JP2004125072A - Shift controller for continuously variable transmission - Google Patents

Shift controller for continuously variable transmission Download PDF

Info

Publication number
JP2004125072A
JP2004125072A JP2002290644A JP2002290644A JP2004125072A JP 2004125072 A JP2004125072 A JP 2004125072A JP 2002290644 A JP2002290644 A JP 2002290644A JP 2002290644 A JP2002290644 A JP 2002290644A JP 2004125072 A JP2004125072 A JP 2004125072A
Authority
JP
Japan
Prior art keywords
acceleration
speed
rotation speed
continuously variable
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002290644A
Other languages
Japanese (ja)
Other versions
JP4358495B2 (en
Inventor
Sukeyuki Nishida
西田 祐之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2002290644A priority Critical patent/JP4358495B2/en
Publication of JP2004125072A publication Critical patent/JP2004125072A/en
Application granted granted Critical
Publication of JP4358495B2 publication Critical patent/JP4358495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the acceleration feeling in sudden accelerating operation and to secure the sufficient driving force. <P>SOLUTION: This continuously variable transmission comprises a primary pulley mounted on a primary shaft and a secondary pulley mounted on a secondary shaft. A belt is hung over these pulleys as a power transmitting element. Whether the acceleration is requested or not is determined on the basis of the pressing amount of an accelerator pedal by a driver. When the request for acceleration is determined, the acceleration change gear ratio control for performing the downshifting operation in acceleration to rise a target rotating speed Np of the primary pulley by a predetermined rotating speed rising amount, to rise the target rotating speed Np of the primary pulley and to increase a car speed V, and a rotating speed lowering control for lowering the target rotating speed Np of the primary pulley by rotating speed lowering amounts D<SB>1</SB>-D<SB>3</SB>when the rotating speed Np of the primary pulley reaches the upper limit rotating speed corresponding to the pressing amount of the accelerator pedal, are repeated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は車両加速時の加速フィーリングを向上し得る無段変速機の変速制御装置に関する。
【0002】
【従来の技術】
自動車などの車両に用いられる無段変速機としては、ベルト式やトロイダル式がある。ベルト式無段変速機は、入力軸に設けられる入力側のプライマリプーリと、出力軸に設けられる出力側のセカンダリプーリと、これらのプーリに掛け渡されるベルトやチェーンなどの動力伝達要素とを有し、それぞれのプーリの溝幅を変化させて動力伝達要素の巻き付け径を変化させることによって、変速比を無段階に変化させて入力軸の回転を出力軸に伝達することができる。
【0003】
このような無段変速機にあっては、スロットル開度と車速あるいはエンジン回転数などの運転状態を示すパラメータに基づいて変速比を自動的に制御している。つまり、これらパラメータに基づいて演算するか、またはパラメータに対応する運転変速特性マップを参照することにより目標プライマリプーリ回転数を設定し、この目標プライマリプーリ回転数に実プライマリプーリ回転数が収束するように変速比を設定するようにしている。
【0004】
このようなベルト式無段変速機においては、アクセルペダルが運転者により踏み込まれて加速が要求されたとき、特に、スロットル開度が中間開度程度以上となるまでアクセルペダルが踏み込まれたときには、急加速制御つまりキックダウン制御を行っている。
【0005】
このような急加速制御方法としては、従来、アクセルペダルの踏み込み量に対応するエンジン回転数上昇率で上限回転数までプライマリプーリ回転数を上昇させ、その後は変速比を減少させて車速を連続的に増加させる方法がある。しかしこの方法では、一気にプライマリプーリの回転数を上限回転数まで上昇させるのでエンジンの最大駆動力を加速に利用することができる半面、上限回転数まで上昇した後には車速の増加に比してエンジン回転数が増加しないので、エンジン回転数の増加に伴って車速を増加させたいという運転者の加速フィーリングを満足させることができない。また、プライマリプーリの回転数が上限値に達すると変速速度が急激に変化するため、変速ハンチングが生じやすい。
【0006】
他の急加速制御方法としては、踏み込み直後のプライマリプーリの回転増加量を制限して上限回転数まで上昇させることなく、所定の回転数まで増加した後には緩やかに目標の上限回転数にプライマリプーリ回転数を追従させる方法がある(たとえば、特許文献1参照)。
【0007】
【特許文献1】
特開平8−145133号公報
【0008】
【発明が解決しようとする課題】
この方法にあっては、エンジン回転数の増加に伴って車速が増加するので、加速フィーリングは運転者の期待に近くなるが、特に低車速での加速性が不足することになる。つまり、アクセルペダルの踏み込み直後のプライマリプーリの回転増加量を制限し、緩やかにエンジン回転数を上昇させると、スロットル開度に対応した上限回転数にまでエンジン回転数を高めることにより得られるエンジン駆動力を十分に利用することなく、車速を増加させることになるので、特に低車速での加速性が不足することになる。
【0009】
本発明の目的は、車両加速時の加速フィーリングを向上することにある。
【0010】
【課題を解決するための手段】
本発明の無段変速機の変速制御装置は、エンジンにより駆動される入力側回転体の回転を動力伝達要素を介して無段階に変速比を変化させて出力側回転体に伝達する無段変速機の変速制御装置であって、運転者が加速の要求状態にあるか否かを判定する加速判定手段と、加速時に車速を前記入力側回転体の回転上昇に伴って増加させる加速変速比設定手段と、加速時の前記入力側回転体の回転数が上限回転数に到達したことを判定する上限回転数検出手段と、前記上限回転数に到達したときは前記入力側回転体の回転数低下量を設定するアップシフト量設定手段とを有し、加速の要求状態であると判定されたときに、前記入力側回転体が上限回転数に到達するまでの加速変速比制御と到達後に前科入力側回転体の回転数を低下させる回転数低下制御とを繰り返して車両を加速することを特徴とする。
