JP2004125288A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2004125288A
JP2004125288A JP2002290190A JP2002290190A JP2004125288A JP 2004125288 A JP2004125288 A JP 2004125288A JP 2002290190 A JP2002290190 A JP 2002290190A JP 2002290190 A JP2002290190 A JP 2002290190A JP 2004125288 A JP2004125288 A JP 2004125288A
Authority
JP
Japan
Prior art keywords
air
conditioning system
air conditioning
solar radiation
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002290190A
Other languages
Japanese (ja)
Other versions
JP4157355B2 (en
Inventor
Isamu Suzuki
鈴木 勇
Masabumi Terawaki
寺脇 正文
Hiroichi Tashiro
田代 博一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2002290190A priority Critical patent/JP4157355B2/en
Publication of JP2004125288A publication Critical patent/JP2004125288A/en
Application granted granted Critical
Publication of JP4157355B2 publication Critical patent/JP4157355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problems with a conventional air conditioning system that an efficient control is difficult because the quantity of solar radiation and atmospheric temperature vary with seasons and times. <P>SOLUTION: This air conditioning system is formed so that a controlled area is divided into an interior zone and a perimeter zone for air conditioning. Also, in the air conditioning system, a pyrheliometer measuring the quantity of solar radiation is installed on the outer wall part of a building, and a thermometer measuring the atmospheric temperature is installed on the outside of the building. Then, the air conditioning system determines a supply air temperature set value in consideration of the quantity of solar radiation measured by the pyrheliometer and the atmospheric temperature measured by the thermometer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、大型インテリジェントビルに適した空調システムに関するものであり、更に具体的には被制御エリアを複数のゾーンに区分して空調制御を行う技術分野に属する。
【0002】
【従来の技術】
従来はビル等の内部に設けられた大きな部屋、例えば事務室等を空調する場合には被制御エリア(事務室等)を中央部のインテリアゾーンと窓側周辺のペリメータゾーンとに分けて別々の空調機で空調制御することが行われていた。近年省エネの思想からインテリアゾーンとペリメータゾーンとを同一の空調機で空調制御するようになってきた。しかし、ペリメータゾーンでは、夏期においては日射量や外気温度によって室内温度が影響される割合が大きく、また冬季には外気温度に影響される割合も大きい。従って、ペリメータゾーンをインテリアゾーンと全く同様に空調制御を行うと不経済になる。このため、従来から種々の工夫がなされてきた。例えば、公開特許公報、平11−132489号には以下に説明する空調制御が開示されている。また、特許公報、平6−68394号にはインテリアゾーン、ペリメータゾーンの他にペリインテリアゾーンという中間ゾーンを設けて制御した例が開示されている。
【0003】
図6、図7は公開特許公報、平11−132489号に開示されている従来の空調制御の1例を示す。図6において、被制御エリア50は窓側に面したペリメータゾーンPと中央部のインテリアゾーンAに仮想的に区分され、ペリメータゾーンPは更に東西南北の4つのゾーンE、W、S、Nに区分されている。ここで、N側ゾーンの熱負荷を100%として、E側ゾーン、W側ゾーン、S側ゾーンは日射量等の外界条件に応じて建物の外壁63に、図示省略の2重サッシ、外部ブラインド等を設けて熱負荷が100%になるように制限している。これにより、ゾーンE、W、S、NのペリメータゾーンPは全てのゾーンにおいて熱負荷を100%として同一の空調制御を可能にしている。
【0004】
図6において、2点鎖線に囲まれた中央には空調機55が設置され、送風口56から給気ダクト57を経て、可変風量調節ユニット(VAVユニット)65により吹出口64からペリメータゾーンP内に空調された空気が送風され、また吹出口59からインテリアゾーンAに空気が供給される。図7は立面視した空調システムを示す。図7から理解できるように、給気ダクト57から吹出口59へは分岐ダクト58,動圧を静圧に変換するためのチャンバー60を経て空調した空気が送風される。また、VAVユニット65はダンパ66,ファン67を具備し、中央制御装置70により制御されている。
