JP2004125671A - Electric wave incoming direction estimation method - Google Patents

Electric wave incoming direction estimation method Download PDF

Info

Publication number
JP2004125671A
JP2004125671A JP2002291502A JP2002291502A JP2004125671A JP 2004125671 A JP2004125671 A JP 2004125671A JP 2002291502 A JP2002291502 A JP 2002291502A JP 2002291502 A JP2002291502 A JP 2002291502A JP 2004125671 A JP2004125671 A JP 2004125671A
Authority
JP
Japan
Prior art keywords
radio wave
power
signal
arrival
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002291502A
Other languages
Japanese (ja)
Inventor
Koichi Tsunekawa
常川 光一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2002291502A priority Critical patent/JP2004125671A/en
Publication of JP2004125671A publication Critical patent/JP2004125671A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric wave incoming direction estimation method which enables the estimation of a correct electric wave incoming direction and forming a transmission pattern and the most efficient, an appropriate number of electric wave incoming paths. <P>SOLUTION: The electric wave incoming direction estimation method comprises the steps of measuring the direction distribution of powers of incoming electric waves when the directions of the incoming electric waves are estimated by operating a plurality (k pieces) of antenna elements, extracting a plurality of sets of signals having information on the direction of the local maximum of the power not lower than a specified value and information on the power on the basis of an angular characteristics diagram of the direction distribution measured as above, forming a correlational matrix of these signals and treating the signals having a correlation not lower than a specified value as the incoming electric waves with the same signal. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
この発明は、電波到来方向推定方法に関し、特に、到来電波について或る規定値以上の電力の極大値の方向の情報と電力の情報とを持った信号の組を複数組抽出し、これらの信号の間の相関をとって、相関が規定値以上の信号は同一信号の到来電波であるとして取り扱うことにより、正確な電波到来方向を推定すると共に最も効率の高い適切な電波到来パス数および送信パターンを形成する電波到来方向推定方法に関する。
【0002】
【従来の技術】
従来例を図10(a)(b)を参照して説明する。
図10(a)において、100は電波到来方向推定装置であり、アンテナ素子#1ないしアンテナ素子#kより成る基地局アンテナ1、RF回路部2、DC/UC変換部3、AD/DA変換部4、アダプティブ回路部5、キャリブレーション回路6、多重化回路部7より成る。この推定装置100において、電波の到来波数の推定と到来方向の推定は基本的にはビームフォーマ、Capon、MUSIC、ESPRITその他の電波到来方向推定アルゴリズムを使用して実行される(例えば、非特許文献1 参照)。
これらの電波到来方向推定アルゴリズムは、理論的に電波の到来方向を推定するには優れたアルゴリズムであるが、実際の電波伝搬路においては必ずしも正確な電波到来方向の推定をすることができない。以下、このことを具体的に説明する。
【0003】
図10(a)に示される如く、移動局10の周辺の環境が電波を散乱し、更に電波を反射する建物11が林立する電波伝搬環境である場合、この環境の下で実際の瞬時の到来電波に着目して先の電波到来方向推定アルゴリズムで到来方向を推定すると、到来方向スペクトラムは図10(b)に示される如く波打ち、リップルが生じる。即ち、広い角度θに亘って幾つものピークが観測される。S、S、およびSは移動局10側から相異なる角度θで基地局アンテナ1に到来する電波信号を示す。これは、現実の都市内においては建物11その他の多くの物体が離散的に存在し、しかもこれらの物体が一様に配置されている訳ではないことに起因する。従って、瞬時の到来電波の到来方向電力を観測すると、極大点であるピークが多数観測されることになる。この様な場合、多数観測されるピークが各別の到来電波であるのか、或いは幾つかの組になっていて或る程度のかたまりとして捕らえることができるものであるは不明である。当然、或る程度の時間をかけて測定を続けることにより、或いは移動しながら測定を実行することにより、これらのピークは平滑化される。しかし、将来実用化される高速移動通信においては、パケット通信の如く信号の高速伝送を必要とする通信が主流となるところから、非常に短いパケットの到来時間間隔の内に電波到来方向を推定する必要が生ずる。即ち、電波到来方向の瞬時推定をすることが必要となる。
【0004】
【発明が解決しようとする課題】
電波到来方向推定アルゴリズムの従来例には、これを使用して実際の電波伝播環境において瞬時の電波到来方向推定を行うと、幾つもの到来電波の電力のピークが観測されて正確な到来方向推定が困難であるという欠点があった。そして、この従来例を使用して推定された電波到来方向の情報に基づいて、基地局の送信パターンを形成すると、送信アダプティブアンテナの性能が落ちるという欠点があった。
なお、電波到来方向推定において、N個の受信信号を得てこれらの自己相関をとり、これに基づいて方向推定を実行する技術内容は公知である(例えば、特許文献1 参照)。
【0005】
この発明は、到来電波について或る規定値以上の電力の極大値の方向の情報と電力の情報とを持った信号の組を複数組抽出し、これらの信号の間の相関をとって、相関が規定値以上の信号は同一信号の到来電波であるとして取り扱うことにより、正確な電波到来方向を推定すると共に最も効率の高い適切な電波到来パス数および送信パターンを形成する電波到来方向推定方法を提供するものである。
【0006】
【非特許文献1】
菊間、「アレーアンテナによる適応信号処理」、科学技術出版社、1998年発行
【特許文献1】
特開2000−111630号公報
【0007】
【課題を解決するための手段】
請求項1:複数個kのアンテナ素子を動作させて到来電波の方向推定を行うに際して、到来電波の電力の方向分布を測定し、測定された方向分布の角度特性図に基づいて、規定値以上の電力の極大値の方向の情報と電力の情報とを持った信号の組を複数組抽出し、これらの信号の相関行列を形成し、相関が規定値以上の信号は同一信号の到来電波であるとして取り扱う電波到来方向推定方法を構成した。
そして、請求項2:請求項1に記載される電波到来方向推定方法において、
先ず、放射パターンピークを周囲方向に走査して到来電波の電力の方向分布PI(θ)を測定し、測定した方向分布PI(θ)に基づいて、規定値以上の電力の極大値の方向とその電力の組をn組(PIp =[P1 (θ1 ),P(θ2 ),P(θ),…,Pn (θn )])抽出し、これを信号電力の高い順に並べ(S=(S1 ,S2 ,S3 ,S4 ,…,Sn ))、各アンテナの複素放射パターンをa(θ)=[a1 (θ),a(θ),a(θ),…,ak (θ)]T 、 各アンテナからの出力信号を(t)=[X1 (t),X(t),X(t),…,Xk (t)]T  として以下の式(1)から m を計算し、
m  −1 xx・(  )−1   …(1)
ここで、=[(θ1 ),(θ2 ),(θ3 ),…,(θn )]、 xx(t)・(t)H ]であり、 xx[・]はアンサンブル平均を求める走査を表しており、この式より信号相関行列 m から各