【0011】
本発明の無段変速機の変速制御装置は、前記回転数低下量を車速、アクセル開度および路面勾配の少なくともいずれかに基づいて変化させることを特徴とする。また、車速が高くなるに伴って前記回転数低下量を小さくすることを特徴とする。さらに、アクセル開度が高くなるに伴って前記回転数低下量を小さくすることを特徴とする。また、路面勾配が大きくなるに伴って前記回転数低下量を小さくすることを特徴とする。
【0012】
本発明の無段変速機の変速制御装置は、前記回転数低下制御から前記加速変速比制御に徐々に移行させる過渡制御を行うことを特徴とする。
【0013】
本発明にあっては、車両の加速時には車速が入力側回転体の回転数の増加に対応して増加するので、エンジンの回転上昇感と車速上昇感が一致するようになって良好な加速フィーリングが得られることになる。また低車速であっても十分な駆動力を得ることができ、短い時間で所望の速度まで加速できるようになる。
【0014】
本発明にあっては、回転数低下量を車速により変化させると、駆動力変化を適度にすることができ、高車速での駆動力低下を抑えつつ、加速フィーリングを向上させることができる。また、回転数低下量をアクセル開度により変化させると、駆動力変化を適切にすることができ、アクセル開度が大きく駆動力要求が大きい場合には、駆動力低下を抑えつつ、加速フィーリングを向上させることができる。さらに、回転数低下量を路面勾配値により変化させと、駆動力変化を適切にすることができ、路面勾配が大きく余裕駆動力が少ない領域では、回転数低下による駆動力低下を抑えつつ、加速フィーリングを向上させることができる。
【0015】
本発明にあっては、エンジン回転数を所定量下げる際に、過渡制御を実行することにより、加速フィーリングを向上させることができる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は無段変速機の一例としてのベルト式無段変速機を備えた車両の駆動系を示す概略図であり、この無段変速機1はエンジン2により駆動されるクランク軸3の回転がトルクコンバータなどからなる発進装置4と前後進切換装置5を介して伝達される駆動側のプライマリ軸6と、これと平行となった被駆動側のセカンダリ軸7とを有している。
【0017】
プライマリ軸6には入力側回転体としてのプライマリプーリ8が設けられており、このプライマリプーリ8はプライマリ軸6に一体となった固定プーリ8aと、これに対向してプライマリ軸6にボールスプラインなどにより軸方向に摺動自在に装着される可動プーリ8bとを有し、プーリのコーン面間隔つまりプーリ溝幅が可変となっている。セカンダリ軸7には出力側回転体としてのセカンダリプーリ9が設けられており、このセカンダリプーリ9はセカンダリ軸7に一体となった固定プーリ9aと、これに対向してセカンダリ軸7に可動プーリ8bと同様にして軸方向に摺動自在に装着される可動プーリ9bとを有し、プーリ溝幅が可変となっている。
【0018】
プライマリプーリ8とセカンダリプーリ9との間には動力伝達要素としてのベルト10が掛け渡されており、両方のプーリ8,9の溝幅を変化させてそれぞれのプーリに対するベルト10の巻き付け径の比率を変化させることにより、プライマリ軸6の回転がセカンダリ軸7に無段階に変速されて伝達されることになる。ベルト10のプライマリプーリ8に対する巻き付け径をRpとし、セカンダリプーリ9に対する巻き付け径をRsとすると、変速比つまりプーリ比iはi=Rs/Rpとなる。セカンダリ軸7の回転は減速歯車およびディファレンシャル装置12を有する歯車列を介して駆動輪13に伝達されるようになっており、前輪駆動の場合には駆動輪13は前輪となる。
【0019】
プライマリプーリ8の溝幅を変化させるために、プライマリ軸6にはプライマリシリンダ14が設けられ、この中には油圧室15が形成されている。一方、セカンダリプーリ8の溝幅を変化させるために、セカンダリ軸7にはセカンダリシリンダ16が設けられ、この中には油圧室17が形成されている。それぞれの溝幅は、プライマリ側の油圧室15に導入されるプライマリ圧Ppと、セカンダリ側の油圧室17に導入されるセカンダリ圧Psとを調整することにより設定される。
【0020】
図2は無段変速機1を作動制御するための制御装置を示す概略図である。図2に示すように、それぞれの油圧室15,17には、エンジンあるいは電動モータにより駆動されるオイルポンプ18からの作動油が供給されるようになっており、オイルポンプ18の吐出口に接続されたセカンダリ圧路19は、油圧室17に連通されるとともにセカンダリ圧調整弁20のセカンダリ圧ポートに連通されている。このセカンダリ圧調整弁20によって油圧室17に供給されるセカンダリ圧Psは、ベルト10に対してトルク伝達に必要な締結力を付与する圧力に調整される。
【0021】
セカンダリ圧路19はプライマリ圧調整弁22のセカンダリ圧ポートに連通油路23を介して接続され、このプライマリ圧調整弁22のプライマリ圧ポートはプライマリ圧路24を介してプライマリ側の油圧室15に連通されている。このプライマリ圧調整弁22によってプライマリ圧Ppは、目標変速比、車速などに応じた値に調整され、プライマリプーリ8の溝幅が変化して変速比が制御される。セカンダリ圧調整弁20およびプライマリ圧調整弁22は、それぞれ比例ソレノイド弁であり、CVT制御ユニット25からそれぞれのソレノイドコイル20a,22aに供給される電流値を制御することによってセカンダリ圧Psとプライマリ圧Ppが調整される。
【0022】
このCVT制御ユニット25にはプライマリプーリ8の回転数を検出するプライマリプーリ回転数センサ26と、セカンダリプーリ9の回転数を検出するセカンダリプーリ回転数センサ27からの信号が入力される。さらにCVT制御ユニット25には、スロットル弁の開度を検出するスロットル開度センサ30が接続されている。このアクセル開度は、スロットル弁の開度を直接検出するようにしても良く、アクセルペダルの開度をセンサで読み取り、このアクセル開度に応じてスロットル開度を演算するようにしても良い。
【0023】
CVT制御ユニット25にはエンジン制御ユニット32が接続されており、このエンジン制御ユニット32にはクランク角センサ33からの信号や他の各種センサ34からの信号が送られるようになっている。クランク角センサ33からの信号に基づいて演算されたエンジン回転数データや他の各種センサ34からの信号に基づいて演算される各種演算データは、CVT制御ユニット25に入力され、このCVT制御ユニット25からそれぞれのソレノイドコイル20a,22aに送られる制御信号によってそれぞれの油圧室15,17に供給される油圧が調整される。CVT制御ユニット25およびエンジン制御ユニット32は、それぞれ制御信号を演算処理するマイクロプロセッサCPUと、制御プログラム、演算式、およびマップデータなどが格納されるROMと、一時的にデータを格納するRAMとを有しており、加速判定手段、加速変速比設定手段およびアップシフト量設定手段を構成している。
【0024】
図3は、図1および図2に示す無段変速機におけるプライマリプーリ7の目標回転数Npと車速Vとの関係を示す変速制御特性線図であり、たとえば、アクセルペダルを全開として加速したときには、プライマリプーリ7の目標回転数Npは変速比が最大変速比であるローRのままA点まで達し、その後は、変速比が最小変速比であるオーバードライブR側に変速されるとともに若干回転を上昇させながら車速Vを増加させて最高速点Bに達する。この状態からアクセルペダルを戻したり、ブレーキングを行った場合には変速比がオーバードライブ側Rに固定されたままC,Dを経て減速し、さらに最低変速ラインに沿って変速比がオーバードライブからロー側に変速されてE点に達し、ブレーキングによってローのまま車両が停止する。実際の走行では、車両の走行状態に応じて、ロー側の変速比Rとオーバードライブ側の変速比Rとの間であって、符号AからEで示される範囲内で自由に変速比が設定される。
【0025】