【0005】
また、上記装置では、夕方以降の残業時間帯には、ペリメータゾーンPの空調負荷が低下するため、中央制御装置70によって、複数のVAVユニット65の少なくとも一部が停止されると共に、停止されたVAVユニット65の送風量に対応させて空調機55の給気風量をインバータ制御等によって調整する。
上記従来装置においては、東西南北の日射量の相違を外壁に2重サッシ、外部ブラインド等を設けて均一化を図っている。また、日中と夜間の外気温度の差を解消するために残業帯を設けて個別の制御を行っている。また、特許公報、平6−68394号に開示した従来装置ではインテリアゾーン、ペリメータゾーンの他にペリインテリアゾーンという中間ゾーンを設けて季節により空調空気の流れの向き、供給風量を制御して問題を解決している。
【0006】
【発明が解決しようとする課題】
上記したように前者の従来装置では、日射量の影響や、外気温度の影響を解決するために、2重サッシ、外部ブラインド等を外壁に設置し、或いは日中と夜間とに分けて制御し、問題の解決を図っている。また、後者の従来装置では、ペリインテリアゾーンを設けて季節により制御方式を変更して問題の解決を図っている。しかし、上記した従来装置では何れも季節や時刻を基準に制御方式を変更しているが同じ季節、同じ時刻でも日射量も一様ではなく、また外気温度も一様ではない。従来装置のように、季節や時刻を基準にする制御方式では効率的な制御が困難で、また、設備も複雑になるという課題があった。
【0007】
【課題を解決するための手段】
上記課題を解決するために本発明は以下の手段を採用している。即ち、
請求項1記載の発明は、被制御エリアをインテリアゾーンとペリメータゾーンとに区分して空調する空調システムにおいて、日射量を計測する日射計を建物の外壁部に設け、かつ、外気温度を計測する温度計を該建物の外部に設けて、該日射計により計測された日射量並びに該温度計により計測された外気温度を考慮して給気温度設定値を決定することを特徴としている。
請求項1記載の発明は日射量並びに外気温度を計測しているので、季節の変化や時刻の相違によって複雑な制御方式を採用することなく正確な制御ができるように制御方式を構成したことを主たる特徴としている。
【0008】
請求項2に記載の発明は、請求項1の発明において、前記日射計は前記制御エリアのペリメータゾーンを構成している外壁面の各壁面に設けたことを特徴としている。
請求項2に記載の発明は窓の向きにより制御方式を異ならせずに同一の制御方式を採用可能にしたことを主たる特徴としている。
【0009】
請求項3記載の発明は、請求項1又は請求項2の何れか1に記載の発明において、前記給気温度設定値を決定する決定部は、最大要求風量比率に基づいて基準の給気温度設定値を算出する基準設定部と、日射量と外気温度に基づく補正値を算出する補正部と、前記基準設定値と前記補正値を考慮した給気温度設定値を定める演算部とを具備することを特徴としている。
【0010】
請求項4記載の発明は、請求項1〜請求項3の何れか1に記載の発明において、前記空調システムにおいて、空調機からの空調空気を給気する吹出口をペリメータゾーンに設けると共に被制御エリア内の空気を還気する吸込口をインテリアゾーンとペリメータゾーンの境界近傍に設けたことを特徴としている。
【0011】
【発明の実施形態】
図1は本発明を実施した実施形態(空調システム)の構成を示し、図2は実施形態の配置図を示す。以下、図に基づいて説明をする。図1において、被制御エリア(例えば事務室)10は窓11側のペリメータゾーンPとインテリアゾーンAとに仮想的に区分されている。ペリメータゾーンPの天井壁に給気吹出口14が設けられており、インテリアゾーンA(又はペリメータゾーンPとインテリアゾーンAとの境界)の天井壁に室内空気の吸込口15が設けられている。給気吹出口14は給気ダクト16により空調機20の給気側に接続されており、室内空気の吸込口15は還気ダクト18により空調機20の還気側に接続されている。
【0012】
給気ダクト16の途中(給気吹出口14に近い位置)に可変風量調節ユニット(以下、VAVユニットという)17が設けられている。VAVユニット17は内部にダンパと送風機を具備し、局所コントローラ19によって制御されており、定量の給気が送風可能になっている。被制御エリア10内に配置された室内温度計21が局所コントローラ19の入力側に接続され、局所コントローラ19は更に空調機20のコントローラ30に接続されている。また、給気の温度を計測する温度計22が給気ダクト16の途中に設けられており、温度計22の出力端はコントローラ30の入力側に接続されている。
【0013】
空調機20は簡略化したものが図示されており、内部にはインバータ25によって制御された送風機24と空調のための冷却コイル27,加熱コイル28等が配設されている。なお、空調機20は従来技術と同様であり、ここでは詳細を省略してある。また、コントローラ30の入力側には外気温度を計測する温度計31、日射量を計測する複数個の日射計32が接続されている。
【0014】
図2は被制御エリア10の内部における配置図の1例を示すもので、説明のためのものであり、これによって本発明が限定されるものではない。図2において、被制御エリア10の窓11を設けている側の各外壁33に日射計32が取り付けられている。日射計32は図1で示したように、コントローラ30に接続されている。なお、図2では日射計は外壁に1個の日射計32を設けたが、複数個設けてもよい。図2の一点鎖線で示す外側部分がペリメータゾーンPで、内側部分がインテリアゾーンAである。なお、ゾーンの境界は必ずしも明確でなく、仮想的に設けられている。
【0015】
インテリアゾーンAの略中央に空調機20が配置され、ペリメータゾーンPに給気吹出口14及びVAVユニット17が複数個配置され、給気ダクト16によって空調機20の給気口側に接続されている。また、室内空気の吸込口15はインテリアゾーンAとペリメータゾーンPとの境界近くに配置し、還気ダクト18によって空調機20の吸込口側に接続されている。外気温度を計測する温計計31は屋上等に配置され、日射を避ける屋根、風の影響を遮るスクリーン等を設けたボックス(図示省略)の内部に設置される。図1に示すように、温度計31の出力端もコントローラ30に接続されている。
【0016】