信号S(S=(S1 ,S2 ,S3 ,S4 ,…,Sn ))の相関関係を求め、相関が規定値以上の信号は同一信号の到来電波であるとして取り扱う電波到来方向推定方法を構成した。
【0008】
また、請求項3:請求項1に記載される電波到来方向推定方法において、
方向分布PI(θ)を測定するに際して放射パターンピークを周囲方向に走査することをしないCapon、MUSIC、ESPRI法の如き方法で先ず電波到来角度のみ測定し、次いで到来電波の電力を適当な放射パターンの該当方向のレベルより推定するか或いは適当な放射パターンのピークを該当方向に向けることにより推定して方向分布PI(θ)を測定し、測定した方向分布PI(θ)に基づいて規定値以上の電力の極大値の方向とその電力の組をn組(PIp =[P1 (θ1 ),P(θ2 ),P(θ),…,Pn (θn )]) 抽出し、これを信号電力の高い順に並べ(S=(S1 ,S2 ,S3 ,S4 ,…,Sn ))、各アンテナの複素放射パターンをa(θ)=[a1 (θ),a(θ),a(θ),…,ak (θ)]T 、各アンテナからの出力信号を(t)=[X1 (t),X(t),X(t),…,Xk (t)]T  として以下の式(1)から m を計算し、
m  −1 xx・(  )−1     …(1)
ここで、=[(θ1 ),(θ2 ),(θ3 ),…,(θn )]、 xx(t)・(t)H ]であり、 xx[・]はアンサンブル平均を求める走査を表しており、この式より信号相関行列 m から各信号S(S=(S1 ,S2 ,S3 ,S4 ,…,Sn ))の相関関係を求め、相関が規定値以上の信号は同一信号の到来電波であるとして取り扱う電波到来方向推定方法を構成した。
【0009】
【発明の実施の形態】
この発明の実施の形態を実施例を参照して説明する。
図1ないし図3を参照して第1の実施例を説明する。図1は電波到来方向推定装置の基本構成を説明する図、図2は電波の伝播状況と到来電波の振幅或いは電力を説明する図、図3は到来電波の推定の原理を説明する図である。
図1を参照するに、電波到来方向推定装置100は、基地局アンテナ1、RF回路部2、DC/UC変換部3、AD/DA変換部4、アダプティブ回路部5、キャリブレーション回路6、多重化回路部7より成る。
【0010】
以上の電波到来方向推定装置100は、各アンテナ素子#1ないし#nの出力をAD/DA変換部4においてディジタル信号に変換し、アダプティブ回路部5および多重化回路部7により適切な信号処理を行うものである。この信号処理に際して、アダプティブ回路部5は基本的に各アンテナ素子#1ないし#kのウエイトを決定するが、これにはこの基地局に到来する電波の方向および電力の推定値を求め、これに基づいて計算する。送信パターンの決定においては、特に、到来電波の方向推定(DOA)が重要である。
【0011】
図2(a)を参照するに、上述した通り、移動局10の周辺には電波を散乱、反射する建物11その他の物体が存在するところから、移動局10から放射された電波はこれらの物体により散乱、反射せしめられて到来角度について或る広がりをもって基地局アンテナ1に到来する。移動局10から放射到来した直接波S、建物11その他の物体において反射して到来した反射波S、更に全く別の移動局から到来する電波Sがある。この時に基地局アンテナ1で観測される到来電波の瞬時の電力分布は図2(b)に示される如くになる。瞬時の到来電波の分布であるので、波打ち、多くのリップルを持っている。これは、現実の都市内においては建物11その他の多くの物体が離散的に存在し、しかもこれらの物体が一様に配置されている訳ではないことに起因する。従って、瞬時の到来電波の到来方向電力を観測すると、極大点であるピークが多数観測されることになる。この様な場合、多数観測されるピークが各別の到来電波であるのか、或いは幾つかの組になっていて或る程度のかたまりとして捕らえることができるものであるは不明である。当然、或る程度の時間をかけて測定を続けることにより、或いは移動しながら測定を実行することにより、これらのピークは平滑化される。しかし、将来の高速移動通信では、パケット通信などが主流となるため、非常に短いパケットの到来時間に到来方向を推定する必要がある。即ち、図3(a)に示される到来電波の分布から主要な到来電波S、S、Sの方向を推定すると共に、図3(b)に示されるその広がりを推定する必要がある。
【0012】
ここで、図3(a)に示される到来電波の振幅或いは電力の角度特性図に基づいて、規定値SL以上の電力の極大値の方向である角度θとその電力Pの情報を持った信号の組を抽出し、これらの信号の間の相関係数を計算する。これにより、図3(b)に示される如く、相関が規定値以上の信号はひとつの到来電波であるとして一まとめにする。相関の高い範囲の内の最も電力が高い信号の方向がその到来電波の主要到来方向と考える。これにより電波到来方向を正確に推定することができる。そして、適切な送信パターンは、各電波到来方向に放射ビームのピークを向けると共に、その放射ビーム幅を相関の高い部分に合わせて設計する。これは、相関の高い信号は同一信号として取り扱うことができるからである。ここで、信号を同一信号として取り扱うか、或いは別信号として取り扱うかを判断する基準である相関の規定値は、設定した規定値で受信エラーを測定しながらその大きさを判断する。相関の規定値の大きさ、即ち、これを0.5とするか或いは0.7とするかは設計上適宜に決定される。
【0013】
以上の通りにして、第1の実施例によれば、基地局に到来する電波の電力が複雑なリップルを持つ場合においても、正確な電波到来方向を推定すると共に、最も効率の高い適切なアンテナ到来パス数および送信パターンの形成をすることができる。
第2の実施例を図4ないし図9を参照して説明する。図4はビームスキャンニングおよび到来電波の電力分布の測定結果を説明する図、図5は抽出された到来電波のピークを説明する図、図6は相関行列の作製法を説明する図、図7は極大ピークが1つの場合の到来電波の相関による電波到来方向推定を説明する図、図8は極大ピークに匹敵するピークが更に1つ存在する場合の到来電波の相関による電波到来方向推定を説明する図、図9および図10はアルゴリズムの実施例を説明する図である。
【0014】
先ず、図4(a)を参照するに、電波到来方向推定装置100において、電波到来方向についてそのビームを走査してレベルを測定する。この測定結果に基づいて、基地局における到来電波の角度と到来電波の電力の関係を測定する。図4(b)を参照するに、この測定は到来電波の振幅分布を測定することに相当すが、上述した通り、到来電波の瞬時の電力分布はリップルが発生し、正確な到来方向は推定できないので、走査してレベルを測定する。
次に、図5(a)を参照するに、この到来電波の振幅分布の内からスレッシュホールドレベルである或る規定値SL以上の電力のピークを探す。ここで、ピーク電力が高い順にS、S、S、・・・、Sと符号を付与し、図5(b)に示される如くピーク方向を示す角度θとその電力Pのみを抽出したグラフとする。
【0015】
図6を参照するに、以上の各信号S、S、S、・・・、Sの各々について、相関行列Snnを計算する。これはn×n個の要素の相関行列を求めることになるが、この場合の各信号の相関は、後で説明されるアンテナ信号の相関行列Rnnと各アンテナのパターンan(θ)から求められる。相関行列は基本的にはアンテナの数しか求めることができない。従って、アンテナがk素子であればk組しか信号の相関行列を求めることができない。そこで、図6に示される如く、n×nの信号相関行列をk×kの部分行列に分け、各部分行列を重複させてn×nの行列をすべて埋める。その後、各k×kの部分行列を計算して相関を求め、行列全体に係数を掛けて重複部分を同一にする調整を施し、n×nの信号相関行列を完成させる。
【0016】
図7を参照して到来電波の方向推定と電力推定を行う。図7は、上述した通り極大ピークが1つの場合の到来電波の相関による電波到来方向推定を説明する図である。図7(a)は、信号Sと、他の信号S〜信号Sとの間の相関を示し、図7(b)は信号Sと、他の信号Sおよび信号S〜Sの相関を示す。これと同様に、信号Sおよび信号S以外の各信号について電波到来方向と相関のグラフを作ることにより、電波到来方向を推定することができる。
図7(a)を参照するに、電波到来方向は相関がスレッシュホールドレベルである規定値SL以上の信号の加重平均角度であるものと考える。即ち、信号S、S、Sの到来角度θの加重平均を求め、これを信号Sの電波到来方向と考えて鎖線矢印により示している。そして、電力については、これを相関の規定値SL以上で信号S、S、Sの包絡線以下の面積に最大信号の電力を積算した値とする。この実施例において、基本的に絶対電力は正確には求められないが、到来電波Sと到来電波Sの束の電力比は推定することができる。
【0017】
図7(b)を参照するに、規定値SL以上の信号S、Sの加重平均角度を求め、これを信号Sの電波到来方向と考えて鎖線矢印により示している。そして、電力については、これを相関の規定値SL以上で信号S、Sの包絡線以下の面積に最大信号の電力を積算した値とする。
図8を参照して到来電波の方向推定と電力推定を行う。図8は極大ピークに匹敵する極大ピークが更に1つ存在する場合の到来電波の相関による電波到来方向推定を説明する図である。極大ピークが複数存在する場合とは、相異なる方向から同一電波が到来する場合であり、相異なる2方向から電波が到来しているものと推定される。この場合も、図7の場合と同様にして電波到来方向と電力を計算することができる。
【0018】
具体的アルゴリズムは図9に記載される。図9において、*1で示される相関係数を計算する方法は以下に記載する。
【数1】