図3において、点AE間のローRと点CD間のオーバードライブRとの間の複数の細い実線は、それぞれ変速比が一定の場合の目標回転数と車速との関係を示す特性線図である。また、点AB間の最高変速ラインと、点DE間の最低変速ラインとの間に破線で示される複数の変速ラインは、通常変速モードに対応する変速特性線図であり、それぞれ所定のスロットル開度に対応した車速Vとプライマリプーリ7の目標回転数Npとの関係を示す。この通常変速モードに対応するマップデータは、CVT制御ユニット25内のROMなどのメモリーに格納されている。したがって、通常変速モードでは、たとえば図3において点TH1で示すスロットル開度となるように運転者によりアクセルペダルが踏み込まれたときには、これを通る変速ラインにより示される変速特性となって変速比が制御される。
【0026】
本発明にあっては、たとえば、図3において状態点Fで示す車速とスロットル開度TH1の状態で車両が走行しているときに、運転者がスロットル開度TH2に対応する位置までアクセルペダルを大きく踏み込んだ場合には、車両の加速が要求されていると判定する。この判定がなされると、プライマリプーリ8の目標回転数Npが状態点Fから状態点Jの間に示すように回転数上昇量Uだけ上昇し、変速比がロー側となるように変速操作が行われる。
【0027】
次いで、状態点Jから状態点Kで示すように加速変速比が設定され、図3に示すように、プライマリプーリ8の目標回転数Npの上昇に伴って車速が増加するように変速比が一定に設定される。プライマリプーリ8の目標回転数Npがスロットル開度TH2に対応する上限回転数に達したと判断されたら、状態点Kから状態点Lまでに示すように所定の回転数低下量Dだけプライマリプーリ8の目標回転数Npを低下させる。このように、回転数低下制御が実行されると、変速比をオーバードライブ側に減少させるようなシフトアップ操作が実行される。アップシフトする際には、エンジン回転数を所定量下げるので、エンジンや変速機のイナーシャトルク分を通常のエンジントルクから低減することができ、アップシフト時の瞬間的な駆動力増加を防ぐことができる。これにより、加速フィーリングを向上させることができる。
【0028】
状態点JからKまでの加速変速比制御が行われた後、状態点KからLまでの回転数低下制御が行われた状態のもとで、アクセルペダルがスロットル開度TH2に対応する踏み込み量となっているときには、状態点LからMまで加速変速比制御が実行された後に、状態点MからNまで所定の回転数低下量Dだけ低下させる回転数低下制御が実行される。さらに、アクセルペダルがスロットル開度TH2に踏み込まれたままであれば、状態点NからQまで同様の制御が実行される。このような急加速制御を行うと、図3の状態点Jから状態点Qの間で示すように、プライマリプーリ8の目標回転数Npの上昇つまりエンジン回転数の上昇に伴って車速が増加することから、常にエンジン回転数上昇感と車速上昇感が一致するようになって良好な加速フィーリングが得られることになる。
【0029】
図3において二点鎖線Sは状態点Jから緩やかに目標の上限回転数までプライマリプーリ8の目標回転数つまりエンジン回転数を上昇させたときの変速特性を示す図である。符号Sで示すような急加速制御を行った場合には、エンジン回転数が低い状態で急加速が行われるため、エンジンの持つ駆動力を十分に発揮させた急加速を行うことができないが、本発明のように加速変速比制御と回転数低下制御とを繰り返すことにより、特に、低車速のもとでは、エンジンの持つ駆動力を十分に加速に利用して急加速制御を行うことができる。これにより、短時間で所望の車速まで加速することができる。
【0030】
図3に示すように、回転数低下制御が行われる際の回転数低下量は、車速が高くなるに伴って小さくなるように設定されている。つまり、回転数低下量Dは回転数低下量Dよりも小さい値に設定されており、回転数低下量Dは回転数低下量Dよりも小さい値に設定されている。これにより、車速が高く余裕駆動力が小さい領域では回転数低下量を小さくすることができる。回転数低下制御が行われる際の回転数低下量は、アクセル開度つまりアクセルペダルの踏み込み量が大きくなるに伴って小さく設定されている。これにより、運転者の加速要求度が高い程、回転数低下量を小さくしてより迅速に加速することができる。このアクセル開度に応じた回転低下量の算出は、アクセル開度に応じてスロットル弁の開度が設定されるので、スロットル開度センサからの信号に基づいて行うようにしても良い。
【0031】
さらに、回転数低下量は路面勾配が大きくなるに伴って小さくなるように設定されているので、余裕駆動力が小さい程回転数低下量を小さくすることができる。この路面勾配は車速とエンジン回転数とスロットル開度などをパラメータとして演算することができる。
【0032】
上述したように、それぞれの回転数低下量は、車速、アクセル開度および路面勾配に応じて変化させるようにしているが、車速とアクセル開度と路面勾配のいずれか1つあるいは2つをパラメータとして回転数低下量を変化させるようにしても良く、回転数低下量を一定値としても良い。
【0033】
図3に示す場合には、状態点Jから状態点Kまで、状態点Lから状態点Mまで、状態点Nから状態点Dまでおよび状態点Pから状態点Qまでのようにプライマリプーリ8の目標回転数Npと車速Vを同時に上昇させる加速変速比制御に際しては、変速比を一定としているが、変速比を一定とすることなく、ダウンシフト側あるいはアップシフト側に変速制御するようにしても良い。
【0034】
回転数を低下させる回転数低下制御から加速変速比制御に移行させる際には、図3において符号Tで示すように、徐々に移行させるように、通常とは異なるアップシフト変速マップあるいは時定数フィルタなどを用いて過渡制御を実行することができる。これにより、加速時の加速フィーリングを向上させることができる。
【0035】
また、回転数を低下させてアップシフトする際に、通常とは異なる変速速度を持たせることによりメリハリのある走行感を得ることができる。たとえば、通常よりゆっくりとなるように制御した場合は、エンジンのクランク回転が時間をかけて減速されることになるためイナーシャトルク増加による車両加速感が生じるのを抑えることができ、逆に、アップシフトする際の変速速度を通常より早くなるよう制御した場合、エンジンのクランク回転がすばやく減速されることになるためイナーシャトルクが増加して瞬間的に車両加速感が生じてしまうが、この対策としてイナーシャトルクの増加予想分だけあらかじめエンジントルクから削減するよう制御することで車両加速感の発生を抑えることができる。
【0036】
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。たとえば、図1に示す無段変速機はベルト式であるが、入力側回転体としての入力側ディスクと出力側回転体としての出力側ディスクとの間にパワーローラを動力伝達要素として配置したトロイダル式無段変速機の制御に本発明を適用してもよい。
【0037】
【発明の効果】
本発明によれば、車両加速時にはエンジンの回転上昇感と車速上昇感が一致し良好な加速フィーリングが得られることになる。加速変速比制御に引き続いて回転数低下制御を行うので、エンジン回転数を高めてエンジンの持つ駆動力を十分に利用して車両を加速することができ、低車速であっても十分な駆動力を得ることができ、迅速に車両を加速でき、加速フィーリングを向上することができる。
【0038】
本発明によれば、回転数低下量を車速により変化させると、高車速での駆動力低下を抑えつつ、加速フィーリングを向上させることができる。また、回転数低下量をアクセル開度により変化させと、アクセル開度が大きく駆動力要求が大きい場合には、駆動力低下を抑えつつ、加速フィーリングを向上させることができる。さらに、回転数低下量を路面勾配値により変化させと、路面勾配が大きく余裕駆動力が少ない領域では、回転数低下による駆動力低下を抑えつつ、加速フィーリングを向上させることができる。
【0039】
本発明によれば、エンジン回転数を所定量下げる際に、過渡制御を実行することにより、加速フィーリングを向上させることができる。
【図面の簡単な説明】
【図1】無段変速機の一例としてのベルト式無段変速機を備えた車両の駆動系を示す概略図である。
【図2】無段変速機を作動制御するための制御装置を示す概略図である。
【図3】本発明の変速制御の一例を示す変速制御特性線図である。
【符号の説明】
1    無段変速機
8    プライマリプーリ
9    セカンダリプーリ
10   ベルト
25   CVT制御ユニット
32   エンジン制御ユニット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a shift control device for a continuously variable transmission that can improve acceleration feeling during vehicle acceleration.