コントローラ30は日射計32による日射量、温度計31による外気温度を考慮して給気温度設定値を求める。コントローラ30は、更に、温度計22による給気温度と給気温度設定値の偏差を求め、この偏差に基づいて冷却コイル27のバルブ、加熱コイル28のバルブを制御して給気温度が給気温度設定値になるように制御する。図3は給気温度の設定値を算出するフローチャートで、これはコントローラ30の演算装置(又はコントローラ30の給気温度決定部)によって実行される。このプログラム(図3)の実行前に予め、VAV17の要求風量比率γがVAVコントローラ19からコントローラ30に送信される。コントローラ30は複数のVAV17(図2参照)から送信された要求風量比率γ1・・・γnの中から最大の要求風量比率γmax を求める。なお、最大の要求風量比率γmax を求める演算は、コントローラ30と別個に設けたゾーンコントローラ(図示省略)で行うようにしてもよい。
【0017】
図3において、ステップS1で、最大要求風量比率γmax が80%を超えているかどうかを検討する。超えている場合はステップS2で現在の給気温度設定値Tpからの変化分ΔTを求める。このときの変化分ΔTは冷房の場合は負(ΔT<0)で、暖房の場合は正(ΔT>0)となる。γmax が80%を超えていない場合はステップS3でγmaxが45%以下であるかどうかを検討する。45%以下の場合はステップS4で、ステップS2と同様に現在の給気温度設定値Tpからの変化分ΔTを求める。このときの変化分ΔTは冷房の場合は正で、暖房の場合は負となる。45%以上の場合、即ち、80%>γmax>45%の場合は、ステップS5では変化分ΔTはゼロ(ΔT=0)とする。ステップS6では現在の給気温度設定値に変化分ΔTを加算して基準給気温度設定値Tkを求める。
【0018】
ステップS7では、日射量計32、温度計31で計測した日射量Dと外気温度Toとを連続的に又は一定時間毎にコントローラ30に送信する。コントローラ30はこれらの計測データをメモリに記録し、定めた時刻ごとにデータを更新する。ステップS8では図4、図5に示すテーブルを利用して補正値を求める。図4において、日射量Dの最小値と最大値を適宜に定めて、その区間を(0%、100%)とする。また、日射量Dの基準値の上限をUtとし、下限をLtとして、日射量Dが基準値の範囲(Lt、Ut)にあるときは補正値Hをゼロ(H=0)とする。日射量Dの補正範囲の上限をDmaxとし、これ以上の日射量Dについては補正値HをHmin(<0)とする。同様に補正範囲の下限をDminとし、これ以下の日射量Dについては補正値HをHmax(>0)とする。即ち、真夏日のように日射量の大きい日は冷房を最大にし、真冬日のように日射量の少ない日は暖房を最大にする。
【0019】
日射量Dが範囲(Dmin、Lt)の間にある場合及び日射量Dが範囲(Ut、Dmax)の間にある場合は補正値HをHmaxからゼロまで、又は、ゼロからHminまで直線的に減少させる。これは日射量Dが大きい場合はペリメータゾーンP内の温度上昇が大きくなり、また、日射量Dが小さい場合はペリメータゾーンP内の温度上昇が小さくなるから、これを調整するためである。ここで、補正最大値Hmax、補正最小値Hminを外気温度Toによって変化させる。これを図5(A)、(B)に示す。
【0020】
図5(A)は補正最大値Hmaxの変化を示す。図5(A)において、外気温度Toが(摂氏T2度より低い温度)の範囲ではDTmax(>0)で、外気温度Toが(摂氏T2度〜T1度)の範囲ではDTmaxからゼロまで直線的に減少する。但し、T2は摂氏0度いかになることもあり、また、T2<T1である。例えば、外気温度Toが摂氏t5度の場合はHmax=DT5となる。また、補正最小値Hminの変化を示す図5(B)において、外気温度Toが(摂氏T3度より高い温度)の範囲ではDTmin(<0)で、外気温度Toが(摂氏T4度〜T3度)の範囲ではゼロからDTminまで直線的に減少する。但し、T2<T1≦T4<T3である。例えば、外気温度Toがt6の場合はHmin=DT6となる。なお、上記したテーブルにおけるLt,Ut、DTmax、DTmin等のパラメータ値は実験等に依って適切な値を決定する。以上に説明した図4及び図5のテーブルを利用して補正値Hを求める。
【0021】
ステップS9では変更された給気温度設定値TSpを算出する。本実施形態では、
基準給気温度設定値Tk=現在の給気温度設定値Tp+変化分ΔTより、Tkを求め、次に、給気温度設定値TSp=基準給気温度設定値Tk+補正値H を求める。
【0022】
本実施形態では、外気温度と日射量を計測して給気温度設定温度を求めて制御しているので、季節による変化並びに1日の時刻による変化にも上手く対応する空調システムが構成されている。従って、日射量の影響による室内温度の調整、外気温度の影響による室内温度の調整が速やかに行われ、室内温度設定値が安定しやすくなるという効果、制御性能が改良されるという効果が得られる。
【0023】
以上、この発明の実施形態、実施例を図面により詳述してきたが、具体的な構成はこの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。例えば、設備の配置構成は図に示したものに限られず、適宜変更してもよいし、また、室内温度設定値の日射量、外気温度に依る補正は図に示したテーブルに限定されるものではない。例えば、直線変化部分を適当な曲線に変更してもよいし、その他の変更を適宜行ってもよい。
【0024】
【発明の効果】
以上説明したように、この発明の構成によれば、日射量の影響による室内温度の調整、外気温度の影響による室内温度の調整が速やかに行われ、室内温度設定値が安定しやすくなるという効果、制御性能が改良されるという効果が得られる。
【図面の簡単な説明】
【図1】本発明を実施した実施形態(空調システム)の構成を示す。
【図2】本実施形態の配置図を示す。
【図3】給気温度設定値を求める手順のフローチャートを示す。
【図4】日射量による影響を示す補正を求めるテーブルを示す。
【図5】外気温度による影響を示す補正を求めるテーブルを示す。
【図6】従来装置の配置図を示す。
【図7】従来装置の構成を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioning system suitable for a large intelligent building, and more specifically, to a technical field of performing air conditioning control by dividing a controlled area into a plurality of zones.