Figure 2004125671
【0019】
ここで、以上の電波到来方向推定を要約するに、複数個kのアンテナ素子を動作させて到来電波の方向推定を行うに際して、到来電波の電力の方向分布を測定し、測定された方向分布の角度特性図に基づいて、規定値以上の電力の極大値の方向の情報と電力の情報とを持った信号の組を複数組抽出し、これらの信号の相関行列を形成し、相関が規定値以上の信号は同一信号の到来電波であるとして取り扱う電波到来方向推定方法において、先ず、放射パターンピークを周囲方向に走査して到来電波の電力の方向分布PI(θ)を測定し、測定した方向分布PI(θ)に基づいて、規定値以上の電力の極大値の方向とその電力の組をn組(PIp =[P1 (θ1 ),P(θ2 ),P(θ),…,Pn (θn )])抽出し、これを信号電力の高い順に並べ(S=(S1 ,S2 ,S3 ,S4 ,…,Sn ))、各アンテナの複素放射パターンをa(θ)=[a1 (θ),a(θ),a(θ),…,ak (θ)]T 、 各アンテナからの出力信号を(t)=[X(t),X(t),X(t),…,Xk (t)]T  として以下の式(1)から m を計算し、
m  −1 xx・(  )−1   …(1)
ここで、=[(θ1 ),(θ2 ),(θ3 ),…,(θn )]、 xx(t)・(t)H ]であり、 xx[・]はアンサンブル平均を求める走査を表しており、この式より信号相関行列 m から各
信号S(S=(S1 ,S2 ,S3 ,S4 ,…,Sn ))の相関関係を求める。
【0020】
最後に、先の図4を参照して第3の実施例を説明する。この実施例は到来電波の角度振幅分布をビーム走査以外の方法で得るものである。この方法としては、Capon、MUSIC、ESPRI法が知られている。放射パターンピークを周囲方向に走査する以外の方法で到来電波角度のみ測定し、次に、到来電波の電力を適当な放射パターンの該当方向のレベルより推定するか、或いは適当な放射パターンのピークを該当方向に向けることで推定し、方向分布PI(θ)を測定する。これ以降の手順は実施例2と同じである。
第3の実施例は、到来電波角度をより正確に推定すると共に、先の実施例と同様に最も効率の高い適切な電波到来パスおよび送信パターンの形成を実施することができる。しかし、演算処理は少し複雑になり、計算に時間がかかる恨みがある。
【0021】
【発明の効果】
上述した通りであって、この発明によれば、到来電波について或る規定値以上の電力の極大値の方向の情報と電力の情報とを持った信号の組を複数組抽出し、これらの信号の間の相関をとって、相関が規定値以上の信号は同一信号の到来電波であるとして取り扱うことにより、正確な電波到来方向を推定をすると共に最も効率の高い適切な電波到来パス数および送信パターンを形成することができる。
【図面の簡単な説明】
【図1】電波到来方向推定装置の基本構成を説明する図。
【図2】電波の伝播状況と到来電波の振幅或いは電力を説明する図。
【図3】到来電波の推定の原理を説明する図。
【図4】ビームスキャンニングおよび到来電波の電力分布の測定結果を説明する図。
【図5】抽出された到来電波のピークを説明する図。
【図6】相関行列の作製法を説明する図。
【図7】極大ピークが1つの場合の到来電波の相関による電波到来方向推定を説明する図。
【図8】極大ピークに匹敵するピークが更に1つ存在する場合の到来電波の相関による電波到来方向推定を説明する図。
【図9】アルゴリズムを示す図。
【図10】従来例を説明する図。[0001]
[Industrial applications]
The present invention relates to a radio wave arrival direction estimating method, and in particular, extracts a plurality of sets of signals having information on the direction of the local maximum value of electric power over a certain specified value and electric power information for an incoming radio wave, and extracts these signals. By taking the correlation between the signals and treating the signals whose correlation is equal to or greater than the specified value as the arriving radio waves of the same signal, it is possible to estimate the accurate radio wave arrival direction and to obtain the most efficient and appropriate number of radio wave arrival paths and transmission patterns. And a method for estimating the direction of arrival of radio waves.
[0002]
[Prior art]
A conventional example will be described with reference to FIGS.
In FIG. 10A, reference numeral 100 denotes a radio wave arrival direction estimating apparatus, which includes a base station antenna 1 including antenna elements # 1 to #k, an RF circuit unit 2, a DC / UC conversion unit 3, and an AD / DA conversion unit. 4, an adaptive circuit section 5, a calibration circuit 6, and a multiplexing circuit section 7. In the estimating apparatus 100, the estimation of the number of arriving waves of radio waves and the estimation of the direction of arrival are basically performed using a beamformer, Capon, MUSIC, ESPRIT or other radio wave arrival direction estimation algorithms (for example, see Non-Patent Documents). 1).
These radio wave arrival direction estimation algorithms are excellent algorithms for theoretically estimating the arrival direction of a radio wave, but cannot always accurately estimate the radio wave arrival direction on an actual radio wave propagation path. Hereinafter, this will be specifically described.
[0003]
As shown in FIG. 10A, when the environment around the mobile station 10 is a radio wave propagation environment in which the building 11 that scatters radio waves and reflects the radio waves stands, actual instantaneous arrival under this environment is performed. When the direction of arrival is estimated by the above-mentioned radio wave arrival direction estimation algorithm paying attention to the radio wave, the arrival direction spectrum has waving and ripples as shown in FIG. That is, several peaks are observed over a wide angle θ. S 1 , S 2 , and S 3 indicate radio signals arriving at the base station antenna 1 from the mobile station 10 at different angles θ. This is due to the fact that buildings 11 and many other objects are discretely present in a real city, and these objects are not always arranged uniformly. Therefore, when the arrival direction power of the instantaneous arrival radio wave is observed, many peaks, which are maximum points, are observed. In such a case, it is unclear whether a large number of observed peaks are different arriving radio waves, or whether some peaks can be captured as a set of several sets. Naturally, these peaks are smoothed by continuing the measurement over a certain period of time or by performing the measurement while moving. However, in high-speed mobile communication that will be put to practical use in the future, since communication requiring high-speed signal transmission such as packet communication becomes mainstream, the direction of arrival of a radio wave is estimated within a very short packet arrival time interval. A need arises. That is, it is necessary to estimate the arrival direction of the radio wave instantaneously.
[0004]
[Problems to be solved by the invention]
In the conventional example of the radio wave arrival direction estimation algorithm, when this is used to estimate the instantaneous radio wave arrival direction in an actual radio wave propagation environment, the peaks of the power of several arriving radio waves are observed, and the accurate arrival direction estimation can be performed. There was a drawback that it was difficult. When the transmission pattern of the base station is formed based on the information on the radio wave arrival direction estimated using the conventional example, there is a disadvantage that the performance of the transmission adaptive antenna is reduced.
In the estimation of the direction of arrival of a radio wave, there is known a technique of obtaining N received signals, obtaining their autocorrelations, and performing direction estimation based on the autocorrelations (for example, see Patent Document 1).
[0005]
The present invention extracts a plurality of sets of signals having information on the direction of the local maximum value of power exceeding a certain specified value and power information for an incoming radio wave, and takes a correlation between these signals to obtain a correlation. Signals that are equal to or greater than the specified value are treated as the same signal arriving radio waves, so that an accurate radio wave arrival direction can be estimated and a radio wave arrival direction estimating method that forms the most efficient and appropriate number of radio wave arrival paths and transmission patterns. To provide.
