source electrode and a drain electrode are formed thereon by photolithography or an etching technique so as to be opposed to each other, and a protective film or the like is formed thereon. When an electric field is applied between the source electrode and the drain electrode by the gate electrode, a channel can be formed therebetween.
[0019]
The organic EL element 15 includes a pixel electrode, an organic material layer, and a common electrode. The organic material layer is usually composed of a plurality of layers such as a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer, but it is sufficient that at least the light-emitting layer is included. The organic material layer is separately applied to each pixel according to its emission color.
FIG. 5 shows another embodiment of the present invention, that is, a so-called top emission type organic EL display device. As shown in the figure, two switch circuits SW for supplying power to the organic EL element 15 may be provided on the substrate 1 side, and the organic EL element 15 may be overlaid thereon. The members denoted by the same reference numerals in FIG. 5 and FIGS. 1 to 4 described above are the same and will not be described. In this case, it is desirable that the common electrode com be formed of a light transmissive material. This structure has the advantage that the area of the organic EL element 15 can be increased, so that the aperture ratio is increased.
[0020]
After forming a switch circuit SW including a capacitor, a low-temperature polysilicon TFT for addressing, and a low-temperature polysilicon TFT for driving, a flattening layer 20 also serving as a protective insulating film is formed except for a connection portion 19 with the pixel electrode 15a. If there is unevenness due to the polysilicon TFT of the switch circuit SW, the pixel electrode of the organic EL element and the common electrode com are easily short-circuited. Therefore, the flattening layer 20 needs to cover the unevenness smoothly.
[0021]
After forming the flattening layer 20, it is connected to the switch circuit SW to form a pixel electrode on the substrate side, and further, an organic material layer and a common electrode com are formed, thereby completing the display panel of the organic EL display device according to the present invention.
In the above example, the case of two, three, and four transistors, which are the simplest configurations for driving an organic EL element, has been described. However, the present invention can also be applied to an element using five or more transistors.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a display panel of an organic EL display device according to an embodiment of the present invention.
FIG. 2 is a block circuit diagram showing a light emitting unit of the organic EL display device according to the embodiment of the present invention.
FIG. 3 is a circuit diagram showing a switch circuit in a light emitting unit of the organic EL display device according to the embodiment of the present invention.
FIG. 4 is a schematic perspective view showing a light emitting unit of an organic EL display device according to another embodiment of the present invention.
FIG. 5 is a schematic partially cutaway perspective view showing a light emitting portion of an organic EL display device according to another embodiment of the present invention.
[Explanation of symbols]
11 Low temperature polysilicon TFT for address
12 Low temperature polysilicon TFT for drive
13 Capacitor 15 Organic EL element 101 Display panel 102 Light emitting unit 110 Address driver 120 Data driver 130 Controller com Common electrode D Drain electrode DL, DL1 to DLm Data line G Gate electrode S Source electrode SL, SL1 to SLn Scan line VccL Power supply line

Claims (5)

基板上に形成された電源ライン、走査ライン及びデータラインの交点近傍にマトリクス状に配置された発光部毎に、対向する1対の電極及び前記1対の電極の間に積層された有機発光層を含む有機材料層を有する有機EL素子が設けられた有機EL表示装置であって、
各々が前記走査ライン及びデータラインに接続されかつこれらから供給される信号に対応して前記電源ラインから前記有機EL素子へ電力を供給する2以上のスイッチ回路が、前記電源ライン及び前記有機EL素子間に、並列接続して設けられていることを特徴とする有機EL表示装置。
A pair of electrodes facing each other and an organic light emitting layer laminated between the pair of electrodes are provided for each light emitting unit arranged in a matrix near an intersection of a power supply line, a scan line, and a data line formed on a substrate. An organic EL display device provided with an organic EL element having an organic material layer containing:
Two or more switch circuits, each connected to the scan line and the data line and supplying power from the power supply line to the organic EL element in response to a signal supplied from the power supply line and the organic EL element, An organic EL display device characterized by being provided in parallel between them.
前記スイッチ回路の各々は、少なくとも2つの低温ポリシリコン薄膜トランジスタとコンデンサとから構成されることを特徴とする請求項1記載の有機EL表示装置。2. The organic EL display device according to claim 1, wherein each of the switch circuits includes at least two low-temperature polysilicon thin film transistors and a capacitor. 前記スイッチ回路の各々は、前記走査ライン及びデータラインに接続された第1低温ポリシリコン薄膜トランジスタと、前記第1低温ポリシリコン薄膜トランジスタ、前記電源ライン及び前記有機EL素子に接続された第2低温ポリシリコン薄膜トランジスタと、前記第1低温ポリシリコン薄膜トランジスタに接続されたコンデンサと、から構成されることを特徴とする請求項1記載の有機EL表示装置。Each of the switch circuits includes a first low-temperature polysilicon thin film transistor connected to the scan line and the data line, and a second low-temperature polysilicon film connected to the first low-temperature polysilicon thin film transistor, the power supply line, and the organic EL element. 2. The organic EL display device according to claim 1, further comprising: a thin film transistor; and a capacitor connected to the first low-temperature polysilicon thin film transistor. 前記有機EL素子の前記基板側の反対側の電極が光透過性の材料からなり、前記スイッチ回路の各々は前記基板と前記有機EL素子との間に配置されたことを特徴とする請求項1〜3のいずれかに記載の有機EL表示装置。The electrode of the organic EL element on the side opposite to the substrate is made of a light transmissive material, and each of the switch circuits is disposed between the substrate and the organic EL element. 4. The organic EL display device according to any one of items 1 to 3. 前記基板は光透過性の材料からなり、前記有機EL素子の前記基板側の電極が光透過性の材料からなり、前記スイッチ回路の各々は前記基板上の前記有機EL素子の周囲に配置されたことを特徴とする請求項1〜3のいずれかに記載の有機EL表示装置。The substrate is made of a light transmissive material, the electrode on the substrate side of the organic EL element is made of a light transmissive material, and each of the switch circuits is arranged around the organic EL element on the substrate. The organic EL display device according to claim 1, wherein:
JP2002288696A 2002-10-01 2002-10-01 Organic el display device Pending JP2004126121A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002288696A JP2004126121A (en) 2002-10-01 2002-10-01 Organic el display device
TW092126685A TW200414796A (en) 2002-10-01 2003-09-26 Organic electroluminescence display device
AU2003271068A AU2003271068A1 (en) 2002-10-01 2003-09-29 Organic electroluminescent display
PCT/JP2003/012405 WO2004032103A1 (en) 2002-10-01 2003-09-29 Organic electroluminescent display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288696A JP2004126121A (en) 2002-10-01 2002-10-01 Organic el display device