[0002]
[Prior art]
Conventionally, when air-conditioning a large room provided inside a building or the like, for example, an office room, the controlled area (office room, etc.) is divided into an interior zone in the center and a perimeter zone around the window to separate air conditioning. Air-conditioning control was performed by the machine. In recent years, from the idea of energy saving, the interior zone and the perimeter zone have been controlled by the same air conditioner. However, in the perimeter zone, the ratio of the indoor temperature affected by the amount of solar radiation and the temperature of the outside air is large in the summer, and the ratio of the temperature affected by the outside air is large in the winter. Therefore, it is uneconomical to perform air conditioning control on the perimeter zone just like the interior zone. For this reason, various devices have been conventionally devised. For example, Japanese Patent Laid-Open Publication No. Hei 11-132489 discloses an air-conditioning control described below. Japanese Patent Application Laid-Open No. Hei 6-68394 discloses an example in which an intermediate zone called a peri interior zone is provided in addition to an interior zone and a perimeter zone for control.
[0003]
6 and 7 show an example of the conventional air-conditioning control disclosed in Japanese Patent Laid-Open Publication No. Hei 11-132489. In FIG. 6, the controlled area 50 is virtually divided into a perimeter zone P facing the window side and an interior zone A in the center, and the perimeter zone P is further divided into four zones E, W, S, and N in the east, west, south and north. Have been. Here, assuming that the heat load of the N-side zone is 100%, the E-side zone, the W-side zone, and the S-side zone are provided on the outer wall 63 of the building according to the external conditions such as the amount of solar radiation, etc. And so on to limit the heat load to 100%. Thus, the perimeter zones P of the zones E, W, S, and N enable the same air conditioning control with the heat load set to 100% in all the zones.
[0004]
In FIG. 6, an air conditioner 55 is installed at the center surrounded by a two-dot chain line, passes through an air supply duct 57 from an air outlet 56, and is controlled by a variable air volume adjusting unit (VAV unit) 65 from an air outlet 64 to a perimeter zone P. Is supplied to the interior zone A from the air outlet 59. FIG. 7 shows the air conditioning system viewed from an elevation. As can be understood from FIG. 7, air conditioned air is blown from the air supply duct 57 to the outlet 59 through the branch duct 58 and the chamber 60 for converting dynamic pressure to static pressure. The VAV unit 65 includes a damper 66 and a fan 67 and is controlled by a central controller 70.