[0006]
[Non-patent document 1]
Kikuma, "Adaptive signal processing by array antenna", published by Science and Technology Publishing Company, 1998 [Patent Document 1]
JP 2000-11630 A
[Means for Solving the Problems]
Claim 1: When estimating the direction of an incoming radio wave by operating a plurality of k antenna elements, the direction distribution of the power of the incoming radio wave is measured, and based on an angle characteristic diagram of the measured direction distribution, a specified value or more. A plurality of pairs of signals having information on the direction of the maximum value of the power and information on the power are extracted, and a correlation matrix of these signals is formed. A method of estimating the direction of arrival of radio waves, which is treated as being, is constructed.
Claim 2: In the radio wave arrival direction estimating method according to claim 1,
First, the radiation pattern peak is scanned in the circumferential direction to measure the direction distribution PI (θ) of the power of the arriving radio wave. Based on the measured direction distribution PI (θ), the direction of the local maximum value of the power equal to or more than the specified value is determined. The set of powers is extracted as n sets (PI p = [P 11 ), P 22 ), P 33 ),..., P nn )]), and this is extracted as the signal power. (S = (S 1 , S 2 , S 3 , S 4 ,..., Sn )), and the complex radiation pattern of each antenna is represented by a (θ) = [a 1 (θ), a 2 (θ ), A 3 (θ),..., A k (θ)] T , and the output signal from each antenna is expressed as X (t) = [X 1 (t), X 2 (t), X 3 (t),. , X k (t)] T as S m from the following equation (1),
S m = A -1 · R xx · (A H) -1 ... (1)
Here, A = [a (θ 1 ), a (θ 2), a (θ 3), ..., a (θ n)], with R xx = E [X (t ) · X (t) H] R xx = E [•] represents a scan for obtaining an ensemble average, and from this equation, each signal S (S = (S 1 , S 2 , S 3 , S 4 ,...) Is obtained from the signal correlation matrix S m . S n )), and a signal having a correlation equal to or greater than a specified value is regarded as an incoming signal of the same signal.
[0008]
In a third aspect of the present invention, in the method for estimating the direction of arrival of a radio wave,
When measuring the directional distribution PI (θ), first measure only the radio wave arrival angle by a method such as Capon, MUSIC, or ESPRI that does not scan the radiation pattern peak in the peripheral direction, and then measure the power of the arriving radio wave to an appropriate radiation pattern. Of the corresponding direction or by estimating the peak of an appropriate radiation pattern in the corresponding direction to measure the directional distribution PI (θ), and based on the measured directional distribution PI (θ), a specified value or more is obtained. The maximum value direction of the power and the set of the power are n sets (PI p = [P 11 ), P 22 ), P 33 ),..., P nn )] ) And arrange them in descending order of signal power (S = (S 1 , S 2 , S 3 , S 4 ,..., Sn )), and define the complex radiation pattern of each antenna as a (θ) = [a 1 (θ), a 2 (θ ), a 3 (θ), , A k (θ)] T , the output signal from each antenna X (t) = [X 1 (t), X 2 (t), X 3 (t), ..., as X k (t)] T Calculate S m from the following equation (1),
S m = A -1 · R xx · (A H) -1 ... (1)
Here, A = [a (θ 1 ), a (θ 2), a (θ 3), ..., a (θ n)], with R xx = E [X (t ) · X (t) H] R xx = E [•] represents a scan for obtaining an ensemble average, and from this equation, each signal S (S = (S 1 , S 2 , S 3 , S 4 ,...) Is obtained from the signal correlation matrix S m . S n )), and a signal having a correlation equal to or greater than a specified value is regarded as an incoming signal of the same signal.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to examples.
A first embodiment will be described with reference to FIGS. FIG. 1 is a diagram for explaining a basic configuration of a radio wave arrival direction estimating apparatus, FIG. 2 is a diagram for explaining a propagation state of a radio wave and amplitude or power of a radio wave, and FIG. 3 is a diagram for explaining a principle of estimating a radio wave. .
Referring to FIG. 1, a radio wave direction of arrival estimation apparatus 100 includes a base station antenna 1, an RF circuit unit 2, a DC / UC conversion unit 3, an AD / DA conversion unit 4, an adaptive circuit unit 5, a calibration circuit 6, And a conversion circuit section 7.
[0010]
The above-described radio wave direction-of-arrival estimation apparatus 100 converts the output of each of antenna elements # 1 to #n into a digital signal in AD / DA conversion section 4, and performs appropriate signal processing by adaptive circuit section 5 and multiplexing circuit section 7. Is what you do. At the time of this signal processing, the adaptive circuit unit 5 basically determines the weight of each of the antenna elements # 1 to #k. In order to do so, an estimated value of the direction and power of the radio wave arriving at the base station is obtained. Calculate based on In determining a transmission pattern, direction estimation (DOA) of an incoming radio wave is particularly important.
[0011]
Referring to FIG. 2A, as described above, since the building 11 and other objects that scatter and reflect radio waves are present around the mobile station 10, the radio waves radiated from the mobile station 10 And the light arrives at the base station antenna 1 with a certain spread in the angle of arrival. There are a direct wave S 1 radiated from the mobile station 10, a reflected wave S 2 reflected from the building 11 and other objects, and a radio wave S 3 arriving from a completely different mobile station. At this time, the instantaneous power distribution of the arriving radio wave observed by the base station antenna 1 is as shown in FIG. Since it is a distribution of instantaneous incoming radio waves, it has wavy and many ripples. This is due to the fact that buildings 11 and many other objects are discretely present in a real city, and these objects are not always arranged uniformly. Therefore, when the arrival direction power of the instantaneous arrival radio wave is observed, many peaks, which are maximum points, are observed. In such a case, it is unclear whether a large number of observed peaks are different arriving radio waves, or whether some peaks can be captured as a set of several sets. Naturally, these peaks are smoothed by continuing the measurement over a certain period of time or by performing the measurement while moving. However, in the future high-speed mobile communication, packet communication or the like will be the mainstream, so it is necessary to estimate the arrival direction at a very short packet arrival time. That is, it is necessary to estimate the directions of the main arriving radio waves S 1 , S 2 , and S 3 from the distribution of the arriving radio waves shown in FIG. 3A, and to estimate the spread thereof shown in FIG. 3B. .
