JP2004122327A - Blast nozzle - Google Patents

Blast nozzle Download PDF

Info

Publication number
JP2004122327A
JP2004122327A JP2002292631A JP2002292631A JP2004122327A JP 2004122327 A JP2004122327 A JP 2004122327A JP 2002292631 A JP2002292631 A JP 2002292631A JP 2002292631 A JP2002292631 A JP 2002292631A JP 2004122327 A JP2004122327 A JP 2004122327A
Authority
JP
Japan
Prior art keywords
abrasive
chamber
buffer
injection port
blast nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002292631A
Other languages
Japanese (ja)
Inventor
Yuji Sakamoto
坂本 裕二
Hiroshi Okamoto
岡本 広志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOEI SANGYO
Ishii Hyoki Co Ltd
Koei Sangyo Inc
Original Assignee
KOEI SANGYO
Ishii Hyoki Co Ltd
Koei Sangyo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOEI SANGYO, Ishii Hyoki Co Ltd, Koei Sangyo Inc filed Critical KOEI SANGYO
Priority to JP2002292631A priority Critical patent/JP2004122327A/en
Publication of JP2004122327A publication Critical patent/JP2004122327A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blast nozzle further surely diffusing abrasive in the longitudinal direction of an injection port in the blast nozzle having a slit-shaped injection port. <P>SOLUTION: A nozzle route for passing the abrasive S comprises a buffer chamber 6 having a feed port 9 for the abrasive S and a straightening chamber 7 having the slit-shaped injection port 4. The buffer chamber 6 forms a buffer space 11 enlarging downward from the feed port 9 opened in the side into a fan shape and determines the feed direction S1 of the abrasive S to make the fed abrasive collide against a buffer space inner surface 10, or the opposite surface of the feed port 9. The straightening chamber 7 forms a straightening space 12 narrowing downward and in the direction orthogonally crossing with the enlargement of the buffer space 11 and the opening in the lower end of the straightening space 12 is formed into the slit-shape injection port 4 and determines the injection direction S2 of the abrasive S to pass downward from the buffer space 11 to the injection port 4. In this blast nozzle 1, the feed direction S1 of the abrasive S and the injection direction S2 are thus formed into an approximately orthogonal relation. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、研磨材を加圧流体(圧縮空気等)と共に高速に噴射し、被加工物表面を研削加工するブラスト加工装置に用いるブラスト用ノズルに関する。
【0002】
本発明にいう「研磨材」は、従来公知の各種研磨材、いわゆる砥粒(サンド)のほか、アルミナや炭化珪素の粉末、ガラスビーズ、微小鋼球等を含む。
【0003】
【従来の技術】
研磨材を加圧流体と共に高速に噴射し、被加工物表面を研削加工するブラスト処理は、後工程である印刷処理やドラムフィルム処理における前記印刷又はフィルムと被加工物表面との密着性を改善するために実施される。ブラスト加工装置は、被加工物(プリント回路基板やシリコンウェハ等)上方でブラスト用ノズルを往復移動させる。このとき、前記ブラスト用ノズルの噴射口(ブラスト用ノズルの噴射口から噴射された研磨材が被加工物表面上に描く形状)が描く面積が被加工物表面を越えれば、被加工物表面全部をブラスト処理できる。しかし、被加工物は年々複雑化又は拡大化してきていることから、ブラスト処理に係る時間の短縮を目的として、ブラスト用ノズルの改良が種々提案されている。
【0004】
通常のブラスト用ノズルは、供給口から研磨材を流すノズル経路が先絞りの円錐状になっており、噴射口が丸形状で狭い。これから、ブラスト処理に掛かる時間の短縮には、まず噴射口を大きくする改良が考えられる。ここで、噴射口を広げるため、複数のブラスト用ノズルを用いる手段も考えられるが、各噴射口から噴射される研磨材の密度の統一が難しく、加工ムラを招きやすいほか、ブラスト用ノズル全体の大きさ及び重さが増え、支持及び制御が難しくなる。このため、従来から、単一のブラスト用ノズルの噴射口を拡大する、すなわちスリット(断面長方形)状の噴射口にするブラスト用ノズルが提案されている。
【0005】
しかし、ブラスト用ノズルの噴射口をスリット状にすれば噴射口を拡大できるが、噴射口の長手方向における研磨材の粗密が生じ、加工ムラを引き起こしやすい。これに対し、特許文献1は、研磨材噴射口を含む研磨材整流部に、長手方向両端において前記短辺又は短径がさらに短辺又は短径となる鋭角を含む端縁を形成している。この特許文献1は、噴射口の断面形状を改良(中心に比べ長手方向両端偶角部が細い形状に)することにより、加工ムラを抑制できるとしている。研磨材の拡散は、研磨材拡散部及び研磨材整流部を結ぶ傾斜面に衝突させることによる散乱を利用している。
【0006】
特許文献2は、研磨材とエアー(加圧流体)の混合気体を導入する筒状の導入部と、導入された混合気体の流れを制御する箱状の流れ制御部と、混合気体を噴射するスリット(スリット状の噴射口)とからなり、スリットは流れ制御部の先端側で中心からずれた位置に設けられ、流れ制御部の内部にはスリットに向かってスリットに垂直な方向に狭くなる2つの傾斜面が設けたブラスト用ノズルを提案している。この特許文献2は、スリットに向かってスリットに垂直な方向に狭くなる2つの傾斜面を設けることで、スリットの流れ方向における砥粒の粗密をなくすとしている。
【0007】
【特許文献1】
特開2000−225568号公報(第5〜7頁、図1)
【特許文献2】
特開2001−105324号公報(第2〜3頁、図3及び4)
【0008】
【発明が解決しようとする課題】
上記各特許文献のブラスト用ノズルは、いずれも研磨材の供給方向と噴射方向とを一致させながら、ノズル経路の途中に障害物(傾斜面)を形成している。研磨材は、前記障害物に衝突して散乱し、噴射口の長手方向へ拡散するわけである。しかし、上記研磨材の拡散は一様ではない。この点、特許文献1中[0025]には「内圧が低い時は研磨材が拡散ノズル51の研磨材拡散部52aに入る時のスピードが遅いため研磨材拡散室52内で研磨材が拡散しやすくなるため図8に示すような研磨材噴射口54の長手方向両端に過剰となる研磨材の分布になり、内圧が高い時は研磨材が拡散ノズル51に入る時のスピードが速いため研磨材拡散室52内で研磨材が拡散しにくいため図7に示すように中心部の研磨材量が過剰となる傾向にある」と述べ、障害物に衝突させて研磨材をスリット状の噴射口の長手方向へ拡散することが難しい旨を説明している。
【0009】
研磨材の供給方向と噴射方向とを一致させながら、障害物に衝突することによって研磨材をスリット状の噴射口の長手方向へ均一に拡散することが困難な原因はいくつか考えられる。例えば、研磨材の供給方向と噴射方向が一致しているため、供給口から噴射口へと直進する研磨材が、障害物に衝突して散乱する研磨材の拡散を阻害すると考えられる。すなわち、研磨材の運動方向が大きく2分されるため、噴射口の長手方向へ研磨材を略均一に拡散させることが困難になると考えられる。そこで、スリット状の噴射口を備えるブラスト用ノズルにおいて、噴射口の長手方向へ研磨材を均一に拡散できるブラスト用ノズルを提供するため、検討した。
【0010】
【課題を解決するための手段】
検討の結果開発したものが、研磨材を加圧流体と共に高速に噴射し、被加工物表面を研削加工するブラスト加工装置に用いるブラスト用ノズルにおいて、研磨材を流すノズル経路は研磨材の供給口を備えたバッファ室とスリット状の噴射口を備えた整流室とからなり、バッファ室は側面に開口した供給口から下方に向けて扇状に拡開するバッファ空間を形成し、前記供給口の対面であるバッファ空間奥面に供給されてきた研磨材が衝突するようにこの研磨材の供給方向を定め、整流室は前記バッファ空間の拡開に直交する方向かつ下方へ向けて絞る整流空間を形成し、この整流空間下端の開口をスリット状の噴射口として、バッファ空間から下方に向けて噴射口に至るように研磨材の噴射方向を定めてなり、研磨材の供給方向と噴射方向とが略直交関係にあるブラスト用ノズルである。
【0011】
本発明のブラスト用ノズルは、従来見られるスリット状の噴射口を備えたブラスト用ノズルと異なり、(1)研磨材の供給方向と噴射方向とが略直交関係で、(2)供給口からバッファ室へ供給された研磨材すべてを一度バッファ空間奥面に衝突させ、バッファ空間で散乱させることができ、(3)こうして散乱した研磨材をバッファ空間に続く整流室の整流空間へ導き、スリット状の噴射口から噴射する。供給口から加圧流体と共に供給される研磨材は、バッファ空間奥面に衝突した後も運動エネルギーをほとんど損なわず、あくまで衝突後の散乱により運動方向を変化させるだけで、噴射口からは高速に噴射できる。また、一方的に供給口から加圧流体と共に研磨材が供給されてくるので、バッファ空間の内圧が高められる結果、圧力抜きとしての噴射口から加圧流体と共に研磨材を高速に噴射できる。
【0012】
バッファ室のバッファ空間は、研磨材の拡散を妨げない大きさを有すれば特に形状を問わない。しかし、バッファ空間奥面に衝突した研磨材は、供給口に向けた方向のほか、上下左右を含む全方位に向けて散乱するので、特に上方に向けて散乱する研磨材を、スリット状の噴射口の長手方向へ導く観点から、噴射口の長手方向に下り勾配の抑制斜面からなる扇状に拡開するバッファ空間が好ましい。上方に向けて拡散した研磨材は、前記バッファ空間の抑制斜面に衝突して下方に運動方向を変える(反射する)ことができ、この抑制斜面による研磨材の反射が、無秩序に散乱した研磨材をスリット状の噴射口の長手方向に拡散させる。
【0013】
ここで、抑制斜面に対する衝突角度によって、各研磨材が反転して下方に向かう位置が異なるため、抑制斜面の勾配角度を適切に定めることで、よりよく研磨材を噴射口の長手方向に拡散できる。抑制斜面の好ましい勾配角度は10〜40度、より好ましくは25〜30度である。扇状に拡開するバッファ空間は、頂点に供給口を含む扇状であれば、供給口を中心に左右対称でなくてもよい。しかし、前記抑制斜面の特定から、バッファ室は供給口から下方に向けて開度100〜140度、好ましくは120度前後で左右対称に扇状で拡開するバッファ空間を形成するとよい。
【0014】
ノズル経路を構成する「バッファ室」及び「整流室」の呼称は機能的な区別であり、両室は一体に構成してもよいし、別体に構成して別途上下に組み付けてもよい。また、研磨材が衝突するバッファ空間奥面が摩耗しやすいことから、供給口の有無に従う分割、すなわちバッファ室は、噴射口を垂直な半割面で分割した一対のバッファ室部材から構成するとよい。これにより、特に研磨材が最初に衝突するバッファ空間奥面を有するバッファ室部材のみの交換が可能となる。また、各バッファ室部材は、半割面を境に対称形を基本とするが、バッファ空間の容量が十分であれば、例えばバッファ室部材のいずれか一方を、半割面に平行な平面板としてもよい。
【0015】
ここで、バッファ室と一体に整流室を構成していれば、整流室も噴射口を含む垂直な半割面で分割した一対の整流室部材からなる構成にする。整流室がバッファ室と別部材であれば、バッファ室とは無関係に、整流室の各整流室部材を個別に交換できる。また、上記同様、整流室部材のいずれか一方で絞り込みができていれば、残る他方が、半割面に平行な平面板であってもよい。
【0016】
整流室は、拡散した研磨材を収束してスリット状の噴射口から研磨材を吹き出す部位である。これから、整流室は、バッファ室と異なり、研磨材の運動を妨げず、円滑に研磨材を収束させていく働きが重要となる。そこで、本発明のブラスト用ノズルにおける整流室は、バッファ空間の拡開に直交する方向かつ下方へ向けて絞る下り勾配の連続斜面に挟まれた整流空間を形成する。研磨材を収束させる方向を研磨材が拡散する方向、すなわちバッファ空間の拡開に直交する方向とすることで、噴射口の長手方向における研磨材の拡散を妨げずに噴射口に向けて研磨材を収束できる。
【0017】
このように、整流室は、本来的に研磨材を噴射口に向けて収束させていく働きが主であるが、研磨材の種類によってはバッファ室における拡散だけでは不十分になる場合がある。こうした不十分な研磨材の拡散を補うために、整流室は、バッファ空間の拡開に直交する方向かつ下方へ向けて絞る下り勾配の多段斜面に挟まれた整流空間を形成するとよい。収束する研磨材は、多段斜面の各段に衝突して微視的に散乱し、噴射口の長手方向における研磨材の偏りを防止する。
【0018】
本発明のブラスト用ノズルは、整流室が形成する整流空間下端を開口して噴射口とするが、高速に噴き出す研磨材により、たとえ整流室を金属材料で構成していても、経時的に摩耗して噴射口の幅が変化してしまう。そこで、整流室は、噴射口に略相似なスリット溝を有する噴射案内部をこの噴射口に付設し、この噴射案内部が長尺な一対の案内ブロックを短尺方向で接近離反させて個別に整流室へ固着することにより前記スリット溝を形成するとよい。この噴射案内部を整流室に付設する場合、噴射案内部が形成するスリット溝を実際上の噴射口とし、整流室に設ける噴射口は前記スリット溝より広くしておくとよい。これにより、研磨材の噴射に伴う摩耗は、主として噴射案内部のスリット溝に対して生じ、摩耗等に伴う部品交換は、噴射案内部だけでよいことになる。
【0019】
スリット状の噴射口を形成するため、スリット溝を形成する噴射案内部を整流室に付設する利点は、摩耗に対する部品交換だけではない。まず、ブラスト用ノズル本体(バッファ室及び整流室)はそのままに、噴射口としてのスリット溝の幅を調節自在にできる利点がある。すなわち、噴射案内部は、案内ブロックそれぞれに各案内ブロックの短尺方向に延在する長孔を設けてなり、整流室に対して前記長孔の任意の位置でネジ止めすることにより、案内ブロックを短尺方向で接近離反させて所定幅のスリット溝を形成する。ここで、確実な所定幅のスリット溝を形成するには、案内ブロックの間に所定幅に相当する厚みのスペーサを介装するとよい。
【0020】
また、ブラスト用ノズル本体と別に、噴射案内部のみを比較的高価な耐摩耗部材で構成することもできる。この場合、各案内ブロック全体をそれぞれ耐摩耗部材で構成することもできるが、製造コストをより低廉に抑えるには、噴射案内部は、短尺方向で接近離反する案内ブロックの対面位置に、噴射口の長手長さ以上のモース硬度9又は10の耐摩耗部材を装着する構成にする。ここで、モース硬度9又は10は、サファイア、ルビー又はダイヤモンドが代表的な例である。前記サファイア、ルビー又はダイヤモンドは、もちろん天然でもよいが、実際には長尺なスリット状の噴射口に添わせて使用することから、長尺な外形を備えた耐摩耗部材を容易に入手できる人造サファイア、ルビー又はダイヤモンドを用いる。これにより、噴射案内部を交換する部位は耐摩耗部材のみとなり、本発明のブラスト用ノズルの運用コストを低廉にできる。
【0021】
【発明の実施の形態】
以下、本発明の実施形態について図を参照しながら説明する。図1は本発明のブラスト用ノズル1の一例を表す斜視図、図2は同ブラスト用ノズル1の正面図、図3は同ブラスト用ノズル1の側面図、図4はブラスト用ノズル1の分解斜視図、図5はバッファ室部材2,2及び整流室部材3,3を別体としたブラスト用ノズル1の分解斜視図、図6は噴射口4を長手方向に延長する別例のブラスト用ノズル1の図1相当斜視図、図7はブラスト用ノズル1による研磨材Sの噴射過程を説明する噴射口縦断断面図(ネジ等図示略)、図8はブラスト用ノズル1による研磨材Sの噴射過程を説明する背面側部材5のみを表した正面図(ネジ等図示略)であり、図9は本発明のブラスト用ノズル1の使用状態を表す斜視図である。本例のブラスト用ノズル1は、スリット状の噴射口4の長手方向長さLが約12cm程度の例(図6の別例を除く)である。
【0022】
本例のブラスト用ノズル1は、図1〜図4に見られるように、上段のバッファ室6と下段の整流室7とが一体となった構成で、噴射口4を含む垂直な半割面で分割された前面側部材8(供給口9のある側)及び背面側部材5(供給口9のない側)からなる。各部材8,5は、それぞれバッファ室部材2及び整流室部材3を一体にした構成である。これにより、供給口9から供給される研磨材が衝突するバッファ空間奥面10を有する背面側部材5のみの交換ができる。更に、図5に見られるように、前面側及び背面側でそれぞれバッファ室部材2,2及び整流室部材3,3に分け、研磨材の衝突により最も摩耗しやすい背面側のバッファ室部材2のみを交換できるようにしてもよい。
【0023】
前面側部材8及び背面側部材5は、正面視略五角形状(ホームベース状)の金属製一体成型品であり、バッファ空間11及び整流空間12を避けて貫通するボルト13により結合する。本例では、各部材8,5上端(各バッファ室部材2,2上端に相当)にブラスト加工装置への取付部14を設け、各部材8,5下端(各整流室部材3,3下端に相当)に別体の噴射案内部15を付設して使用する。研磨材は、前面側部材8のバッファ室部材2に相当する部位に設けた供給口9へ、研磨材供給パイプ16(図9参照)等を接続してバッファ空間11へと供給し、バッファ空間奥面10に衝突させる。
【0024】
バッファ空間11は、円形の供給口9と同心の円弧状上縁面17から左右対称に抑制斜面18,18を降ろした正面視扇状(図2参照)、側面視略方形状(図3参照)である。このバッファ空間11は、バッファ空間奥面10に衝突して散乱する研磨材の拡散を許容する空間で、運動エネルギーを損なわず前記拡散を促す目的から、バッファ空間11の角部は丸く形成している。また、円弧状上縁面17から連続して左右対称に降ろした抑制斜面18,18が、スリット状の噴射口4の長手方向における研磨材の反射位置(降下位置)を決定する。このため、噴射口4の長手方向における研磨材の分布が均一になるように、抑制斜面18の勾配角度αを約30度ずつ、すなわちバッファ空間11を開度β=約120度で正面視扇状に拡開している。
【0025】
上記抑制斜面18は、ブラスト用ノズル1全体の大きさに関係なく、バッファ空間奥面10に衝突して拡散する研磨材を略均一に噴射口4の長手方向に分散するのに適した勾配角度αにしている。このため、噴射口4を長くしたければ、前記勾配角度αを一定に保ち、供給口9から噴射口4までの垂直距離を長くしなければならない。しかし、前記垂直距離を長くするとブラスト用ノズル1全体が大きくなる。そこで、噴射口4を長くする場合、図6に見られるように、上記例示(図1参照)と同じ大きさのバッファ空間11及び整流空間12を有するノズル単位19,19を噴射口4の延在方向で連結したブラスト用ノズル1の構成にする。供給口9は、ノズル単位19毎に設けるが、各バッファ空間11,11及び整流空間12,12は互いに連通しているので、噴射案内部15は両ノズル単位19共通に1体だけ付設すればよい。
【0026】
整流空間12は、バッファ空間11の拡開と直交する方向に下り勾配γの連続斜面20,20で絞った側面視三角形状で、各部材8,5下端を開口してスリット状の噴射口4を構成している。この整流空間12も、研磨材の移動を阻害しないように、角部は丸く形成している。本例の噴射口4は、実際に研磨材を噴射する噴射案内部15のスリット溝21の幅より広くしている。噴射案内部15は、図4、図7及び図8に見られるように、長尺な一対の案内ブロック22,22を短尺方向で接近離反させて個別に整流室7下端に相当する各部材8,5下端に固着する。本例では、スリット溝21の間隔調整ができるように、前記各案内ブロック22,22は長尺方向端に短尺方向へ延在する長孔23を設けてあり、前記長孔23の任意の位置で固着ネジ24により各部材8,5下端に固着する。スリット溝21の幅は、両案内ブロック22,22が介装するスペーサ25により設定、保持できる。
【0027】
また、各案内ブロック22,22内面の研磨を抑制する目的から、本例の噴射案内部15は、短尺方向で接近離反する案内ブロック22の対面位置に設けた装着溝26それぞれへ、噴射口4の長手長さ以上の棒体である人造サファイア(モース硬度9)からなる耐摩耗部材27を装着している。本例では、高価な人造サファイアの使用量を抑えるため、最も研磨材による研磨が顕著なスリット溝21内面に対応して部分的に人造サファイアからなる耐摩耗部材27を用いている。これにより、本発明のブラスト用ノズル1をより安価に製造できるほか、摩耗程度に応じて耐摩耗部材27だけを交換すればよいので、メンテナンスも容易かつ安価になる。
【0028】
本発明のブラスト用ノズル1は、研磨材Sの供給方向S1と噴射方向S2とを略直交させているため、従来と研磨材Sの移動及び拡散態様が異なる。研磨材Sは、図7及び図8に見られるように、前面側部材8のバッファ室6相当部位に設けた供給口9から略水平に加圧流体(空気)と共に高速で供給されてくる。そして、研磨材Sは供給口9から直進し、この供給口9の対面にあるバッファ空間奥面10に衝突する。このバッファ空間奥面10に対する研磨材Sの衝突は完全弾性衝突ではなく、また微視的には衝突による研磨材Sを構成する各粒子の反射程度及び方向が異なるため、巨視的には研磨材Sの無秩序な散乱となる。
【0029】
研磨材Sの反射方向は、微視的な重力の影響を除けば、供給口9へ向けての反射のほか、上下左右方向もある。供給方向S1に反射した研磨材Sは、順次供給されてくる研磨材Sと衝突し、バッファ空間11全域へ研磨材Sを散乱させ、スリット状の噴射口4の長手方向における拡散をもたらす。上方に向けて反射した研磨材Sは、バッファ空間上面28(円弧状上縁面17及び抑制斜面18に相当)に衝突し、跳ね返りと共に下方に向けて動いていく。このとき、バッファ空間11の角部を丸くしておくと、略直上に向けて反射した研磨材S(バッファ空間11内面に沿って進む研磨材S)の運動エネルギーをあまり大きく損ねることなく、円滑に研磨材Sの運動方向を下方へ転換していくことができる。この上方へ反射した研磨材Sは、こうした跳ね返りに際して他の方向へ反射した研磨材Sに比べて運動エネルギーが低くなり、この相対的な運動エネルギーの差が更に研磨材Sの拡散をもたらすことになる。
【0030】
また、下方に向けて反射した研磨材Sは、供給口9下方のバッファ空間手前面29や整流室7の連続斜面20,20に衝突し、更に拡散しながら下方へ進んでいく。他方向に反射した研磨材Sに比べ、相対的に最も運動エネルギーが高く、他から跳ね返ってくる研磨材Sに衝突して更に散乱させる働きを有する。そして、左又は右方向に向けて反射した研磨材Sは、抑制斜面18,18に衝突して跳ね返り、それぞれ前記跳ね返り位置下方の噴射口4を目指して進んでいく。この左又は右方向に反射した研磨材Sに供給方向の運動エネルギーがあれば、前記下方へ反射した研磨材S同様、供給口下方のバッファ空間手前面29や整流室7の連続斜面20,20に衝突し、更に噴射口4の長手方向に拡散し、短手方向に収束しながら下方へ進んでいく。
【0031】
実際には、上述の各反射が無数かつ同時に生じ、相互作用により研磨材Sを広く散乱させ、スリット状の噴射口4の長手方向における拡散を実現する。すなわち、本発明のブラスト用ノズル1が噴射する研磨材Sは、噴射口4の長手方向において略均一の密度になる。既述したように、供給方向S1と噴射方向S2とを一致させた従来に対し、反射や拡散を伴う本発明における研磨材Sの運動エネルギーは若干損なわれることになるが、前記損失は微視的なもので、またバッファ空間11へと供給される研磨材S及び加圧流体(空気)による圧力の上昇が前記運動エネルギーの損失を補い、研磨材Sは従来同様に高速で噴射口4から噴射される。
【0032】
こうしてスリット状の噴射口4(本例では噴射案内部15のスリット溝21)から長手方向で略均一に研磨材Sを噴射できるブラスト用ノズル1を用いる最大の利点は、複雑化又は大型化するプリント基板30やシリコンウェハを短時間でブラスト処理できるようになる点にある。本発明のブラスト用ノズル1は、図9に見られるように、ブラスト加工装置(図示略)内のローラコンベア31(メッシュコンベアの場合もある)に向けて、リニアレール32に従って水平面内左右(図9中左下を左方向、右上を右方向とする)へ移動自在に吊設している。本例では、ローラコンベア31の搬送方向(前後方向)と直交する向きに噴射口4の長手方向を向け、同噴射口4の短手方向、すなわち左右方向にブラスト用ノズル1を往復動させる。
【0033】
本例のブラスト加工装置は、ブラスト用ノズル1の往復動に併せてローラコンベア31がプリント基板30を少しずつ送り、(ブラスト用ノズル1の噴射口4の長さ×往路(又は復路)の距離)をブラスト用ノズル1による往路(又は復路)における研磨材の噴射範囲Mとする。これから、((ローラコンベア31の搬送方向におけるプリント基板30の長さ/ブラスト用ノズル1の噴射口4の長さ)/2)回の往復回数(図9中矢印では2往復半)で、プリント基板30全体のブラスト処理を終えることができる。実際には、ブラスト用ノズル1の往路及び復路で各噴射範囲M相互の隙間が生じないように、往路及び復路での各噴射範囲Mが若干重なるように制御するが、それでも複雑化又は大型化したプリント基板30のブラスト処理を短時間で終えることができる。
【0034】
このように、本発明のブラスト用ノズルは、(1)研磨材の供給方向と噴射方向とを略直交関係にしていることを特徴とし、この結果、(2)供給口からバッファ室へ供給された研磨材すべてを一度バッファ空間奥面に衝突させて、バッファ空間内に研磨材を散乱させ、噴射口の長手方向へ略均一に拡散させることができ、(3)こうして拡散された研磨材をバッファ空間に続くバッファ室下方の整流室によりスリット状の噴射口に向けて収束して噴射することができる。これから、前記(1)の構造的特徴を満たし、その結果得られる(2)及び(3)の作用及び効果が得られるものであれば本発明に含まれる。
【0035】
図10〜図13はそれぞれ別例の図7相当の噴射口4縦断断面図(ネジ等図示略)であり、図10は背面側部材5を平面板で構成した例、図11は前面側部材8を平面板で構成した例、図12は多段斜面33,33に挟まれた整流空間12を構成した例、図13は多段斜面33を有する整流空間12を構成し、更に背面側部材5を平面板で構成した例であり、図14は多段斜面33を有する整流空間12を構成し、更に前面側部材8を平面板で構成した例である。各例示は、いずれも上述した(1)〜(3)を満たす構成である。
【0036】
研磨材Sの拡散に必要十分なバッファ空間11と、拡散した研磨材Sの円滑な収束とを図る意味から、前面側部材8及び背面側部材5、すなわち各バッファ室部材2,2及び各整流室部材3,3は、対称断面であることが望ましい。しかし、バッファ空間11及び整流空間12の形成は加工コストがかかるため、交換を考えた場合、運用コストを高めることにもなりかねない。そこで、図10及び図11に見られるように、背面側部材5を平面板、すなわち供給口9のないバッファ室部材2及び整流室部材3が連続する構成としたり(図10)、逆に前面側部材8を平面板、すなわち供給口9のあるバッファ室部材2及び整流室部材3が連続する構成とする(図11)ことができる。
【0037】
また、本発明のブラスト用ノズル1は、基本的にバッファ空間11において研磨材Sをスリット状の噴射口4の長手方向へ拡散させ、整流空間12では専ら噴射のために研磨材Sを噴射口4の短手方向へ収束させるように、各空間11,12それぞれが担う主たる作用又は効果を分けている(整流空間12でも微視的に研磨材Sの分散はある)。このバッファ空間11における研磨材Sの拡散は、噴射口4の長手方向において研磨材Sを均一にするように働くが、質量が比較的大きな研磨材Sでは、バッファ空間11における拡散の作用が十分でない場合がある。こうした質量が比較的大きな研磨材Sについては、図12に見られるように、噴射口4の短手方向を絞る多段斜面33,33に挟まれた整流空間12を構成し、収束する研磨材Sを前記多段斜面33,33に衝突させて、更に噴射口4の長手方向における研磨材Sの拡散を図るとよい。
【0038】
この場合、研磨材Sの噴射速度は、連続斜面20,20に挟まれた整流空間12を構成する例(図7参照)よりも若干低下することになるが、バッファ空間11での反射による拡散が不十分な研磨材Sの十分な拡散を図ることができる。また、研磨材Sの噴射速度の低下は、噴射口4、噴射案内部15のスリット溝21又は耐摩耗部材27が摩耗する割合を抑制する利点がある。この多段斜面33,33に挟まれた整流空間12を構成するブラスト用ノズル1についても、図13及び図14に見られるように、各部材8,5の一方を平面板にすることで、より安価なブラスト用ノズル1の提供が可能になる。
【0039】
【発明の効果】
本発明は、スリット状の噴射口を備えるブラスト用ノズルにおいて、噴射口の長手方向へ研磨材を略均一に拡散できるようになり、複雑化又は大型化するプリント基板やシリコンウェハを、短時間に品質よくブラスト処理できる効果をもたらす。従来にも、スリット状の噴射口を備えたブラスト用ノズルや、最終的な研磨材の噴射方向に対して交差する障害物(面)を形成したブラスト用ノズルは見られたが、研磨材の拡散が噴射口の長手方向で均一にしにくかった。本発明は、(1)研磨材の供給方向と噴射方向とを略直交関係にすることで、噴射口の長手方向における研磨材の拡散の均一化を実現したわけである。
【0040】
本発明による研磨材の拡散は、(2)供給口からバッファ室へ供給された研磨材すべてが一度バッファ空間奥面に衝突して反射し、この反射した研磨材が供給口に向けて反射した研磨材が順次供給されてくる研磨材と衝突することで実現している。本発明では、バッファ空間奥面に衝突して研磨材が散乱するままに任せるのではなく、更にバッファ空間の上面を形成する抑制斜面を適度な開度で降ろすことにより、研磨材がより均一に拡散する効果を得る。
【0041】
また、基本的には前後(研磨材の供給方向)及び左右(前記供給方向に直交する方向)に対称にバッファ室及び整流室を構成することが望ましいが、バッファ室部材又は整流室部材のいずれか一方を平面板とすれば、本発明のブラスト用ノズルの製造コスト及び運用コスト(交換コスト)を低廉にできる効果を得る。
【0042】
バッファ空間において拡散した研磨材は、(3)バッファ空間に続くバッファ室下方の整流室へ導き、(a)連続斜面に挟まれた整流空間又は(b)多段斜面に挟まれた整流空間により収束し、スリット状の噴射口の長手方向における粗密の均一性を保ったまま噴射できる。前者(a)の整流空間はできるだけ研磨材の流れを阻害せずに収束する効果を、後者(b)の整流空間はバッファ空間だけでは不十分な研磨材の拡散を補う効果を、それぞれ有する。本発明はこれらの整流空間を使い分けることができ、例えば分割した整流室部材から整流室を構成する場合、各整流室部材毎に連続斜面及び多段斜面を形成し、非対称な斜面に挟まれた整流空間を構成することもできる。
【0043】
噴射案内部は、整流室下端の噴射口に代えて、噴射する研磨材により摩耗する部位を案内ブロック又は耐摩耗部材として、低廉及び簡略な部品交換を実現する。これにより、ブラスト用ノズルの運用に際するコストを低減することができ、スリット状の噴射口を有するブラスト用ノズルとしてブラスト処理の時間短縮と相まって、本発明は高い費用対効果をもたらす。
【図面の簡単な説明】
【図1】本発明のブラスト用ノズルの一例を表す斜視図である。
【図2】同ブラスト用ノズルの正面図である。
【図3】同ブラスト用ノズルの側面図である。
【図4】ブラスト用ノズルの分解斜視図である。
【図5】バッファ室部材及び整流室部材を別体としたブラスト用ノズルの分解斜視図である。
【図6】噴射口を長手方向に延長する別例のブラスト用ノズルを表す図1相当斜視図である。
【図7】ブラスト用ノズルにより、研磨材の噴射過程を説明する噴射口縦断断面図である。
【図8】ブラスト用ノズルによる研磨材の噴射過程を説明する背面側部材のみを表した正面図である。
【図9】本発明のブラスト用ノズルの使用状態を表す斜視図である。
【図10】背面側部材を平面板で構成した別例の図7相当の噴射口縦断断面図である。
【図11】前面側部材を平面板で構成した別例の図7相当の噴射口縦断断面図である。
【図12】多段斜面に挟まれた整流空間を構成した別例の図7相当の噴射口縦断断面図である。
【図13】多段斜面を有する整流空間を構成し、更に背面側部材を平面板で構成した別例の図7相当の噴射口縦断断面図である。
【図14】多段斜面を有する整流空間を構成し、更に前面側部材を平面板で構成した別例の図7相当の噴射口縦断断面図である。
【符号の説明】
1 ブラスト用ノズル
2 バッファ室部材
3 整流室部材
4 噴射口
5 背面側部材
6 バッファ室
7 整流室
8 前面側部材
9 供給口
10 バッファ空間奥面
11 バッファ空間
12 整流空間
15 噴射案内部
18 抑制斜面
20 連続斜面
21 スリット溝
22 案内ブロック
25 スペーサ
27 耐摩耗部材
33 多段斜面
S 研磨材
L 噴射口の長さ
S1 研磨材の供給方向
S2 研磨材の噴射方向
M 研磨材の噴射範囲
α 抑制斜面の勾配角度
β バッファ空間の開度
γ 連続斜面の下り勾配
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a blast nozzle used in a blasting apparatus that injects an abrasive at high speed together with a pressurized fluid (compressed air or the like) and grinds the surface of a workpiece.
[0002]
The “abrasive” in the present invention includes not only conventionally known various abrasives, so-called abrasive grains (sand), but also powders of alumina and silicon carbide, glass beads, fine steel balls, and the like.
[0003]
[Prior art]
The blasting process, in which the abrasive is sprayed at high speed together with the pressurized fluid to grind the surface of the workpiece, improves the adhesion between the printing or the film and the surface of the workpiece in the subsequent printing process or drum film processing. It is implemented in order to. The blast processing apparatus reciprocates a blast nozzle above a workpiece (a printed circuit board, a silicon wafer, or the like). At this time, if the area drawn by the injection port of the blast nozzle (the shape of the abrasive sprayed from the injection port of the blast nozzle on the surface of the workpiece) exceeds the surface of the workpiece, the entire surface of the workpiece is Can be blasted. However, since workpieces are becoming more complicated or expanding year by year, various improvements in blast nozzles have been proposed for the purpose of reducing the time required for blast processing.
[0004]
In a normal blast nozzle, the nozzle path through which the abrasive flows from the supply port has a conical shape with a narrowed tip, and the injection port is round and narrow. Therefore, in order to reduce the time required for the blast processing, it is conceivable to first improve the injection port. Here, in order to widen the injection ports, a means using a plurality of blast nozzles is also conceivable, but it is difficult to unify the density of the abrasive blasted from each injection port, and it is easy to cause processing unevenness. Increased size and weight make support and control difficult. For this reason, conventionally, there has been proposed a blast nozzle in which the injection port of a single blast nozzle is enlarged, that is, the injection port has a slit (rectangular cross section) shape.
[0005]
However, if the injection port of the blast nozzle is formed in a slit shape, the injection port can be enlarged. However, unevenness of the abrasive in the longitudinal direction of the injection port occurs, and processing unevenness is likely to occur. On the other hand, in Patent Literature 1, an edge including an acute angle at which the short side or the short diameter becomes the shorter side or the shorter diameter at both ends in the longitudinal direction is formed in the abrasive rectifying portion including the abrasive injection port. . This patent document 1 describes that the processing unevenness can be suppressed by improving the cross-sectional shape of the injection port (to make the both ends in the longitudinal direction thinner than the center). The diffusion of the abrasive utilizes the scattering caused by collision with an inclined surface connecting the abrasive diffusion part and the abrasive rectification part.
[0006]
Patent Literature 2 discloses a cylindrical introduction unit for introducing a mixed gas of an abrasive and air (pressurized fluid), a box-shaped flow control unit for controlling the flow of the introduced mixed gas, and injecting the mixed gas. A slit (slit-shaped injection port), and the slit is provided at a position deviated from the center on the tip side of the flow control unit, and the inside of the flow control unit narrows in a direction perpendicular to the slit toward the slit. A blast nozzle with two inclined surfaces is proposed. This Patent Document 2 discloses that by providing two inclined surfaces that become narrower in a direction perpendicular to the slit toward the slit, the density of abrasive grains in the flow direction of the slit is eliminated.
[0007]
[Patent Document 1]
JP-A-2000-225568 (pages 5 to 7, FIG. 1)
[Patent Document 2]
JP 2001-105324 A (pages 2-3, FIGS. 3 and 4)
[0008]
[Problems to be solved by the invention]
In each of the blast nozzles of the above-mentioned patent documents, an obstacle (inclined surface) is formed in the middle of the nozzle path while the supply direction and the ejection direction of the abrasive are matched. The abrasive collides with the obstacle and is scattered, and diffuses in the longitudinal direction of the injection port. However, the diffusion of the abrasive is not uniform. [0025] In this regard, Patent Document 1 [0025] states that "when the internal pressure is low, the speed at which the abrasive enters the abrasive diffusion portion 52a of the diffusion nozzle 51 is low, so that the abrasive diffuses in the abrasive diffusion chamber 52. As shown in FIG. 8, excess abrasive is distributed at both ends in the longitudinal direction of the abrasive injection port 54 as shown in FIG. 8, and when the internal pressure is high, the speed at which the abrasive enters the diffusion nozzle 51 is high, so that the abrasive is high. Since the abrasive is not easily diffused in the diffusion chamber 52, the amount of the abrasive in the center tends to be excessive as shown in FIG. 7 ". It explains that it is difficult to diffuse in the longitudinal direction.
[0009]
There are several possible causes that make it difficult to uniformly diffuse the abrasive in the longitudinal direction of the slit-shaped injection port by colliding with an obstacle while making the supply direction and the injection direction of the abrasive match. For example, since the supply direction and the ejection direction of the abrasive coincide with each other, it is considered that the abrasive that travels straight from the supply port to the injection port impedes the diffusion of the abrasive scattered by colliding with an obstacle. That is, since the direction of movement of the abrasive is largely divided into two, it is considered difficult to diffuse the abrasive substantially uniformly in the longitudinal direction of the injection port. Then, in order to provide a blast nozzle having a slit-shaped injection port, a blast nozzle capable of uniformly dispersing the abrasive in the longitudinal direction of the injection port was studied.
[0010]
[Means for Solving the Problems]
As a result of the study, the developed blast nozzle used in a blasting machine that grinds the surface of the workpiece by injecting the abrasive at high speed with the pressurized fluid, the nozzle path through which the abrasive flows is the abrasive supply port And a rectifying chamber having a slit-shaped injection port, and the buffer chamber forms a buffer space that expands in a fan shape downward from the supply port opened on the side surface, and faces the supply port. The direction of supply of the abrasive is determined so that the abrasive supplied to the inner surface of the buffer space collides, and the rectification chamber forms a rectification space that is narrowed downward in a direction orthogonal to the expansion of the buffer space. The opening of the lower end of the rectifying space is defined as a slit-shaped injection port, and the injection direction of the abrasive is determined so as to reach the injection port downward from the buffer space, and the supply direction and the injection direction of the abrasive are determined. A blast nozzle having an orthogonal relationship.
[0011]
The blast nozzle of the present invention is different from the conventional blast nozzle having a slit-shaped injection port, in which (1) the supply direction of the abrasive and the injection direction are substantially orthogonal to each other, and (2) the buffer from the supply port. All the abrasives supplied to the chamber can once collide against the inner surface of the buffer space and be scattered in the buffer space. (3) The abrasive scattered in this way is guided to the rectification space of the rectification chamber following the buffer space, and is slit-shaped. Inject from the outlet. The abrasive supplied with the pressurized fluid from the supply port hardly loses kinetic energy even after colliding with the back of the buffer space, only changes the direction of movement due to scattering after the collision, and from the injection port at high speed Can be sprayed. In addition, since the abrasive is supplied from the supply port together with the pressurized fluid, the internal pressure of the buffer space is increased, and as a result, the abrasive can be injected at high speed together with the pressurized fluid from the injection port as pressure relief.
[0012]
The shape of the buffer space of the buffer chamber is not particularly limited as long as it has a size that does not hinder the diffusion of the abrasive. However, the abrasive colliding with the back of the buffer space is scattered not only in the direction toward the supply port but also in all directions including up, down, left, and right. From the viewpoint of guiding in the longitudinal direction of the port, a buffer space that expands in a fan-like shape with a slope that suppresses a downward slope in the longitudinal direction of the injection port is preferable. The abrasive diffused upward can collide with the restraining slope of the buffer space and change the direction of movement (reflect) downward, and the abrasive reflected by the restraining slope is randomly scattered. Is diffused in the longitudinal direction of the slit-shaped injection port.
[0013]
Here, depending on the collision angle with respect to the suppression slope, the position where each abrasive is inverted and directed downward is different, so that by appropriately setting the slope angle of the suppression slope, the abrasive can be better diffused in the longitudinal direction of the injection port. . The preferred slope angle of the restraining slope is 10 to 40 degrees, more preferably 25 to 30 degrees. The buffer space expanding in a fan shape need not be symmetrical about the supply port as long as it is a fan shape including a supply port at the top. However, from the specification of the suppression slope, it is preferable that the buffer chamber form a buffer space that expands in a fan shape symmetrically from left to right at an opening of 100 to 140 degrees, preferably around 120 degrees, from the supply port.
[0014]
The names of the "buffer chamber" and the "rectification chamber" that constitute the nozzle path are functionally distinctive, and both chambers may be configured integrally, or may be separately configured and separately assembled vertically. In addition, since the inner surface of the buffer space where the abrasive collides is easily worn, the division according to the presence or absence of the supply port, that is, the buffer chamber, may be formed of a pair of buffer chamber members in which the injection port is divided by a vertical half surface. . This makes it possible to replace only the buffer chamber member having the inner surface of the buffer space where the abrasive first collides. Further, each buffer chamber member is basically symmetrical with respect to a half surface, but if the capacity of the buffer space is sufficient, for example, one of the buffer chamber members may be replaced with a flat plate parallel to the half surface. It may be.
[0015]
Here, if the rectification chamber is constituted integrally with the buffer chamber, the rectification chamber is also constituted by a pair of rectification chamber members divided by a vertical half surface including the injection port. If the rectification chamber is a separate member from the buffer chamber, each rectification chamber member of the rectification chamber can be individually replaced independently of the buffer chamber. Further, as described above, if narrowing down is performed on any one of the rectification chamber members, the other may be a flat plate parallel to the half surface.
[0016]
The rectifying chamber is a portion where the diffused abrasive is converged and the abrasive is blown out from the slit-shaped injection port. Therefore, unlike the buffer chamber, the function of the rectifying chamber to converge the abrasive smoothly without disturbing the movement of the abrasive is important. Therefore, the rectifying chamber in the blast nozzle of the present invention forms a rectifying space sandwiched between continuous slopes having a downward slope narrowed downward in a direction orthogonal to the expansion of the buffer space. By setting the direction in which the abrasive is converged to the direction in which the abrasive is diffused, that is, the direction orthogonal to the expansion of the buffer space, the abrasive is directed toward the injection port without hindering the diffusion of the abrasive in the longitudinal direction of the injection port. Can be converged.
[0017]
As described above, the rectifying chamber is primarily intended to converge the abrasive toward the injection port, but depending on the type of the abrasive, diffusion in the buffer chamber alone may not be sufficient. In order to compensate for such insufficient diffusion of the abrasive, the rectification chamber may be formed with a rectification space sandwiched between multi-level slopes having a downward slope narrowed downward in a direction orthogonal to the expansion of the buffer space. The converging abrasive collides with each step of the multi-step slope and is microscopically scattered, thereby preventing the abrasive from being biased in the longitudinal direction of the injection port.
[0018]
Although the blast nozzle of the present invention opens the lower end of the rectifying space formed by the rectifying chamber to serve as an injection port, even if the rectifying chamber is made of a metal material, the abrasive wears out over time due to the abrasive that is jetted at high speed. As a result, the width of the injection port changes. Therefore, in the rectifying chamber, an ejection guide portion having a slit groove substantially similar to the ejection port is attached to the ejection port, and the ejection guide portion causes a pair of long guide blocks to approach and separate in the short direction to individually rectify. The slit groove may be formed by fixing the slit groove to a chamber. In the case where the ejection guide portion is provided in the rectifying chamber, the slit groove formed by the ejection guide portion may be used as an actual ejection port, and the ejection port provided in the rectification chamber may be wider than the slit groove. As a result, abrasion due to the abrasive spraying occurs mainly on the slit groove of the spray guide, and component replacement due to abrasion or the like can be performed only by the spray guide.
[0019]
In order to form the slit-shaped injection port, the advantage of providing the injection guide portion for forming the slit groove in the rectifying chamber is not limited to replacement of parts due to wear. First, there is an advantage that the width of the slit groove as the injection port can be freely adjusted while the blast nozzle main body (the buffer chamber and the rectifying chamber) is kept as it is. That is, the ejection guide portion is provided with a long hole extending in the short direction of each guide block in each of the guide blocks, and the guide block is screwed at an arbitrary position of the long hole with respect to the rectification chamber, thereby forming the guide block. A slit groove having a predetermined width is formed by approaching and separating in the short direction. Here, in order to form a reliable slit groove having a predetermined width, a spacer having a thickness corresponding to the predetermined width may be interposed between the guide blocks.
[0020]
Further, separately from the blast nozzle main body, only the ejection guide portion can be constituted by a relatively expensive wear-resistant member. In this case, each of the guide blocks may be entirely made of a wear-resistant member.However, in order to further reduce the manufacturing cost, the ejection guide portion is provided at the position facing the guide block which approaches and separates in the short direction. A wear-resistant member having a Mohs' hardness of 9 or 10 which is equal to or longer than the longitudinal length is attached. Here, sapphire, ruby, or diamond is a typical example of the Mohs hardness of 9 or 10. Of course, the sapphire, ruby or diamond may be natural, but since it is actually used along with a long slit-shaped injection port, an artificial member that can easily obtain a wear-resistant member having a long outer shape is used. Use sapphire, ruby or diamond. Accordingly, only the wear-resistant member is required to replace the injection guide, and the operation cost of the blast nozzle of the present invention can be reduced.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a perspective view showing an example of the blast nozzle 1 of the present invention, FIG. 2 is a front view of the blast nozzle 1, FIG. 3 is a side view of the blast nozzle 1, and FIG. FIG. 5 is an exploded perspective view of the blast nozzle 1 in which the buffer chamber members 2 and 2 and the rectification chamber members 3 and 3 are separated, and FIG. 6 is another example of a blast in which the injection port 4 is extended in the longitudinal direction. FIG. 7 is a perspective view of the nozzle 1 corresponding to FIG. 1, FIG. 7 is a vertical cross-sectional view of an injection port (not shown, etc.) for explaining a process of spraying the abrasive S by the blast nozzle 1, and FIG. FIG. 9 is a front view (only screws and the like are omitted) illustrating only the back side member 5 for explaining the injection process, and FIG. 9 is a perspective view illustrating a use state of the blast nozzle 1 of the present invention. The blast nozzle 1 of this embodiment is an example in which the length L in the longitudinal direction of the slit-shaped injection port 4 is about 12 cm (except for another example in FIG. 6).
[0022]
As shown in FIGS. 1 to 4, the blast nozzle 1 of the present embodiment has a configuration in which an upper buffer chamber 6 and a lower rectification chamber 7 are integrated, and a vertical half surface including the injection port 4. The front-side member 8 (the side with the supply port 9) and the back-side member 5 (the side without the supply port 9) are divided. Each of the members 8 and 5 has a configuration in which the buffer chamber member 2 and the rectification chamber member 3 are integrated. Thereby, only the back side member 5 having the buffer space inner surface 10 against which the abrasive supplied from the supply port 9 collides can be replaced. Further, as shown in FIG. 5, the front and rear sides are divided into buffer chamber members 2 and 2 and rectification chamber members 3 and 3 respectively, and only the rear buffer chamber member 2 which is most likely to be worn due to the collision of the abrasive material. May be exchangeable.
[0023]
The front-side member 8 and the rear-side member 5 are integrally molded metal products having a substantially pentagonal shape (home base shape) as viewed from the front, and are joined together by bolts 13 that penetrate the buffer space 11 and the rectification space 12. In this example, an attachment portion 14 to the blasting device is provided at the upper end of each member 8, 5 (corresponding to the upper end of each buffer chamber member 2, 2), and the lower end of each member 8, 5 (at the lower end of each rectification chamber member 3, 3). And a separate injection guide 15 is used. The abrasive is supplied to the buffer space 11 by connecting an abrasive supply pipe 16 (see FIG. 9) and the like to a supply port 9 provided at a portion corresponding to the buffer chamber member 2 of the front side member 8, It is made to collide with the back surface 10.
[0024]
The buffer space 11 has a fan-shaped front view (see FIG. 2) in which the suppression slopes 18 and 18 are lowered symmetrically from an arc-shaped upper edge surface 17 concentric with the circular supply port 9 (see FIG. 2), and a substantially rectangular shape (see FIG. 3) when viewed from the side. It is. The buffer space 11 is a space that allows the diffusion of the abrasive scattered by colliding with the back surface 10 of the buffer space. For the purpose of promoting the diffusion without impairing the kinetic energy, the corners of the buffer space 11 are formed round. I have. In addition, the restraining slopes 18, 18 continuously and symmetrically lowered from the arc-shaped upper edge surface 17 determine the reflection position (falling position) of the abrasive in the longitudinal direction of the slit-shaped injection port 4. Therefore, in order to make the distribution of the abrasive in the longitudinal direction of the injection port 4 uniform, the inclination angle α of the suppression slope 18 is about 30 degrees at a time, that is, the buffer space 11 has a fan shape in front view at an opening β of about 120 degrees. It is expanding.
[0025]
The suppression slope 18 has a gradient angle suitable for dispersing the abrasive that collides with and diffuses into the buffer space inner surface 10 substantially uniformly in the longitudinal direction of the injection port 4 irrespective of the size of the entire blast nozzle 1. It is set to α. For this reason, if the injection port 4 is desired to be long, the gradient angle α must be kept constant, and the vertical distance from the supply port 9 to the injection port 4 must be increased. However, the longer the vertical distance, the larger the blast nozzle 1 becomes. Therefore, when the injection port 4 is lengthened, as shown in FIG. 6, the nozzle units 19 and 19 having the same size of the buffer space 11 and the rectification space 12 as the above example (see FIG. 1) are extended. The structure of the blast nozzle 1 connected in the existing direction is adopted. The supply port 9 is provided for each nozzle unit 19, but since each of the buffer spaces 11, 11 and the rectifying spaces 12, 12 are in communication with each other, the injection guide portion 15 may be provided in common for both nozzle units 19. Good.
[0026]
The rectification space 12 has a triangular shape in side view narrowed by continuous slopes 20, 20 having a downward slope γ in a direction perpendicular to the expansion of the buffer space 11. Is composed. The rectifying space 12 is also formed with rounded corners so as not to hinder the movement of the abrasive. The injection port 4 of this example is made wider than the width of the slit groove 21 of the injection guide portion 15 for actually injecting the abrasive. As shown in FIGS. 4, 7 and 8, the ejection guide portion 15 separates the pair of long guide blocks 22, 22 from each other in the short direction and individually moves each member 8 corresponding to the lower end of the rectifying chamber 7. , 5 to the lower end. In this embodiment, each of the guide blocks 22 has a long hole 23 extending in a short direction at an end in a long direction so that the interval between the slit grooves 21 can be adjusted. Then, the members 8 and 5 are fixed to the lower ends by the fixing screws 24. The width of the slit groove 21 can be set and held by the spacer 25 interposed between the two guide blocks 22.
[0027]
Further, for the purpose of suppressing the polishing of the inner surfaces of the guide blocks 22, 22, the ejection guide portion 15 of the present example is configured such that the ejection ports 4 are respectively inserted into the mounting grooves 26 provided at the facing positions of the guide blocks 22 approaching and separating in the short direction. A wear-resistant member 27 made of artificial sapphire (Mohs hardness 9) which is a rod body having a length equal to or more than the longitudinal length is attached. In this example, in order to reduce the amount of expensive artificial sapphire used, a wear-resistant member 27 partially made of artificial sapphire is used corresponding to the inner surface of the slit groove 21 where polishing by the abrasive is most remarkable. This makes it possible to manufacture the blast nozzle 1 of the present invention at a lower cost, and since only the wear-resistant member 27 needs to be replaced according to the degree of wear, maintenance is easy and cheap.
[0028]
In the blast nozzle 1 of the present invention, the supply direction S1 and the ejection direction S2 of the abrasive S are substantially orthogonal to each other. As shown in FIGS. 7 and 8, the abrasive S is supplied at a high speed together with a pressurized fluid (air) substantially horizontally from a supply port 9 provided in a portion corresponding to the buffer chamber 6 of the front side member 8. Then, the abrasive S moves straight from the supply port 9 and collides with the buffer space inner surface 10 opposite to the supply port 9. The collision of the abrasive S with the inner surface 10 of the buffer space is not a completely elastic collision, and the degree of reflection and the direction of each particle constituting the abrasive S due to the collision are different microscopically. The random scattering of S results.
[0029]
Except for the influence of the microgravity, the reflection direction of the abrasive S has not only the reflection toward the supply port 9 but also the vertical and horizontal directions. The abrasive S reflected in the supply direction S1 collides with the sequentially supplied abrasive S, scatters the abrasive S throughout the buffer space 11, and causes the slit-shaped injection port 4 to diffuse in the longitudinal direction. The abrasive S reflected upwardly collides with the upper surface 28 of the buffer space (corresponding to the arc-shaped upper edge surface 17 and the suppression slope 18), and moves downward with rebound. At this time, if the corners of the buffer space 11 are rounded, the kinetic energy of the polishing material S (the polishing material S traveling along the inner surface of the buffer space 11) reflected almost directly upward is not greatly impaired, and the Thus, the direction of movement of the abrasive S can be changed downward. The abrasive material S reflected upward has lower kinetic energy than the abrasive material S reflected in the other direction at the time of such bouncing, and the difference in the relative kinetic energy further causes the diffusion of the abrasive material S. Become.
[0030]
Further, the abrasive S reflected downwardly collides with the front surface 29 of the buffer space below the supply port 9 and the continuous slopes 20 and 20 of the rectification chamber 7, and proceeds downward while being further diffused. The kinetic energy is relatively highest as compared with the polishing material S reflected in the other direction, and has a function of colliding with the polishing material S rebounding from the other to further scatter. Then, the abrasive S reflected in the left or right direction collides with the restraining slopes 18 and rebounds, and advances toward the injection port 4 below the rebound position. If the abrasive S reflected in the left or right direction has kinetic energy in the supply direction, similarly to the abrasive S reflected downward, the continuous front surface 29 of the buffer space below the supply port and the continuous slope 20, 20 like the abrasive S reflected downward. And further diffuses in the longitudinal direction of the injection port 4 and moves downward while converging in the lateral direction.
[0031]
Actually, the above-mentioned reflections occur innumerably and simultaneously, and the interaction scatters the abrasive S widely, thereby realizing diffusion of the slit-shaped injection port 4 in the longitudinal direction. That is, the abrasive S injected by the blast nozzle 1 of the present invention has a substantially uniform density in the longitudinal direction of the injection port 4. As described above, the kinetic energy of the abrasive S in the present invention, which involves reflection and diffusion, is slightly impaired in comparison with the related art in which the supply direction S1 and the ejection direction S2 are matched, but the loss is microscopic. In addition, the increase in pressure due to the abrasive S and the pressurized fluid (air) supplied to the buffer space 11 compensates for the loss of the kinetic energy, and the abrasive S is discharged from the injection port 4 at a high speed as in the related art. It is injected.
[0032]
Thus, the greatest advantage of using the blast nozzle 1 that can inject the abrasive S substantially uniformly in the longitudinal direction from the slit-shaped injection port 4 (in this example, the slit groove 21 of the injection guide portion 15) is complicated or increased in size. The point is that the blast processing can be performed on the printed circuit board 30 and the silicon wafer in a short time. As shown in FIG. 9, the blast nozzle 1 of the present invention is directed toward a roller conveyor 31 (which may be a mesh conveyor) in a blasting machine (not shown) according to a linear rail 32 in a horizontal plane. 9 to the left and the upper right to the left). In this example, the longitudinal direction of the injection port 4 is oriented in a direction orthogonal to the transport direction (front-back direction) of the roller conveyor 31, and the blast nozzle 1 is reciprocated in the short direction of the injection port 4, that is, in the left-right direction.
[0033]
In the blasting apparatus of this example, the roller conveyor 31 feeds the printed circuit board 30 little by little in accordance with the reciprocating movement of the blast nozzle 1, and the distance of (length of the injection port 4 of the blast nozzle 1 × outward path (or return path)) ) Is the injection range M of the abrasive in the forward path (or the return path) by the blast nozzle 1. From this, the printing is performed with ((the length of the printed circuit board 30 in the transport direction of the roller conveyor 31 / the length of the ejection port 4 of the blast nozzle 1) / 2) times (two and a half times in the arrow in FIG. 9). The blast processing of the entire substrate 30 can be completed. Actually, the injection ranges M are controlled so as to slightly overlap each other in the forward path and the return path so that no gap is formed between the respective injection ranges M in the forward path and the return path of the blast nozzle 1. The blast processing of the printed circuit board 30 thus completed can be completed in a short time.
[0034]
As described above, the blast nozzle of the present invention is characterized in that (1) the supply direction and the ejection direction of the abrasive are substantially orthogonal to each other. As a result, (2) the abrasive is supplied from the supply port to the buffer chamber. All of the abrasives once collided against the inner surface of the buffer space to scatter the abrasives in the buffer space, and can be diffused substantially uniformly in the longitudinal direction of the injection port. (3) The abrasives thus diffused The rectifying chamber below the buffer chamber following the buffer space can converge and jet toward the slit-shaped injection port. From this, the present invention is included as long as it satisfies the structural feature of the above (1) and obtains the operations and effects of the resulting (2) and (3).
[0035]
10 to 13 are vertical sectional views (not shown) of the injection port 4 corresponding to FIG. 7 of another example. FIG. 10 shows an example in which the rear member 5 is formed of a flat plate, and FIG. 11 shows a front member. 12 is an example in which the rectifying space 12 is sandwiched between the multi-stage slopes 33, 33. FIG. 13 is an example in which the rectification space 12 having the multi-stage slope 33 is formed. FIG. 14 shows an example in which a rectifying space 12 having a multi-step slope 33 is formed, and the front-side member 8 is formed of a flat plate. Each example is a configuration that satisfies (1) to (3) described above.
[0036]
The front side member 8 and the rear side member 5, that is, the buffer chamber members 2, 2 and the respective rectifiers, from the viewpoint of achieving a sufficient and sufficient buffer space 11 for the diffusion of the abrasive S and the smooth convergence of the diffused abrasive S. The chamber members 3, 3 preferably have a symmetrical cross section. However, since the formation of the buffer space 11 and the rectification space 12 requires a processing cost, if replacement is considered, the operation cost may be increased. Therefore, as shown in FIG. 10 and FIG. 11, the rear side member 5 may be a flat plate, that is, a configuration in which the buffer chamber member 2 and the rectification chamber member 3 without the supply port 9 are continuous (FIG. 10). The side member 8 can be configured to be a flat plate, that is, a configuration in which the buffer chamber member 2 having the supply port 9 and the rectification chamber member 3 are continuous (FIG. 11).
[0037]
In addition, the blast nozzle 1 of the present invention basically diffuses the abrasive S in the longitudinal direction of the slit-shaped injection port 4 in the buffer space 11 and the abrasive S in the rectification space 12 exclusively for injection. The main action or effect of each of the spaces 11 and 12 is divided so as to converge in the short direction of No. 4 (the abrasive S is microscopically dispersed even in the rectification space 12). The diffusion of the abrasive S in the buffer space 11 works so as to make the abrasive S uniform in the longitudinal direction of the injection port 4, but the diffusion of the abrasive S in the buffer space 11 is sufficiently large with the abrasive S having a relatively large mass. May not be. As for the abrasive S having such a relatively large mass, as shown in FIG. 12, the rectifying space 12 sandwiched between the multi-step slopes 33, 33 narrowing the short direction of the injection port 4 is formed, and the convergent abrasive S Should be made to collide with the multi-step slopes 33, 33 to further diffuse the abrasive S in the longitudinal direction of the injection port 4.
[0038]
In this case, the injection speed of the abrasive S is slightly lower than that in the example in which the rectification space 12 is sandwiched between the continuous slopes 20 and 20 (see FIG. 7). Can sufficiently diffuse the polishing material S with insufficient. Further, the reduction in the injection speed of the abrasive S has an advantage that the rate at which the injection port 4, the slit groove 21 of the injection guide portion 15, or the wear-resistant member 27 is worn is suppressed. As for the blast nozzle 1 constituting the rectification space 12 sandwiched between the multi-stage slopes 33, 33, as shown in FIGS. An inexpensive blast nozzle 1 can be provided.
[0039]
【The invention's effect】
The present invention provides a blast nozzle having a slit-shaped injection port, in which a polishing material can be diffused substantially uniformly in the longitudinal direction of the injection port, and a printed circuit board or a silicon wafer that is complicated or enlarged can be reduced in a short time. The effect of blasting with high quality is brought. In the past, blast nozzles with slit-shaped injection ports and blast nozzles that formed obstacles (surfaces) intersecting with the final abrasive injection direction were seen. It was difficult to make the diffusion uniform in the longitudinal direction of the injection port. According to the present invention, (1) the diffusion direction of the abrasive in the longitudinal direction of the injection port is realized by making the supply direction of the abrasive and the injection direction substantially orthogonal to each other.
[0040]
According to the diffusion of the abrasive according to the present invention, (2) all of the abrasive supplied from the supply port to the buffer chamber once collides with the inner surface of the buffer space and is reflected, and the reflected abrasive is reflected toward the supply port. This is realized by the abrasive colliding with the sequentially supplied abrasive. In the present invention, instead of leaving the abrasive scattered by colliding with the inner surface of the buffer space, the abrasive is more uniformly reduced by lowering the suppression slope forming the upper surface of the buffer space at an appropriate opening degree. Get the effect of spreading.
[0041]
In addition, it is basically desirable to configure the buffer chamber and the rectification chamber symmetrically in the front-rear direction (the supply direction of the abrasive) and left and right (the direction perpendicular to the supply direction). If one of them is a flat plate, the production cost and operation cost (replacement cost) of the blast nozzle of the present invention can be reduced.
[0042]
The abrasive diffused in the buffer space is guided to (3) a rectifying chamber below the buffer chamber following the buffer space, and converged by (a) a rectifying space sandwiched between continuous slopes or (b) a rectifying space sandwiched between multi-stage slopes. However, the injection can be performed while maintaining the uniformity of the density in the longitudinal direction of the slit-shaped injection port. The rectifying space of the former (a) has an effect of converging as much as possible without obstructing the flow of the abrasive, and the rectifying space of the latter (b) has an effect of compensating for the diffusion of the abrasive which is insufficient only with the buffer space. The present invention can use these rectification spaces properly.For example, when a rectification chamber is formed from divided rectification chamber members, a continuous slope and a multi-step slope are formed for each rectification chamber member, and rectification sandwiched between asymmetric slopes. A space can also be configured.
[0043]
The injection guide portion realizes inexpensive and simple replacement of parts by using a portion worn by the abrasive to be injected as a guide block or a wear-resistant member instead of the injection port at the lower end of the flow regulating chamber. Accordingly, the cost for operating the blast nozzle can be reduced, and the present invention brings high cost effectiveness, in combination with the shortening of the blast processing time as a blast nozzle having a slit-shaped injection port.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating an example of a blast nozzle of the present invention.
FIG. 2 is a front view of the blast nozzle.
FIG. 3 is a side view of the blast nozzle.
FIG. 4 is an exploded perspective view of a blast nozzle.
FIG. 5 is an exploded perspective view of a blast nozzle in which a buffer chamber member and a rectifying chamber member are separated.
FIG. 6 is a perspective view corresponding to FIG. 1, showing another example of a blast nozzle extending an ejection port in a longitudinal direction.
FIG. 7 is a vertical sectional view of an injection port for explaining an injection process of an abrasive by a blast nozzle.
FIG. 8 is a front view showing only a back-side member for explaining a process of spraying an abrasive by a blast nozzle.
FIG. 9 is a perspective view illustrating a use state of the blast nozzle of the present invention.
FIG. 10 is a vertical cross-sectional view of an injection port corresponding to FIG. 7 of another example in which the back side member is formed of a flat plate.
FIG. 11 is a vertical sectional view of an injection port corresponding to FIG. 7 of another example in which the front side member is formed of a flat plate.
FIG. 12 is a vertical cross-sectional view of an injection port corresponding to FIG. 7 of another example in which a rectification space sandwiched between multi-stage slopes is formed.
FIG. 13 is a vertical cross-sectional view of an injection port corresponding to FIG. 7 of another example in which a rectifying space having a multi-step slope is formed, and a back side member is formed of a flat plate.
FIG. 14 is a vertical cross-sectional view of another example of the injection port corresponding to FIG. 7 in which a rectifying space having a multi-step slope is formed and a front side member is formed of a flat plate.
[Explanation of symbols]
1 Blast nozzle
2 Buffer chamber members
3 Rectification chamber members
4 injection port
5 Back side members
6 buffer room
7 Rectification room
8 Front side members
9 Supply port
10 Back side of buffer space
11 Buffer space
12 Rectifying space
15 Injection guide
18 Suppression slope
20 continuous slopes
21 slit groove
22 Information block
25 Spacer
27 Wear-resistant members
33 Multi-level slope
S abrasive
L Length of injection port
S1 Abrasive supply direction
S2 Abrasive spray direction
M Abrasive spraying range
α Slope angle of suppression slope
β Buffer space opening
γ Downhill slope of continuous slope

Claims (11)

研磨材を加圧流体と共に高速に噴射し、被加工物表面を研削加工するブラスト加工装置に用いるブラスト用ノズルにおいて、研磨材を流すノズル経路は研磨材の供給口を備えたバッファ室とスリット状の噴射口を備えた整流室とからなり、バッファ室は側面に開口した供給口から下方に向けて扇状に拡開するバッファ空間を形成し、前記供給口の対面であるバッファ空間奥面に供給されてきた研磨材が衝突するように該研磨材の供給方向を定め、整流室は前記バッファ空間の拡開に直交する方向かつ下方へ向けて絞る整流空間を形成し、該整流空間下端の開口をスリット状の噴射口として、バッファ空間から下方に向けて噴射口に至るように研磨材の噴射方向を定めてなり、前記研磨材の供給方向と該研磨材の噴射方向とが略直交関係にあることを特徴とするブラスト用ノズル。In a blasting nozzle used in a blasting machine that injects abrasives at high speed together with a pressurized fluid and grinds the surface of the workpiece, the nozzle path through which the abrasives flow is a buffer chamber with an abrasive supply port and a slit-like path. The buffer chamber forms a buffer space that expands in a fan shape downward from the supply port opened to the side, and supplies the buffer space to the inner side of the buffer space facing the supply port. The supply direction of the abrasive material is determined so that the abrasive material collides, and the rectification chamber forms a rectification space that narrows downward in a direction perpendicular to the expansion of the buffer space, and an opening at the lower end of the rectification space. Is a slit-shaped injection port, the injection direction of the abrasive is determined so as to reach the injection port downward from the buffer space, and the supply direction of the abrasive and the injection direction of the abrasive are substantially orthogonal to each other. is there Blast nozzle according to claim and. バッファ室は、供給口から下方に向けて開度100〜140度で左右対称に扇状で拡開するバッファ空間を形成した請求項1記載のブラスト用ノズル。2. The blast nozzle according to claim 1, wherein the buffer chamber has a buffer space that expands in a fan-like manner in a left-right symmetrical manner at an opening of 100 to 140 degrees downward from the supply port. バッファ室は、噴射口を垂直な半割面で分割した一対のバッファ室部材からなる請求項1記載のブラスト用ノズル。2. The blast nozzle according to claim 1, wherein the buffer chamber comprises a pair of buffer chamber members in which the injection port is divided by a vertical half-plane. バッファ室部材のいずれか一方が、半割面に平行な平面板である請求項3記載のブラスト用ノズル。4. The nozzle for blast according to claim 3, wherein one of the buffer chamber members is a flat plate parallel to the half surface. 整流室は、噴射口を含む垂直な半割面で分割した一対の整流室部材からなる請求項1記載のブラスト用ノズル。The blast nozzle according to claim 1, wherein the rectifying chamber is composed of a pair of rectifying chamber members divided by a vertical half surface including an injection port. 整流室部材のいずれか一方が、半割面に平行な平面板である請求項3記載のブラスト用ノズル。The nozzle for blast according to claim 3, wherein one of the rectifying chamber members is a flat plate parallel to the half surface. 整流室は、バッファ空間の拡開に直交する方向かつ下方へ向けて絞る下り勾配の連続斜面に挟まれた整流空間を形成する請求項1記載のブラスト用ノズル。The blast nozzle according to claim 1, wherein the rectification chamber forms a rectification space sandwiched by a continuous slope having a downward slope narrowed downward in a direction orthogonal to the expansion of the buffer space. 整流室は、バッファ空間の拡開に直交する方向かつ下方へ向けて絞る下り勾配の多段斜面に挟まれた整流空間を形成する請求項1記載のブラスト用ノズル。The blast nozzle according to claim 1, wherein the rectification chamber forms a rectification space sandwiched between multi-step slopes having a downward slope narrowed downward in a direction orthogonal to the expansion of the buffer space. 整流室は、噴射口に略相似なスリット溝を有する噴射案内部を該噴射口に付設してなり、該噴射案内部は長尺な一対の案内ブロックを短尺方向で接近離反させて個別に整流室へ固着することにより前記スリット溝を形成する請求項1記載のブラスト用ノズル。The rectifying chamber is provided with an ejection guide portion having a slit groove substantially similar to the ejection port on the ejection port, and the ejection guide portion individually rectifies the pair of long guide blocks by approaching and separating in the short direction. The blast nozzle according to claim 1, wherein the slit groove is formed by being fixed to a chamber. 噴射案内部は、案内ブロックそれぞれに各案内ブロックの短尺方向に延在する長孔を設けてなり、整流室に対して前記長孔の任意の位置でネジ止めすることにより、案内ブロックを短尺方向で接近離反させて所定幅のスリット溝を形成する請求項9記載のブラスト用ノズル。The injection guide portion is provided with a long hole extending in the short direction of each guide block in each of the guide blocks. The blast nozzle according to claim 9, wherein a slit groove having a predetermined width is formed by approaching and separating with each other. 噴射案内部は、短尺方向で接近離反する案内ブロックの対面位置に、噴射口の長手長さ以上のモース硬度9又は10の耐摩耗部材を装着する請求項9記載のブラスト用ノズル。The blast nozzle according to claim 9, wherein the injection guide portion is provided with a wear-resistant member having a Mohs' hardness of 9 or 10 or more at least equal to the longitudinal length of the injection port, at a position facing the guide block approaching and separating in the short direction.
JP2002292631A 2002-10-04 2002-10-04 Blast nozzle Pending JP2004122327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292631A JP2004122327A (en) 2002-10-04 2002-10-04 Blast nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292631A JP2004122327A (en) 2002-10-04 2002-10-04 Blast nozzle

Publications (1)

Publication Number Publication Date
JP2004122327A true JP2004122327A (en) 2004-04-22

Family

ID=32283829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292631A Pending JP2004122327A (en) 2002-10-04 2002-10-04 Blast nozzle

Country Status (1)

Country Link
JP (1) JP2004122327A (en)

Similar Documents

Publication Publication Date Title
US8308525B2 (en) Processes and apparatuses for enhanced cutting using blends of abrasive materials
US20050017091A1 (en) Abrasive water-jet cutting nozzle having a vented water-jet pathway
TW333489B (en) Blasting method and apparatus
JPH06304501A (en) Air addition type atomizing device suitable for coating
EP1072307B1 (en) Injection apparatus for gas-liquid mixed flow
CN101616779B (en) Apparatus for scattering fibrous material, e.g. chips
EP2906391B1 (en) Nozzle for fine-kerf cutting in an abrasive jet cutting system
TWI441716B (en) Spray nozzles for jetting
KR101044670B1 (en) Grinding Method for Workpiece, Jet Guide Means and Jet Regulation Means Used for the Method
JP2004122327A (en) Blast nozzle
JP2942168B2 (en) Method and apparatus for enlarging processing pattern in blast processing
KR101977551B1 (en) System of water jet apparatus having multi-head
US4800688A (en) Blasting nozzle for wet blasting machine
JP7146173B2 (en) Polishing device, polishing system and polishing method
CN105983909A (en) Screen netting and method for producing a screen netting
JP2004009257A (en) Peening processing method
CN2254783Y (en) Emulsion blowing-cleaning apparatus for the exit of cold rolling machine end frame
JP4287528B2 (en) Nozzles in blasting equipment
JP7496649B1 (en) Nozzle body
JPH1177545A (en) Polishing material injection nozzle for pneumatic shot blasting device
JP5179911B2 (en) Powder injection nozzle
JP2004017241A (en) Peening processing device
JP2003191167A (en) Nozzle for sand blast and sand blast method
JPH11333725A (en) Powder and granular material ejection nozzle
JPS5890463A (en) Method and apparatus of grinding and cleaning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210