[0005]
In the above device, the air conditioning load in the perimeter zone P is reduced during the overtime hours after the evening, so that the central controller 70 stops and stops at least some of the plurality of VAV units 65. The air supply amount of the air conditioner 55 is adjusted by inverter control or the like in accordance with the air supply amount of the VAV unit 65.
In the above-mentioned conventional apparatus, the difference in the amount of solar radiation in the north, south, east and west is made uniform by providing a double sash, an external blind and the like on the outer wall. In addition, in order to eliminate the difference between the outside air temperature during the day and the night time, an overtime zone is provided to perform individual control. In the conventional apparatus disclosed in Japanese Patent Laid-Open Publication No. Hei 6-68394, an intermediate zone called a peri interior zone is provided in addition to an interior zone and a perimeter zone to control the direction of the flow of conditioned air and the amount of supplied air depending on the season. Solved.
[0006]
[Problems to be solved by the invention]
As described above, in the former conventional apparatus, a double sash, an external blind, or the like is installed on an outer wall in order to solve the influence of the amount of solar radiation and the influence of the outside air temperature, or separately controlled during the daytime and at night. , Working to solve the problem. In the latter conventional device, a peri-interior zone is provided to change the control method depending on the season to solve the problem. However, in the above-described conventional apparatuses, the control method is changed based on the season and time. However, even in the same season and the same time, the amount of solar radiation is not uniform, and the outside air temperature is not uniform. With a control method based on the season or time as in the conventional apparatus, there is a problem that efficient control is difficult and the equipment becomes complicated.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following solutions. That is,
According to the first aspect of the present invention, in an air-conditioning system for air-conditioning by dividing a controlled area into an interior zone and a perimeter zone, a pyranometer for measuring the amount of solar radiation is provided on an outer wall of a building, and the outside air temperature is measured. A thermometer is provided outside the building, and the supply air temperature setting value is determined in consideration of the amount of solar radiation measured by the pyranometer and the outside air temperature measured by the thermometer.
Since the invention according to claim 1 measures the amount of solar radiation and the outside air temperature, the control system is configured so that accurate control can be performed without employing a complicated control system due to seasonal changes and time differences. The main feature.
[0008]
According to a second aspect of the present invention, in the first aspect of the present invention, the pyranometer is provided on each of outer walls constituting a perimeter zone of the control area.
The invention according to claim 2 is characterized mainly in that the same control method can be adopted without changing the control method depending on the direction of the window.
[0009]
According to a third aspect of the present invention, in the invention according to any one of the first and second aspects, the determination unit that determines the supply air temperature set value includes a reference supply air temperature based on a maximum required air volume ratio. A reference setting unit that calculates a set value; a correction unit that calculates a correction value based on the amount of solar radiation and the outside air temperature; and a calculation unit that determines a supply air temperature set value in consideration of the reference set value and the correction value. It is characterized by:
[0010]
According to a fourth aspect of the present invention, in the air conditioning system according to any one of the first to third aspects, in the air conditioning system, an outlet for supplying conditioned air from an air conditioner is provided in the perimeter zone and the air outlet is controlled. A suction port for returning air in the area is provided near a boundary between the interior zone and the perimeter zone.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a configuration of an embodiment (air conditioning system) embodying the present invention, and FIG. 2 shows a layout of the embodiment. Hereinafter, description will be given based on the drawings. In FIG. 1, a controlled area (for example, an office room) 10 is virtually divided into a perimeter zone P on the window 11 side and an interior zone A. An air supply outlet 14 is provided on a ceiling wall of the perimeter zone P, and a room air inlet 15 is provided on a ceiling wall of the interior zone A (or a boundary between the perimeter zone P and the interior zone A). The air supply outlet 14 is connected to the air supply side of the air conditioner 20 by an air supply duct 16, and the indoor air suction port 15 is connected to the return air side of the air conditioner 20 by a return air duct 18.
[0012]
A variable air volume adjustment unit (hereinafter, referred to as a VAV unit) 17 is provided in the air supply duct 16 (at a position close to the air supply outlet 14). The VAV unit 17 includes a damper and a blower inside, and is controlled by the local controller 19, so that a fixed amount of air can be blown. An indoor thermometer 21 arranged in the controlled area 10 is connected to an input side of the local controller 19, and the local controller 19 is further connected to a controller 30 of the air conditioner 20. A thermometer 22 for measuring the temperature of the air supply is provided in the middle of the air supply duct 16, and the output end of the thermometer 22 is connected to the input side of the controller 30.