[0012]
Here, based on the amplitude characteristic of the arriving radio wave or the power angle characteristic shown in FIG. 3A, a signal having information of the angle θ which is the direction of the local maximum value of the power equal to or higher than the specified value SL and the power P thereof. And compute the correlation coefficient between these signals. As a result, as shown in FIG. 3B, signals whose correlation is equal to or greater than a specified value are grouped as one incoming radio wave. The direction of the signal with the highest power in the high correlation range is considered to be the main direction of arrival of the arriving radio wave. Thus, the direction of arrival of the radio wave can be accurately estimated. Then, an appropriate transmission pattern is designed so that the peak of the radiation beam is directed in each radio wave arrival direction and the radiation beam width is adjusted to a portion having a high correlation. This is because signals with high correlation can be treated as the same signal. Here, the specified value of the correlation, which is a criterion for determining whether the signal is handled as the same signal or different signal, determines the magnitude while measuring the reception error with the set specified value. The magnitude of the specified value of the correlation, that is, whether it is 0.5 or 0.7, is appropriately determined in design.
[0013]
As described above, according to the first embodiment, even when the power of the radio wave arriving at the base station has a complicated ripple, it is possible to accurately estimate the radio wave arrival direction and to obtain the most efficient and appropriate antenna. The number of incoming paths and the transmission pattern can be formed.
A second embodiment will be described with reference to FIGS. FIG. 4 is a diagram illustrating the results of beam scanning and the measurement of the power distribution of the arriving radio wave. FIG. 5 is a diagram illustrating the peak of the extracted arriving radio wave. FIG. 6 is a diagram illustrating a method of creating a correlation matrix. FIG. 8 is a view for explaining the radio wave arrival direction estimation based on the correlation of the arriving radio waves when there is one maximum peak, and FIG. 8 is a diagram illustrating the radio wave arrival direction estimation based on the correlation of the arriving radio waves when one more peak comparable to the maximum peak exists. FIGS. 9 and 10 are diagrams for explaining an embodiment of the algorithm.
[0014]
First, referring to FIG. 4A, the radio wave arrival direction estimating apparatus 100 scans the beam in the radio wave arrival direction and measures the level. Based on this measurement result, the relationship between the angle of the incoming radio wave and the power of the incoming radio wave at the base station is measured. Referring to FIG. 4B, this measurement is equivalent to measuring the amplitude distribution of the arriving radio wave. As described above, the instantaneous power distribution of the arriving radio wave has a ripple, and the accurate arrival direction is estimated. Since it is not possible, scan and measure the level.
Next, referring to FIG. 5 (a), a peak of power equal to or higher than a certain threshold SL, which is a threshold level, is searched for from the amplitude distribution of the arriving radio wave. Here, S 1, S 2, S 3 in order peak power is high, ..., grant S n and code, FIG angle indicating the peak direction as shown in (b) theta and its power P only Let it be an extracted graph.
[0015]
Referring to FIG. 6, each of the above signals S 1, S 2, S 3 , ···, for each of S n, to calculate the correlation matrix S nn. In this case, a correlation matrix of n × n elements is obtained. In this case, the correlation of each signal is obtained from a correlation matrix R nn of an antenna signal described later and a pattern an (θ) of each antenna. Can be Basically, only the number of antennas can be obtained for the correlation matrix. Therefore, if the antenna has k elements, only k sets of signal correlation matrices can be obtained. Therefore, as shown in FIG. 6, the n × n signal correlation matrix is divided into k × k sub-matrices, and the sub-matrices are overlapped to fill all the n × n matrices. Thereafter, a correlation is obtained by calculating each of the k × k sub-matrices, and the whole matrix is multiplied by a coefficient to make adjustments to make the overlapping portion identical, thereby completing an n × n signal correlation matrix.
[0016]
Referring to FIG. 7, direction estimation and power estimation of an incoming radio wave are performed. FIG. 7 is a diagram for explaining the radio wave arrival direction estimation based on the correlation of the arriving radio waves when there is one maximum peak as described above. 7 (a) is a signals S 1, shows the correlation between the other signals S 2 ~ signal S n, FIG. 7 (b) and the signal S 2, another signal S 1 and the signal S 3 ~ shows the correlation of S n. Similarly, by making a graph of the correlation between the radio wave arrival direction for signals S 1 and the signal S 2 than the signal, it is possible to estimate the radio wave arrival direction.
Referring to FIG. 7A, it is assumed that the radio wave arrival direction is a weighted average angle of a signal whose correlation is equal to or higher than a specified value SL which is a threshold level. That is, a weighted average of the arrival angles θ of the signals S 1 , S 4 , and S 7 is obtained, and this is considered as the radio wave arrival direction of the signal S 1 , and is indicated by a chain arrow. The power is defined as a value obtained by integrating the power of the maximum signal into an area equal to or more than the specified value SL of the correlation and equal to or less than the envelope of the signals S 1 , S 4 , and S 7 . In this embodiment, basically the absolute power is not precisely obtained, the power ratio of the flux of the incoming radio wave S 1 and the incoming radio wave S 2 can be estimated.
