JP2004125056A - Sound insulation piping - Google Patents

Sound insulation piping Download PDF

Info

Publication number
JP2004125056A
JP2004125056A JP2002289919A JP2002289919A JP2004125056A JP 2004125056 A JP2004125056 A JP 2004125056A JP 2002289919 A JP2002289919 A JP 2002289919A JP 2002289919 A JP2002289919 A JP 2002289919A JP 2004125056 A JP2004125056 A JP 2004125056A
Authority
JP
Japan
Prior art keywords
pipe
soundproof
layer
protective layer
soundproofing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002289919A
Other languages
Japanese (ja)
Inventor
Hirobumi Kakimoto
柿本 博文
Osamu Kiso
木曽  治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayakawa Rubber Co Ltd
Original Assignee
Hayakawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Rubber Co Ltd filed Critical Hayakawa Rubber Co Ltd
Priority to JP2002289919A priority Critical patent/JP2004125056A/en
Publication of JP2004125056A publication Critical patent/JP2004125056A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sink And Installation For Waste Water (AREA)
  • Pipe Accessories (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Domestic Plumbing Installations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide sound insulation piping having excellent water feeding, draining, and sound insulating performance, and fire resistance, in which vaporization of chemical substances is restricted, and in which performance is not deteriorated by rain water during storage or transport. <P>SOLUTION: This sound insulation piping 1 comprises piping 2, a sound insulation layer 3 on the outer circumference of it, and a protective layer 4 on the outer circumference of it. The sound insulation layer 3 comprises at least one kind of sound insulating material selected out of a group of viscoelastic material, viscoplastic material, and foam material. The protective layer 4 comprises hard matter of at least one kind of a refractory substance selected out of a group of water-setting substances and gas-setting substances. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は建築物における給排水騒音の低減が可能な防音配管に関する。更に詳しくは、本発明は、配管の外周に、所定の防音層と、この防音層の外周の所定の保護層とを設けることで、制振効果が向上すると共にコインシデンス限界周波数が可聴域上限にずれ、剛性材料のみで構成された配管の欠点を解消し、外周の保護層によって防音層からの化学物質の揮散がなく、難燃化が可能な給排水騒音を低減した防音配管及び防音継手配管に関する。
【0002】
【従来の技術】
近年、大手ハウスメーカーを中心に、配管防音材が普及し、戸建住宅や低層集合住宅では、大半の住宅に用いられる様になった。
【0003】
現在主として用いられている配管防音材は、ゴムやポリオレフィンをシート状にした遮音層と、発泡体や繊維系の吸音層の積層品が主流となっており、住宅の配管の外周に囲着されている(例えば、特許文献1参照)。
【0004】
一方、配管外周に無機質セメントを囲着した耐火二層管が、耐火及び防火の観点から使用されている。
【0005】
【特許文献1】
特開平2−186194号公報。
【0006】
【発明が解決しようとする課題】
本発明者は、従来の配管防音材が、高分子系素材に、軟化剤、充填材、発泡剤等の何等かの化学物質を混入して生産された品物であることに共通点があり、何れも、比較的簡単に燃焼する点と、化学物質の揮散が全くないと言い切れない点と、屋外保管により雨水が吸音層に吸収されると防音性能の大きな低下が生じる点が共通する欠点であることを知見した。
【0007】
また、本発明者は、従来の耐火二層管が、重い重量にも拘らず、剛性が高い管の組合せであるため制振作用がなく、コインシデンス効果による透過損失の落ち込みが1000〜4000Hzの高周波域で生じ、満足できる防音性は得られないことを知見した。
【0008】
本発明は、前述の配管防音材の欠点を解消できる防音配管を得る事を課題とする。即ち、本発明の課題は、給排水防音性能に優れるのはもちろんのこと、難燃性で、化学物質の揮散が抑制され、保管及び運搬時の雨水等によって性能が低下する事のない防音配管を得る事である。
【0009】
【課題を解決するための手段】
本発明は、配管と前記配管の外周の防音層とを備える防音配管であって、前記防音層が、粘弾性体、粘塑性体及び発泡体からなる群より選ばれる少なくとも1種の防音性材料からなり、前記防音層の外周に保護層が設けられており、前記保護層が、水硬性物質及び気硬性物質からなる群より選ばれる少なくとも1種の耐火性物質の硬化物からなることを特徴とする防音配管に係るものである。
【0010】
本発明は、所定の防音性材料からなる防音層と、所定の耐火性物質の硬化物からなる保護層とを備える防音配管が、優れた防音性を発揮しながら防音層の性能低下や環境に対する悪影響等を改善できるという知見に基づくものである。
【0011】
本発明者は、従来の配管防音材の欠点である燃焼し易いことや、揮発性有機化合物(VOC)等の化学物質の揮散性等を改善するため、種々の配管防音手段を検討した。
【0012】
その結果、本発明者は、所定の防音層と保護層とを備える防音配管が、十分な制振性を発揮し、コインシデンス限界周波数が可聴域限度に近づき、耳障りな高周波域での発音量が減少して騒音低減作用が生じると共に、十分な難燃性を示すことを突き止め、本発明に到達した。
【0013】
本発明では、防音層は、粘弾性体、粘塑性体及び発泡体からなる群より選ばれる少なくとも1種の防音性材料からなり、保護層は、水硬性物質及び気硬性物質からなる群より選ばれる少なくとも1種の耐火性物質の硬化物からなる。
【0014】
本発明にかかる防音層は、防音性能に極めて優れることが確認されているものの、燃焼し易く耐火性に劣り、また、化学物質の揮散による環境への悪影響や低耐水性等が懸念される。
【0015】
そこで、本発明では、かかる防音層の欠点並びに防音性能を所定の保護層によって改善する。本発明にかかる保護層は、防音層の防音性能を悪化させることなく、むしろ、制振性の向上によって防音性能を更に向上させ、かつ防音配管の耐火性等を向上させることができる。
【0016】
本発明者の研究によれば、配管の外周に、粘弾性体、粘塑性体及び発泡体からなる群より選ばれる少なくとも1種の防音性材料からなる防音層と、この防音層の外周の水硬性物質及び気硬性物質からなる群より選ばれる少なくとも1種の耐火性物質の硬化物からなる保護層とを組み合わせることで、防音配管に制振性が得られ、保護層単独の場合に問題となる耳障りな高周波域での発音量が、コインシデンス限界周波数が可聴域限度に近づくために減少し、騒音の著しい低減作用が生じると考えられる。
【0017】
【発明の実施の形態】
本発明の実施の形態を説明する。
本発明は、配管と、その外周の粘弾性体、粘塑性体及び発泡体からなる群より選ばれる少なくとも1種の防音性材料からなる防音層と、この防音層の外周の水硬性物質及び気硬性物質からなる群より選ばれる少なくとも1種の耐火性物質の硬化物からなる保護層とを必須構成材として形成される防音配管に係る。
以下に前記必須構成材につき説明する。
【0018】
(1)配管
配管は、通常の建築物の屋内配管に用いられる配管であれば、特に形状や材質等に制限はない。その具体例としては、硬質塩化ビニル管、プラスチックライニング鋼管、鋳鉄管等を例示することが出来る。かかる配管には、直管と流路を変更する各種継手配管があり、本発明では、直管も継手配管も対象となる。
【0019】
(2)防音層
防音層は、粘弾性体、粘塑性体及び発泡体からなる群より選ばれる少なくとも1種の防音性材料からなる。これらの防音性材料は、いずれもヤング率が低く、コインシデンス効果が問題とならない防音性能に優れる材料である。
【0020】
(2−1)粘弾性体
粘弾性体は粘性と弾性を併せ持つ物質の総称である。かかる粘弾性体は、ゴムやエラストマーの様な大変形が可能な物質に、軟化剤、充填剤、粘着附与樹脂等のゴム工業で一般に使用される原材料を適宜加えて、目的とする性能を得る事が出来る。
【0021】
粘弾性体は配管への密着性も良く、その外周に設けられる水硬性物質や気硬性物質の硬化物からなる保護層との密着性にも優れ、拘束型制振材を形成する事が出来る。
【0022】