[0013]
The air conditioner 20 is shown in a simplified form, and includes therein a blower 24 controlled by an inverter 25, a cooling coil 27 for air conditioning, a heating coil 28, and the like. Note that the air conditioner 20 is the same as that of the related art, and the details are omitted here. A thermometer 31 for measuring the outside air temperature and a plurality of pyranometers 32 for measuring the amount of solar radiation are connected to the input side of the controller 30.
[0014]
FIG. 2 shows an example of a layout diagram inside the controlled area 10 and is for explanation, and the present invention is not limited thereto. In FIG. 2, a pyranometer 32 is attached to each outer wall 33 of the controlled area 10 on the side where the window 11 is provided. The pyranometer 32 is connected to the controller 30 as shown in FIG. Although one pyranometer 32 is provided on the outer wall in FIG. 2, a plurality of pyranometers may be provided. 2 is the perimeter zone P, and the inner portion is the interior zone A. The boundaries of the zones are not always clear, and are virtually provided.
[0015]
An air conditioner 20 is arranged substantially at the center of the interior zone A, a plurality of air supply outlets 14 and a plurality of VAV units 17 are arranged in the perimeter zone P, and connected to the air supply port side of the air conditioner 20 by an air supply duct 16. I have. The indoor air inlet 15 is disposed near the boundary between the interior zone A and the perimeter zone P, and is connected to the air inlet of the air conditioner 20 by the return air duct 18. A thermometer 31 for measuring the outside air temperature is arranged on a roof or the like, and is installed inside a box (not shown) provided with a roof for preventing solar radiation, a screen for shielding the influence of wind, and the like. As shown in FIG. 1, the output terminal of the thermometer 31 is also connected to the controller 30.
[0016]
The controller 30 determines the supply air temperature setting value in consideration of the amount of solar radiation by the pyranometer 32 and the outside air temperature by the thermometer 31. The controller 30 further obtains a deviation between the supply air temperature and the supply air temperature set value by the thermometer 22, and controls the valve of the cooling coil 27 and the valve of the heating coil 28 based on the deviation so that the supply air temperature is reduced. Control is performed to reach the temperature set value. FIG. 3 is a flowchart for calculating the set value of the supply air temperature, which is executed by the arithmetic unit of the controller 30 (or the supply air temperature determination unit of the controller 30). Before the execution of this program (FIG. 3), the required air volume ratio γ of the VAV 17 is transmitted from the VAV controller 19 to the controller 30 in advance. The controller 30 obtains the maximum required air volume ratio γmax from the required air volume ratios γ1... Γn transmitted from the plurality of VAVs 17 (see FIG. 2). The calculation for obtaining the maximum required air volume ratio γmax may be performed by a zone controller (not shown) provided separately from the controller 30.
[0017]
In FIG. 3, in step S1, it is examined whether the maximum required air volume ratio γmax exceeds 80%. If it exceeds, in step S2, a change ΔT from the current supply air temperature set value Tp is obtained. The change ΔT at this time is negative (ΔT <0) for cooling, and positive (ΔT> 0) for heating. If γmax does not exceed 80%, it is determined in step S3 whether γmax is 45% or less. If it is not more than 45%, in step S4, a change ΔT from the current supply air temperature set value Tp is obtained as in step S2. The change ΔT at this time is positive for cooling, and negative for heating. If it is 45% or more, that is, if 80%>γmax> 45%, the change ΔT is set to zero (ΔT = 0) in step S5. In step S6, a change ΔT is added to the current supply air temperature set value to obtain a reference air supply temperature set value Tk.
[0018]
In step S7, the insolation D measured by the insolation meter 32 and the thermometer 31 and the outside air temperature To are transmitted to the controller 30 continuously or at regular intervals. The controller 30 records these measurement data in the memory, and updates the data at predetermined times. In step S8, a correction value is obtained using the tables shown in FIGS. In FIG. 4, the minimum value and the maximum value of the solar radiation amount D are appropriately determined, and the section is defined as (0%, 100%). The upper limit of the reference value of the solar radiation D is Ut, the lower limit is Lt, and the correction value H is zero (H = 0) when the solar radiation D is within the reference value range (Lt, Ut). The upper limit of the correction range of the solar radiation D is Dmax, and the correction value H is Hmin (<0) for the solar radiation D higher than this. Similarly, the lower limit of the correction range is set to Dmin, and the correction value H is set to Hmax (> 0) for the solar radiation amount D below this. That is, cooling is maximized on a day with a large amount of solar radiation such as a midsummer day, and heating is maximized on a day with a small amount of solar radiation such as a midwinter day.