[0002]
[Prior art]
As a continuously variable transmission used for vehicles such as automobiles, there are a belt type and a toroidal type. The belt-type continuously variable transmission includes an input-side primary pulley provided on an input shaft, an output-side secondary pulley provided on an output shaft, and a power transmission element such as a belt or a chain bridged between these pulleys. Then, by changing the groove width of each pulley and changing the winding diameter of the power transmission element, the speed change ratio can be changed steplessly and the rotation of the input shaft can be transmitted to the output shaft.
[0003]
In such a continuously variable transmission, the gear ratio is automatically controlled based on a parameter indicating an operating state such as a throttle opening and a vehicle speed or an engine speed. That is, the target primary pulley rotation speed is set by calculating based on these parameters, or by referring to the driving speed change characteristic map corresponding to the parameters, and the actual primary pulley rotation speed converges to the target primary pulley rotation speed. Gear ratio is set.
[0004]
In such a belt-type continuously variable transmission, when the accelerator pedal is depressed by the driver and acceleration is requested, particularly when the accelerator pedal is depressed until the throttle opening becomes about the intermediate opening or more, Sudden acceleration control, that is, kick down control is performed.
[0005]
As such a rapid acceleration control method, conventionally, the primary pulley rotation speed is increased to an upper limit rotation speed at an engine rotation speed increase rate corresponding to the depression amount of an accelerator pedal, and thereafter, the vehicle speed is continuously reduced by reducing the gear ratio. There is a way to increase. However, in this method, the rotation speed of the primary pulley is increased to the upper limit rotation speed at a stretch, so that the maximum driving force of the engine can be used for acceleration. Since the rotation speed does not increase, it is not possible to satisfy the driver's acceleration feeling of wanting to increase the vehicle speed with an increase in the engine rotation speed. Further, when the rotation speed of the primary pulley reaches the upper limit value, the shift speed rapidly changes, so that shift hunting is likely to occur.
[0006]
As another rapid acceleration control method, without increasing the rotation speed of the primary pulley immediately after depressing and increasing the rotation speed to the upper limit rotation speed, after increasing the rotation speed to a predetermined rotation speed, the primary pulley is gradually reduced to the target upper rotation speed limit. There is a method of following the rotation speed (for example, see Patent Document 1).
[0007]
[Patent Document 1]
JP-A-8-145133
[Problems to be solved by the invention]
In this method, the vehicle speed increases with an increase in the engine speed, so that the acceleration feeling is close to the driver's expectation, but the acceleration at low vehicle speeds is particularly insufficient. In other words, limiting the amount of rotation increase of the primary pulley immediately after depressing the accelerator pedal, and gradually increasing the engine speed, the engine drive obtained by increasing the engine speed to the upper limit speed corresponding to the throttle opening Since the vehicle speed is increased without using the power sufficiently, the acceleration at low vehicle speed is insufficient.
[0009]
An object of the present invention is to improve the acceleration feeling during vehicle acceleration.
[0010]
[Means for Solving the Problems]
A transmission control device for a continuously variable transmission according to the present invention includes a continuously variable transmission that transmits the rotation of an input-side rotator driven by an engine to a output-side rotator by changing the speed ratio steplessly via a power transmission element. An acceleration determining means for determining whether or not the driver is in a request state for acceleration, and an acceleration gear ratio setting for increasing a vehicle speed with an increase in rotation of the input-side rotator during acceleration. Means, an upper limit rotational speed detecting means for judging that the rotational speed of the input-side rotator at the time of acceleration has reached an upper-limit rotational speed, and a decrease in the rotational speed of the input-side rotator when the upper-limit rotational speed is reached. Upshift amount setting means for setting the amount, and when it is determined that the required state of acceleration is reached, the acceleration gear ratio control until the input-side rotator reaches the upper limit rotational speed, and after reaching, the input of the previous family Low rotation speed to reduce the rotation speed of the side rotating body Repeat the control, characterized in that to accelerate the vehicle.
[0011]
The shift control device for a continuously variable transmission according to the present invention is characterized in that the rotation speed reduction amount is changed based on at least one of a vehicle speed, an accelerator opening, and a road surface gradient. Further, the invention is characterized in that the decrease in the number of revolutions is reduced as the vehicle speed increases. Further, it is characterized in that the rotation speed reduction amount is reduced as the accelerator opening increases. Further, the invention is characterized in that the amount of decrease in the number of revolutions is reduced as the road surface gradient increases.
[0012]
The shift control device for a continuously variable transmission according to the present invention is characterized by performing a transient control for gradually shifting from the rotation speed reduction control to the acceleration speed ratio control.
[0013]
According to the present invention, when the vehicle accelerates, the vehicle speed increases in response to the increase in the rotation speed of the input-side rotating body. A ring will be obtained. Further, a sufficient driving force can be obtained even at a low vehicle speed, and the vehicle can be accelerated to a desired speed in a short time.