[0017]
Referring to FIG. 7B, the weighted average angles of the signals S 2 and S 3 that are equal to or larger than the specified value SL are obtained, and this is considered as the radio wave arrival direction of the signal S 2 and is indicated by a chain line arrow. The power is defined as a value obtained by integrating the power of the maximum signal into an area equal to or larger than the specified value SL of the correlation and equal to or smaller than the envelope of the signals S 2 and S 3 .
Referring to FIG. 8, direction estimation and power estimation of an incoming radio wave are performed. FIG. 8 is a diagram for explaining estimation of a radio wave arrival direction based on a correlation of arriving radio waves when there is one more maximum peak comparable to the maximum peak. The case where there are a plurality of maximum peaks is a case where the same radio wave arrives from different directions, and it is presumed that radio waves arrive from two different directions. Also in this case, the radio wave arrival direction and the power can be calculated in the same manner as in the case of FIG.
[0018]
The specific algorithm is described in FIG. In FIG. 9, a method for calculating the correlation coefficient indicated by * 1 will be described below.
(Equation 1)
Figure 2004125671
[0019]
Here, in order to summarize the above radio wave arrival direction estimation, when estimating the direction of the arrival radio wave by operating a plurality of k antenna elements, the direction distribution of the power of the arrival radio wave is measured, and the measured direction distribution is measured. Based on the angle characteristic diagram, a plurality of pairs of signals having information on the direction of the local maximum value of the power equal to or higher than the specified value and information on the power are extracted, and a correlation matrix of these signals is formed. In the radio wave arrival direction estimating method in which the above signals are treated as the same radio wave, first, the radiation pattern peak is scanned in the circumferential direction to measure the directional distribution PI (θ) of the power of the incoming radio wave, and the measured direction is measured. Based on the distribution PI (θ), the direction of the maximum value of the power equal to or higher than the specified value and the set of the power are set to n sets (PI p = [P 11 ), P 22 ), P 3 3), ..., P n ( θ n)]) is extracted, this Arranged in high No. power order (S = (S 1, S 2, S 3, S 4, ..., S n)), a complex radiation pattern of each antenna a (θ) = [a 1 (θ), a 2 (Θ), a 3 (θ),..., A k (θ)] T , and the output signal from each antenna is expressed as X (t) = [X 1 (t), X 2 (t), X 3 (t) , ..., a S m is calculated from the following equation (1) as X k (t)] T,
S m = A -1 · R xx · (A H) -1 ... (1)
Here, A = [a (θ 1 ), a (θ 2), a (θ 3), ..., a (θ n)], with R xx = E [X (t ) · X (t) H] R xx = E [•] represents a scan for obtaining an ensemble average, and from this equation, each signal S (S = (S 1 , S 2 , S 3 , S 4 ,...) Is obtained from the signal correlation matrix S m . S n )).
[0020]
Finally, a third embodiment will be described with reference to FIG. In this embodiment, the angular amplitude distribution of an incoming radio wave is obtained by a method other than beam scanning. As this method, Capon, MUSIC, and ESPRI methods are known. Only the angle of the incoming radio wave is measured by a method other than scanning the radiation pattern peak in the surrounding direction, and then the power of the incoming radio wave is estimated from the level of the appropriate radiation pattern in the corresponding direction, or the peak of the appropriate radiation pattern is determined. It is estimated by directing in the corresponding direction, and the direction distribution PI (θ) is measured. The subsequent procedure is the same as in the second embodiment.
In the third embodiment, it is possible to more accurately estimate the angle of the arriving radio wave and to form the most efficient and appropriate radio wave arriving path and transmission pattern as in the previous embodiment. However, there is a grudge that the arithmetic processing becomes slightly complicated and the calculation takes time.
[0021]
【The invention's effect】
As described above, according to the present invention, a plurality of sets of signals having information on the direction of the maximum value of the power of a certain specified value or more and the information on the power of the arriving radio wave are extracted, and these signals are extracted. By taking the correlation between the signals and treating the signals whose correlations are equal to or greater than the specified value as the arriving radio waves of the same signal, it is possible to estimate the accurate radio wave arrival direction and to obtain the most efficient and appropriate number of radio wave arrival paths and transmission. A pattern can be formed.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a basic configuration of a radio wave direction of arrival estimation device.
FIG. 2 is a diagram illustrating the propagation state of a radio wave and the amplitude or power of an incoming radio wave.
FIG. 3 is a diagram illustrating the principle of estimating an incoming radio wave.
FIG. 4 is a view for explaining beam scanning and a measurement result of a power distribution of an incoming radio wave.
FIG. 5 is a diagram illustrating a peak of an extracted incoming radio wave.
FIG. 6 illustrates a method for producing a correlation matrix.
FIG. 7 is a view for explaining estimation of a radio wave arrival direction based on a correlation between arriving radio waves when there is one maximum peak;
FIG. 8 is a view for explaining estimation of an arrival direction of a radio wave based on a correlation between arriving radio waves when there is one more peak that is equivalent to the maximum peak.
FIG. 9 is a diagram showing an algorithm.
FIG. 10 illustrates a conventional example.