[0019]
When the solar radiation D is between the range (Dmin, Lt) and when the solar radiation D is within the range (Ut, Dmax), the correction value H is linearly changed from Hmax to zero or from zero to Hmin. Decrease. This is because the temperature rise in the perimeter zone P increases when the solar radiation D is large, and the temperature rise in the perimeter zone P decreases when the solar radiation D is small. Here, the correction maximum value Hmax and the correction minimum value Hmin are changed depending on the outside air temperature To. This is shown in FIGS. 5A and 5B.
[0020]
FIG. 5A shows a change in the correction maximum value Hmax. In FIG. 5A, when the outside air temperature To is in the range of (temperature lower than T2 degrees Celsius), DTmax (> 0), and when the outside air temperature To is in the range of (T2 degrees Celsius to T1 degrees Celsius), DTmax is linear from DTmax to zero. To decrease. However, T2 may be 0 degrees Celsius, and T2 <T1. For example, when the outside air temperature To is t5 degrees Celsius, Hmax = DT5. Also, in FIG. 5B showing the change of the correction minimum value Hmin, when the outside air temperature To is in a range of (temperature higher than T3 degrees Celsius), DTmin (<0) and the outside air temperature To is (T4 degrees Celsius to T3 degrees Celsius). ) Linearly decreases from zero to DTmin. However, T2 <T1 ≦ T4 <T3. For example, when the outside air temperature To is t6, Hmin = DT6. Note that the parameter values such as Lt, Ut, DTmax, and DTmin in the above-mentioned table determine appropriate values based on experiments and the like. The correction value H is obtained using the tables of FIGS. 4 and 5 described above.
[0021]
In step S9, the changed supply air temperature set value TSp is calculated. In the present embodiment,
The reference air supply temperature set value Tk = the current air supply temperature set value Tp + the variation ΔT is used to determine Tk, and then the air supply temperature set value TSp = the standard air supply temperature set value Tk + the correction value H is obtained.
[0022]
In the present embodiment, since the outside air temperature and the amount of insolation are measured and the supply air temperature setting temperature is obtained and controlled, an air conditioning system that can cope well with seasonal changes and changes with the time of day is configured. . Therefore, the adjustment of the indoor temperature due to the influence of the amount of solar radiation and the adjustment of the indoor temperature due to the influence of the outside air temperature are quickly performed, and the effect that the indoor temperature set value is easily stabilized and the effect that the control performance is improved are obtained. .
[0023]
As described above, the embodiments and examples of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to the examples, and there are design changes and the like without departing from the gist of the present invention. Is also included in the present invention. For example, the arrangement configuration of the equipment is not limited to that shown in the figure, and may be changed as appropriate, and the correction based on the amount of solar radiation of the indoor temperature set value and the outside air temperature is limited to the table shown in the figure. is not. For example, the linearly changing portion may be changed to an appropriate curve, or other changes may be made as appropriate.
[0024]
【The invention's effect】
As described above, according to the configuration of the present invention, the adjustment of the indoor temperature due to the influence of the amount of solar radiation and the adjustment of the indoor temperature due to the influence of the outside air temperature are performed promptly, and the indoor temperature set value is easily stabilized. This has the effect of improving control performance.
[Brief description of the drawings]
FIG. 1 shows a configuration of an embodiment (air conditioning system) embodying the present invention.
FIG. 2 shows an arrangement diagram of the present embodiment.
FIG. 3 shows a flowchart of a procedure for obtaining a supply air temperature set value.
FIG. 4 shows a table for obtaining a correction indicating the influence of the amount of solar radiation.
FIG. 5 shows a table for obtaining a correction indicating the influence of the outside air temperature.
FIG. 6 shows a layout of a conventional device.
FIG. 7 shows a configuration of a conventional device.