[0014]
In the present invention, when the amount of decrease in the number of revolutions is changed according to the vehicle speed, the change in the driving force can be made moderate, and the acceleration feeling can be improved while suppressing the decrease in the driving force at a high vehicle speed. Also, by changing the rotation speed reduction amount by the accelerator opening, it is possible to appropriately change the driving force. When the accelerator opening is large and the driving force demand is large, the driving feeling can be suppressed while the acceleration feeling is suppressed. Can be improved. Further, when the amount of decrease in the number of revolutions is changed according to the road surface gradient value, the driving force can be changed appropriately. Feeling can be improved.
[0015]
In the present invention, the acceleration feeling can be improved by executing the transient control when the engine speed is reduced by the predetermined amount.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing a drive system of a vehicle provided with a belt-type continuously variable transmission as an example of a continuously variable transmission, and the continuously variable transmission 1 rotates a crankshaft 3 driven by an engine 2. It has a driving-side primary shaft 6 transmitted via a starting device 4 composed of a torque converter and the like and a forward / reverse switching device 5, and a driven-side secondary shaft 7 parallel to the driving-side primary shaft.
[0017]
The primary shaft 6 is provided with a primary pulley 8 serving as an input-side rotating body. The primary pulley 8 includes a fixed pulley 8a integrated with the primary shaft 6 and a ball spline or the like attached to the primary shaft 6 in opposition thereto. And a movable pulley 8b that is slidably mounted in the axial direction, and the gap between the cone surfaces of the pulley, that is, the pulley groove width is variable. The secondary shaft 7 is provided with a secondary pulley 9 as an output-side rotating body. The secondary pulley 9 is composed of a fixed pulley 9a integrated with the secondary shaft 7 and a movable pulley 8b opposed to the secondary pulley 9a. And a movable pulley 9b mounted slidably in the axial direction in the same manner as described above, and the pulley groove width is variable.
[0018]
A belt 10 as a power transmission element is stretched between the primary pulley 8 and the secondary pulley 9. The ratio of the winding diameter of the belt 10 to the respective pulleys is changed by changing the groove width of both pulleys 8 and 9. Is changed, the rotation of the primary shaft 6 is transmitted to the secondary shaft 7 at a continuously variable speed. Assuming that the winding diameter of the belt 10 around the primary pulley 8 is Rp and the winding diameter of the belt 10 around the secondary pulley 9 is Rs, the gear ratio, that is, the pulley ratio i is i = Rs / Rp. The rotation of the secondary shaft 7 is transmitted to the drive wheels 13 via a gear train having a reduction gear and a differential device 12, and in the case of front wheel drive, the drive wheels 13 are front wheels.
[0019]
In order to change the groove width of the primary pulley 8, a primary cylinder 14 is provided on the primary shaft 6, and a hydraulic chamber 15 is formed therein. On the other hand, to change the groove width of the secondary pulley 8, a secondary cylinder 16 is provided on the secondary shaft 7, and a hydraulic chamber 17 is formed therein. Each groove width is set by adjusting the primary pressure Pp introduced into the hydraulic chamber 15 on the primary side and the secondary pressure Ps introduced into the hydraulic chamber 17 on the secondary side.
[0020]
FIG. 2 is a schematic diagram showing a control device for controlling the operation of the continuously variable transmission 1. As shown in FIG. 2, hydraulic oil from an oil pump 18 driven by an engine or an electric motor is supplied to each of the hydraulic chambers 15 and 17, and is connected to a discharge port of the oil pump 18. The secondary pressure passage 19 communicates with the hydraulic chamber 17 and with the secondary pressure port of the secondary pressure regulating valve 20. The secondary pressure Ps supplied to the hydraulic chamber 17 by the secondary pressure adjusting valve 20 is adjusted to a pressure that gives the belt 10 a fastening force necessary for torque transmission.
[0021]
The secondary pressure passage 19 is connected to a secondary pressure port of the primary pressure regulating valve 22 via a communication oil passage 23, and the primary pressure port of the primary pressure regulating valve 22 is connected to the primary side hydraulic chamber 15 via the primary pressure passage 24. Are in communication. The primary pressure Pp is adjusted by the primary pressure adjusting valve 22 to a value corresponding to the target gear ratio, the vehicle speed, and the like, and the groove width of the primary pulley 8 is changed to control the gear ratio. The secondary pressure regulating valve 20 and the primary pressure regulating valve 22 are each a proportional solenoid valve, and control the current value supplied from the CVT control unit 25 to each of the solenoid coils 20a and 22a, thereby controlling the secondary pressure Ps and the primary pressure Pp. Is adjusted.
[0022]
The CVT control unit 25 receives signals from a primary pulley rotation speed sensor 26 for detecting the rotation speed of the primary pulley 8 and a secondary pulley rotation speed sensor 27 for detecting the rotation speed of the secondary pulley 9. Further, a throttle opening sensor 30 for detecting the opening of the throttle valve is connected to the CVT control unit 25. As the accelerator opening, the opening of the throttle valve may be directly detected, or the opening of the accelerator pedal may be read by a sensor, and the throttle opening may be calculated according to the accelerator opening.
[0023]
An engine control unit 32 is connected to the CVT control unit 25, and a signal from a crank angle sensor 33 and signals from other various sensors 34 are sent to the engine control unit 32. Engine speed data calculated based on a signal from the crank angle sensor 33 and various calculated data calculated based on signals from other various sensors 34 are input to the CVT control unit 25, and the CVT control unit 25 The hydraulic pressure supplied to the respective hydraulic chambers 15 and 17 is adjusted by the control signal sent to the respective solenoid coils 20a and 22a. The CVT control unit 25 and the engine control unit 32 each include a microprocessor CPU for performing arithmetic processing of control signals, a ROM for storing control programs, arithmetic expressions, map data, and the like, and a RAM for temporarily storing data. And constitutes acceleration determination means, acceleration speed ratio setting means, and upshift amount setting means.
[0024]
FIG. 3 is a shift control characteristic diagram showing a relationship between target speed Np of primary pulley 7 and vehicle speed V in the continuously variable transmission shown in FIGS. 1 and 2, for example, when accelerating with the accelerator pedal fully opened. , the target rotational speed Np of the primary pulley 7 is reached while the point a of the low R L gear ratio is the largest gear ratio, then slightly along with the shift to overdrive R O side speed ratio is minimum speed ratio The vehicle speed V is increased while increasing the rotation to reach the highest speed point B. Or releases the accelerator pedal from the state, C remains the gear ratio is fixed to the overdrive side R O in the case of performing the braking, slowing through D, the gear ratio is an overdrive further along the lowest transmission line Is shifted to the low side to reach the point E, and the vehicle stops at the low level due to braking. In actual running, according to the running state of the vehicle, it is between the gear ratio R O of the gear ratio of the low side R L and the overdrive side, freely gear ratio within the range indicated by E from the code A Is set.