Claims (3)

複数個kのアンテナ素子を動作させて到来電波の方向推定を行うに際して、到来電波の電力の方向分布を測定し、測定された方向分布の角度特性図に基づいて、規定値以上の電力の極大値の方向の情報と電力の情報とを持った信号の組を複数組抽出し、これらの信号の相関行列を形成し、相関が規定値以上の信号は同一信号の到来電波であるとして取り扱うことを特徴とする電波到来方向推定方法。When estimating the direction of the arriving radio wave by operating a plurality of k antenna elements, the directional distribution of the power of the arriving radio wave is measured. Extract multiple sets of signals with value direction information and power information, form a correlation matrix of these signals, and treat signals whose correlation is greater than a specified value as arriving radio waves of the same signal A radio wave direction of arrival estimating method characterized by the following. 請求項1に記載される電波到来方向推定方法において、
先ず、放射パターンピークを周囲方向に走査して到来電波の電力の方向分布PI(θ)を測定し、測定した方向分布PI(θ)に基づいて、規定値以上の電力の極大値の方向とその電力の組をn組(PIp =[P1 (θ1 ),P(θ2 ),P(θ),…,Pn (θn )])抽出し、これを信号電力の高い順に並べ(S=(S1 ,S2 ,S3 ,S4 ,…,Sn ))、各アンテナの複素放射パターンをa(θ)=[a1 (θ),a(θ),a(θ),…,ak (θ)]T 、 各アンテナからの出力信号を(t)=[X1 (t),X(t),X(t),…,Xk (t)]T  として以下の式(1)から m を計算し、
m  −1 xx・(  )−1   …(1)
ここで、=[(θ1 ),(θ2 ),(θ3 ),…,(θn )]、 xx(t)・(t)H ]であり、 xx[・]はアンサンブル平均を求める走査を表しており、この式より信号相関行列 m から各信号S(S=(S1 ,S2 ,S3 ,S4 ,…,Sn ))の相関関係を求め、相関が規定値以上の信号は同一信号の到来電波であるとして取り扱うことを特徴とする電波到来方向推定方法。
In the method of estimating a radio wave direction of arrival according to claim 1,
First, the radiation pattern peak is scanned in the circumferential direction to measure the direction distribution PI (θ) of the power of the arriving radio wave. Based on the measured direction distribution PI (θ), the direction of the local maximum value of the power equal to or more than the specified value is determined. The set of powers is extracted as n sets (PI p = [P 11 ), P 22 ), P 33 ),..., P nn )]), and this is extracted as the signal power. (S = (S 1 , S 2 , S 3 , S 4 ,..., Sn )), and the complex radiation pattern of each antenna is represented by a (θ) = [a 1 (θ), a 2 (θ ), A 3 (θ),..., A k (θ)] T , and the output signal from each antenna is expressed as X (t) = [X 1 (t), X 2 (t), X 3 (t),. , X k (t)] T as S m from the following equation (1),
S m = A -1 · R xx · (A H) -1 ... (1)
Here, A = [a (θ 1 ), a (θ 2), a (θ 3), ..., a (θ n)], with R xx = E [X (t ) · X (t) H] R xx = E [•] represents a scan for obtaining an ensemble average, and from this equation, each signal S (S = (S 1 , S 2 , S 3 , S 4 ,...) Is obtained from the signal correlation matrix S m . S n )). A method for estimating the direction of arrival of a radio wave, wherein a signal having a correlation equal to or greater than a prescribed value is determined as an incoming radio wave of the same signal.
請求項1に記載される電波到来方向推定方法において、
方向分布PI(θ)を測定するに際して放射パターンピークを周囲方向に走査することをしないCapon、MUSIC、ESPRI法の如き方法で先ず電波到来角度のみ測定し、次いで到来電波の電力を適当な放射パターンの該当方向のレベルより推定するか或いは適当な放射パターンのピークを該当方向に向けることにより推定して方向分布PI(θ)を測定し、測定した方向分布PI(θ)に基づいて規定値以上の電力の極大値の方向とその電力の組をn組(PIp =[P1 (θ1 ),P(θ2 ),P(θ),…,Pn (θn )]) 抽出し、これを信号電力の高い順に並べ(S=(S1 ,S2 ,S3 ,S4 ,…,Sn ))、各アンテナの複素放射パターンをa(θ)=[a1 (θ),a(θ),a(θ),…,ak (θ)]T 、各アンテナからの出力信号を(t)=[X1 (t),X(t),X(t),…,Xk (t)]T  として以下の式(1)から m を計算し、
m  −1 xx・(  )−1     …(1)
ここで、=[(θ1 ),(θ2 ),(θ3 ),…,(θn )]、 xx(t)・(t)H ]であり、 xx[・]はアンサンブル平均を求める走査を表しており、この式より信号相関行列 m から各信号S(S=(S1 ,S2 ,S3 ,S4 ,…,Sn ))の相関関係を求め、相関が規定値以上の信号は同一信号の到来電波であるとして取り扱うことを特徴とする電波到来方向推定方法。
In the method of estimating a radio wave direction of arrival according to claim 1,
When measuring the directional distribution PI (θ), first measure only the radio wave arrival angle by a method such as Capon, MUSIC, or ESPRI that does not scan the radiation pattern peak in the peripheral direction, and then measure the power of the arriving radio wave to an appropriate radiation pattern. Of the corresponding direction or by estimating the peak of an appropriate radiation pattern in the corresponding direction to measure the directional distribution PI (θ), and based on the measured directional distribution PI (θ), a specified value or more is obtained. The maximum value direction of the power and the set of the power are n sets (PI p = [P 11 ), P 22 ), P 33 ),..., P nn )] ) And arrange them in descending order of signal power (S = (S 1 , S 2 , S 3 , S 4 ,..., Sn )), and define the complex radiation pattern of each antenna as a (θ) = [a 1 (θ), a 2 (θ ), a 3 (θ), , A k (θ)] T , the output signal from each antenna X (t) = [X 1 (t), X 2 (t), X 3 (t), ..., as X k (t)] T Calculate S m from the following equation (1),
S m = A -1 · R xx · (A H) -1 ... (1)
Here, A = [a (θ 1 ), a (θ 2), a (θ 3), ..., a (θ n)], with R xx = E [X (t ) · X (t) H] R xx = E [•] represents a scan for obtaining an ensemble average, and from this equation, each signal S (S = (S 1 , S 2 , S 3 , S 4 ,...) Is obtained from the signal correlation matrix S m . S n )). A method for estimating the direction of arrival of a radio wave, wherein a signal having a correlation equal to or greater than a prescribed value is determined as an incoming radio wave of the same signal.
JP2002291502A 2002-10-03 2002-10-03 Electric wave incoming direction estimation method Pending JP2004125671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291502A JP2004125671A (en) 2002-10-03 2002-10-03 Electric wave incoming direction estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291502A JP2004125671A (en) 2002-10-03 2002-10-03 Electric wave incoming direction estimation method