好ましくは、粘弾性体は配管や保護層への化学物質の移行性が抑制された組成物からなる。かかる粘弾性体は、例えばポリマーとしてはあらゆる物質の一番分子運動を行い易い状態である気体の耐透過性の高いブチルゴムやポリイソブチレンを用いるのが適しており、その添加剤としての軟化剤としては、パラフィン系、ナフテン系、アロマチック系に分類される炭化水素オイル、ペトロラタム、ワックス、エステル系可塑剤を相溶性の良い可塑剤として例示できる。その中で、ワックスは老化防止性は向上し、化学物質の移行性の抑制に効果が高いが、保護層との接着性を期待する場合は、ポリマーに対する添加量を3重量%までとすることが良い。エステル系可塑剤は、低温特性の調整に用いると効果があり、ジイソオクチルセバケート、ジオクチルセバケート、ブチルセロソルブペラゴネート、ジオクチルイソセバケート、ジオクチルアジペート、ジテシルアジペート、2−ジエチルヘキシルセバケート、ジイソオクチルアゼレート、ジブチルセバケートを例示できる。
【0023】
以上の他、移行性を抑制した組成物に対する一般的な注意点としては、沸点が高く蒸気圧が低い物質で粘度が高く、分子量の大きい物質を使用することが好ましい。また、粘着剤、接着剤を用いる場合は、溶剤タイプの場合は、充分な乾燥を行うことと、たとえ水系であっても高沸点溶剤を用いられる場合があるので、その組成には充分な注意を要する。
【0024】
(2−2)粘塑性体
本発明で言う粘塑性体とは、物体に応力を加えて変形させる過程で、応力を次第に増していくと応力のわずかな増加につれ、又は全く増加することなく歪が急激に増加し始める降伏点に達するが、この降伏点における応力が非常に小さい物体、例えば粘土の様に復元力がほとんどない物体を総称したものである。
【0025】
この様な粘塑性体は、粘土やゴム粘土等を例示することが出来る。例えばゴム粘土は、少量のゴムに多量の軟化剤や充填材を均一に混合して得られる。
【0026】
かかるゴム粘土は、復元性に乏しく、接触した物体への軟化剤の移行や軟化剤の移行による粘塑性体の物性の不安定等の問題がある為、従来、ほとんど使われる事がなかった。ところが、防音制振に対しては良好な結果を示し、それ自体も長期安定性の改善、及び配管や保護層等の被着体への軟化剤の移行の解消を行う事により、長期に安定した物性を示し、被着体への軟化剤の移行もなくなるという知見を得た。
【0027】
粘塑性体は、少量のゴムやポリマーをバインダーとし、多量の充填剤と軟化剤や、必要に応じ粘着附与樹脂やその他ゴム工業で一般的に用いられる添加剤を混合して得られるものであるので、比重も高く設定でき遮音効果も有する。かかる粘塑性体は、当然の事乍ら剛性がない為、コインシデンス効果による高周波側での防音性能の低下もない。また、かかる粘塑性体は、荷重のかからない部位に用いる事で、制振効果が高く、かつ防音制振効果が高い割に低コストで得ることが出来る。
【0028】
また、粘塑性体は、軟化剤の分子量分布やSP値の組合せを工夫して長期安定性を改善することができ、ゴムやポリマーとの相溶性を良くする事により、配管や保護層等の被着体への化学物質の移行を抑える事が出来る。
【0029】
粘塑性体には、予めゴム粉末を混在させておく事により、応力のかかる部位に用いて、ゴム粉末に粘塑性体の最低厚みを確保するスペーサーの役目をさせて制振作用の永続化を行わせる事も出来る。
【0030】
好ましくは、粘塑性体は配管や保護層への化学物質の移行性が抑制された組成物からなる。かかる粘塑性体も化学物質の配管や保護層への移行については粘弾性体に記載した内容と同様である。
【0031】
(2−3)発泡体
次に発泡体について説明する。発泡体は各種ゴム、液状ゴム、ポリエチレン、ポリプロピレン、EVA、塩化ビニル、ウレタン、スチレン等を単独又は混合して発泡体とした物が良く、連続気泡体よりも独立気泡体の方が好適である。
【0032】
本発明では、本来発泡体も、コインシデンス限界周波数を可聴域上限にずらすことが目的であり、吸音を目的としたものではないが、結果として、連続気泡体は吸水すると音性能が低下する。連続気泡体からなる発泡体は、水硬性物質や気硬性物質からの水分を吸収し易く、屋外保管時の雨水等の吸水によっても音性能の低下が大きく、適切でない。
【0033】
前記粘弾性体や粘塑性体は、全周波数での防音効果があり、特に低減の困難な低周波〜中周波帯域での防音効果が生じ易い。発泡体は、逆に高周波帯域での防音効果が生じ易いという特徴がある。発泡体を用いて低周波〜中周波帯域での防音効果を得る為には、発泡体と粘弾性体又は粘塑性体とを併用する事で改善することが出来る。
【0034】
好ましくは、発泡体は配管や保護層への化学物質の移行性が抑制された組成物からなる。かかる発泡体は、例えば、N,N′−ジニトロソ・ペンタメチレン・テトラミン、アゾジカルボンアミド、アゾジカルボンアミドを主成分とする複合発泡剤、アゾビス・イソブチロニトリル、バリウム・アゾジカルボキシレート、ベンゼンスルホニルヒドラジド、P,P′−オキシビスベンゼンスルホニル・ヒドラジド、トルエンスルホニルヒドラジド、トルエンスルホニルヒドラジドの誘導体等の発泡剤やサリチル酸、尿素、尿素化合物等からなる発泡助剤を含むので、それ等の発泡剤の発泡温度以上の温度に置いて分解させて、充分換気した後に使用するのがよい。
【0035】
(3)防音層の配管への適用
以下、粘弾性体、粘塑性体又は発泡体からなる防音性材料の配管への適用方法について説明するが、各防音性材料の適用方法は同一であるので、粘弾性体を代表して説明する。
【0036】
本発明は、前述したように、配管とその外周の水硬性物質や気硬性物質との間に粘弾性体等を介在させることにより、コインシデンス限界周波数を可聴域上限近くに高くする事及び制振性能を向上させ、配管内の騒音の透過量を低減し、配管振動による配管からの放射音も低減できるというものである。
【0037】
本発明者は、粘弾性体等は、必ずしも配管外周全面に用いる必要はなく、配管の一部に用いても十分な防音効果があるという予想外の事実を把握している。さらに、本発明者は、更なる実験によって、配管両端のフランジ部及び差込み代を除く配管外周表面積の25%以上に用いれば充分な防音効果が得られるという知見を得た。
【0038】
継手配管の場合、両端のフランジ部は、直管等が差し込まれ、接着接合される為と管の厚みが他の部分の倍の厚みとなり、剛性が大きくなる為、コインシデンス効果は受け難く、振動も少ないので、粘弾性体の取付効果はあるものの、特に使用しなくても良い。
【0039】
粘弾性体等の防音効果が生じ易いのは、継手配管等において、両端のフランジ部の間の流れ方向に曲率半径の大きい部位であり、排水による衝突衝撃が特に大きく、粘弾性体等を設けることで効率良く防音効果を発揮出来る。
【0040】
このフランジ部の間の部位には、配管外周表面積の25%以上の表面積に粘弾性体等を設ければ良い。継手配管には種々の形状があり、例えば45°エルボではフランジ部の間の部位の表面積は小さく、25%以下でも充分効果はある。しかしながら、例えば、大曲り90°エルボはフランジ部の間の部位の表面積が大きく、25%未満の表面積だと、少なくなるにつれて防音性能が徐々に悪化し、25%以上の表面積に粘弾性体を設ける必要がある。
【0041】
逆に、フランジ部の間の部位全面に設けても、フランジ部を含めて全周に設けてもよいが、75%以下が好適である。75%を超えて設けても、あまり大きな防音性能の改善が生じない。また、フランジ部のない直管の場合は、配管外周の25%以上で設ければ、帯状の粘弾性体等により管周方向に配管を何カ所か巻いても良く、筋状の粘弾性体等を管軸方向に設けても良い。
【0042】
配管が直管の場合、粘弾性体等の設置面積は、配管外周表面積の25%未満の場合は防音効果が除々に悪化し、逆に全体に設けても良いが、75%を超えて設けてもその効果はあまり差がなくなる。
【0043】
このように、直管及び継手配管のいずれにおいても、配管は元来剛性が生じる所へ密接し、更に外周に水硬性物質又は気硬性物質が粘弾性体を介して密接する事で、制振作用が生じ、これと共に、ヤング率の小さな粘弾性体によってコインシデンス限界周波数が高周波側へ移行するので、フランジ部や差込み代を除く配管外周表面積の25%以上を防音層で処理をすれば十分であると思われる。
【0044】
粘弾性体、粘塑性体又は発泡体は0.3〜3mmで用いればよく、配管や水硬性物質又は気硬性物質との接着性がある場合は、0.3〜1.5mmとより薄くても良い。
【0045】
(3−1)ブロック層
本発明では、ブロック層を用いることができる。ブロック層は、配管と防音層との間や防音層と保護層との間の化学物質の移行を阻止する働きをする。
【0046】
ブロック層は、粘弾性体や粘塑性体中の軟化剤等の化学物質が配管や保護層に移行するのを防止し、防音配管による化学物質の放出に対してより安全性を重視する場合に、著しい効果を発揮する。
【0047】
ブロック層は、例えば、フィルムであり、かかるフィルムは、粘弾性体等の防音層の片面又は両面に設けられ、配管や保護層との密着性の観点から、柔らかく薄い物が好ましい。
【0048】
フィルムの片面に粘着層を設けておけば、防音層の配管への取付作業も容易である。かかるフィルム付き防音層の場合、直管に設ける際、ブチルゴム粘着層等のような再剥離型粘着層をフィルムの配管側に設けておけば、現場での配管取付作業時に防音層及び保護層を除去して継手配管への差込み代を容易に作る事が出来る。
【0049】
(4)保護層
保護層は、水硬性物質及び気硬性物質からなる群より選ばれる少なくとも1種の耐火性物質の硬化物からなる。これらの耐火性物質は、組成の調整等により、防音層との接着性、防音層と保護層との間の化学物質の移行性等を改善することができるものであり、更に、防音配管からの揮発性物質の揮散を防止できるものである。
次に、水硬性物質と気硬性物質とについて詳細に説明する。
【0050】
(4−1)水硬性物質
水硬性物質とは、セメント類が水と混和した状態で水化して硬化する性質を有する物質の総称である。セメント類とは、無機質の膠着物で、アルミナ−シリカ系のポルトランドセメント、スラグセメント、アルミナセメント、混和セメント、石膏や石灰などのプラスター、酸化亜鉛や塩化亜鉛等からなる歯科用セメントを例示する事が出来、それらを単独又は併用して、砂、短繊維、ゴム粉末を混合して用いればよい。
【0051】
ゴム粉末は、硬化乾燥後の水硬性物質の重量で10〜50%含有する事で、クラック防止、乾燥収縮防止、衝撃クラック防止に効果がある。短繊維は成型性を向上させることができる。
【0052】
水硬性物質又は気硬性物質は、当初に多量の水を含んでいる為、粘弾性体等と密接させる事は出来ても、乾燥後であっても接着させる事は案外困難である。しかし、接着性を持たせる方が厚みを薄く出来、制振効果が高くなる。
【0053】
接着性を持たせる為には、粘弾性体や粘塑性体のゴムやエラストマーの成分のうち50%以上を再生ゴムとすると良い。これは再生ゴムが生産される過程で高湿高圧にさらされ、高剪断をかけられる為、再生ゴム中にカルボキシル基が所々に形成され、セメント中のアルカリ成分と化学結合を生じる為である。
【0054】
発泡体は、水硬性物質や気硬性物質との接着性を得られ難いので、粘弾性体や粘塑性体のような接着性を有する物と積層すればよい。
【0055】
(4−2)気硬性物質
気硬性物質とは、水との混和物が乾燥してから硬化する性質を有する物質の総称であり、その具体例としては、ドロマイトプラスター、消石灰、漆喰等を例示する事が出来、糊、膠、粘土、砂、すさ、ゴム粉末、短繊維等を混合してもよい。また、前記ポルトランドセメントや石膏等の水硬性物質を若干加えた方が、粘弾性体や粘塑性体との接着性が良くなる。