[0025]
3, a characteristic line showing a plurality of thin solid line, the relationship between each speed ratio and the target speed and the vehicle speed in the case of a constant between the overdrive R O between the low R L and the point CD between points AE FIG. A plurality of shift lines indicated by broken lines between the highest shift line between the points AB and the lowest shift line between the points DE are shift characteristic diagrams corresponding to the normal shift mode, each of which has a predetermined throttle opening. The relationship between the vehicle speed V corresponding to the degree and the target rotation speed Np of the primary pulley 7 is shown. The map data corresponding to the normal shift mode is stored in a memory such as a ROM in the CVT control unit 25. Therefore, in the normal shift mode, for example, when the accelerator pedal is depressed by the driver so as to have the throttle opening indicated by point TH1 in FIG. 3, the shift ratio is controlled by the shift characteristics indicated by the shift line passing through the accelerator pedal. Is done.
[0026]
In the present invention, for example, when the vehicle is running with the vehicle speed and the throttle opening TH1 indicated by state point F in FIG. 3, the driver operates the accelerator pedal to a position corresponding to the throttle opening TH2. If the driver has depressed significantly, it is determined that acceleration of the vehicle is required. When this determination is made, increases the target rotational speed Np of the primary pulley 8 by the rotation speed increase amounts U 1 as shown in between state point F in the state point J, the shift operation so that the speed ratio is low-side Is performed.
[0027]
Next, the acceleration gear ratio is set as shown by state point J to state point K, and as shown in FIG. 3, the gear ratio is kept constant so that the vehicle speed increases with an increase in target rotation speed Np of primary pulley 8. Is set to When the target rotational speed Np of the primary pulley 8 is judged to have reached the upper limit rotational speed corresponding to the throttle opening TH2, predetermined rotational speed decrease amount D 1 as shown in the state point K to the state point L primary pulley 8 is reduced. As described above, when the rotation speed reduction control is executed, a shift-up operation is performed to reduce the gear ratio toward the overdrive side. When performing an upshift, the engine speed is reduced by a predetermined amount, so that the inertia torque of the engine and the transmission can be reduced from the normal engine torque, preventing an instantaneous increase in driving force during the upshift. it can. Thereby, the acceleration feeling can be improved.
[0028]
After the acceleration gear ratio control from the state points J to K is performed and the rotation speed reduction control from the state points K to L is performed, the accelerator pedal is depressed by an amount corresponding to the throttle opening TH2. and in the case that is turned, after the acceleration gear ratio control from state point L to M is performed, the rotation speed reduction control for reducing the state point M predetermined rotational speed by reduction amount D 2 to N is executed. Further, if the accelerator pedal is still depressed to the throttle opening TH2, the same control is executed from the state points N to Q. When such rapid acceleration control is performed, the vehicle speed increases as the target speed Np of the primary pulley 8 increases, that is, as the engine speed increases, as shown between the state point J and the state point Q in FIG. Therefore, the feeling of increase in the engine speed and the feeling of increase in the vehicle speed always coincide, and a good acceleration feeling can be obtained.
[0029]
In FIG. 3, a two-dot chain line S is a diagram showing shift characteristics when the target rotation speed of the primary pulley 8, that is, the engine rotation speed is gradually increased from the state point J to the target upper limit rotation speed. When the rapid acceleration control as indicated by the symbol S is performed, the rapid acceleration is performed in a state where the engine speed is low, so that it is not possible to perform the rapid acceleration that sufficiently exerts the driving force of the engine. By repeating the acceleration gear ratio control and the rotation speed reduction control as in the present invention, especially at a low vehicle speed, the rapid acceleration control can be performed by sufficiently utilizing the driving force of the engine for acceleration. . Thereby, it is possible to accelerate to a desired vehicle speed in a short time.
[0030]
As shown in FIG. 3, the amount of decrease in the number of revolutions when the decrease in the number of revolutions is performed is set to decrease as the vehicle speed increases. That is, the rotational speed decrease amount D 2 is set to a value smaller than the rotational speed decrease amount D 1, the rotational speed decrease amount D 3 is set to a value smaller than the rotational speed decrease amount D 2. Thus, in a region where the vehicle speed is high and the marginal driving force is small, the amount of decrease in the number of revolutions can be reduced. The amount of decrease in the number of revolutions when the decrease in the number of revolutions is performed is set smaller as the accelerator opening, that is, the amount of depression of the accelerator pedal increases. As a result, the higher the driver's acceleration request level, the smaller the amount of decrease in the number of revolutions, and the more quickly the vehicle can accelerate. The calculation of the rotation reduction amount according to the accelerator opening may be performed based on a signal from a throttle opening sensor because the opening of the throttle valve is set according to the accelerator opening.
[0031]
Furthermore, since the rotation speed reduction amount is set to decrease as the road surface gradient increases, the rotation speed reduction amount can be reduced as the marginal driving force decreases. This road surface gradient can be calculated using the vehicle speed, the engine speed, the throttle opening and the like as parameters.
[0032]
As described above, each of the rotation speed reduction amounts is changed according to the vehicle speed, the accelerator opening, and the road surface gradient. However, one or two of the vehicle speed, the accelerator opening, and the road surface gradient are set as parameters. The amount of decrease in the number of revolutions may be changed, or the amount of decrease in the number of revolutions may be a constant value.
[0033]
In the case shown in FIG. 3, the primary pulley 8 is moved from the state point J to the state point K, from the state point L to the state point M, from the state point N to the state point D, and from the state point P to the state point Q. In the acceleration gear ratio control for simultaneously increasing the target rotational speed Np and the vehicle speed V, the gear ratio is fixed, but the gear ratio may be controlled to the downshift side or the upshift side without keeping the gear ratio constant. good.
[0034]
When shifting from the rotation speed reduction control for lowering the rotation speed to the acceleration speed ratio control, as shown by a reference symbol T in FIG. The transient control can be executed by using such a method. Thereby, the acceleration feeling at the time of acceleration can be improved.
[0035]
In addition, when performing an upshift by reducing the number of revolutions, by giving a different speed than usual, a sharp driving feeling can be obtained. For example, if the speed is controlled to be slower than usual, the crank rotation of the engine will be slowed down over time, so that it is possible to suppress the occurrence of a vehicle acceleration feeling due to an increase in inertia torque. If the shift speed at the time of shifting is controlled to be faster than usual, the crank rotation of the engine will be quickly reduced, so the inertia torque will increase and the vehicle will feel instantly accelerated. By controlling in advance to reduce the engine torque by the estimated increase in inertia torque, the occurrence of a feeling of vehicle acceleration can be suppressed.