Publications (1)

Publication Number Publication Date
JP2004126121A true JP2004126121A (en) 2004-04-22

Family

ID=32063688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288696A Pending JP2004126121A (en) 2002-10-01 2002-10-01 Organic el display device

Country Status (4)

Country Link
JP (1) JP2004126121A (en)
AU (1) AU2003271068A1 (en)
TW (1) TW200414796A (en)
WO (1) WO2004032103A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100678858B1 (en) 2004-10-12 2007-02-05 엘지.필립스 엘시디 주식회사 Organic Electro Luminescence Device and the fabrication method thereof
US7692382B2 (en) 2006-03-27 2010-04-06 Kyocera Corporation Image display apparatus having a plurality of pixels

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232483A (en) * 1985-04-08 1986-10-16 ホシデン株式会社 Liquid crystal display element
JPH0470820A (en) * 1990-07-12 1992-03-05 Matsushita Electric Ind Co Ltd Active matrix type flat plate display device
US5151632A (en) * 1991-03-22 1992-09-29 General Motors Corporation Flat panel emissive display with redundant circuit
TW439387B (en) * 1998-12-01 2001-06-07 Sanyo Electric Co Display device
US6380007B1 (en) * 1998-12-28 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
JP2000340358A (en) * 1999-05-27 2000-12-08 Tdk Corp Drive unit for organic el element and organic el display
JP4542659B2 (en) * 2000-03-07 2010-09-15 出光興産株式会社 Active drive type organic EL display device and manufacturing method thereof
JP2001296818A (en) * 2000-04-12 2001-10-26 Sharp Corp Organic electroluminescence display device
JP2002032058A (en) * 2000-07-18 2002-01-31 Nec Corp Display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100678858B1 (en) 2004-10-12 2007-02-05 엘지.필립스 엘시디 주식회사 Organic Electro Luminescence Device and the fabrication method thereof
US7692382B2 (en) 2006-03-27 2010-04-06 Kyocera Corporation Image display apparatus having a plurality of pixels

Also Published As

Publication number Publication date
AU2003271068A1 (en) 2004-04-23
TW200414796A (en) 2004-08-01
WO2004032103A1 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US7924247B2 (en) Display device and driving method thereof
KR100434899B1 (en) Display Module
US6501448B1 (en) Electroluminescence display device with improved driving transistor structure
US7432885B2 (en) Active matrix display
WO2004026004A1 (en) Organic electroluminescence display and its manufacturing method
KR100527029B1 (en) Electro luminescence display device
US20040196220A1 (en) Light-emitting apparatus and method of manufacturing light-emitting apparatus
KR100763912B1 (en) A-si tft and organic light emitting display employing the same
US7943934B2 (en) Thin film transistor array panel and method for manufacturing the same
JP2000173779A (en) Active-type el display device
JPH11231805A (en) Display device
KR100560026B1 (en) Display device
JP4558690B2 (en) Method for manufacturing organic electroluminescent display element and organic electroluminescent display element
JP2001134214A (en) Display device
JP6043507B2 (en) Pixel and organic electroluminescent display device using the same
KR100543838B1 (en) Electroluminesence display device
KR100482328B1 (en) Active Matrix Organic Electro-Luminescence Display Panel And Method Of Fabricating The Same
KR100894651B1 (en) Active Matrix Organic Electro-Luminescence Display Panel And Method Of Fabricating The Same
JP2004126121A (en) Organic el display device
KR100684825B1 (en) Organic electro luminescence display device and manufacturing method thereof
KR101535821B1 (en) Method for fabricating thin film transistor and method for fabricating display device having thin film transistor
JP2006292832A (en) Tft substrate and its manufacturing method, and active matrix type display device using the tft substrate
US7091657B2 (en) Organic electro-luminescent display device and method for manufacturing the same
TW200809739A (en) Method for fabricating active matrix organic electro-luminescence display panel
JP2004004192A (en) Display