【0056】
(4−3)保護層の化学物質遮蔽性
好ましくは、保護層は、化学物質の遮蔽性に優れた組成物からなる。かかる保護層は、化学物質が防音層から移行しないか、又は例え化学物質が移行したとしても、その化学物質を外部環境に揮散させない組成のものである。水硬性・気硬性の保護層は、水溶性物質が移行しやすいので、水溶性物質に近い構造の物質は用いるべきでない。好ましい具体例として、トリメチルホスヘート、トリエチルホスヘート等の正リン酸エステルを例示できる。また、本発明では粘弾性体は直接空気にふれないので、老化に対する注意は不要故に、物質表面に移行しやすい各種老化防止剤や親水基を有する界面活性剤を避けた方が良い。かかる保護層は、具体的には、前述の水硬性物質、気硬性物質に示したものからなり、それ等が水溶性物質との相溶性が良い場合には、粘弾性体、粘塑性体、発泡体の中に水溶性物質を含まないものを使えばよく、又、保護層の乾燥収縮のよるクラックをゴム粉末や短繊維を含有させて防止することで低分子物質の散逸を防止することができる。なお、化学物質遮蔽性の一般的な注意点としては、粘弾性体について述べたものと同様である。
【0057】
かかる保護層を防音層の外周に設ける事により、防音配管に難燃性を附与する事が出来ると共に、防音層や保護層由来の有害な有機物質の揮散もなくなる。
【0058】
また、好ましくは、保護層は、水分の遮蔽性に優れた組成物からなる。かかる保護層は、水分が保護層に浸透しないか、又は例え水分が保護層に浸透したとしても、水分により防音層のヤング率は高くなることはなく、コインシデンス効果が問題となって防音性能が損なわれることはない。ところが、連続気泡体の場合は、防音性能が悪化するので、連続気泡体を筒状フィルムで囲着して保護層に水分が移行しないようにする必要がある。
【0059】
かかる保護層を防音層の外周に設ける事により、防音配管に難燃性を附与する事が出来ると共に、吸水による防音層の性能低下を抑制することができる。
【0060】
以下、図面を参照して、本発明を更に詳細に説明する。
図1は本発明の1例の防音配管の断面図である。図2は本発明の他の例の防音配管の断面図である。図3は本発明の更に他の例の防音配管の斜視図である。図4は図3に示す防音層の拡大断面図である。図5は本発明の更に他の例の防音配管の断面図である。
【0061】
図1に示すように、本発明の1例の防音配管1は、配管2と、その外周の防音層3と、その外周の保護層4とからなる。図1の例では、配管2は継手配管の代表的な例としての90°エルボであり、90°エルボの曲率半径の大きい側で、フランジ部2Aを除く外周表面積の25%の面積に貼り付いた粘塑性体からなる防音層3と、その外周に水硬性物質を約5mm厚で囲着し硬化させた保護層4とを備える。
【0062】
図2は、本発明の他の例の防音配管11であり、図1と同様に、配管12には90°エルボを用いている。図2の例では、防音配管11は、防音継手配管であり、90°エルボの両端のフランジ部12Aに囲まれている一段低い部分の全表面に貼り付いた防音層13と、その外周にゴム粉末14Aを20重量%含んだ水硬性物質を約5mm厚で囲着し硬化させた保護層14とを備える。
【0063】
この例では、防音層13は、独立気泡のポリエチレン発泡体13Aと、その片面に塗布されたブチルゴム粘着剤(図では省略)と、そのポリエチレン発泡体13Aの残る片面に貼り付けられた粘塑性体13Bとからなる。防音層13は、90°エルボにブチルゴム粘着剤で貼り付けられている。
【0064】
図3は、本発明の更に他の例の防音配管21を示すもので、配管22には直管を用いている。この例では、防音配管21は、直管の両端部には90°エルボへの差し込み代22Aが残されており、直管外周面積の30%の面積で貼り付けられた筋状の剥離型粘着層付粘弾性体からなる防音層23と、その外周で気硬性物質を5mm厚で囲着し硬化させた筒状硬化物からなる保護層24とを備える。
【0065】
図4は図3に示す防音層23を詳しく示すもので、再剥離型粘着層付粘弾性体を拡大した断面図である。防音層23は粘弾性体23Aからなり、粘弾性体23Aの直管側には、50μm厚のポリエステルフィルム23Bが接着されている。ポリエステルフィルム23Bの直管側面には、再剥離型粘着層23Cが塗布されている。
【0066】
図5は、本発明の更に他の例の防音配管31を示し、配管32には90°エルボを用いている。この例の防音配管31は、配管32の両端のフランジ部32Aで囲まれた部分のほぼ中央とフランジ部32A近くに、フランジ部32Aを除く外周面積の約30%で貼り付けられたヒモ状の粘弾性体からなる防音層33と、その外周で囲着硬化された水硬性物質からなる保護層34とを備える。
【0067】
【実施例】
以下、本発明を実施例及び比較例に基づいて説明する。
(実施例1)
(1−1)防音配管の製造
図1に示すような防音継手配管と図3に示すような防音直管とを製造する。
防音継手配管では、継手配管としての硬質塩化ビニル製90°エルボを用い、この継手配管の曲率半径の大きい側で、両端のフランジ部を除く配管外周表面積の25%の面積で、表1の配合処方例1に示す組成の粘塑性材を貼り付け、その外周に、表2の配合処方例Aに示す組成の水硬性材を約5mm厚で囲着し硬化させ、図1に示すような防音継手配管を製造する。
【0068】
防音直管では、硬質塩化ビニル製直管を用い、配管外周面積の30%の面積で表1の配合処方例2に示した粘弾性体を再剥離型粘着層付フィルムに貼り付け、配管面に再剥離型粘着層面を貼って、その外周に、表2の配合処方例Bに示す気硬性物質を囲着し硬化し、図3に示すような防音直管を製造する。
【0069】
(1−2)試験配管経路の施工
トレイ排水音を測定するため、3個の防音継手配管、計4本の直管で合計4.5mの長さの防音直管とを用いて試験配管経路を施工する。
【0070】
(1−3)騒音の評価
排水騒音の測定は、トレイ直下室にて6秒間の等価騒音レベルを3回測定し、それらの平均値で示す。実験室はコンクリート厚300mmで囲われた受音室であり、外部騒音は無視できる構造となっている。結果を表3に示す。
【0071】
(1−4)難燃性の評価
防音継手配管では90°エルボの曲率半径の大きい側の中央において、防音直管では防音層の直上において、内径11mmのブンゼンバーナーの空気の供給を止め、炎の高さを38mmとし、予め被検体の下端がバーナーの口から高さ19mmになる様にしておき、炎を30秒当てた後、炎を取り除き、被検体の状態を目視で観察することにより判断する。
【0072】
(1−5)化学物質揮散性の評価
内容積100Lのポリ袋中に75φ直管50cmの両端を水硬性物質でシールし硬化乾燥した物と、750φ90°エルボを各1個づつ入れ、口を閉じた後、恒温乾燥機中、80℃で24時間静置した後、検知管でトルエンとパラジクロロベンゼンを調べた後、防音層の直上の保護層を表面から2mmまでの深さで削り、各々5gをJIS−K−6229に準じてアセトン抽出による定量を行った。
【0073】
実施例2
実施例1において、図1に示すような防音継手配管に代えて、図2に示すような防音継手配管を製造して用いる以外は、実施例1と同様にして試験配管経路を施工し、排水騒音、難燃性及び化学物質揮散性を測定する。結果を表3に示す。
【0074】
この例の防音継手配管は、硬質塩化ビニル製90°エルボの両端のフランジ部で囲まれた部分全面に防音層を貼り付けて、その外周に、表2の配合処方例Cに示す水硬性物質を約5mm厚で囲着硬化させて保護層とすることで製造する。防音層は、独立気泡のポリエチレン発泡体シートからなり、その片面にブチルゴム粘着剤を塗布し、残る片面に表1の配合処方例1に示す粘塑性材を貼り付け、ブチルゴム粘着剤面を継手配管に貼り付ける。
【0075】
実施例3
実施例1において、図1に示すような防音継手配管に代えて、図5に示すような防音継手配管を製造して用いる以外は、実施例1と同様にして試験配管経路を施工し、排水騒音等を測定する。結果を表3に示す。
【0076】
この例の防音継手配管は、硬質塩化ビニル製90°エルボのフランジ部で囲まれた部分の中央とフランジ部近くで、フランジ部を除く外周表面積の30%の面積に、表1の配合処方例2に示す組成からなる紐状の粘弾性体を貼り付け、その外周を、表2の配合処方例Aに示す組成からなる水硬性材で囲着し硬化させることで製造する。
【0077】
比較例1
実施例1において、継手配管では、硬質塩化ビニル製90°エルボの全外周に市販ウレタン発泡体4mm厚を溶剤系接着剤で貼り付けた1mm厚の表1の配合処方例3のシートからなる防音層を設けた。直管では、硬質塩化ビニル製直管の全外周に前記90°エルボと同じ防音層をとりつけた。この防音層の外周には水硬性及び気硬性の保護層は設けなかった。実施例1と同様にして試験配管経路を施工し、排水騒音等を測定する。結果を表3に示す。ただし、化学物質揮散性の評価は75φ直管50cmと90°エルボの各1個を100Lポリ袋に入れ、水硬性物質でのシールはしていない。また、アセトン抽出は保護層を設けていないので省略した。
【0078】
【表1】

Figure 2004125056
【0079】
【表2】
Figure 2004125056
【0080】
【表3】
Figure 2004125056
【0081】
表3に示す結果から、実施例及び比較例による実験事実を説明する。
実施例1は、90°エルボの曲率半径の大きい側で、フランジ部を除く配管外周面積の25%の面積に粘塑性材を貼り、その外周に水硬性物質を約5mm厚で設けた防音継手配管と、直管外周面積の30%の面積に、再剥離型粘着層付粘弾性体を貼り付け、その外周に気硬性物質を約5mm厚で囲着硬化した防音直管とを用いた例である。
【0082】
その結果、配管周囲に従来の高分子系素材のみの防音材からなる比較例1と比べ音性能はほぼ同等の良い結果が得られている。
【0083】
また、難燃性については、比較例1では燃焼したが、90°エルボ及び直管共に難燃性が発揮できており、化学物質も、比較例1ではトルエンが高濃度で検出されたが、水硬性、気硬性物質への移行もなく化学物質の揮散検出はない。
【0084】
実施例2は、90°エルボの両端フランジの間の部分全面に、発泡体を貼り付け、その外周面に粘塑性体を貼り付け、更にその外周に約5mm厚に水硬性物質を囲着した防音継手配管と、実施例1と同じ防音直管とを用いる例である。
【0085】
その結果、比較例1と比べ、さらに良い音性能を示す。比較例1では得られなかった難燃性が発揮され、化学物質の検出もなかった。
【0086】
実施例3は、90°エルボの両側のフランジの間に挟まれた部分の中央とフランジ近くに、90°エルボのフランジ部を除く外周表面積の30%で、ヒモ状の粘弾性体を貼り付け、その外周に水硬性物質を約5mm厚で囲着硬化した防音継手配管と、実施例1の防音直管とを用いた例である。
【0087】
その結果、比較例1と比べ、若干性能面では劣るものの、充分供用できるレベルである。比較例1で得られなかった難燃性も発揮されており、化学物質の揮散もない。
【0088】
以上のように、実施例の防音配管は、いずれも、防音性能に優れ、十分な難燃性を有し、化学物質の揮散の心配がなく、吸水による防音性能の悪化が起こる吸音材を用いていない為、吸水による防音性能の悪化の心配がなく、安心して使用することができる。