[0036]
The present invention is not limited to the above embodiment, and can be variously modified without departing from the gist thereof. For example, although the continuously variable transmission shown in FIG. 1 is a belt type, a toroidal in which a power roller is arranged as a power transmission element between an input side disk as an input side rotating body and an output side disk as an output side rotating body. The present invention may be applied to control of a continuously variable transmission.
[0037]
【The invention's effect】
According to the present invention, when the vehicle is accelerating, the sense of increase in the rotation of the engine and the sense of increase in the vehicle speed match, and a good acceleration feeling can be obtained. Since the engine speed reduction control is performed following the acceleration gear ratio control, the vehicle can be accelerated by increasing the engine speed and making full use of the driving force of the engine. , And the vehicle can be rapidly accelerated, and the acceleration feeling can be improved.
[0038]
According to the present invention, when the rotation speed reduction amount is changed according to the vehicle speed, it is possible to improve the acceleration feeling while suppressing the reduction in the driving force at a high vehicle speed. When the amount of decrease in the number of revolutions is changed by the accelerator opening, when the accelerator opening is large and the driving force is required to be large, the acceleration feeling can be improved while suppressing the driving force from decreasing. Further, when the amount of decrease in the rotational speed is changed by the road surface gradient value, in a region where the road surface gradient is large and the marginal driving force is small, the acceleration feeling can be improved while suppressing the decrease in the drive force due to the decrease in the rotational speed.
[0039]
According to the present invention, the acceleration feeling can be improved by executing the transient control when the engine speed is reduced by the predetermined amount.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a drive system of a vehicle including a belt-type continuously variable transmission as an example of a continuously variable transmission.
FIG. 2 is a schematic diagram showing a control device for controlling the operation of the continuously variable transmission.
FIG. 3 is a shift control characteristic diagram showing an example of shift control of the present invention.
[Explanation of symbols]
1 Continuously Variable Transmission 8 Primary Pulley 9 Secondary Pulley 10 Belt 25 CVT Control Unit 32 Engine Control Unit

Claims (6)

エンジンにより駆動される入力側回転体の回転を動力伝達要素を介して無段階に変速比を変化させて出力側回転体に伝達する無段変速機の変速制御装置であって、
運転者が加速の要求状態にあるか否かを判定する加速判定手段と、
加速時に車速を前記入力側回転体の回転上昇に伴って増加させる加速変速比設定手段と、
加速時の前記入力側回転体の回転数が上限回転数に到達したことを判定する上限回転数検出手段と、
前記上限回転数に到達したときは前記入力側回転体の回転数低下量を設定するアップシフト量設定手段とを有し、
加速の要求状態であると判定されたときに、前記入力側回転体が上限回転数に到達するまでの加速変速比制御と到達後に前記入力側回転体の回転数を低下させる回転数低下制御とを繰り返して車両を加速することを特徴とする無段変速機の変速制御装置。
A transmission control device for a continuously variable transmission that transmits a rotation of an input-side rotator driven by an engine to a output-side rotator by changing a speed ratio in a stepless manner via a power transmission element,
Acceleration determination means for determining whether the driver is in a request state for acceleration,
Acceleration speed ratio setting means for increasing the vehicle speed with acceleration of the input-side rotating body during acceleration,
Upper limit rotation speed detecting means for determining that the rotation speed of the input side rotating body during acceleration has reached an upper limit rotation speed,
Upshift amount setting means for setting a rotation speed reduction amount of the input-side rotator when the rotation speed reaches the upper limit rotation speed,
When it is determined that the required state of acceleration, the input-side rotator acceleration speed ratio control until reaching the upper limit rotation speed and rotation speed reduction control to reduce the rotation speed of the input-side rotator after reaching, A transmission control device for a continuously variable transmission, wherein the vehicle is repeatedly accelerated.
請求項1記載の無段変速機の変速制御装置において、前記回転数低下量を車速、アクセル開度および路面勾配の少なくともいずれかに基づいて変化させることを特徴とする無段変速機の変速制御装置。2. The shift control of a continuously variable transmission according to claim 1, wherein the amount of decrease in the number of revolutions is changed based on at least one of a vehicle speed, an accelerator opening, and a road surface gradient. apparatus. 請求項1記載の無段変速機の変速制御装置において、車速が高くなるに伴って前記回転数低下量を小さくすることを特徴とする無段変速機の変速制御装置。2. The speed change control device for a continuously variable transmission according to claim 1, wherein the reduction amount of the rotation speed is reduced as the vehicle speed increases. 請求項1記載の無段変速機の変速制御装置において、アクセル開度が高くなるに伴って前記回転数低下量を小さくすることを特徴とする無段変速機の変速制御装置。2. The shift control device for a continuously variable transmission according to claim 1, wherein the amount of decrease in the rotational speed is reduced as the accelerator opening increases. 請求項1記載の無段変速機の変速制御装置において、路面勾配が大きくなるに伴って前記回転数低下量を小さくすることを特徴とする無段変速機の変速制御装置。2. The speed change control device for a continuously variable transmission according to claim 1, wherein the amount of decrease in the rotation speed is reduced as the road surface gradient increases. 請求項1〜5のいずれか1項に記載の無段変速機の変速制御装置において、前記回転数低下制御から前記加速変速比制御に徐々に移行させる過渡制御を行うことを特徴とする無段変速機の変速制御装置。The continuously variable transmission according to any one of claims 1 to 5, wherein a transient control for gradually shifting from the rotation speed reduction control to the acceleration speed ratio control is performed. Transmission control device for transmission.
