JP2004124300A - Antimicrobial synthetic fiber and antimicrobial fiber fabric - Google Patents

Antimicrobial synthetic fiber and antimicrobial fiber fabric Download PDF

Info

Publication number
JP2004124300A
JP2004124300A JP2002289918A JP2002289918A JP2004124300A JP 2004124300 A JP2004124300 A JP 2004124300A JP 2002289918 A JP2002289918 A JP 2002289918A JP 2002289918 A JP2002289918 A JP 2002289918A JP 2004124300 A JP2004124300 A JP 2004124300A
Authority
JP
Japan
Prior art keywords
fiber
antibacterial
zinc oxide
antimicrobial
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002289918A
Other languages
Japanese (ja)
Inventor
Shinichiro Soejima
副島 信一郎
Yoshiaki Kijima
来島 由明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Fibers Ltd
Original Assignee
Unitika Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Fibers Ltd filed Critical Unitika Fibers Ltd
Priority to JP2002289918A priority Critical patent/JP2004124300A/en
Publication of JP2004124300A publication Critical patent/JP2004124300A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide antimicrobial synthetic fiber containing zinc oxide particles as an antimicrobial agent, having high antimicrobial effect, slight in discoloration and deterioration of physical properties by sunlight with photocatalytic activity moderately suppressed, and producible at low cost, and to provide antimicrobial textile fabrics comprising the synthetic fiber. <P>SOLUTION: The antimicrobial synthetic fiber is made from a synthetic resin containing 0.1-5.0mass% of zinc oxide particles having ≤8.0m<SP>2</SP>/g specific surface area, being rank 4 or higher in discoloration in terms of light fastness determined in accordance with JIS L-0842, the 3rd exposure method. The antimicrobial fiber fabrics comprise the synthetic fiber. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、抗菌剤として酸化亜鉛粒子を含有する合成樹脂からなる繊維であって、日光による変色が極めて少ない抗菌性合成繊維及びこの繊維を用いた抗菌性繊維布帛に関するものである。
【0002】
【従来の技術】
従来より、酸化亜鉛は光を受けることにより、消臭、抗菌等の機能を発揮する光触媒活性を有することが知られている。また、酸化亜鉛が有する抗菌性については、光触媒活性以外に、その化学的性質として硫黄との高い親和性を有するため、菌類の細胞内に存在する酵素のチオール基に酸化亜鉛が配位することにより、代謝阻害を引き起こし、菌類の活性を低下させるものと類推されている。しかし、そのような効果的な機能を有する反面、酸化亜鉛を有機化合物等の支持体に担持させた場合、その光触媒活性により、支持体自体をも酸化し、劣化させるという問題があった。
【0003】
ナイロン6をはじめとするポリアミド繊維等の合成繊維に抗菌性を有する粉体を含有させた抗菌性繊維は、これまでに数多く提案されている。中でも、銀系の無機抗菌剤として、銀イオンを担持させたリン酸塩系抗菌剤、銀イオンを担持させたゼオライト系抗菌剤、銀イオンを担持させたヒドロキシアパタイト焼成物系抗菌剤が広く用いられている。
そして、特許文献1や特許文献2に記載されているように、これらの抗菌剤を含有するポリマーからなる抗菌性繊維も多く提案されている。
【0004】
酸化亜鉛微粒子を抗菌剤として合成繊維に含有させるという試みも今まで行われてきた。例えば、特許文献3には、粒径が0.1μm以下の酸化亜鉛微粒子をポリエステルやポリアミド等の樹脂中に含有させ、紡糸して得た抗菌性繊維が記載されている。
【0005】
しかしながら、酸化亜鉛微粒子をそのまま合成繊維に含有させると、上記したような光触媒活性による劣化を生じ、繊維の物性を低下させ、また褐色に変色させるという欠点がある。そこで、繊維中に含有させる酸化亜鉛微粒子自体の光触媒活性をある程度抑制させることが必要となる。その手段としては、マイクロカプセル化表面処理によって粒子表面と酸素や水分との接触を断つ方法があるが、この方法では、光学的には酸化亜鉛の性質を有するが、化学的には酸化亜鉛の性質が失われ、十分な抗菌性能が発揮されないという問題がある。
【0006】
また、特許文献4に記載があるように、酸化亜鉛粒子表面をカップリング剤により被覆することで光触媒活性を抑制する方法も提案されている。これにより抗菌作用を維持したまま、光劣化を抑制することができるが、カップリング処理するためコストがアップするという問題点があった。
【0007】
【特許文献1】
特開平9−87928号公報
【特許文献2】
特開平8−291229号公報
【特許文献3】
特開平5−156510号公報
【特許文献4】
特開平8−59890号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記のような問題点を解決するものであって、酸化亜鉛粒子を抗菌剤として含有した繊維であって、良好な抗菌性を有し、且つ光触媒活性が適度に抑制され、日光による繊維の物性の低下や変色が少なく、さらに低コストで得ることができる抗菌性合成繊維及び抗菌性繊維布帛を提供することを技術的な課題とするものである。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために検討した結果、本発明に到達した。すなわち、本発明は次の(1)、(2)を要旨とするものである。
(1)比表面積8.0m/g以下の酸化亜鉛粒子を0.1〜5.0質量%含有する合成樹脂からなり、JIS L−0842 第3露光法に準じて測定した耐光堅牢度における変退色が4級以上であることを特徴とする抗菌性合成繊維。
(2)(1)記載の繊維を含有する布帛であることを特徴とする抗菌性繊維布帛。
【0010】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の繊維を構成する合成樹脂としては、ポリアミド、ポリエステル、ポリアクリルニトリル、ポリビニルアルコール等が挙げられる。ポリアミドとしては、ナイロン6、ナイロン66、ナイロン69、ナイロン46等の単独あるいはこれらの共重合体、またはブレンドしたもの等が挙げられる。ポリエステルとしては、ポリアルキレンテレフタレート、ポリアルキレンナフタレートを用いることができ、例えばポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等の芳香族ポリエステルやポリ乳酸、ポリブチレンサクシネート、ポリカプロラクトン等の脂肪族ポリエステルが挙げられる。
上記の合成樹脂の中でも、公定水分率の高いポリアミドは繊維化した場合、繊維表面の濡れ性が高く、菌類が繊維表面に接触しやすいため抗菌効果を発揮しやすく、また耐摩耗性等の実用耐久性にも優れるため好ましい。
【0011】
また、これらの樹脂には、本発明の効果を損なわない範囲であれば、艶消剤、改質剤、制電剤、顔料等を含んでいてもよい。
【0012】
本発明は、抗菌剤として酸化亜鉛粒子を繊維に含有させるが、酸化亜鉛粒子は、上記したように光触媒作用による殺菌・抗菌作用を有しているが、この光触媒作用により繊維中に含有させると光劣化を生じ、繊維の物性を低下させ、また褐色に変色させるという欠点もある。
【0013】
本発明者らは、酸化亜鉛粒子の光触媒活性は粒子表面における反応であり、その活性の強さは比表面積に左右されることを見出した。そこで、本発明においては、光劣化を抑制しながら、良好な抗菌作用を奏することができる光触媒活性量を有する酸化亜鉛微粒子として、比表面積が8.0m/g以下のものを用いることが必要である。そして、さらには、比表面積が3.0〜6.5m/gのものが好ましい。
【0014】
酸化亜鉛粒子の比表面積が8.0m/gを超えると、光触媒活性が強くなり、繊維に含有させた場合、光劣化が生じ、変色や物性の低下を引き起こす。一方、3.0m/g未満になると上記濃度範囲で合成樹脂に含有させ繊維にした場合、十分な抗菌性が付与されにくくなるために好ましくない。
【0015】
そして、本発明の繊維は、合成樹脂中の酸化亜鉛粒子含有量が0.1〜5.0質量%であり、好ましくは0.3〜3.5質量%である。含有量が0.1質量%未満であると、十分な抗菌性が付与されない。一方、含有量が5.0質量%を超えると、酸化亜鉛の持つ光触媒活性により、繊維に含有させた場合、光劣化が生じ、変色や物性の低下を引き起こしたり、染色を施す場合、酸化亜鉛粒子近傍において染料の分解量が多くなり、退色が促進されて、耐光性が低下する。また、酸化亜鉛粒子の量が多くなることにより、紡糸や延伸時に糸切れが発生したり、製編織時にガイド、筬、綜絖等の磨耗による糸切れや毛羽等が多発し、操業性が悪くなったり、強伸度等の糸質性能も低下する。
【0016】
また、本発明に用いる酸化亜鉛粒子は、顕微鏡法による粒子径0.1μm以上1.0μm未満の範囲であることが好ましく、さらには0.15μm以上0.4μm未満とすることが好ましい。粒子径が0.1μm未満になると二次凝集が起こりやすくなるため、紡糸時にノズルパック圧の上昇が大きくなり紡糸性が悪くなるため好ましくない。また、粒子径が1.0μm以上になると強伸度等の糸質性能が低下し、また紡糸から巻取りまでの工程および紡糸以降の製編織時におけるガイド、筬、綜絖等の磨耗や、染色加工工程における布帛自体のアタリ等の欠点が生じやすくなるため好ましくない。
【0017】
本発明の繊維は、上記のような抗菌剤を含有することによって、光劣化抑制効果と抗菌性の両方を兼備するものであり、光劣化抑制効果を示す基準として、JIS L−0842 第3露光法に準じて測定した耐光堅牢度における変退色が4級以上であることが必要である。
【0018】
本発明における耐光堅牢度の評価について説明する。まず、本発明の繊維を丸編み機を用い筒編みサンプルを作成し、精練や染色を行う。その後サンプルを水洗、脱水、乾燥させる。次に、サンプルを、JIS L−0842の染色堅牢度試験法に準じ、第3露光法によりカーボンアーク灯光で照射した後、JIS L−0804の変退色用グレースケールを基準として、照射前後の変退色の度合い(級)を目視にて判定をする。
【0019】
この耐光堅牢度が4級未満であると、日光の暴露により変色する度合いが大きく、衣料品の場合屋外における着用や洗濯後の乾燥等によって、大きく色褪せするという問題がある。また、糸や生機の状態で保管している場合、日光の暴露により部分的あるいは全体が変色し、白物や淡色の製品に加工ができなくなるという問題もある。
【0020】
本発明の繊維の形態としては、長繊維であるマルチフィラメントおよびモノフィラメント、また短繊維のいずれでもよい。
長繊維の場合、本発明の繊維を製造する方法としては、酸化亜鉛粒子を含有する樹脂を溶融紡糸し、未延伸糸を一旦巻き取った後延伸する二工程法でも、紡糸した糸条を冷却後、3000m/分以上の速度で巻き取る直接紡糸延伸法のどちらを採用してもよい。
【0021】
また、本発明の繊維の断面形状は、丸断面の他、偏平、三角、十字、5葉、中空、井型等の異型断面でも何ら問題はない。また、形態としては、抗菌剤が均一にブレンドされた繊維、芯鞘型の少なくとも鞘部に抗菌剤が含有された繊維、サイドバイサイド型の少なくとも片方に抗菌剤が含有された繊維などが挙げられる。
【0022】
さらに本発明の繊維には、抗菌性能を阻害しない範囲であれば、後加工により防ダニ剤、消臭剤、撥水剤等を繊維に付与しても良いし、仮撚加工、タスラン加工等を施しても良い。
【0023】
次に、本発明の抗菌性繊維布帛は、上記した本発明の抗菌性合成繊維を含有しているものであり、織物、編物、不織布等の形態のものが挙げられる。そして、これらの布帛は本発明の抗菌性合成繊維のみからなるもの(100%使いのもの)とするのが好ましいが、布帛の一部に本発明の抗菌性合成繊維を用いたものでもよい。なお、この場合は、十分な抗菌性を得るために、抗菌性合成繊維の含有率が10質量%以上とすることが好ましい。
【0024】
上記のように布帛の一部に本発明の抗菌性合成繊維を用いたものとする場合、抗菌性合成繊維と交編、交織する繊維としては、抗菌性を阻害しないものであれば特に限定はしないが、ポリアミド繊維やポリエステル繊維等の合成繊維等を用いることが好ましい。また、本発明の抗菌性合成繊維と他の繊維からなる混繊糸を用いた布帛としてもよい。
【0025】
さらに、本発明の繊維布帛には、抗菌性能を阻害しないものであれば、後加工により帯電防止剤、柔軟剤、吸水剤、吸湿剤、消臭剤、撥水剤、撥油剤、防汚剤、防炎剤等を付与してもよいし、透湿防水加工を施したものでもよい。
【0026】
【実施例】
次に、実施例により本発明をさらに具体的に説明する。
なお、実施例における各種の性能の測定と評価は、次の方法で行った。
〔比表面積〕
酸化亜鉛粒子の比表面積は、BET法により測定した。測定器は島津製作所製のマイクロメリティックス比表面積自動測定装置を用いた。
〔強伸度〕
耐光試験機(UVテスター SUV−F11、光源:水冷式メタルハライドランプM04−L21SUV)による100時間照射前後の強伸度を、JIS L−1090に準拠して測定した。
〔抗菌性〕
得られた繊維からなる編地又は織物に精練・染色を行ったサンプルを、繊維製品新機能評価協議会(SEK)が定める繊維製品の定量的抗菌性試験方法(統一試験法)マニュアルに準じ、試験菌として黄色ブドウ状球菌(Staphylococcus aureus ATCC 6538P)を用いて静菌活性値を測定し、抗菌性の評価を行った。そして、サンプルは、未処理、10洗後について評価した。
〔耐光堅牢度〕
前記の方法で測定した。なお、精練のみのサンプルと精練・染色を行ったサンプルの2種について測定した。
〔その他染色堅牢度〕
得られた繊維からなる編地又は織物に精練・染色を行ったサンプルを、下記に示す洗濯堅牢度、汗堅牢度、摩擦堅牢度をそれぞれJISに準じて測定を行った。
洗濯堅牢度 JIS L−0844(B−3法)
汗 堅牢度 JIS L−0848(A法)
摩擦堅牢度 JIS L−0849
【0027】
実施例1
相対粘度(96%硫酸を溶媒として、濃度1g/dl、温度25℃で測定)が2.53、抗菌剤として酸化亜鉛粒子(ハクスイテック株式会社製、酸化亜鉛1種、一次粒子径0.17μm、比表面積6.0m/g)を1.0質量%含有するナイロン6チップを用い、このチップを水分率を1.0質量%に調整した後、エクストルーダー型溶融押出機に供給し、紡糸温度260℃で溶融し、紡糸口金より吐出させた。冷却装置により冷却風を吹き付けて糸条を冷却し、オイリングローラで油剤を付与した後、巻取り速度4000m/分で巻き取って、44デシテックス/24フィラメントの抗菌性繊維を得た。
【0028】
実施例2〜3、比較例1〜3
抗菌剤である酸化亜鉛粒子の種類を変更し、比表面積、含有量を表1に示すように種々変更した以外は実施例1と同様の方法で行い、抗菌性繊維を得た。
【0029】
実施例1〜3、比較例1〜3で得られた繊維の筒編地を作成し、非イオン系界面活性剤1g/lの水溶液中にて80℃×20分間精練し、100℃×30分間、下記処方1のレサイプで染色した後、90℃で乾燥した。続いて、170℃で1分間の仕上げセットを行い、筒編地を得た。
<処方1>
Nylosan Blue NFL(クラリアンドジャパン社製、酸性染料) 0.1%omf
レベランNKD(丸菱油化工業社製、均染剤)         1%omf
酢酸(48%)                     0.2cc/l
【0030】
実施例1〜3、比較例1〜3得られた繊維の糸質物性及び編地性能の各種評価結果を表1に示す。
【0031】
【表1】

Figure 2004124300
【0032】
表1から明らかなように、実施例1〜3で得られた繊維は、光劣化のない優れた糸質物性を有し、抗菌性、耐光性、染色堅牢度にも優れていた。
一方、比較例1の繊維は酸化亜鉛粒子の比表面積が大きかったため、抗菌性には優れていたが、光触媒活性が抑制されなかったため、日光による繊維の物性の低下や変色が生じた。比較例2の繊維は抗菌剤を含有していないため、強度劣化と耐光堅牢度は問題ないが、抗菌性は有していなかった。比較例3の繊維は抗菌剤の含有量が多すぎたため、紡糸や延伸時に糸切れが発生し、操業性が悪く、得られた繊維の強伸度等の糸質物性も低かった。また、酸化亜鉛粒子近傍において染料の分解量が多くなり耐光性も低いものとなった。
す。
【0033】
実施例4
通常用いられる単成分用溶融紡糸機台を用い、極限粘度(フェノールと四塩化エタンとの等重量混合物を溶媒とし、濃度0.5g/dl、温度20℃で測定した。)が0.69、ガラス転移点温度77℃、結晶化温度125℃及び融点259℃のPETチップを使用して溶融紡糸を行った。その際、ポリマー溶融時に抗菌剤として酸化亜鉛粒子(ハクスイテック株式会社製、酸化亜鉛1種、一次粒子径0.17μm、比表面積6.0m/g)をポリマー中に繊維質量に対し1.0質量%となるように添加し、紡糸速度3500m/分で84デシテックス/24フィラメントの半未延伸糸(POY)を得た。この半未延伸糸を延伸速度650m/分、延伸倍率1.5倍で延伸し、56デシテックス/24フィラメントの延伸糸を得た。
【0034】
比較例4
実施例4において、ポリマー溶融時に抗菌剤である酸化亜鉛粒子を添加しなかった以外は同様の方法で比較例5の56デシテックス/24フィラメントの延伸糸を得た。
【0035】
実施例4、比較例4で得られた繊維の筒編地を作成し、非イオン系界面活性剤1g/lの水溶液中にて80℃×20分間精練し、130℃×30分間、下記処方2のレサイプで染色を行い、90℃で乾燥した。続いて、180℃で30分間の仕上げセットを行った。
<処方2>
Dianix Blue UN−SE(ダイスタージャパン社製、分散染料) 0.1%omf
ニッカサンソルトSN−130(日華化学社製、均染剤)  0.5g/l
酢酸(48%)                     0.2cc/l
【0036】
実施例4、比較例4で得られた繊維の糸質物性及び編地性能の各種評価結果を表2に示す。
【0037】
【表2】
Figure 2004124300
【0038】
表2より明らかなように、実施例4で得られた繊維は、光劣化のない優れた糸質物性を有し、抗菌性、耐光性、染色堅牢度にも優れていた。
一方、比較例4の繊維は抗菌剤を含有していないため、強度劣化と耐光堅牢度は問題ないが、抗菌性は有していなかった。
【0039】
実施例5
実施例1の繊維を経糸及び緯糸に用い、経密度140本/2.54cm、緯密度108本/2.54cmの平織物を製織し、該繊維織物を界面活性剤1g/lの浴中で80℃で20分間精練し、130℃で乾燥した後、180℃で1分間プレセットを行った。次に、該繊維織物を液流染色機中にて上記処方1のレサイプで100℃、30分間染色した後、130℃で乾燥した。続いて、170℃で1分間の仕上げセットを行い、平織物を得た。
【0040】
実施例6
実施例1の繊維を経糸とし、比較例3の繊維を緯糸に用い、経密度140本/2.54cm、緯密度108本/2.54cmの平織物(抗菌性繊維の混率56%)を製織した以外は、実施例5と同様の方法で平織物を得た。
【0041】
実施例7
実施例1の繊維を用い、スムース編地を製編した。該編地を界面活性剤1g/lの浴中で80℃で20分間精練し、続いて液流染色機中にて処方1のレサイプで100℃、30分間染色した後、130℃で乾燥した。続いて、170℃で1分間の仕上げセットを行い、スムース編物を得た。
【0042】
実施例8
実施例1の繊維と比較例3の繊維を用い、抗菌性繊維の混率を12.5%となるようにスムース編物を製編した以外は、実施例7と同様の方法でスムース編物を得た。
【0043】
比較例5
実施例5の経糸及び緯糸を比較例1の繊維に変更した以外は、実施例5と同様の方法で平織物を得た。
【0044】
比較例6
比較例2の繊維を用い、スムース編物を製編した以外は、実施例7と同様の方法でスムース編物を得た。
【0045】
実施例5〜8、比較例5および6で得られた布帛の抗菌性、耐光性、染色堅牢度の評価結果を表3に示す。
【0046】
【表3】
Figure 2004124300
【0047】
表3より明らかなように、実施例5〜8で得られた織編物は抗菌性、耐光性、染色堅牢度ともに優れていた。
一方、比較例5で得られた織物は、比表面積が大きすぎる酸化亜鉛粒子を含有する繊維からなるものであったため、耐光性に劣るものであった。また、比較例6で得られた編物は酸化亜鉛粒子を含有しない繊維からなるものであったため、抗菌性に劣るものであった。
【0048】
【発明の効果】
本発明の抗菌性合成繊維は、酸化亜鉛粒子を抗菌剤として含有した繊維であって、良好な抗菌性を有し、且つ酸化亜鉛粒子の光触媒活性が適度に抑制され、日光による繊維の物性の低下や変色が少なく、また、低コストで得ることができる。そして本発明の抗菌性合成繊維を用いた布帛は、抗菌性、耐光性、染色性堅牢度に優れ、衣料品、鞄、靴、タオル等の屋外で使用する繊維製品に好適に用いることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fiber made of a synthetic resin containing zinc oxide particles as an antibacterial agent, which is an antibacterial synthetic fiber which is extremely resistant to discoloration by sunlight and an antibacterial fiber cloth using this fiber.
[0002]
[Prior art]
2. Description of the Related Art It has been known that zinc oxide has a photocatalytic activity that exhibits functions such as deodorization and antibacterial activity by receiving light. In addition to the antibacterial properties of zinc oxide, in addition to photocatalytic activity, it has a high affinity for sulfur as a chemical property, so that zinc oxide coordinates to the thiol group of the enzyme present in fungal cells. It is presumed that this causes metabolic inhibition and reduces fungal activity. However, while having such an effective function, when zinc oxide is supported on a support such as an organic compound, there is a problem that the support itself is oxidized and deteriorated due to its photocatalytic activity.
[0003]
Many antibacterial fibers in which synthetic fibers such as polyamide fibers such as nylon 6 contain powder having antibacterial properties have been proposed. Among them, as silver-based inorganic antibacterial agents, phosphate-based antibacterial agents carrying silver ions, zeolite-based antibacterial agents carrying silver ions, and hydroxyapatite calcined product-based antibacterial agents carrying silver ions are widely used. Have been.
As described in Patent Literature 1 and Patent Literature 2, many antibacterial fibers comprising a polymer containing these antibacterial agents have been proposed.
[0004]
Attempts have been made to incorporate zinc oxide fine particles into synthetic fibers as an antibacterial agent. For example, Patent Document 3 describes an antibacterial fiber obtained by incorporating zinc oxide fine particles having a particle size of 0.1 μm or less in a resin such as polyester or polyamide and spinning the resin.
[0005]
However, if the zinc oxide fine particles are directly contained in the synthetic fiber, the above-described deterioration due to the photocatalytic activity occurs, and there is a disadvantage that the physical properties of the fiber are reduced and the color is changed to brown. Therefore, it is necessary to suppress the photocatalytic activity of the zinc oxide fine particles themselves contained in the fiber to some extent. As a means of this, there is a method of cutting off the contact between the particle surface and oxygen or moisture by a microencapsulation surface treatment.In this method, although it has a property of zinc oxide optically, it chemically has a property of zinc oxide. There is a problem that properties are lost and sufficient antibacterial performance is not exhibited.
[0006]
Further, as described in Patent Document 4, a method of suppressing the photocatalytic activity by coating the surface of zinc oxide particles with a coupling agent has also been proposed. As a result, light degradation can be suppressed while maintaining the antibacterial action, but there is a problem that the cost increases due to the coupling treatment.
[0007]
[Patent Document 1]
JP-A-9-87928 [Patent Document 2]
JP-A-8-291229 [Patent Document 3]
JP-A-5-156510 [Patent Document 4]
JP-A-8-59890
[Problems to be solved by the invention]
The present invention solves the above problems, and is a fiber containing zinc oxide particles as an antibacterial agent, has good antibacterial properties, and has a moderately suppressed photocatalytic activity, It is an object of the present invention to provide an antibacterial synthetic fiber and an antibacterial fiber cloth which can be obtained at a low cost with little deterioration or discoloration of the physical properties of the fiber.
[0009]
[Means for Solving the Problems]
The present inventors have studied to solve the above problems, and as a result, have reached the present invention. That is, the present invention has the following (1) and (2).
(1) It is composed of a synthetic resin containing 0.1 to 5.0% by mass of zinc oxide particles having a specific surface area of 8.0 m 2 / g or less, and has a light fastness measured according to JIS L-0842 third exposure method. An antibacterial synthetic fiber having a discoloration grade of 4 or higher.
(2) An antibacterial fiber cloth, which is a cloth containing the fiber according to (1).
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
Examples of the synthetic resin constituting the fiber of the present invention include polyamide, polyester, polyacrylonitrile, and polyvinyl alcohol. Examples of the polyamide include nylon 6, nylon 66, nylon 69, nylon 46, and the like, or a copolymer or a blend thereof. As the polyester, polyalkylene terephthalate and polyalkylene naphthalate can be used. Polyester.
Among the above synthetic resins, polyamides having a high official moisture content, when fiberized, have high wettability on the fiber surface, and fungi easily come into contact with the fiber surface, so that the antibacterial effect is easily exerted, and practical use such as abrasion resistance is realized. It is preferable because it has excellent durability.
[0011]
These resins may contain a matting agent, a modifying agent, an antistatic agent, a pigment, and the like as long as the effects of the present invention are not impaired.
[0012]
In the present invention, zinc oxide particles are contained in the fiber as an antibacterial agent, and the zinc oxide particles have a bactericidal and antibacterial effect by the photocatalytic action as described above. There is also a disadvantage that light deterioration occurs, the physical properties of the fiber are reduced, and the color is changed to brown.
[0013]
The present inventors have found that the photocatalytic activity of zinc oxide particles is a reaction on the surface of the particles, and the intensity of the activity depends on the specific surface area. Therefore, in the present invention, it is necessary to use a zinc oxide fine particle having a specific surface area of 8.0 m 2 / g or less as a zinc oxide fine particle having a photocatalytic activity amount capable of exhibiting a good antibacterial action while suppressing light deterioration. It is. Further, those having a specific surface area of 3.0 to 6.5 m 2 / g are preferable.
[0014]
When the specific surface area of the zinc oxide particles exceeds 8.0 m 2 / g, the photocatalytic activity becomes strong, and when the zinc oxide particles are contained in the fiber, light deterioration occurs, causing discoloration and deterioration in physical properties. On the other hand, if it is less than 3.0 m 2 / g, it is not preferable that the fiber is contained in the synthetic resin in the above concentration range because sufficient antibacterial properties are hardly imparted.
[0015]
In the fiber of the present invention, the content of zinc oxide particles in the synthetic resin is 0.1 to 5.0% by mass, and preferably 0.3 to 3.5% by mass. When the content is less than 0.1% by mass, sufficient antibacterial properties are not provided. On the other hand, when the content exceeds 5.0% by mass, the photocatalytic activity of zinc oxide causes photodeterioration when incorporated into fibers, causing discoloration or deterioration in physical properties, or when dyeing, zinc oxide is used. In the vicinity of the particles, the amount of decomposition of the dye is increased, fading is promoted, and light resistance is reduced. In addition, due to the large amount of zinc oxide particles, yarn breakage occurs during spinning or drawing, and yarn breakage or fluff due to wear of guides, reeds, healds, etc. occurs frequently during weaving and weaving, resulting in poor operability. And the yarn quality performance such as high elongation also decreases.
[0016]
The zinc oxide particles used in the present invention preferably have a particle size of 0.1 μm or more and less than 1.0 μm as measured by microscopy, and more preferably 0.15 μm or more and less than 0.4 μm. If the particle diameter is less than 0.1 μm, secondary aggregation is likely to occur, and therefore, a rise in the pressure of the nozzle pack during spinning becomes large and spinnability deteriorates. Further, when the particle diameter is 1.0 μm or more, the yarn quality performance such as high elongation is reduced, and the guide, reed, heald, etc. are worn or dyed in the process from spinning to winding and in the weaving after spinning. It is not preferable because defects such as cutting of the fabric itself are likely to occur in the processing step.
[0017]
The fiber of the present invention has both the light deterioration suppressing effect and the antibacterial property by containing the antibacterial agent as described above, and JIS L-0842 third exposure It is necessary that the discoloration and fading in the light fastness measured according to the method be quaternary or higher.
[0018]
The evaluation of light fastness in the present invention will be described. First, a tubular knitting sample is prepared from the fiber of the present invention using a circular knitting machine, and scouring and dyeing are performed. Thereafter, the sample is washed with water, dehydrated, and dried. Next, after irradiating the sample with a carbon arc lamp by the third exposure method according to the dyeing fastness test method of JIS L-0842, change of the sample before and after irradiation was performed based on the gray scale for discoloration and fading of JIS L-0804. The degree (class) of fading is visually determined.
[0019]
When the light fastness is less than class 4, the degree of discoloration due to exposure to sunlight is large, and in the case of clothing, there is a problem that the clothing is largely discolored due to wearing outdoors and drying after washing. Further, when stored in the state of a thread or a greige machine, there is also a problem that partial or complete discoloration due to exposure to sunlight makes it impossible to process white or light-colored products.
[0020]
The form of the fiber of the present invention may be any of multifilament and monofilament which are long fibers, and short fiber.
In the case of long fibers, as a method for producing the fiber of the present invention, a two-step method in which a resin containing zinc oxide particles is melt-spun and an undrawn yarn is once wound and then drawn is also used to cool the spun yarn. Thereafter, either of the direct spinning and drawing methods of winding at a speed of 3000 m / min or more may be adopted.
[0021]
The cross-sectional shape of the fiber of the present invention may be any shape such as a flat cross section, a triangular cross section, a five-lobe, hollow, and a well-shaped cross section in addition to a round cross section. Examples of the form include a fiber in which an antibacterial agent is uniformly blended, a core-sheath type fiber in which an antibacterial agent is contained in at least a sheath portion, and a side-by-side type fiber in which at least one of the antibacterial agents is contained.
[0022]
Further, as long as the fiber of the present invention does not impair the antibacterial performance, an anti-mite agent, a deodorant, a water repellent and the like may be added to the fiber by post-processing, or false twisting, taslan processing, etc. May be applied.
[0023]
Next, the antibacterial fiber fabric of the present invention contains the above-mentioned antibacterial synthetic fiber of the present invention, and examples thereof include woven fabric, knitted fabric, and nonwoven fabric. These fabrics are preferably made of only the antibacterial synthetic fiber of the present invention (100% used), but may be those using the antibacterial synthetic fiber of the present invention as a part of the fabric. In this case, in order to obtain sufficient antibacterial properties, the content of the antibacterial synthetic fibers is preferably set to 10% by mass or more.
[0024]
When the antibacterial synthetic fiber of the present invention is used for a part of the fabric as described above, the fiber to be knitted and woven with the antibacterial synthetic fiber is not particularly limited as long as it does not inhibit the antibacterial property. However, it is preferable to use synthetic fibers such as polyamide fibers and polyester fibers. Further, a fabric using a mixed fiber comprising the antibacterial synthetic fiber of the present invention and another fiber may be used.
[0025]
Furthermore, if the fiber fabric of the present invention does not impair the antibacterial performance, it may be subjected to post-processing to provide an antistatic agent, a softening agent, a water absorbing agent, a moisture absorbing agent, a deodorant, a water repellent, an oil repellent, an antifouling agent. , A flameproofing agent or the like, or a material subjected to a moisture permeable and waterproof treatment may be used.
[0026]
【Example】
Next, the present invention will be described more specifically with reference to examples.
The measurement and evaluation of various performances in the examples were performed by the following methods.
〔Specific surface area〕
The specific surface area of the zinc oxide particles was measured by the BET method. The measuring device used was a micromeritics specific surface area automatic measuring device manufactured by Shimadzu Corporation.
(Strong elongation)
The strong elongation before and after irradiation for 100 hours with a light resistance tester (UV tester SUV-F11, light source: water-cooled metal halide lamp M04-L21SUV) was measured in accordance with JIS L-1090.
(Antibacterial)
A sample obtained by scouring and dyeing a knitted fabric or a woven fabric made of the obtained fiber is used in accordance with the Manual for Quantitative Antibacterial Testing of Fiber Products (Unified Test Method) specified by the Council for Evaluation of New Functions of Textile Products (SEK). The bacteriostatic activity value was measured using Staphylococcus aureus ATCC 6538P as a test bacterium, and the antibacterial activity was evaluated. The samples were evaluated for untreated and after 10 washes.
(Light fastness)
It was measured by the method described above. In addition, it measured about two types, the sample only of scouring, and the sample which performed scouring and dyeing.
[Other color fastness]
Samples obtained by scouring and dyeing the obtained knitted fabric or woven fabric were measured for washing fastness, sweat fastness, and friction fastness shown below in accordance with JIS.
Washing fastness JIS L-0844 (B-3 method)
Sweat fastness JIS L-0848 (Method A)
Friction fastness JIS L-0849
[0027]
Example 1
Relative viscosity (measured at a concentration of 1 g / dl using 96% sulfuric acid as a solvent and at a temperature of 25 ° C.) is 2.53, and zinc oxide particles as antibacterial agent (manufactured by Hakusuite K.K. A nylon 6 chip containing 1.0% by mass of a specific surface area of 6.0 m 2 / g) was used. After adjusting the water content of the chip to 1.0% by mass, the chip was supplied to an extruder-type melt extruder and spun. It was melted at a temperature of 260 ° C. and discharged from a spinneret. The yarn was cooled by blowing cooling air with a cooling device, and an oil agent was applied by an oiling roller. Thereafter, the yarn was wound at a winding speed of 4000 m / min to obtain an antibacterial fiber of 44 dtex / 24 filaments.
[0028]
Examples 2-3, Comparative Examples 1-3
Antibacterial fibers were obtained in the same manner as in Example 1, except that the type of zinc oxide particles as the antibacterial agent was changed and the specific surface area and content were variously changed as shown in Table 1.
[0029]
A tubular knitted fabric of the fibers obtained in Examples 1 to 3 and Comparative Examples 1 to 3 was prepared, scoured in an aqueous solution containing 1 g / l of a nonionic surfactant at 80 ° C for 20 minutes, and 100 ° C for 30 minutes. After being dyed with the following recipe 1 for 1 minute, it was dried at 90 ° C. Subsequently, a finishing set at 170 ° C. for 1 minute was performed to obtain a tubular knitted fabric.
<Prescription 1>
Nylosan Blue NFL (acid dye, Clariand Japan) 0.1% omf
Leveler NKD (manufactured by Marubishi Yuka Kogyo Co., Ltd., leveling agent) 1% omf
Acetic acid (48%) 0.2cc / l
[0030]
Table 1 shows various evaluation results of the yarn properties and knitted fabric performance of the fibers obtained in Examples 1 to 3 and Comparative Examples 1 to 3.
[0031]
[Table 1]
Figure 2004124300
[0032]
As is clear from Table 1, the fibers obtained in Examples 1 to 3 had excellent fiber properties without light deterioration, and were also excellent in antibacterial properties, light resistance, and color fastness.
On the other hand, the fiber of Comparative Example 1 was excellent in antibacterial properties because the specific surface area of the zinc oxide particles was large, but the photocatalytic activity was not suppressed, and thus the physical properties of the fiber were deteriorated or discolored by sunlight. Since the fiber of Comparative Example 2 did not contain an antibacterial agent, there was no problem in strength deterioration and light fastness, but it did not have antibacterial properties. Since the fiber of Comparative Example 3 contained too much antibacterial agent, yarn breakage occurred during spinning and drawing, the operability was poor, and the fiber properties such as high elongation of the obtained fiber were low. In addition, the amount of the dye decomposed in the vicinity of the zinc oxide particles was increased, and the light resistance was low.
You.
[0033]
Example 4
An intrinsic viscosity (measured at a concentration of 0.5 g / dl, at a temperature of 20 ° C., using an equal weight mixture of phenol and ethane tetrachloride as a solvent) of 0.69 using a commonly used melt spinning machine for single components. Melt spinning was performed using PET chips having a glass transition temperature of 77 ° C, a crystallization temperature of 125 ° C, and a melting point of 259 ° C. At that time, zinc oxide particles (1 type of zinc oxide, primary particle diameter 0.17 μm, specific surface area 6.0 m 2 / g, manufactured by Hakusuiteku Co., Ltd.) were added as an antibacterial agent in the polymer to the fiber mass at the time of melting of the polymer. It was added so as to be a mass%, and a semi-undrawn yarn (POY) of 84 dtex / 24 filaments was obtained at a spinning speed of 3500 m / min. The semi-undrawn yarn was drawn at a drawing speed of 650 m / min and a draw ratio of 1.5 times to obtain a drawn yarn of 56 dtex / 24 filaments.
[0034]
Comparative Example 4
A drawn yarn of 56 dtex / 24 filaments of Comparative Example 5 was obtained in the same manner as in Example 4, except that zinc oxide particles as an antibacterial agent were not added at the time of melting the polymer.
[0035]
A tubular knitted fabric of the fibers obtained in Example 4 and Comparative Example 4 was prepared, scoured in an aqueous solution containing 1 g / l of a nonionic surfactant at 80 ° C. for 20 minutes, and subjected to the following formulation at 130 ° C. for 30 minutes. Stained with Recipe No. 2 and dried at 90 ° C. Subsequently, a finishing set at 180 ° C. for 30 minutes was performed.
<Prescription 2>
Dianix Blue UN-SE (manufactured by Dystar Japan, disperse dye) 0.1% omf
Nikka Sun Salt SN-130 (manufactured by Nikka Chemical Co., Ltd., leveling agent) 0.5 g / l
Acetic acid (48%) 0.2cc / l
[0036]
Table 2 shows various evaluation results of the fiber properties and knitted fabric performance of the fibers obtained in Example 4 and Comparative Example 4.
[0037]
[Table 2]
Figure 2004124300
[0038]
As is evident from Table 2, the fiber obtained in Example 4 had excellent yarn properties without light degradation, and also had excellent antibacterial properties, light resistance and dyeing fastness.
On the other hand, since the fiber of Comparative Example 4 did not contain an antibacterial agent, there was no problem in strength deterioration and light fastness, but it did not have antibacterial properties.
[0039]
Example 5
Using the fiber of Example 1 for warp and weft, a plain fabric having a warp density of 140 yarns / 2.54 cm and a weft density of 108 yarns / 2.54 cm is woven, and the fiber fabric is immersed in a bath of a surfactant 1 g / l. After scouring at 80 ° C for 20 minutes and drying at 130 ° C, presetting was performed at 180 ° C for 1 minute. Next, the fiber woven fabric was dyed at 100 ° C. for 30 minutes in a liquid jet dyeing machine with the above-mentioned recipe 1 and dried at 130 ° C. Subsequently, a finishing set was performed at 170 ° C. for 1 minute to obtain a plain fabric.
[0040]
Example 6
Using the fiber of Example 1 as a warp and the fiber of Comparative Example 3 as a weft, weaving a plain woven fabric having a warp density of 140 yarns / 2.54 cm and a weft density of 108 yarns / 2.54 cm (mixing ratio of antibacterial fibers of 56%). A plain woven fabric was obtained in the same manner as in Example 5, except that the above procedure was repeated.
[0041]
Example 7
A smooth knitted fabric was knitted using the fiber of Example 1. The knitted fabric was scoured for 20 minutes at 80 ° C. in a bath containing 1 g / l of a surfactant, subsequently dyed in a jet dyeing machine at 100 ° C. for 30 minutes with Recipe of Formula 1, and then dried at 130 ° C. . Subsequently, a finishing set at 170 ° C. for 1 minute was performed to obtain a smooth knitted fabric.
[0042]
Example 8
A smooth knit was obtained in the same manner as in Example 7, except that the fiber of Example 1 and the fiber of Comparative Example 3 were used to knit a smooth knit so that the mixing ratio of the antibacterial fiber was 12.5%. .
[0043]
Comparative Example 5
A plain woven fabric was obtained in the same manner as in Example 5, except that the warp and the weft of Example 5 were changed to the fibers of Comparative Example 1.
[0044]
Comparative Example 6
A smooth knitted fabric was obtained in the same manner as in Example 7, except that a smooth knitted fabric was knitted using the fiber of Comparative Example 2.
[0045]
Table 3 shows the evaluation results of the antibacterial properties, light fastness, and color fastness of the fabrics obtained in Examples 5 to 8 and Comparative Examples 5 and 6.
[0046]
[Table 3]
Figure 2004124300
[0047]
As is clear from Table 3, the woven or knitted fabrics obtained in Examples 5 to 8 were excellent in all of the antibacterial properties, light resistance, and color fastness.
On the other hand, the woven fabric obtained in Comparative Example 5 was made of fibers containing zinc oxide particles having an excessively large specific surface area, and thus was inferior in light resistance. In addition, the knitted fabric obtained in Comparative Example 6 was made of fibers containing no zinc oxide particles, and thus had poor antibacterial properties.
[0048]
【The invention's effect】
The antibacterial synthetic fiber of the present invention is a fiber containing zinc oxide particles as an antibacterial agent, has good antibacterial properties, and the photocatalytic activity of the zinc oxide particles is appropriately suppressed, and the physical properties of the fibers due to sunlight It can be obtained at a low cost with little reduction or discoloration. The fabric using the antibacterial synthetic fiber of the present invention has excellent antibacterial properties, lightfastness, and color fastness, and can be suitably used for textile products used outdoors such as clothing, bags, shoes, and towels. .

Claims (3)

比表面積8.0m/g以下の酸化亜鉛粒子を0.1〜5.0質量%含有する合成樹脂からなり、JIS L−0842 第3露光法に準じて測定した耐光堅牢度における変退色が4級以上であることを特徴とする抗菌性合成繊維。It is made of a synthetic resin containing 0.1 to 5.0% by mass of zinc oxide particles having a specific surface area of 8.0 m 2 / g or less, and the discoloration in light fastness measured according to JIS L-0842 third exposure method is low. An antibacterial synthetic fiber of grade 4 or higher. 繊維を構成する合成樹脂がポリアミドであることを特徴とする請求項1記載の抗菌性合成繊維。2. The antibacterial synthetic fiber according to claim 1, wherein the synthetic resin constituting the fiber is polyamide. 請求項1又は2記載の合成繊維を含有することを特徴とする抗菌性繊維布帛。An antibacterial fiber cloth containing the synthetic fiber according to claim 1.
JP2002289918A 2002-10-02 2002-10-02 Antimicrobial synthetic fiber and antimicrobial fiber fabric Pending JP2004124300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289918A JP2004124300A (en) 2002-10-02 2002-10-02 Antimicrobial synthetic fiber and antimicrobial fiber fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289918A JP2004124300A (en) 2002-10-02 2002-10-02 Antimicrobial synthetic fiber and antimicrobial fiber fabric

Publications (1)

Publication Number Publication Date
JP2004124300A true JP2004124300A (en) 2004-04-22

Family

ID=32281951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289918A Pending JP2004124300A (en) 2002-10-02 2002-10-02 Antimicrobial synthetic fiber and antimicrobial fiber fabric

Country Status (1)

Country Link
JP (1) JP2004124300A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1781098A2 (en) * 2004-07-30 2007-05-09 Acrymed, Inc. Antimicrobial devices and compositions
JP2016003169A (en) * 2014-06-18 2016-01-12 コニカミノルタ株式会社 Fertilizer particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1781098A2 (en) * 2004-07-30 2007-05-09 Acrymed, Inc. Antimicrobial devices and compositions
EP1781098A4 (en) * 2004-07-30 2012-02-08 Kimberly Clark Co Antimicrobial devices and compositions
US10251392B2 (en) 2004-07-30 2019-04-09 Avent, Inc. Antimicrobial devices and compositions
JP2016003169A (en) * 2014-06-18 2016-01-12 コニカミノルタ株式会社 Fertilizer particle

Similar Documents

Publication Publication Date Title
JP6545368B2 (en) Yarns and fabrics and textiles
JP2008013880A (en) Anti-microbial polyester fiber
JP6785747B2 (en) Core sheath type composite fiber
KR20140102436A (en) Method of manufacturing multi-layer towels having terry structure to be made from bamboo fiber and multi-layer structured towels prepared therefrom
JP2014210986A (en) Yarn, fabric and textile product
JP2008111221A (en) Antibacterial dyed fabric
JP2003073922A (en) Antibacterial polyamide fiber excellent in dyeability and washing resistance, antibacterial polyamide crimped yarn, antibacterial polyamide woven/knitted fabric, and method for producing the antibacterial polyamide fiber
JP5127098B2 (en) Antibacterial polyamide fiber excellent in washing resistance, antibacterial polyamide crimped yarn, antibacterial polyamide woven fabric, and method for producing antibacterial polyamide fiber
JP2004124300A (en) Antimicrobial synthetic fiber and antimicrobial fiber fabric
JP4704197B2 (en) Polyester fiber
JPH11293521A (en) Antimicrobial polyamide fiber, antimicrobial polyamide crimped textured yarn, antimicrobial polyamide woven or knitted fabric, and production of antimicrobial polyamide fiber
KR20110121837A (en) Fabric used in manufacturing hospital cloths with excellent infection proofing property and method of manufacturing the same
JP2022135009A (en) Combined filament yarn and fiber structure
JP2003041434A (en) Polyamide fiber for clothes
JP7136579B2 (en) Insect-resistant multifilament and woven fabrics
JP2001055631A (en) Antimicrobial polyamide potentially crimpable yarn and its production
JP2002339163A (en) Antimicrobial polyamide fiber with high laundering resistance and method for producing the same
JP2005226176A (en) Polyamide fiber having photocatalyst function and method for producing the same
JP2010163710A (en) Woven or knitted fabric for clothing
JP4789791B2 (en) Water-absorbing quick-drying polyester composite fiber and method for producing the same
JP2001055630A (en) Antimicrobial antistatic conjugate fiber
JP2016069771A (en) Synthetic fiber
JP7117710B2 (en) Core-sheath type polyester composite fiber, false twist yarn of core-sheath type polyester composite fiber, woven and knitted fabric, and method for producing core-sheath type polyester composite fiber
JP2016069772A (en) Synthetic fiber multifilament
JP2019065435A (en) Yarn, fabric and textile product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122