【0089】
【発明の効果】
本発明の防音配管によれば、所定の防音層とこの防音層の外周の所定の保護層とによって、十分な制振性を発揮し、コインシデンス限界周波数が可聴域限度に近づき、耳障りな高周波域での発音量が減少して騒音低減作用が生じると共に、十分な難燃性が得られる。また、本発明の防音配管によれば、所定の防音層と所定の保護層とによって、防音層と保護層との間等で種々の化学物質の移行が抑制され、化学物質の揮散もなく、保管時の雨水による防音性能の低下も認められることがない。
【図面の簡単な説明】
【図1】本発明の1例の防音配管の断面図である。
【図2】本発明の他の例の防音配管の断面図である。
【図3】本発明の更に他の例の防音配管の斜視図である。
【図4】図3に示す防音層の拡大断面図である。
【図5】本発明の更に他の例の防音配管の断面図である。
【符号の説明】
1,11,21,31 防音配管
2,12,22,32 配管
2A,12A,32A フランジ部
3,13,23,33 防音層
4,14,24,34 保護層
14A ゴム粉末
13A ポリエチレン発泡体
13B 粘塑性体
22A 差込み代
23A 粘弾性体
23B ポリエステルフィルム
23C 再剥離型粘着層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a soundproof pipe capable of reducing plumbing noise in a building. More specifically, the present invention provides a predetermined soundproofing layer on the outer periphery of the pipe and a predetermined protective layer on the outer circumference of the soundproofing layer, thereby improving the vibration damping effect and increasing the coincidence limit frequency to the upper limit of the audible range. The present invention relates to a soundproof pipe and a soundproof joint pipe that eliminates the disadvantages of a pipe made of only a rigid material and that does not disperse chemical substances from a soundproof layer by an outer circumferential protective layer, thereby reducing water supply and drainage noise that can be made flame-retardant. .
[0002]
[Prior art]
In recent years, plumbing soundproofing materials have become widespread mainly by major house makers, and in detached houses and low-rise apartment houses, they have been used in most houses.
[0003]
Currently, the mainstream of sound insulation materials for pipes is a laminate of a sound insulation layer made of rubber or polyolefin in the form of a sheet, and a foamed or fiber-based sound absorption layer. (For example, see Patent Document 1).
[0004]
On the other hand, a fire-resistant double-layer pipe in which an inorganic cement is surrounded on the outer periphery of a pipe is used from the viewpoint of fire resistance and fire prevention.
[0005]
[Patent Document 1]
JP-A-2-186194.
[0006]
[Problems to be solved by the invention]
The present inventor has in common that the conventional pipe soundproofing material is a product produced by mixing any chemical substance such as a softener, a filler, a foaming agent, etc. in a polymer material, Both have the common drawback that they burn relatively easily, that there is no volatilization of chemical substances at all, and that when rainwater is absorbed into the sound-absorbing layer during outdoor storage, the soundproofing performance is greatly reduced. It was found that.
[0007]
In addition, the inventor of the present invention believes that the conventional fire-resistant double-layered pipe is a combination of pipes having high rigidity irrespective of the heavy weight, so that there is no vibration damping action, and the drop in transmission loss due to the coincidence effect is 1000 to 4000 Hz. It was found that satisfactory soundproofing cannot be obtained because it occurs in the region.
[0008]
An object of the present invention is to provide a soundproof pipe that can eliminate the above-mentioned disadvantages of the pipe soundproofing material. That is, an object of the present invention is to provide a soundproof pipe which is not only excellent in sound insulation performance of water supply and drainage but also has flame retardancy, suppresses volatilization of chemical substances, and does not deteriorate in performance due to rainwater during storage and transportation. It is gaining.
[0009]
[Means for Solving the Problems]
The present invention is a soundproof pipe including a pipe and a soundproof layer on the outer periphery of the pipe, wherein the soundproof layer is at least one kind of soundproof material selected from the group consisting of a viscoelastic body, a viscoplastic body, and a foam. Wherein a protective layer is provided on the outer periphery of the soundproof layer, and the protective layer is made of a cured product of at least one refractory material selected from the group consisting of a hydraulic material and an air-hard material. The present invention relates to a soundproof pipe.
[0010]
The present invention provides a soundproof pipe including a soundproof layer made of a predetermined soundproof material and a protective layer made of a cured product of a predetermined refractory substance, while exhibiting excellent soundproof properties while lowering the performance of the soundproof layer and reducing environmental impact. This is based on the finding that adverse effects can be improved.
[0011]
The present inventor has studied various pipe soundproofing means in order to improve the disadvantages of conventional pipe soundproofing materials such as easy burning and volatility of chemical substances such as volatile organic compounds (VOC).
[0012]
As a result, the present inventor has found that the soundproof pipe provided with the predetermined soundproof layer and the protective layer exhibits sufficient vibration damping properties, the coincidence limit frequency approaches the audible range limit, and the sound volume in an unpleasant high frequency range is reduced. It has been found that the noise reduction effect is produced by the reduction, and that sufficient flame retardancy is exhibited.
[0013]
In the present invention, the soundproof layer is made of at least one kind of soundproof material selected from the group consisting of a viscoelastic body, a viscoplastic body and a foam, and the protective layer is selected from the group consisting of a hydraulic substance and an airset substance. At least one refractory material.
[0014]
Although the soundproofing layer according to the present invention has been confirmed to be extremely excellent in soundproofing performance, it is liable to burn and is inferior in fire resistance, and there is a concern about adverse effects on the environment due to volatilization of chemical substances and low water resistance.
[0015]
Therefore, in the present invention, the disadvantages of such a soundproof layer and the soundproof performance are improved by a predetermined protective layer. The protective layer according to the present invention can further improve the soundproofing performance by improving the vibration damping property without deteriorating the soundproofing performance of the soundproofing layer, and can also improve the fire resistance and the like of the soundproofing pipe.
[0016]
According to the study of the present inventor, a soundproof layer made of at least one kind of soundproof material selected from the group consisting of a viscoelastic body, a viscoplastic body and a foam, By combining with a protective layer made of a cured material of at least one type of refractory material selected from the group consisting of a hard substance and an air-hardened substance, the soundproof pipe can be provided with vibration damping properties, and a problem occurs when the protective layer alone is used. It is considered that the amount of sound in a harsh high-frequency range decreases because the coincidence limit frequency approaches the audible range limit, and a remarkable noise reduction effect occurs.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described.
The present invention provides a pipe, a sound-insulating layer made of at least one kind of sound-insulating material selected from the group consisting of a viscoelastic body, a viscoplastic body, and a foam on the outer periphery thereof; The present invention relates to a soundproof pipe formed with a protective layer made of a cured product of at least one refractory material selected from the group consisting of hard materials as an essential component.
Hereinafter, the essential components will be described.
[0018]
(1) Piping
The piping is not particularly limited in shape, material and the like as long as it is a pipe used for indoor piping of a normal building. Specific examples thereof include hard vinyl chloride pipes, plastic-lined steel pipes, cast iron pipes, and the like. Such pipes include straight pipes and various types of joint pipes that change the flow path, and the present invention covers both straight pipes and joint pipes.
[0019]
(2) Soundproof layer
The soundproof layer is made of at least one kind of soundproof material selected from the group consisting of a viscoelastic body, a viscoplastic body, and a foam. Each of these soundproofing materials has a low Young's modulus and is excellent in soundproofing performance without a problem of the coincidence effect.
[0020]
(2-1) Viscoelastic body
A viscoelastic body is a general term for a substance having both viscosity and elasticity. Such a viscoelastic body has a desired performance by appropriately adding raw materials generally used in the rubber industry, such as a softening agent, a filler, and a tackifying resin, to a substance capable of large deformation such as rubber and an elastomer. You can get it.
[0021]
The viscoelastic body has good adhesion to pipes, and also has excellent adhesion to the protective layer made of a cured product of a hydraulic or air-hardening substance provided on the outer periphery, and can form a restrained vibration damping material. .
[0022]
Preferably, the viscoelastic body is made of a composition in which migration of a chemical substance to a pipe or a protective layer is suppressed. As such a viscoelastic body, for example, it is suitable to use butyl rubber or polyisobutylene having high gas permeation resistance, which is a state in which all substances can easily perform molecular motion as a polymer, and as a softener as an additive thereof. Can be exemplified by hydrocarbon oils, petrolatum, waxes and ester plasticizers classified into paraffinic, naphthenic and aromatic types as plasticizers having good compatibility. Among them, wax improves anti-aging property and is highly effective in suppressing migration of chemical substances. However, if adhesiveness with a protective layer is expected, the amount added to the polymer should be up to 3% by weight. Is good. Ester plasticizers are effective when used for adjusting low-temperature properties, and are effective in adjusting diisooctyl sebacate, dioctyl sebacate, butyl cellosolve peragonate, dioctyl isosebacate, dioctyl adipate, ditesyl adipate, and 2-diethylhexyl sebacate. , Diisooctyl azelate and dibutyl sebacate.
[0023]
In addition to the above, as a general precaution for a composition in which migration is suppressed, it is preferable to use a substance having a high boiling point, a low vapor pressure, a high viscosity, and a high molecular weight. In the case of using an adhesive or an adhesive, in the case of a solvent type, it is necessary to perform sufficient drying, and even in an aqueous system, a high boiling point solvent may be used. Cost.
[0024]
(2-2) Viscoplastic body
The viscoplastic body referred to in the present invention is a yield point at which the strain begins to increase rapidly with little or no increase in the stress as the stress gradually increases in the process of applying stress to the object and deforming it. , But collectively refers to an object having a very small stress at the yield point, for example, an object having little restoring force such as clay.
[0025]
Examples of such a viscoplastic body include clay and rubber clay. For example, rubber clay is obtained by uniformly mixing a large amount of a softening agent and a filler with a small amount of rubber.
[0026]
Conventionally, such rubber clays have been scarcely used because of poor resilience and problems such as migration of a softener to a contacted object and instability of physical properties of a viscoplastic body due to migration of the softener. However, it shows good results for soundproofing damping, and is itself stable for a long time by improving long-term stability and eliminating migration of softener to adherends such as pipes and protective layers. The following physical properties were obtained, and it was found that the transfer of the softener to the adherend disappeared.
[0027]
A viscoplastic body is obtained by mixing a small amount of rubber or polymer as a binder, mixing a large amount of a filler and a softening agent, and, if necessary, a tackifying resin or other additives generally used in the rubber industry. Because of this, the specific gravity can be set high and also has a sound insulation effect. Such a viscoplastic body does not have rigidity as a matter of course, so that the soundproof performance on the high frequency side does not decrease due to the coincidence effect. Further, by using such a viscoplastic body in a portion where a load is not applied, it is possible to obtain a high damping effect and a low cost for a high soundproofing damping effect.
[0028]
In addition, the viscoplastic body can improve the long-term stability by devising a combination of the molecular weight distribution and the SP value of the softener, and by improving the compatibility with rubber and polymer, it is possible to improve the piping and the protective layer. Transfer of chemical substances to the adherend can be suppressed.
[0029]
By mixing rubber powder in the viscoplastic body in advance, it can be used in places where stress is applied, allowing the rubber powder to act as a spacer to secure the minimum thickness of the viscoplastic body, thereby making the damping action permanent. It can also be done.
[0030]
Preferably, the viscoplastic body is made of a composition in which migration of a chemical substance to a pipe or a protective layer is suppressed. The transfer of the chemical substance to the piping and the protective layer in this viscoplastic body is the same as that described for the viscoelastic body.
[0031]
(2-3) Foam
Next, the foam will be described. The foam is preferably made of various rubbers, liquid rubbers, polyethylene, polypropylene, EVA, vinyl chloride, urethane, styrene, etc., alone or in the form of a foam, and closed cells are more preferable than open cells. .
[0032]
In the present invention, the purpose of the foam is to shift the limit frequency of the coincidence to the upper limit of the audible range and is not intended to absorb sound. However, as a result, the sound performance of the open-cell foam decreases when water is absorbed. Foams composed of open cells tend to absorb moisture from hydraulic or air-hard materials, and sound performance is greatly reduced due to absorption of rainwater during outdoor storage, which is not appropriate.
[0033]
The viscoelastic body and the viscoplastic body have a soundproofing effect at all frequencies, and particularly easily produce a soundproofing effect in a low-frequency to medium-frequency band where reduction is difficult. Conversely, the foam has a characteristic that a soundproofing effect in a high-frequency band is easily generated. In order to obtain a soundproofing effect in a low frequency band to a medium frequency band using a foam, it can be improved by using a foam in combination with a viscoelastic body or a viscoplastic body.
[0034]
Preferably, the foam is composed of a composition in which migration of a chemical substance to a pipe or a protective layer is suppressed. Such foams include, for example, N, N'-dinitrosopentamethylenetetramine, azodicarbonamide, a composite foaming agent containing azodicarbonamide as a main component, azobisisobutyronitrile, barium azodicarboxylate, benzene Since it contains a foaming agent such as sulfonyl hydrazide, P, P'-oxybisbenzenesulfonyl hydrazide, toluenesulfonyl hydrazide, a derivative of toluenesulfonyl hydrazide, and a foaming assistant composed of salicylic acid, urea, urea compound, etc., such a foaming agent is used. It should be used after decomposing at a temperature higher than the foaming temperature of the above and sufficiently ventilating.
[0035]
(3) Application of soundproof layer to piping
Hereinafter, a method of applying a soundproof material made of a viscoelastic body, a viscoplastic body or a foam to a pipe will be described. However, since the method of applying each soundproof material is the same, a description will be given of a viscoelastic body as a representative. .
[0036]
As described above, the present invention raises the coincidence limit frequency to near the upper limit of the audible range and suppresses vibration by interposing a viscoelastic body or the like between the pipe and the hydraulic substance or air-setting substance on the outer periphery thereof. It improves the performance, reduces the amount of noise transmitted through the pipe, and reduces the sound radiated from the pipe due to the vibration of the pipe.
[0037]
The present inventor has grasped the unexpected fact that the viscoelastic body or the like does not necessarily need to be used on the entire outer periphery of the pipe, and has a sufficient soundproofing effect even when used on a part of the pipe. Furthermore, the present inventor has found through further experiments that a sufficient soundproofing effect can be obtained by using 25% or more of the outer peripheral surface area of the pipe excluding the flange portions at both ends of the pipe and the insertion allowance.
[0038]
In the case of joint piping, straight pipes etc. are inserted into the flanges at both ends, and the thickness of the pipe becomes twice as thick as other parts because it is bonded and bonded, and the rigidity is increased, so it is difficult to receive the coincidence effect, vibration Therefore, the viscoelastic body has an attachment effect, but need not be used.
[0039]
The soundproofing effect of the viscoelastic body or the like is likely to occur at a portion of the joint pipe or the like where the radius of curvature is large in the flow direction between the flange portions at both ends, the impact due to drainage is particularly large, and the viscoelastic body is provided. By doing so, the soundproofing effect can be exhibited efficiently.
[0040]
A viscoelastic body or the like may be provided in a portion between the flange portions with a surface area of 25% or more of the outer peripheral surface area of the pipe. There are various shapes of the joint pipe. For example, in the case of a 45 ° elbow, the surface area of the portion between the flange portions is small, and even if it is 25% or less, the effect is sufficient. However, for example, a large-bend 90 ° elbow has a large surface area at the portion between the flange portions. If the surface area is less than 25%, the soundproofing performance gradually deteriorates as the surface area decreases, and a viscoelastic material is applied to a surface area of 25% or more. Must be provided.
[0041]
Conversely, it may be provided on the entire surface between the flange portions or on the entire circumference including the flange portion, but is preferably 75% or less. Even if it exceeds 75%, there is no significant improvement in soundproofing performance. In the case of a straight pipe without a flange portion, if it is provided at 25% or more of the outer circumference of the pipe, the pipe may be wound at several places in the pipe circumferential direction with a band-shaped viscoelastic body or the like. May be provided in the tube axis direction.
[0042]
When the pipe is a straight pipe, if the installation area of the viscoelastic body is less than 25% of the outer peripheral surface area of the pipe, the soundproofing effect is gradually deteriorated. But the effect is not so different.
[0043]
As described above, in both the straight pipe and the joint pipe, the pipe is originally close to the place where rigidity is generated, and furthermore, the hydraulic substance or the air-hard substance is closely contacted with the outer periphery through the viscoelastic body, so that the vibration is damped. Along with this, the coincidence limit frequency shifts to the high frequency side by the viscoelastic material having a small Young's modulus, so that it is sufficient to treat the soundproof layer for at least 25% of the outer peripheral surface area of the pipe excluding the flange portion and the insertion allowance. It appears to be.
[0044]
A viscoelastic body, a viscoplastic body or a foam may be used in a thickness of 0.3 to 3 mm. Is also good.
[0045]
(3-1) Block layer
In the present invention, a block layer can be used. The blocking layer serves to prevent the transfer of chemicals between the pipe and the soundproofing layer and between the soundproofing layer and the protective layer.
[0046]
The block layer prevents chemical substances such as softeners in the viscoelastic body and viscoplastic body from migrating to the piping and the protective layer, and is more important when safety is more important for the release of chemical substances from soundproof piping. , Has a remarkable effect.
[0047]
The block layer is, for example, a film, and such a film is provided on one or both surfaces of a soundproof layer such as a viscoelastic body, and is preferably a soft and thin material from the viewpoint of adhesion to a pipe or a protective layer.
[0048]
If an adhesive layer is provided on one side of the film, the work of attaching the soundproof layer to the pipe is easy. When such a soundproof layer with a film is provided on a straight pipe, if a re-peelable pressure-sensitive adhesive layer such as a butyl rubber pressure-sensitive adhesive layer is provided on the pipe side of the film, the soundproof layer and the protective layer can be formed at the time of pipe mounting work on site. It can be easily removed and inserted into the joint piping.
[0049]
(4) Protective layer
The protective layer is made of a cured product of at least one refractory material selected from the group consisting of a hydraulic material and an air-hard material. These refractory substances can improve the adhesiveness with the soundproof layer, the migration of chemical substances between the soundproof layer and the protective layer, and the like by adjusting the composition, and further, from the soundproof pipe. Volatilization of volatile substances can be prevented.
Next, the hydraulic substance and the air hydraulic substance will be described in detail.
[0050]
(4-1) Hydraulic substance
The hydraulic substance is a general term for substances that have a property of being hydrated and hardened in a state where cements are mixed with water. Cement is an inorganic agglomerate, such as alumina-silica based portland cement, slag cement, alumina cement, admixed cement, plaster such as plaster or lime, and dental cement made of zinc oxide or zinc chloride. These may be used alone or in combination, and sand, short fibers and rubber powder may be mixed and used.
[0051]
When the rubber powder contains 10 to 50% by weight of the hydraulic substance after curing and drying, it is effective in preventing cracks, drying shrinkage, and impact cracks. Short fibers can improve moldability.
[0052]
Since a hydraulic substance or an air-hardening substance initially contains a large amount of water, it can be brought into close contact with a viscoelastic body or the like, but it is unexpectedly difficult to adhere even after drying. However, it is possible to make the thickness thinner by giving the adhesiveness, and the vibration damping effect becomes higher.
[0053]
In order to impart adhesiveness, it is preferable that 50% or more of the rubber or elastomer component of the viscoelastic body or the viscoplastic body is made of recycled rubber. This is because during the process of producing the reclaimed rubber, it is exposed to high humidity and high pressure and is subjected to high shearing, so that carboxyl groups are formed in the reclaimed rubber in some places and chemically bond with the alkali component in the cement.
[0054]
Since it is difficult to obtain the adhesiveness between the foam and the hydraulic material or the air-hardening material, the foam may be laminated with an adhesive material such as a viscoelastic body or a viscoplastic body.
[0055]
(4-2) Air-hardening substance
The air-hardening substance is a general term for a substance having a property of being hardened after a mixture with water is dried, and specific examples thereof include dolomite plaster, slaked lime, plaster, etc. , Clay, sand, soot, rubber powder, short fibers and the like may be mixed. The addition of a small amount of a hydraulic substance such as Portland cement or gypsum improves the adhesiveness with a viscoelastic body or a viscoplastic body.
[0056]
(4-3) Chemical shielding property of the protective layer
Preferably, the protective layer is made of a composition having excellent chemical substance shielding properties. Such a protective layer has a composition in which the chemical substance does not migrate from the soundproofing layer or, even if the chemical substance migrates, does not volatilize the chemical substance into the external environment. Since the water-soluble substance easily migrates to the hydraulic / air-hardened protective layer, a substance having a structure close to the water-soluble substance should not be used. Preferred specific examples include orthophosphate esters such as trimethyl phosphate and triethyl phosphate. In the present invention, since the viscoelastic body does not directly touch the air, there is no need to pay attention to aging. Therefore, it is better to avoid various antiaging agents and surfactants having a hydrophilic group which are easily transferred to the surface of the substance. Such a protective layer is specifically formed of the above-described hydraulic material and air-hardening material, and when these have good compatibility with a water-soluble material, a viscoelastic material, a viscoplastic material, It is only necessary to use a foam that does not contain a water-soluble substance, and to prevent cracks due to drying shrinkage of the protective layer by including rubber powder and short fibers to prevent the dissipation of low molecular substances. Can be. The general precautions of the chemical substance shielding property are the same as those described for the viscoelastic body.
[0057]
By providing such a protective layer on the outer periphery of the soundproofing layer, it is possible to impart flame retardancy to the soundproofing pipe and to eliminate harmful organic substances derived from the soundproofing layer and the protective layer.
[0058]
Preferably, the protective layer is made of a composition having excellent moisture shielding properties. In such a protective layer, even if moisture does not penetrate into the protective layer, or even if moisture penetrates into the protective layer, the moisture does not increase the Young's modulus of the soundproof layer. It will not be compromised. However, in the case of an open cell, the soundproofing performance is deteriorated. Therefore, it is necessary to surround the open cell with a tubular film so that moisture does not migrate to the protective layer.
[0059]
By providing such a protective layer on the outer periphery of the soundproof layer, it is possible to impart flame retardancy to the soundproof pipe, and it is possible to suppress a decrease in performance of the soundproof layer due to water absorption.
[0060]
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a sectional view of an example of a soundproof pipe according to the present invention. FIG. 2 is a cross-sectional view of another example of the soundproof pipe of the present invention. FIG. 3 is a perspective view of still another example of the soundproof pipe of the present invention. FIG. 4 is an enlarged sectional view of the soundproofing layer shown in FIG. FIG. 5 is a sectional view of still another example of the soundproof pipe of the present invention.
[0061]
As shown in FIG. 1, a soundproof pipe 1 according to an example of the present invention includes a pipe 2, a soundproof layer 3 on the outer circumference thereof, and a protective layer 4 on the outer circumference thereof. In the example of FIG. 1, the pipe 2 is a 90 ° elbow as a typical example of the joint pipe, and is attached to an area of 25% of the outer peripheral surface area excluding the flange portion 2A on the side having a large radius of curvature of the 90 ° elbow. A soundproof layer 3 made of a viscoplastic body and a protective layer 4 which is surrounded by a hydraulic substance with a thickness of about 5 mm and hardened.
[0062]
FIG. 2 shows a soundproof pipe 11 according to another example of the present invention. As in FIG. 1, a 90 ° elbow is used for the pipe 12. In the example of FIG. 2, the soundproof pipe 11 is a soundproof joint pipe, and has a soundproof layer 13 attached to the entire surface of a lower portion surrounded by the flange portions 12A at both ends of the 90 ° elbow, and a rubber cover on the outer periphery thereof. A protective layer 14 which is surrounded by a hydraulic substance containing 20% by weight of the powder 14A in a thickness of about 5 mm and cured.
[0063]
In this example, the soundproof layer 13 is composed of a closed-cell polyethylene foam 13A, a butyl rubber adhesive applied to one surface thereof (omitted in the drawing), and a viscoplastic material adhered to the other surface of the polyethylene foam 13A. 13B. The soundproof layer 13 is attached to a 90 ° elbow with a butyl rubber adhesive.
[0064]
FIG. 3 shows a soundproof pipe 21 according to still another example of the present invention, and a straight pipe is used as the pipe 22. In this example, the soundproof pipe 21 has a 90 ° elbow insertion margin 22A at both ends of the straight pipe, and a strip-shaped peeling-type adhesive stuck with an area of 30% of the outer circumference of the straight pipe. A soundproof layer 23 made of a layered viscoelastic body, and a protective layer 24 made of a cylindrical cured product obtained by surrounding and curing an air-hardening material at a thickness of 5 mm on the outer periphery thereof.
[0065]
FIG. 4 shows the soundproof layer 23 shown in FIG. 3 in detail, and is an enlarged sectional view of the viscoelastic body with a removable adhesive layer. The soundproof layer 23 is made of a viscoelastic body 23A, and a 50 μm thick polyester film 23B is adhered to the straight pipe side of the viscoelastic body 23A. On the straight pipe side surface of the polyester film 23B, a removable adhesive layer 23C is applied.
[0066]
FIG. 5 shows a soundproof pipe 31 according to still another embodiment of the present invention, wherein a 90 ° elbow is used for the pipe 32. The soundproof pipe 31 of this example has a string-like shape attached at approximately 30% of the outer peripheral area excluding the flange portion 32A substantially at the center of the portion surrounded by the flange portions 32A at both ends of the pipe 32 and near the flange portion 32A. A soundproof layer 33 made of a viscoelastic body and a protective layer 34 made of a hydraulic material surrounded and hardened on the outer periphery are provided.
[0067]
【Example】
Hereinafter, the present invention will be described based on examples and comparative examples.
(Example 1)
(1-1) Manufacture of soundproof piping
A soundproof joint pipe as shown in FIG. 1 and a soundproof straight pipe as shown in FIG. 3 are manufactured.
In the soundproof fitting pipe, a 90 ° elbow made of hard vinyl chloride was used as the fitting pipe, and on the side with the larger radius of curvature of this fitting pipe, the area of 25% of the outer peripheral surface area of the pipe excluding the flanges at both ends was used. A viscoplastic material having the composition shown in Formulation Example 1 was affixed, and a hydraulic material having the composition shown in Formulation Formulation Example A in Table 2 was surrounded by a thickness of about 5 mm on the outer periphery thereof and cured, and a soundproof joint as shown in FIG. Manufacture piping.
[0068]
For the soundproof straight pipe, a rigid vinyl chloride straight pipe was used, and the viscoelastic body shown in Formulation Formulation Example 2 in Table 1 was affixed to a film with a removable adhesive layer in an area of 30% of the outer peripheral area of the pipe. Then, a re-peelable pressure-sensitive adhesive layer surface is adhered, and an air-hardening substance shown in Formulation Formulation Example B in Table 2 is surrounded and cured on the outer periphery thereof to produce a soundproof straight pipe as shown in FIG.
[0069]
(1-2) Construction of test piping route
In order to measure the drainage sound of the tray, a test pipe route is constructed using three soundproof fitting pipes and a total of four straight pipes having a total length of 4.5 m.
[0070]
(1-3) Evaluation of noise
In the measurement of the drainage noise, the equivalent noise level for 6 seconds was measured three times in the room immediately below the tray, and the average value was shown. The laboratory is a sound receiving room surrounded by a concrete thickness of 300 mm, and has a structure in which external noise can be ignored. Table 3 shows the results.
[0071]
(1-4) Evaluation of flame retardancy
At the center of the 90 ° elbow with a large radius of curvature in the soundproof fitting pipe, and immediately above the soundproof layer in the soundproof straight pipe, supply of air from a Bunsen burner with an inner diameter of 11 mm was stopped, and the height of the flame was set to 38 mm. The lower end is made to be 19 mm in height from the mouth of the burner. After the flame is applied for 30 seconds, the flame is removed and the state of the subject is visually observed.
[0072]
(1-5) Evaluation of chemical substance volatility
In a plastic bag having an inner volume of 100 L, put both ends of 50 cm 75φ straight tube sealed with a hydraulic substance, cured and dried, and each one 750φ90 ° elbow, close the mouth, and then put in a constant temperature drier at 80 ° C. After standing for 24 hours in a detector tube, toluene and paradichlorobenzene were examined with a detector tube, and then the protective layer immediately above the soundproofing layer was shaved to a depth of 2 mm from the surface, and 5 g of each was coated with acetone according to JIS-K-6229. Quantification by extraction was performed.
[0073]
Example 2
In Example 1, a test pipe route was constructed in the same manner as in Example 1 except that a soundproof joint pipe as shown in FIG. 2 was manufactured and used instead of the soundproof joint pipe as shown in FIG. Measure noise, flame retardancy and chemical volatility. Table 3 shows the results.
[0074]
In the soundproof fitting pipe of this example, a soundproof layer is adhered to the entire surface surrounded by flange portions at both ends of a 90 ° elbow made of hard vinyl chloride, and the hydraulic material shown in Formulation Formulation Example C in Table 2 is applied to the outer periphery of the soundproof layer. Is produced by forming a protective layer by enclosing and hardening with a thickness of about 5 mm. The soundproofing layer is composed of a closed-cell polyethylene foam sheet, one side of which is coated with a butyl rubber adhesive, the other side is adhered to the viscoplastic material shown in Formulation Example 1 in Table 1, and the butyl rubber adhesive is connected to a joint pipe. Paste in.
[0075]
Example 3
In Example 1, a test pipe route was constructed in the same manner as in Example 1 except that a soundproof joint pipe as shown in FIG. 5 was manufactured and used instead of the soundproof joint pipe as shown in FIG. Measure noise, etc. Table 3 shows the results.
[0076]
The soundproof joint pipe of this example has a compounding formulation shown in Table 1 in the area of 30% of the outer peripheral surface area excluding the flange portion in the center and near the flange portion of the rigid vinyl chloride 90 ° elbow flange portion. A string-shaped viscoelastic body having the composition shown in FIG. 2 is attached, and the outer periphery thereof is surrounded with a hydraulic material having the composition shown in Formulation Example A in Table 2 and cured.
[0077]
Comparative Example 1
In Example 1, the joint pipe had a soundproofing made of a 1 mm-thick sheet of Formulation Example 3 in Table 1 in which a commercially available urethane foam 4 mm-thick was adhered to the entire outer periphery of a rigid vinyl chloride 90 ° elbow with a solvent-based adhesive. Layers were provided. In the straight pipe, the same soundproof layer as that of the 90 ° elbow was attached to the entire outer periphery of the hard vinyl chloride straight pipe. No hydraulic or air-hard protective layer was provided on the outer periphery of this soundproof layer. A test pipe route is constructed in the same manner as in Example 1, and drainage noise and the like are measured. Table 3 shows the results. However, in the evaluation of chemical substance volatility, each of a 50 mm 75 mm straight pipe and a 90 ° elbow was placed in a 100 L plastic bag, and sealing with a hydraulic substance was not performed. The acetone extraction was omitted because no protective layer was provided.
[0078]
[Table 1]
Figure 2004125056
[0079]
[Table 2]
Figure 2004125056
[0080]
[Table 3]
Figure 2004125056
[0081]
From the results shown in Table 3, the experimental facts of the examples and comparative examples will be described.
Example 1 is a soundproof joint in which a viscoplastic material is applied to an area of 25% of the outer peripheral area of the pipe excluding the flange portion on the side where the radius of curvature of the 90 ° elbow is large, and a hydraulic substance is provided on the outer periphery with a thickness of about 5 mm. An example using a pipe and a sound-proof straight pipe in which a viscoelastic body with a removable adhesive layer is attached to an area of 30% of the outer circumference area of the straight pipe, and an air-hardening substance is surrounded and hardened to a thickness of about 5 mm on the outer circumference. is there.
[0082]
As a result, the sound performance is almost the same as that of Comparative Example 1 in which only the conventional polymer-based sound-insulating material is provided around the pipe.
[0083]
Regarding the flame retardancy, although it burned in Comparative Example 1, both the 90 ° elbow and the straight pipe exhibited the flame retardancy, and the chemical substance was detected at a high concentration of toluene in Comparative Example 1. There is no migration to hydraulic or air-hard materials, and no volatilization of chemicals is detected.
[0084]
Example 2 is a soundproofing in which a foam is stuck on the entire surface between both end flanges of a 90 ° elbow, a viscoplastic body is stuck on the outer peripheral surface, and a hydraulic material is further surrounded by a thickness of about 5 mm on the outer periphery. This is an example using a joint pipe and the same soundproof straight pipe as in the first embodiment.
[0085]
As a result, better sound performance is shown as compared with Comparative Example 1. The flame retardancy not obtained in Comparative Example 1 was exhibited, and no chemical substance was detected.
[0086]
In the third embodiment, a string-like viscoelastic body is attached to the center of the portion sandwiched between the flanges on both sides of the 90 ° elbow and to the vicinity of the flange with 30% of the outer peripheral surface area excluding the flange portion of the 90 ° elbow. This is an example in which a soundproof joint pipe in which a hydraulic substance is surrounded and hardened to a thickness of about 5 mm on the outer periphery thereof and the soundproof straight pipe of Example 1 are used.
[0087]
As a result, although the performance is slightly inferior to Comparative Example 1, it is at a level that can be sufficiently used. The flame retardancy not obtained in Comparative Example 1 is also exhibited, and there is no volatilization of chemical substances.
[0088]
As described above, all of the soundproofing pipes of the examples use a sound absorbing material which has excellent soundproofing performance, has sufficient flame retardancy, does not have a risk of volatilization of a chemical substance, and deteriorates the soundproofing performance due to water absorption. Since it is not used, there is no need to worry about the deterioration of soundproofing performance due to water absorption, and it can be used with confidence.
[0089]
【The invention's effect】
According to the soundproofing pipe of the present invention, the predetermined soundproofing layer and the predetermined protective layer on the outer periphery of the soundproofing layer exhibit sufficient vibration damping properties, the coincidence limit frequency approaches the audible range limit, and an unpleasant high frequency range As a result, a noise reduction effect is produced by the amount of sound generated by the loudspeaker, and sufficient flame retardancy is obtained. Further, according to the soundproof pipe of the present invention, by the predetermined soundproof layer and the predetermined protective layer, migration of various chemical substances between the soundproof layer and the protective layer and the like is suppressed, without volatilization of the chemical substances, No decrease in soundproofing performance due to rainwater during storage.
[Brief description of the drawings]
FIG. 1 is a sectional view of an example of a soundproof pipe according to the present invention.
FIG. 2 is a cross-sectional view of another example of the soundproof pipe of the present invention.
FIG. 3 is a perspective view of a soundproof pipe according to still another example of the present invention.
FIG. 4 is an enlarged sectional view of the soundproofing layer shown in FIG.
FIG. 5 is a sectional view of a soundproof pipe according to still another example of the present invention.
[Explanation of symbols]
1,11,21,31 Soundproof piping
2,12,22,32 piping
2A, 12A, 32A Flange
3,13,23,33 Soundproof layer
4,14,24,34 protective layer
14A rubber powder
13A polyethylene foam
13B Viscoplastic body
22A insertion fee
23A Viscoelastic body
23B polyester film
23C Removable adhesive layer

Claims (5)

配管と前記配管の外周の防音層とを備える防音配管であって、
前記防音層が、粘弾性体、粘塑性体及び発泡体からなる群より選ばれる少なくとも1種の防音性材料からなり、前記防音層の外周に保護層が設けられており、前記保護層が、水硬性物質及び気硬性物質からなる群より選ばれる少なくとも1種の耐火性物質の硬化物からなることを特徴とする防音配管。
A soundproof pipe comprising a pipe and a soundproof layer on the outer periphery of the pipe,
The soundproof layer is made of at least one kind of soundproof material selected from the group consisting of a viscoelastic body, a viscoplastic body, and a foam, and a protective layer is provided on an outer periphery of the soundproof layer. A soundproof pipe comprising a cured product of at least one refractory material selected from the group consisting of a hydraulic material and an air-hard material.
前記防音層が直接又はフィルムを介して前記配管と密接していることを特徴とする請求項1記載の防音配管。The soundproof pipe according to claim 1, wherein the soundproof layer is in close contact with the pipe directly or via a film. 前記防音層が前記保護層との接着性を有することを特徴とする請求項1又は2記載の防音配管。The soundproof pipe according to claim 1, wherein the soundproof layer has an adhesive property with the protective layer. 前記保護層が硬化乾燥後に10〜50重量%の粉末ゴムを含んでいることを特徴とする請求項1〜3のいずれか一項記載の防音配管。The soundproof pipe according to any one of claims 1 to 3, wherein the protective layer contains 10 to 50% by weight of a powder rubber after curing and drying. 前記配管が継手配管であり、前記防音層及び前記保護層が、前記継手配管の湾曲部で、流れ方向に曲率半径の大きい方を優先して、フランジ部を除く外周表面積の25%以上に設けられていることを特徴とする請求項1記載の防音配管。The pipe is a joint pipe, and the soundproofing layer and the protective layer are provided in a curved portion of the joint pipe at a position of 25% or more of an outer peripheral surface area excluding a flange portion, preferentially having a larger radius of curvature in a flow direction. The soundproof pipe according to claim 1, wherein the pipe is provided.
JP2002289919A 2002-10-02 2002-10-02 Sound insulation piping Pending JP2004125056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289919A JP2004125056A (en) 2002-10-02 2002-10-02 Sound insulation piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289919A JP2004125056A (en) 2002-10-02 2002-10-02 Sound insulation piping

Publications (1)

Publication Number Publication Date
JP2004125056A true JP2004125056A (en) 2004-04-22

Family

ID=32281952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289919A Pending JP2004125056A (en) 2002-10-02 2002-10-02 Sound insulation piping

Country Status (1)

Country Link
JP (1) JP2004125056A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060192A1 (en) * 2004-12-14 2006-06-29 Poloplast Gmbh & Co.Kg Plastic pipe section for pipe systems in drain water domestic plumbing has section of pipe which is impinged by drain water provided with core layer made from sound damping material
DE102006025049A1 (en) * 2006-05-30 2007-12-06 Rehau Ag + Co. Shaped part for piping systems for the discharge of waste water
JP6767594B1 (en) * 2020-03-11 2020-10-14 デンカ株式会社 Refractory material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060192A1 (en) * 2004-12-14 2006-06-29 Poloplast Gmbh & Co.Kg Plastic pipe section for pipe systems in drain water domestic plumbing has section of pipe which is impinged by drain water provided with core layer made from sound damping material
DE102006025049A1 (en) * 2006-05-30 2007-12-06 Rehau Ag + Co. Shaped part for piping systems for the discharge of waste water
JP6767594B1 (en) * 2020-03-11 2020-10-14 デンカ株式会社 Refractory material
JP2021143257A (en) * 2020-03-11 2021-09-24 デンカ株式会社 Refractory material
JP2021143323A (en) * 2020-03-11 2021-09-24 デンカ株式会社 Refractory material

Similar Documents

Publication Publication Date Title
KR101740700B1 (en) Lightweight foamed concrete with improved insulation and soundproofing
KR102050253B1 (en) Self-bonding type waterproof sheet with fresh concrete substrate for preventing radon gas
CN109843391A (en) Intumescent back-fire relief band construction
KR102123490B1 (en) Rubberized Asphalt Self-adhesive Waterproofing Sheet
JP2773880B2 (en) Building pipes
JP2004278299A (en) Soundproofing and thermally insulating structural element
CN110114429A (en) Adhesive article
JP4621529B2 (en) Sound insulation cover and piping body with sound insulation cover
JP2004125056A (en) Sound insulation piping
CN106891592B (en) It is a kind of that there is sound insulation, heat-insulated, water-proof function self-adhesive coiled material
KR101535351B1 (en) A Composite of organic·inorganic composite water-proofing materials by using modified polymer and manufacturing method thereof
WO2019080978A1 (en) Insulating composite for insulation of buildings
JP2992195B2 (en) Piping vibration control structure
JP2851836B2 (en) Piping soundproof structure
WO1999008038A1 (en) Sound insulation member
JP2013057377A (en) Piping noise-insulation-coating structure
JPH107999A (en) Vibration-damping tacky adhesive tape
KR100997755B1 (en) Noise reduce and dew condensation-protection method
JP2868578B2 (en) Insulation
JPH10311457A (en) Piping installing structure, and manufacture of sound insulating material and piping installing structure
JP2001173124A (en) Fire resistive member
JP4991115B2 (en) Incombustible sound absorbing foam
JP2005193621A (en) Light blocking and heat insulating material sheet and its manufacturing method
CN214884812U (en) Concrete block with heat preservation and insulation functions
JP6055237B2 (en) Method for measuring tensile strength of wet interior structure, construction method of wet interior structure, and wet interior structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210