Claims (4)

被制御エリアをインテリアゾーンとペリメータゾーンとに区分して空調する空調システムにおいて、日射量を計測する日射計を建物の外壁部に設け、かつ、外気温度を計測する温度計を該建物の外部に設けて、該日射計により計測された日射量並びに該温度計により計測された外気温度を考慮して給気温度設定値を決定することを特徴とする空調システム。In an air conditioning system that divides a controlled area into an interior zone and a perimeter zone and provides air conditioning, a pyranometer for measuring solar radiation is provided on an outer wall of a building, and a thermometer for measuring outside air temperature is provided outside the building. An air-conditioning system for determining an air supply temperature set value in consideration of the amount of solar radiation measured by the pyranometer and the outside air temperature measured by the thermometer. 前記日射計は前記制御エリアのペリメータゾーンを構成している外壁面の各壁面に設けたことを特徴とする請求項1に記載の空調システム。The air conditioning system according to claim 1, wherein the pyranometer is provided on each of outer wall surfaces constituting a perimeter zone of the control area. 前記給気温度設定値を決定する決定部は、最大要求風量比率に基づいて基準の給気温度設定値を算出する基準設定部と、日射量と外気温度に基づく補正値を算出する補正部と、前記基準設定値と前記補正値を考慮した給気温度設定値を定める演算部とを具備することを特徴とする請求項1又は請求項2の何れか1に記載する空調システム。The determination unit that determines the supply air temperature set value, a reference setting unit that calculates a reference air supply temperature set value based on the maximum required air volume ratio, and a correction unit that calculates a correction value based on the amount of solar radiation and the outside air temperature The air conditioning system according to claim 1, further comprising: an operation unit that determines an air supply temperature set value in consideration of the reference set value and the correction value. 前記空調システムにおいて、空調機からの空調空気を給気する吹出口をペリメータゾーンに設けると共に被制御エリア内の空気を還気する吸込口をインテリアゾーンとペリメータゾーンの境界近傍に設けたことを特徴とする請求項1〜請求項3の何れか1に記載する空調システム。In the air conditioning system, an outlet for supplying conditioned air from the air conditioner is provided in the perimeter zone, and a suction port for returning air in the controlled area is provided near a boundary between the interior zone and the perimeter zone. The air conditioning system according to any one of claims 1 to 3.
JP2002290190A 2002-10-02 2002-10-02 Air conditioning system Expired - Lifetime JP4157355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290190A JP4157355B2 (en) 2002-10-02 2002-10-02 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290190A JP4157355B2 (en) 2002-10-02 2002-10-02 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2004125288A true JP2004125288A (en) 2004-04-22
JP4157355B2 JP4157355B2 (en) 2008-10-01

Family

ID=32282147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290190A Expired - Lifetime JP4157355B2 (en) 2002-10-02 2002-10-02 Air conditioning system

Country Status (1)

Country Link
JP (1) JP4157355B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220638A (en) * 2010-04-13 2011-11-04 Takasago Thermal Eng Co Ltd System for control of air conditioning
WO2012132131A1 (en) * 2011-03-28 2012-10-04 三洋電機株式会社 Control system for cooling devices
WO2023058158A1 (en) * 2021-10-06 2023-04-13 三菱電機ビルソリューションズ株式会社 Air conditioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220638A (en) * 2010-04-13 2011-11-04 Takasago Thermal Eng Co Ltd System for control of air conditioning
WO2012132131A1 (en) * 2011-03-28 2012-10-04 三洋電機株式会社 Control system for cooling devices
WO2023058158A1 (en) * 2021-10-06 2023-04-13 三菱電機ビルソリューションズ株式会社 Air conditioning system
JP7415092B2 (en) 2021-10-06 2024-01-16 三菱電機ビルソリューションズ株式会社 air conditioning system

Also Published As

Publication number Publication date
JP4157355B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
US20020124992A1 (en) Integrated ventilation cooling system
CN107525236A (en) Air-conditioner control method and air conditioner based on human comfort
KR101256780B1 (en) Hybrid air condition system with directness load control mode
CN104566782B (en) The control method of air conditioner, the control device of air conditioner and air conditioner
US9091454B2 (en) Air change rate measurement and control
KR101357199B1 (en) Smart air conditioner using motorized diffuser for hybrid air condition system
WO2019052540A1 (en) Heating control method and apparatus for variable-frequency air conditioner
CN113847699B (en) Control method of air conditioner and air conditioner with control method
CN108302706A (en) Air conditioning control method and air conditioner
JP7228371B2 (en) air conditioning system
JP6239423B2 (en) Variable air volume air conditioning system
US20090055026A1 (en) Integrated Motor Controller with Direct Networking Capability
CN113847697A (en) Control method of air conditioner and air conditioner with same
JP4157355B2 (en) Air conditioning system
JP3013964B2 (en) Underfloor air conditioning system
JPH0213750A (en) Airconditioning system control device
WO2021208650A1 (en) Quiet operation control method for air conditioner
CN104949197A (en) Ducted air conditioner and control method thereof
JPH0842909A (en) Air conditioning system
JP4337391B2 (en) Air conditioning control device, air conditioning control program, air conditioning control method, and air conditioning control system
KR101276455B1 (en) Hybrid air condition system
JP3300964B2 (en) VAV control system
JP4594146B2 (en) Optimum control method for variable air volume of air conditioning system
JP2020008246A (en) Air conditioning system, model selection method of air conditioning system, model selection device of air conditioning system, and model selection system of air conditioning system
JP2526291B2 (en) Control method for air conditioner cooling by floor blowing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20021004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4157355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term