Publications (1)

Publication Number Publication Date
JP2004125671A true JP2004125671A (en) 2004-04-22

Family

ID=32283083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291502A Pending JP2004125671A (en) 2002-10-03 2002-10-03 Electric wave incoming direction estimation method

Country Status (1)

Country Link
JP (1) JP2004125671A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112795A (en) * 2008-11-05 2010-05-20 Denso Corp Radio wave arrival direction estimation apparatus and system
CN113221587A (en) * 2021-03-31 2021-08-06 北京航空航天大学 Antenna spatial position rapid matching system and method based on matching angle
CN116819430A (en) * 2023-06-30 2023-09-29 中国人民解放军军事科学院***工程研究院 Direction finding method for same-frequency signal under strong radiation source background

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112795A (en) * 2008-11-05 2010-05-20 Denso Corp Radio wave arrival direction estimation apparatus and system
CN113221587A (en) * 2021-03-31 2021-08-06 北京航空航天大学 Antenna spatial position rapid matching system and method based on matching angle
CN116819430A (en) * 2023-06-30 2023-09-29 中国人民解放军军事科学院***工程研究院 Direction finding method for same-frequency signal under strong radiation source background
CN116819430B (en) * 2023-06-30 2024-03-15 中国人民解放军军事科学院***工程研究院 Direction finding method for same-frequency signal under strong radiation source background

Similar Documents

Publication Publication Date Title
JP4339801B2 (en) Direction-of-arrival estimation method and reception beam forming apparatus without using eigenvalue decomposition
TWI407132B (en) Positioning method and wireless communication system using the same
JP2988463B2 (en) Direction finding device and measurement result processing device therefor
JP2005197772A (en) Adaptive array antenna device
JP5504166B2 (en) Radio arrival direction estimation apparatus and radio arrival direction estimation method
JP2017063369A (en) Base station, communication system, and beam control method
Zhang et al. High resolution 3-D angle of arrival determination for indoor UWB multipath propagation
JP4320441B2 (en) Array antenna calibration method and calibration apparatus
JPH11344517A (en) Environmental analyzer for electric wave
Oluwole et al. Smart Antenna for Wireless Communication Systems using Spatial Signal Processing.
JP5022943B2 (en) Direction measuring device
JP2010048708A (en) ,system, method, and program for estimating direction
JP2004125671A (en) Electric wave incoming direction estimation method
US20030137454A1 (en) Methods and apparatus for determining a direction of arrival in a wireless commmunication system
JP2004336390A (en) Adaptive array and positioning device
JP2004061468A (en) Method for estimating arrival direction of multiplex wave using spatial characteristic and receiving beam formation device using the same
JP4015989B2 (en) Wave number estimation apparatus and wave number estimation method
Van der Vorst et al. Anchor selection in angle-of-arrival estimation-based localization using polynomial chaos expansions
JP4098026B2 (en) Method of estimating direction of arrival of periodic stationary signal in multipath propagation environment and reception beam forming apparatus using the same
JPH0862323A (en) Receiving device and transmitting device
JP2002107440A (en) Method and device for detecting direction
Park et al. Fine-resolution ranging scheme based on signal strength in indoor hallway with rough-surface slab waveguide
Iwakiri et al. Ultra-Wideband Time-of-Arrival and Angle-of-Arrival Estimation Using Transformation Between Frequency and Time Domain Signals.
JP4119719B2 (en) Mobile station direction estimation method and apparatus
El Arja et al. Joint TOA/DOA measurements for UWB indoor propagation channel using MUSIC algorithm