JP2002290644A 2002-10-03 2002-10-03 Shift control device for continuously variable transmission Expired - Fee Related JP4358495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290644A JP4358495B2 (en) 2002-10-03 2002-10-03 Shift control device for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290644A JP4358495B2 (en) 2002-10-03 2002-10-03 Shift control device for continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2004125072A true JP2004125072A (en) 2004-04-22
JP4358495B2 JP4358495B2 (en) 2009-11-04

Family

ID=32282441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290644A Expired - Fee Related JP4358495B2 (en) 2002-10-03 2002-10-03 Shift control device for continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4358495B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046383A (en) * 2004-07-30 2006-02-16 Fuji Heavy Ind Ltd Controller of continuously variable transmission
JP2007040332A (en) * 2005-08-01 2007-02-15 Nissan Motor Co Ltd Shift control device of continuously variable transmission
JP2008248921A (en) * 2007-03-29 2008-10-16 Toyota Motor Corp Controller of continuously variable transmission
DE102008000794A1 (en) 2007-03-23 2008-10-23 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Shift control system of a continuously variable transmission and its control method
WO2009004946A1 (en) * 2007-07-03 2009-01-08 Toyota Jidosha Kabushiki Kaisha Shift control device for vehicular stepless transmission
JP2009228763A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Vehicle control device
JP2013204728A (en) * 2012-03-29 2013-10-07 Toyota Motor Corp Control device for continuously variable transmission
JP2013204781A (en) * 2012-03-29 2013-10-07 Toyota Motor Corp Control device for continuously variable transmission
JP2014111397A (en) * 2012-12-05 2014-06-19 Toyota Motor Corp Driving force control unit of vehicle
DE102014118595A1 (en) 2013-12-27 2015-07-02 Fuji Jukogyo Kabushiki Kaisha Circuit control device for a continuously variable transmission
JP2015166619A (en) * 2014-03-04 2015-09-24 ジヤトコ株式会社 Transmission and control method thereof
JP2016056907A (en) * 2014-09-11 2016-04-21 富士重工業株式会社 Gear change control device of automatic transmission
US9671017B2 (en) 2013-12-03 2017-06-06 Fuji Jukogyo Kabushiki Kaisha Shift control device for continuously variable transmission
JP2017155781A (en) * 2016-02-29 2017-09-07 株式会社Subaru Vehicle control device
JP2018004004A (en) * 2016-07-06 2018-01-11 三菱自動車工業株式会社 Shift control device for stepless speed change device
JPWO2020121750A1 (en) * 2018-12-14 2020-06-18
JP2020175891A (en) * 2017-06-30 2020-10-29 本田技研工業株式会社 Vehicle control device
US11267455B2 (en) 2017-06-30 2022-03-08 Honda Motor Co., Ltd. Vehicle control device
US11796057B2 (en) 2019-07-11 2023-10-24 Nissan Motor Co., Ltd. Control method and control apparatus for continuously variable transmission

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046383A (en) * 2004-07-30 2006-02-16 Fuji Heavy Ind Ltd Controller of continuously variable transmission
JP4624028B2 (en) * 2004-07-30 2011-02-02 富士重工業株式会社 Control device for continuously variable transmission
JP2007040332A (en) * 2005-08-01 2007-02-15 Nissan Motor Co Ltd Shift control device of continuously variable transmission
DE102008000794B4 (en) * 2007-03-23 2009-07-09 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Shift control system of a continuously variable transmission and its control method
DE102008000794A1 (en) 2007-03-23 2008-10-23 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Shift control system of a continuously variable transmission and its control method
JP2008248921A (en) * 2007-03-29 2008-10-16 Toyota Motor Corp Controller of continuously variable transmission
WO2009004946A1 (en) * 2007-07-03 2009-01-08 Toyota Jidosha Kabushiki Kaisha Shift control device for vehicular stepless transmission
JP2009014085A (en) * 2007-07-03 2009-01-22 Toyota Motor Corp Gear shift control device for vehicular continuously variable transmission
US8527166B2 (en) 2007-07-03 2013-09-03 Toyota Jidosha Kabushiki Kaisha Shift control device for vehicular continuously variable transmission
JP2009228763A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Vehicle control device
JP2013204728A (en) * 2012-03-29 2013-10-07 Toyota Motor Corp Control device for continuously variable transmission
JP2013204781A (en) * 2012-03-29 2013-10-07 Toyota Motor Corp Control device for continuously variable transmission
JP2014111397A (en) * 2012-12-05 2014-06-19 Toyota Motor Corp Driving force control unit of vehicle
DE102014117216B4 (en) 2013-12-03 2023-07-06 Subaru Corporation SHIFT CONTROL FOR A CONTINUOUSLY VARIABLE TRANSMISSION
US9671017B2 (en) 2013-12-03 2017-06-06 Fuji Jukogyo Kabushiki Kaisha Shift control device for continuously variable transmission
DE102014118595A1 (en) 2013-12-27 2015-07-02 Fuji Jukogyo Kabushiki Kaisha Circuit control device for a continuously variable transmission
DE102014118595B4 (en) 2013-12-27 2024-06-13 Subaru Corporation Shift control device for a continuously variable transmission
US9511774B2 (en) 2013-12-27 2016-12-06 Fuji Jukogyo Kabushiki Kaisha Shift control device for continuously variable transmission
JP2015166619A (en) * 2014-03-04 2015-09-24 ジヤトコ株式会社 Transmission and control method thereof
JP2016056907A (en) * 2014-09-11 2016-04-21 富士重工業株式会社 Gear change control device of automatic transmission
JP2017155781A (en) * 2016-02-29 2017-09-07 株式会社Subaru Vehicle control device
JP2018004004A (en) * 2016-07-06 2018-01-11 三菱自動車工業株式会社 Shift control device for stepless speed change device
JP2020175891A (en) * 2017-06-30 2020-10-29 本田技研工業株式会社 Vehicle control device
US11267455B2 (en) 2017-06-30 2022-03-08 Honda Motor Co., Ltd. Vehicle control device
JPWO2020121750A1 (en) * 2018-12-14 2020-06-18
WO2020121750A1 (en) * 2018-12-14 2020-06-18 ジヤトコ株式会社 Vehicle control device and vehicle control method
JP7064621B2 (en) 2018-12-14 2022-05-10 ジヤトコ株式会社 Vehicle control device and vehicle control method
US11796057B2 (en) 2019-07-11 2023-10-24 Nissan Motor Co., Ltd. Control method and control apparatus for continuously variable transmission

Also Published As

Publication number Publication date
JP4358495B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP4358495B2 (en) Shift control device for continuously variable transmission
JP2003254421A (en) Shift control device for continuously variable transmission
EP2175172B1 (en) Shift control device for vehicular stepless transmission
US8948988B2 (en) Speed ratio control device of continuously variable transmission for vehicle
JP2003074682A (en) Control device of continuously variable transmission
JP4310059B2 (en) Transmission control device for transmission
JP2014088907A (en) Control device for continuously variable transmission
JP4624028B2 (en) Control device for continuously variable transmission
JPH05332426A (en) Speed change control device of continuously variable transmission
JP4951172B2 (en) Control device for continuously variable transmission
JP4557534B2 (en) Kickdown control device for continuously variable transmission
JP4339565B2 (en) Shift control device for continuously variable transmission
JP4340429B2 (en) Shift control device for continuously variable transmission
JP2004116641A (en) Speed change controller of continuously-variable transmission
JP2005172011A (en) Shift control device for continuously variable transmission
JP4955164B2 (en) Shift control device for continuously variable transmission
JP4372404B2 (en) Kickdown control device for continuously variable transmission
JP4700275B2 (en) Control device for continuously variable transmission
JP2002310276A (en) Control device for continuously variable transmission
JP2005172010A (en) Control device for continuously variable transmission
JP4154195B2 (en) Transmission control device for transmission
JP2004100905A (en) Control device for continuously variable transmission
JP2004100833A (en) Variable speed control device for continuously variable transmission
JP4419491B2 (en) Shift control device for vehicle
JP2005172012A (en) Shift control device for continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4358495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees