JP2004119290A - Gas-blast circuit breaker - Google Patents

Gas-blast circuit breaker Download PDF

Info

Publication number
JP2004119290A
JP2004119290A JP2002283856A JP2002283856A JP2004119290A JP 2004119290 A JP2004119290 A JP 2004119290A JP 2002283856 A JP2002283856 A JP 2002283856A JP 2002283856 A JP2002283856 A JP 2002283856A JP 2004119290 A JP2004119290 A JP 2004119290A
Authority
JP
Japan
Prior art keywords
contact
nozzle
arc
circuit breaker
gas circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002283856A
Other languages
Japanese (ja)
Other versions
JP4131926B2 (en
Inventor
Norimitsu Kato
加藤 紀光
Hiromoto Ito
伊藤 弘基
Daisuke Yoshida
吉田 大輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Mitsubishi Electric Corp
Original Assignee
Toshiba Corp
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Mitsubishi Electric Corp filed Critical Toshiba Corp
Priority to JP2002283856A priority Critical patent/JP4131926B2/en
Publication of JP2004119290A publication Critical patent/JP2004119290A/en
Application granted granted Critical
Publication of JP4131926B2 publication Critical patent/JP4131926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle

Landscapes

  • Circuit Breakers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the danger of degradation of direct-current insulation performance without concentrating equipotential lines in a gap between a downstream side tip part of a nozzle and a conductive structure member. <P>SOLUTION: With respect to the gas-blast circuit breaker provided with a main contact point 5 consisting of a fixed contact point and a movable contact point, an arc contact point 7 consisting of a fixed contact point and a movable contact point for generating an arc by transferring current at opening of the main contact point, a nearly cylindrical nozzle fitted to the movable contact point of the main contact point structured of an insulator for leading in arc-extinguishing gas and blasting it between the arc contact points to extinguish the arc at opening of the arc contact points, and a conductive structure member 3a with its inner face nearly cylindrical with the fixed contact point of the main contact point and the fixed contact point of the arc contact point fitted at positions facing the movable contact points of each, the nozzle 11 is structured in a size and shape in which its downstream side tip slides along an inner face of the conductive structure member with a faint gap, and a contact means 14 for keeping an electric connection with the conductive structure member is provided at an outer periphery face of the downstream side tip of the nozzle. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高電圧系統に設けられるガス遮断器に関する。
【0002】
【従来の技術】
高電圧の電力系統などで多く用いられているガス遮断器は、接点開離時にSFなどの消弧性能の高い絶縁ガスを絶縁物からなるノズルを介して固定接点と可動接点との間隙部に吹付け、固定及び可動接点間に発生するアークを消弧して大電流を遮断するものである。
【0003】
図7は従来のガス遮断器の構成例を示す断面図である。
【0004】
図7において、1は内部に接点部が設けられる円筒状の容器で、この容器1の一方の開口端部には操作筒2が、他方の開口端部には冷却筒3が同一軸線上にそれぞれ取付けられ、これらにより消弧室4が構成されている。
【0005】
容器1内には通常の電流を流す固定接点5aが冷却筒3の内側筒状部に取付けて設けられると共に、冷却筒3内にスペーサ6を介して支持され且つ先端部を容器1内の中心軸線上に臨ませて遮断時にアーク電流を流す固定接点7aが設けられている。
【0006】
また、操作筒2内にはその中心軸線上に中空操作軸8を有するパッファシリンダ9がパッファピストン10の外周面に沿って軸方方向に摺接移動可能に設けられ、このパッファシリンダ9の先端部に固定接点5aに対峙させて接離可能に可動接点5bが取付けられると共に、その内側に固定接点7aに対峙させて接離可能に可動接点7bが取付けられ、さらに可動接点5bとアーク可動接点7bとの間にアーク固定接点7bにSF6などの絶縁ガスを吹付ける絶縁物からなるノズル11が取付けられている。
【0007】
ここで、通常の電流を流す固定接点5aと可動接点5bは、主接点5を構成し、遮断時にアーク電流を流す固定接点7aと可動接点7bは、アーク接点7を構成している。
【0008】
このような構成のガス遮断器において、図示しない操作機構により中空操作軸8が開路操作されると、まず主接点5の固定接点5aと可動接点5bとが開離し、電流が主接点5からアーク接点7に移行する。
【0009】
次にアーク接点7の固定接点7aと可動接点7bとが開くと、これら接点間にアークが発生する。これと平行してパッファシリンダ9の移動によりパッファピストン10との間に形成されるパッファ室12が縮小され、このパッファ室12に存在しているSF6ガスが圧縮され、ノズル11を通してアーク接点7間に吹付けられる。
【0010】
このノズル11から強力に吹付けられたSFガスにより、アークは急速に冷却されて消滅し、電流が遮断される。このとき、ノズル11の下流側に設けられた冷却筒3内では、アークによって高温となったSF6ガスが徐々に冷却され、消弧室外部に排出される。
【0011】
ところで、熱ガスは高温で密度が低いため、通常のSFに比べ絶縁性能が低い。また、電流遮断時には高い過渡回復電圧が発生するので、冷却筒3から排出される熱ガスをうまく制御して高い回復電圧に絶縁が耐えられるようにすることが設計の重要なポイントとなる。
【0012】
近年のガス遮断器においては、小型化、高性能化が進み、同一定格の遮断器はその体格が益々小さくなる傾向にある。また、冷却筒3も小型化が進んでいるが、冷却筒2の流路断面積が小さ過ぎると、発生した熱ガスが冷却筒3の内部に充満し、下流への流れが阻害される。すると、熱ガスはアーク接点や主接点の方へ逆流を始めるが、アーク接点側はガスの圧縮があり、絶縁耐力が高いため、破壊の可能性は比較的低い。しかし、万一熱ガスが主接点の方へ流れ込んで絶縁破壊すると、主接点には電流遮断能力が全くないので、遮断不能となり、極めて重大な故障モードとなる。
【0013】
そこで、最近のガス遮断器においては、図8に示すようにノズル11の下流側先端を広げて冷却筒3内部の円筒部材3aと小ギャップ13を保ちながら摺動するような構成とし、熱ガスが主接点5に逆流しないような構成とすることが多い。
【0014】
ここで、小ギャップ13を設ける理由は、ノズル11にPTFE(テフロン)系の材料を用いる場合が多く、線膨張係数が大きいため、高温となって膨張した際に冷却筒3内部の円筒部材3aと接触と固渋するのを避けるためである。
【0015】
このような構成にすると、ノズル11は開路状態でも接点間を橋絡する形で配置されるので、ノズル11には遮断器極間の全電圧が印加されることになる。また、負荷電流や短絡電流の場合には、回復電圧は交流となるが、絶縁物であるノズル11にとってはそれほど厳しい条件ではない。
【0016】
一方、ガス遮断器により無負荷送電線、ケーブル充電電流、コンデンサバンクなどを開閉した後は、片側に直流電圧が残るので、極間にも直流電圧が印加されることになる。
【0017】
従って、絶縁物が存在する交流電界は、絶縁物の誘電率で支配されるのに対して、直流電界の場合には絶縁物の抵抗率で支配される。
【0018】
ここで、代表的な消弧室の極間の交流等電位線を図9に示し、直流等電位線を図10に示す。
【0019】
直流電界の場合、絶縁物と金属の間に微小なギャップが存在すると、ギャップの低効率が高いので、等電位線がギャップに集中して部分的に極めて高い電界を発生し、場合によってはそこを起点として絶縁破壊が発生する可能性があり、大変深刻な問題となる。
【0020】
また、磁気碍管ブッシングなどを有するガス遮断器の場合には、碍管表面の漏れ電流によって送電線などに残った電荷が次第に減衰して直流電圧も低下して行く。しかし、ケーブル接続のガス絶縁開閉装置に用いられているガス遮断器の場合、電荷が短時間のうちに逃げるルートがないため、直流電圧が減衰せず継続時間が長くなり、より一層深刻な問題となる。
【0021】
【発明が解決しようとする課題】
このように従来のガス遮断器では、ノズル下流側先端と冷却筒円筒部材の間にギャップが存在するため、直流電圧が印加される場合、そこに等電位線が集中して絶縁破壊に至るという問題がある。
【0022】
本発明は上記のような事情に鑑みてなされたもので、ギャップ部に等電位線が集中することなく、直流絶縁性能の低下の危険性もないガス絶縁遮断器を提供することを目的とする。
【0023】
【課題を解決するための手段】
本発明は上記の目的を達成するため、次のような手段によりガス遮断器を構成する。
【0024】
請求項1に対応する発明は、固定接点及びこの固定接点に接離可能な可動接点からなる主接点と、この主接点の開離時に電流を移行させてアークを発生させる固定接点及びこの固定接点に接離可能な可動接点からなるアーク接点と、前記主接点の可動接点に取付けられ、前記アーク接点の開離時に消弧性ガスを導入し前記アーク接点間に吹付けてアークを消弧する絶縁物で構成されたほぼ円筒形状のノズルと、前記主接点の固定接点及び前記アーク接点の固定接点をそれぞれの可動接点に対峙する位置に設けた内面がほぼ円筒形の導電性構造部材とを備えたガス遮断器において、前記ノズルを、その下流側先端が常時前記導電性構造部材の内面と微小ギャップを保ちつつ摺動する大きさ及び形状に構成し、且つ前記ノズルの下流側先端部の外周面に前記導電性構造部材と電気的接続を保持する接触手段を設ける。
【0025】
請求項2に対応する発明は、請求項1に対応する発明のガス遮断器において、前記接続手段は、前記接触手段は、前記ノズルの下流側先端部の外周面に設けられた円周方向の溝内に導電性オーリングを嵌め込んだ構成として、前記ノズルと前記導電性構造部材とが摺動可能で且つ常時接触するようにしたものである。
【0026】
請求項3に対応する発明は、請求項2に対応する発明のガス遮断器において、前記導電性オーリングは、エチレン・プロピレンゴムを主成分として構成されたものである。
【0027】
請求項4に対応する発明は、請求項2又は請求項3に対応する発明のガス遮断器において、前記ノズルに設けられた溝に前記オーリングが密閉空間に閉じ込められるように樹脂製の摺動部材を嵌め込む。
【0028】
請求項5に対応する発明は、請求項1記載のガス遮断器において、前記接触手段は、前記ノズルの下流側先端部の外周面に設けられた円周方向の溝内に波板バネを嵌め込んだ構成として、前記ノズルと前記導電性構造部材とが摺動可能で且つ常時接触するようにしたものである。
【0029】
請求項6に対応する発明は、請求項5に対応する発明のガス遮断器において、前記ノズルに設けられた溝に前記波板バネが密閉空間に閉じ込められるように樹脂製の摺動部材を嵌め込む。
【0030】
請求項7に対応する発明は、請求項1に対応する発明のガス遮断器において、前記接触手段は、前記ノズルの下流側先端部に複数個の半径方向の穴を円周方向に設け、この穴に樹脂製の摺動部材からなる頭付ピンを弾性体を介して取付けた構成として、前記ノズルと前記導電性構造部材とが摺動可能で且つ常時接触するようにしたものである。
【0031】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
【0032】
図1は本発明によるガス遮断器の第1の実施形態を示す断面図で、図7と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
【0033】
第1の実施形態では、図1に示すように消弧室4の固定側、つまり冷却筒3側に内面がほぼ円筒形の導電性構造部材3aをアーク接点7の固定接点7bと同心円状に配置し、可動接点5bに取付けられるノズル11の下流側先端部を導電性構造部材3aの内面と微小ギャップ13を保ちつつ摺動する大きさ及び形状に構成し、且つノズル11の下流側先端部外面と導電性構造部材3aとの間に常時電気的接続を保持する導電性を有する接触部材14を設けるものである。
【0034】
このような構成のガス遮断器とすれば、ノズル先端は、円筒形導電性構造部材3aとの間に微小ギャップしか存在していないので、電流遮断時に発生した高温の熱ガスが消弧室4の主接点5へ流れ込んで、主接点5を起点とする絶縁破壊を防止することができる。
【0035】
一方、ケーブル充電電流などを遮断した後に直流電圧が残った場合でも、ノズル11の先端部には微小ギャップ13があるもののノズル11と固定側は電気的に接続されているので、等電位線がギャップ部分に集中して高い電界になることはない。
【0036】
図2は本発明によるガス遮断器の第2の実施形態を示す断面図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
【0037】
第2の実施形態では、ノズル11の下流側先端部外面の円周方向に溝15を設け、この溝15内に導電性を有するオーリング16を嵌め込んでノズル先端と導電性構造部材13とを常時電気的に接続するようにしたものである。この場合、オーリング16は弾性体であり、ノズル11が多少膨張して寸法変化しても接触と摺動を十分維持することが可能である。また、オーリング16に微量のカーボンなどを添加することで、導電性を有する特性にすることができる。
【0038】
このような構成のガス遮断器とすれば、簡単な構成で第1の実施形態と同様の効果を得ることができ、またオーリング16を用いることで熱ガスの主接点方向への侵入を完全に防ぐことができる。
【0039】
ここで、上記オーリング16としてエチレン・プロピレンゴムを主成分とした材料を用いることにより、高温条件下や分解ガス存在下でも、性能劣化を起こすことなく、前述した効果を得ることができる。
【0040】
ガス遮断器は、電流遮断時にSFガスを分解し、SF、SOF、HFなどの反応性の高いガスが発生する。オーリング16にもこれらのガスが影響を及ぼす可能性があるので、耐薬品性の強いオーリングを選定することが好ましい。
【0041】
また、遮断器は通常の運転状態では、周囲温度から65度まで通電部分の温度が上昇することが許容されている。つまり、このオーリング16には105度程度でも所要の性能を発揮することが要求されることになる。そこで、使用温度が高く、耐薬品性能を要求される用途としては、エチレン・プロピレンゴムが最も適していると考えられる。
【0042】
図3は本発明によるガス遮断器の第3の実施形態を示す断面図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
【0043】
オーリング16としてエチレン・プロピレンゴムを用いても、極めて大きな遮断電流の場合や、極めて高い品質が要求される場合には、分解ガスに対する懸念が完全に払拭できない場合がある。
【0044】
第3の実施形態では、図3に示すようにオーリング16と固定側円筒形導電性構造部材3aとの間に、帯状の樹脂製摺動リング17を挿入するものである。ここで、もう少し詳細に述べると、オーリング16を入れた溝15の上からPTFEなどの樹脂により形成された帯状の樹脂製摺動リング17を全周に亘って嵌め込む。
【0045】
この場合、帯状の樹脂製摺動リング17が摺動しているうちに、このリングが外れないように溝15の中に帯板の厚み方向が半分程度入るような構成にしておく必要がある。
【0046】
このような構成とすれば、オーリング16はほぼ密閉空間に閉じ込められ、分解ガスに直接接しないので、分解ガスの影響を極めて受けにくくなり、オーリング接触部の信頼性を更に高めることかできる。
【0047】
図4は本発明によるガス遮断器の第4の実施形態を示し、(a)は断面図、(b)は(a)のA−A線に沿う矢視断面図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
【0048】
第4の実施形態では、ノズル11の下流側先端の外表面円周方向に溝15を設け、この溝15内に波板バネ18を嵌め込んでノズル11の先端と導電性構造部材3aとを接触させて常時電気的に接続するようにしたものである。
【0049】
このような構成としても、第2の実施形態と同様の効果が得られることに加え、次のような作用効果を得ることができる。
【0050】
すなわち、この波板バネ18によるノズル11の先端と導電性構造部材3aとの接触方式は、オーリング16に比べて接触荷重を自由に設定することが比較的容易で、かつバネのストロークを大きくとることが可能である。これにより、摺動抵抗の低減、かじり防止などの効果を持たせることが可能である。また、波板バネ18にはバネ鋼を用いて構成すれば、ゴムに比べて耐分解ガス性能が遥かに高いので、分解ガスによる劣化がほとんどなくなる。
【0051】
図5は本発明によるガス遮断器の第5の実施形態を示す断面図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
【0052】
前述した第4の実施形態では、バネ荷重を最適値に設定することができるが、波板バネ18の山の部分が導電性構造部材3aの円筒部内面に当たった場合、かじりを生じる可能性がある。
【0053】
第5の実施形態では、図5に示すように波板バネ18と導電性構造部材3aとの間に、第3の実施形態と同様に帯状の樹脂製摺動リング17を挿入するようにしたものである。
【0054】
このような構成とすれば、第1の実施形態と同様の効果が得られることに加えて、テフロンなどの帯状の樹脂製摺動リング17を波板バネ18と導電性構造部材3aとの間に介在させることにより、波板バネ18の山部のかじりを防止することができる。
【0055】
図6は本発明によるガス遮断器の第6の実施形態を示す断面図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分について述べる。
【0056】
前述した第2の実施形態乃至第5の実施形態では、いずれもノズル11の先端部に溝15を設ける必要がある。ノズル11は接点交換時の治具取付けのためにノズルの下流側先端部に切欠き19を設ける場合があるが、円周方向に溝があるとこの切欠きが構成しにくく、しかも長手方向に冗長になる。
【0057】
そこで、本実施形態では、図6に示すようにノズル11の先端部に半径方向の穴20を円周方向に沿って3〜4個設け、これらの穴内にコイルバネなどの弾性体21を介して摺動部材で構成された頭付ピン22をそれぞれ挿入するものである。
【0058】
この場合、頭付ピン22は弾性体21に押されて導電性構造部材3aとノズル11との間で常に電気的接触を維持している。また、頭付ピン22はPTFEなどの樹脂製で摺動特性に優れた材料を用いることで、かじりを防止できるようにしている。
【0059】
このような構成とすれば、第1の実施形態と同様の効果が得られることに加え、ノズル交換治具取付用の切欠きがノズル11の先端部に設けられていても、この切欠きによる影響を受けずに導電性構造部材3aとノズル11との間で常に電気的接触を維持させることができる。
【0060】
【発明の効果】
以上述べたように本発明によるガス遮断器によれば、ノズルの下流側先端部が固定側の円筒状導電性構造物の内面を微小なギャップを保持しつつ摺動するようにしたので、電流遮断時に発生した熱ガスが主接点方向へ流れ込むことを防止できると共に、進み電流遮断後などに発生する直流電圧が消弧室に印加された場合でも、ノズル先端の微小ギャップを起点として絶縁破壊することのない消弧室を構成することができ、また反応性の高い分解ガスへの対策もとることが可能である。
【0061】
また、冷却筒の大きさや消弧室自体の大きさ、ガスを封入する容器の大きさ、更には遮断器としての体格を小さくできるとともに、高性能化を進めることができる。
【図面の簡単な説明】
【図1】本発明によるガス遮断器の第1の実施形態を示す断面図。
【図2】本発明によるガス遮断器の第2の実施形態の要部を示す断面図。
【図3】本発明によるガス遮断器の第3の実施形態の要部を示す断面図。
【図4】本発明によるガス遮断器の第4の実施形態の要部を示し、(a)は断面図、(b)は(a)のA−A線に沿う矢視断面図。
【図5】本発明によるガス遮断器の第5の実施形態の要部を示す断面図。
【図6】本発明によるガス遮断器の第6の実施形態を示すもので、(a)は要部断面図、(b)は円筒形導電性構造物とノズルの先端部との接触部を示す径方向断面図、(c)は(b)のX部を拡大して示す断面図。
【図7】従来のガス遮断器の構成例を示す断面図。
【図8】従来の熱ガス逆流対策を施したガス遮断器の要部を示す断面図。
【図9】従来のガス遮断器において、代表的な消弧室の極間の交流等電位線を示す断面図。
【図10】同じく代表的な消弧室の極間の直流等電位線を示す断面図。
【符号の説明】
1…容器
2…操作筒
3…冷却筒
4…消弧室
5…主接点(固定接点5a、可動接点5b)
6…スペーサ
7…アーク接点(アーク固定接点7a、アーク可動接点7b)
8…中空操作軸
9…パッファシリンダ
10…パッファピストン
11…ノズル
12…パッファ室
13…微小ギャップ
14…接触部材
15…溝
16…オーリング
17…樹脂製摺動リング
18…波板バネ
19…切欠き
20…穴
21…弾性体
22…頭付ピン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas circuit breaker provided in a high voltage system.
[0002]
[Prior art]
Gas circuit breaker is often used in such electric power system of the high voltage, the gap between the fixed contact and the movable contact upon contact opening through a nozzle made of a highly insulating gas of extinguishing performance, such as SF 6 insulating material To cut off a large current by extinguishing the arc generated between the fixed and movable contacts.
[0003]
FIG. 7 is a sectional view showing a configuration example of a conventional gas circuit breaker.
[0004]
In FIG. 7, reference numeral 1 denotes a cylindrical container provided with a contact portion therein. An operation tube 2 is provided at one open end of the container 1 and a cooling tube 3 is provided at the other open end thereof on the same axis. Each is attached, and these constitute an arc extinguishing chamber 4.
[0005]
A fixed contact 5a through which a normal electric current flows is attached to the inside cylindrical portion of the cooling cylinder 3 and is supported in the cooling cylinder 3 via a spacer 6 and has a front end in the center of the container 1. A fixed contact 7a is provided facing the axis and through which an arc current flows when interrupted.
[0006]
A puffer cylinder 9 having a hollow operation shaft 8 on its central axis is provided in the operation cylinder 2 so as to be slidable in the axial direction along the outer peripheral surface of the puffer piston 10. A movable contact 5b is attached to the portion so as to be able to contact and separate from the fixed contact 5a, and a movable contact 7b is attached to the inside thereof so as to be able to contact and separate from the fixed contact 7a. A nozzle 11 made of an insulator that blows an insulating gas such as SF6 is attached to the arc fixed contact 7b between the nozzle 11 and the nozzle 7b.
[0007]
Here, the fixed contact 5a and the movable contact 5b through which a normal current flows form the main contact 5, and the fixed contact 7a and the movable contact 7b through which the arc current flows when the arc is cut off form the arc contact 7.
[0008]
In the gas circuit breaker having such a configuration, when the hollow operating shaft 8 is opened by an operating mechanism (not shown), first, the fixed contact 5a and the movable contact 5b of the main contact 5 are separated from each other, and the electric current flows from the main contact 5 to the arc. The operation proceeds to the contact 7.
[0009]
Next, when the fixed contact 7a and the movable contact 7b of the arc contact 7 open, an arc is generated between these contacts. In parallel with this, the puffer chamber 12 formed between the puffer piston 10 and the puffer piston 10 is reduced by the movement of the puffer cylinder 9, the SF6 gas existing in the puffer chamber 12 is compressed, and the gas flows between the arc contact 7 through the nozzle 11. Sprayed on.
[0010]
The arc is rapidly cooled and extinguished by the SF 6 gas strongly blown from the nozzle 11, and the current is cut off. At this time, in the cooling cylinder 3 provided on the downstream side of the nozzle 11, the SF6 gas heated to a high temperature by the arc is gradually cooled and discharged to the outside of the arc-extinguishing chamber.
[0011]
Meanwhile, hot gas for a low density at high temperature, a low insulation performance compared to conventional SF 6. In addition, since a high transient recovery voltage is generated at the time of current interruption, it is an important point of the design to control the hot gas discharged from the cooling cylinder 3 so that the insulation can withstand the high recovery voltage.
[0012]
In recent years, gas circuit breakers have been reduced in size and improved in performance, and the size of circuit breakers of the same rating has been decreasing. Although the cooling cylinder 3 is also being miniaturized, if the cross-sectional area of the flow passage of the cooling cylinder 2 is too small, the generated hot gas fills the inside of the cooling cylinder 3 and obstructs the flow to the downstream. Then, the hot gas starts to flow backward toward the arc contact and the main contact, but the arc contact side has a gas compression and a high dielectric strength, so that the possibility of destruction is relatively low. However, if a hot gas flows into the main contact and causes a dielectric breakdown, the main contact has no current interrupting capability at all and cannot be interrupted, resulting in a very serious failure mode.
[0013]
Therefore, in a recent gas circuit breaker, as shown in FIG. 8, the downstream end of the nozzle 11 is widened so as to slide while keeping the small gap 13 with the cylindrical member 3a inside the cooling cylinder 3, and the hot gas Of the main contact 5 does not flow backward.
[0014]
Here, the reason why the small gap 13 is provided is that a PTFE (Teflon) -based material is often used for the nozzle 11 and has a large linear expansion coefficient. This is in order to avoid contact and firmness.
[0015]
With such a configuration, the nozzle 11 is arranged so as to bridge the contacts even in the open state, so that the entire voltage between the circuit breaker electrodes is applied to the nozzle 11. In the case of a load current or a short-circuit current, the recovery voltage is AC, but the condition is not so severe for the nozzle 11 which is an insulator.
[0016]
On the other hand, after opening and closing the no-load transmission line, cable charging current, capacitor bank, and the like by the gas circuit breaker, a DC voltage remains on one side, so that a DC voltage is also applied between the poles.
[0017]
Therefore, an AC electric field in which an insulator exists is governed by the dielectric constant of the insulator, whereas a DC electric field is governed by the resistivity of the insulator.
[0018]
Here, an AC equipotential line between the poles of a typical arc-extinguishing chamber is shown in FIG. 9, and a DC equipotential line is shown in FIG.
[0019]
In the case of a DC electric field, if there is a small gap between the insulator and the metal, the efficiency of the gap is high, so the equipotential lines concentrate in the gap and partially generate an extremely high electric field. , Dielectric breakdown may occur, which is a very serious problem.
[0020]
Also, in the case of a gas circuit breaker having a magnetic insulator bushing or the like, the electric charge remaining on a transmission line or the like is gradually attenuated by the leakage current on the insulator tube surface, and the DC voltage is also reduced. However, in the case of a gas circuit breaker used in a gas-insulated switchgear connected to a cable, there is no route for the charge to escape in a short period of time, so the DC voltage is not attenuated and the duration is long, resulting in a more serious problem. It becomes.
[0021]
[Problems to be solved by the invention]
As described above, in the conventional gas circuit breaker, since there is a gap between the downstream end of the nozzle and the cylindrical member of the cooling cylinder, when a DC voltage is applied, equipotential lines are concentrated there, leading to dielectric breakdown. There's a problem.
[0022]
The present invention has been made in view of the above circumstances, and has as its object to provide a gas-insulated circuit breaker that does not cause the equipotential lines to concentrate on the gap portion and does not cause a risk of a decrease in DC insulation performance. .
[0023]
[Means for Solving the Problems]
In order to achieve the above object, the present invention constitutes a gas circuit breaker by the following means.
[0024]
The invention corresponding to claim 1 is a main contact comprising a fixed contact and a movable contact which can be brought into and out of contact with the fixed contact, a fixed contact which transfers an electric current when the main contact is opened to generate an arc, and this fixed contact An arc contact consisting of a movable contact that can be brought into contact with and separated from the main contact, and an arc-extinguishing gas introduced at the time of opening of the arc contact and blown between the arc contacts to extinguish the arc. A substantially cylindrical nozzle formed of an insulator, and a conductive structure member having a substantially cylindrical inner surface provided with a fixed contact of the main contact and a fixed contact of the arc contact at positions facing the respective movable contacts. In the gas circuit breaker provided, the downstream end of the nozzle is configured to have a size and a shape that always slides while maintaining a small gap with the inner surface of the conductive structural member, and the downstream end of the nozzle is Outside Providing a contact means for holding the conductive structural member and electrically connected to the surface.
[0025]
The invention corresponding to claim 2 is the gas circuit breaker according to the invention corresponding to claim 1, wherein the connecting means is arranged such that the contacting means is provided in a circumferential direction provided on an outer peripheral surface of a downstream end portion of the nozzle. The conductive o-ring is fitted in the groove so that the nozzle and the conductive structural member are slidable and in constant contact with each other.
[0026]
A third aspect of the present invention is the gas circuit breaker according to the second aspect of the present invention, wherein the conductive O-ring is mainly composed of ethylene-propylene rubber.
[0027]
According to a fourth aspect of the present invention, in the gas circuit breaker of the second or third aspect of the invention, a resin-made sliding member is provided such that the O-ring is confined in a closed space in a groove provided in the nozzle. Fit the member.
[0028]
According to a fifth aspect of the present invention, in the gas circuit breaker according to the first aspect, the contact means fits a corrugated spring into a circumferential groove provided on an outer peripheral surface of a downstream end portion of the nozzle. The nozzle and the conductive structural member are slidable and always in contact with each other.
[0029]
According to a sixth aspect of the present invention, in the gas circuit breaker of the fifth aspect of the invention, a resin sliding member is fitted into a groove provided in the nozzle so that the corrugated spring is confined in a closed space. Put in.
[0030]
According to a seventh aspect of the present invention, in the gas circuit breaker according to the first aspect of the present invention, the contact means provides a plurality of radial holes at a downstream end portion of the nozzle in a circumferential direction. A head pin made of a resin sliding member is attached to the hole via an elastic body, so that the nozzle and the conductive structural member are slidable and always in contact with each other.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0032]
FIG. 1 is a cross-sectional view showing a first embodiment of a gas circuit breaker according to the present invention. The same parts as those in FIG. 7 are denoted by the same reference numerals, and the description thereof will be omitted.
[0033]
In the first embodiment, as shown in FIG. 1, a conductive structural member 3 a having a substantially cylindrical inner surface is formed concentrically with the fixed contact 7 b of the arc contact 7 on the fixed side of the arc-extinguishing chamber 4, that is, on the cooling cylinder 3 side. The downstream end of the nozzle 11 attached to the movable contact 5b is sized and shaped to slide while maintaining the minute gap 13 with the inner surface of the conductive structural member 3a, and the downstream end of the nozzle 11 A conductive contact member 14 for maintaining electrical connection between the outer surface and the conductive structural member 3a at all times is provided.
[0034]
With the gas circuit breaker having such a configuration, the nozzle tip has only a small gap between the nozzle tip and the cylindrical conductive structural member 3a. To the main contact 5 to prevent the dielectric breakdown from the main contact 5 as a starting point.
[0035]
On the other hand, even if a DC voltage remains after the interruption of the cable charging current or the like, the nozzle 11 and the fixed side are electrically connected to each other even though the minute gap 13 is provided at the tip of the nozzle 11, so that the equipotential line is not generated. A high electric field does not concentrate on the gap.
[0036]
FIG. 2 is a cross-sectional view showing a second embodiment of the gas circuit breaker according to the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.
[0037]
In the second embodiment, a groove 15 is provided in the circumferential direction of the outer surface of the downstream end portion of the nozzle 11, and an O-ring 16 having conductivity is fitted in the groove 15 to form a nozzle tip and the conductive structure member 13. Are always electrically connected. In this case, the O-ring 16 is an elastic body, and can sufficiently maintain contact and sliding even when the nozzle 11 slightly expands and changes dimensions. In addition, by adding a small amount of carbon or the like to the O-ring 16, it is possible to obtain a property having conductivity.
[0038]
With the gas circuit breaker having such a configuration, the same effect as that of the first embodiment can be obtained with a simple configuration, and by using the O-ring 16, the penetration of the hot gas in the main contact direction can be completely prevented. Can be prevented.
[0039]
Here, by using a material containing ethylene / propylene rubber as a main component as the O-ring 16, the above-described effect can be obtained without causing performance deterioration even under a high temperature condition or in the presence of a decomposition gas.
[0040]
The gas circuit breaker decomposes SF 6 gas when current is interrupted, and generates highly reactive gas such as SF 4 , SOF 2 , and HF. Since these gases may affect the O-ring 16, it is preferable to select an O-ring having high chemical resistance.
[0041]
Further, in the normal operation state of the circuit breaker, the temperature of the energized portion is allowed to rise from the ambient temperature to 65 degrees. That is, the O-ring 16 is required to exhibit required performance even at about 105 degrees. Therefore, ethylene-propylene rubber is considered to be most suitable for applications requiring high use temperature and chemical resistance.
[0042]
FIG. 3 is a cross-sectional view showing a third embodiment of the gas circuit breaker according to the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.
[0043]
Even if an ethylene / propylene rubber is used as the O-ring 16, in the case of an extremely high breaking current or when extremely high quality is required, the concern about the decomposition gas may not be completely eliminated.
[0044]
In the third embodiment, as shown in FIG. 3, a strip-shaped resin sliding ring 17 is inserted between the O-ring 16 and the fixed-side cylindrical conductive structural member 3a. More specifically, a band-shaped resin-made sliding ring 17 made of a resin such as PTFE is fitted over the groove 15 in which the O-ring 16 is inserted over the entire circumference.
[0045]
In this case, it is necessary to make a configuration such that the thickness direction of the band plate is about half in the groove 15 so that the band-shaped resin sliding ring 17 does not come off while sliding. .
[0046]
With such a configuration, the O-ring 16 is substantially confined in a closed space and does not directly come into contact with the decomposed gas, so that it is extremely hard to be affected by the decomposed gas, and the reliability of the O-ring contact portion can be further improved. .
[0047]
4A and 4B show a gas circuit breaker according to a fourth embodiment of the present invention, in which FIG. 4A is a cross-sectional view, and FIG. 4B is a cross-sectional view taken along line AA of FIG. Are denoted by the same reference numerals, and description thereof is omitted. Here, different parts will be described.
[0048]
In the fourth embodiment, a groove 15 is provided in the outer circumferential direction of the downstream end of the nozzle 11, and a corrugated spring 18 is fitted into the groove 15 to connect the tip of the nozzle 11 to the conductive structural member 3 a. They are always in electrical contact with each other.
[0049]
With such a configuration, in addition to obtaining the same effects as in the second embodiment, the following operation and effects can be obtained.
[0050]
That is, in the method of contact between the tip of the nozzle 11 and the conductive structural member 3a by the corrugated spring 18, it is relatively easy to freely set the contact load as compared with the O-ring 16, and the spring stroke is increased. It is possible to take. Thereby, effects such as reduction of sliding resistance and prevention of galling can be provided. Further, if the corrugated spring 18 is formed using spring steel, the decomposition gas resistance is much higher than that of rubber, so that deterioration due to decomposition gas is almost eliminated.
[0051]
FIG. 5 is a cross-sectional view showing a fifth embodiment of the gas circuit breaker according to the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.
[0052]
In the above-described fourth embodiment, the spring load can be set to an optimum value. However, if the peak portion of the corrugated spring 18 hits the inner surface of the cylindrical portion of the conductive structural member 3a, galling may occur. There is.
[0053]
In the fifth embodiment, as shown in FIG. 5, a belt-shaped resin sliding ring 17 is inserted between the corrugated spring 18 and the conductive structural member 3a as in the third embodiment. Things.
[0054]
With this configuration, in addition to obtaining the same effects as those of the first embodiment, in addition to the above, the belt-shaped resin sliding ring 17 made of Teflon or the like is provided between the corrugated spring 18 and the conductive structural member 3a. , The galling of the ridge of the corrugated spring 18 can be prevented.
[0055]
FIG. 6 is a sectional view showing a sixth embodiment of the gas circuit breaker according to the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.
[0056]
In each of the second to fifth embodiments described above, it is necessary to provide the groove 15 at the tip of the nozzle 11. The nozzle 11 may be provided with a notch 19 at the downstream end of the nozzle in order to attach a jig at the time of contact replacement. However, if there is a groove in the circumferential direction, the notch is difficult to be formed, and furthermore, the notch 19 is formed in the longitudinal direction. Become redundant.
[0057]
Therefore, in the present embodiment, as shown in FIG. 6, three or four radial holes 20 are provided at the distal end of the nozzle 11 along the circumferential direction, and in these holes via elastic bodies 21 such as coil springs. Each of the headed pins 22 made of a sliding member is inserted.
[0058]
In this case, the headed pin 22 is pushed by the elastic body 21 to maintain the electrical contact between the conductive structural member 3a and the nozzle 11 at all times. The pin 22 with a head is made of resin such as PTFE and has excellent sliding characteristics so that galling can be prevented.
[0059]
With such a configuration, the same effect as that of the first embodiment can be obtained, and even if a notch for mounting the nozzle replacement jig is provided at the tip of the nozzle 11, the notch is used. Electrical contact can always be maintained between the conductive structural member 3a and the nozzle 11 without being affected.
[0060]
【The invention's effect】
As described above, according to the gas circuit breaker of the present invention, the downstream end of the nozzle slides on the inner surface of the cylindrical conductive structure on the fixed side while maintaining a small gap. In addition to preventing the hot gas generated at the time of shutoff from flowing in the direction of the main contact, even if a DC voltage generated after advancing current is applied to the arc-extinguishing chamber, the dielectric breakdown starts from the minute gap at the tip of the nozzle. It is possible to configure an arc-extinguishing chamber without any problem, and it is possible to take measures against a highly reactive decomposition gas.
[0061]
In addition, the size of the cooling cylinder, the size of the arc-extinguishing chamber itself, the size of the container that fills the gas, and the size of the circuit breaker can be reduced, and the performance can be improved.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a first embodiment of a gas circuit breaker according to the present invention.
FIG. 2 is a sectional view showing a main part of a second embodiment of the gas circuit breaker according to the present invention.
FIG. 3 is a sectional view showing a main part of a third embodiment of the gas circuit breaker according to the present invention.
4A and 4B show a main part of a fourth embodiment of a gas circuit breaker according to the present invention, wherein FIG. 4A is a cross-sectional view, and FIG. 4B is a cross-sectional view taken along line AA of FIG.
FIG. 5 is a sectional view showing a main part of a fifth embodiment of the gas circuit breaker according to the present invention.
6A and 6B show a sixth embodiment of a gas circuit breaker according to the present invention, wherein FIG. 6A is a cross-sectional view of a main part, and FIG. 6B shows a contact portion between a cylindrical conductive structure and a tip of a nozzle. FIG. 2C is a cross-sectional view showing the X-direction of FIG.
FIG. 7 is a sectional view showing a configuration example of a conventional gas circuit breaker.
FIG. 8 is a cross-sectional view showing a main part of a conventional gas circuit breaker in which countermeasures against hot gas backflow are performed.
FIG. 9 is a cross-sectional view showing an AC equipotential line between poles of a typical arc-extinguishing chamber in a conventional gas circuit breaker.
FIG. 10 is a cross-sectional view showing DC equipotential lines between poles of a typical arc-extinguishing chamber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Container 2 ... Operating cylinder 3 ... Cooling cylinder 4 ... Arc extinguishing chamber 5 ... Main contact (fixed contact 5a, movable contact 5b)
6 spacer 7 arc contact (arc fixed contact 7a, arc movable contact 7b)
8 Hollow operating shaft 9 Puffer cylinder 10 Puffer piston 11 Nozzle 12 Puffer chamber 13 Micro gap 14 Contact member 15 Groove 16 O-ring 17 Resin sliding ring 18 Corrugated spring 19 Cutting Notch 20: Hole 21: Elastic body 22: Pin with head

Claims (7)

固定接点及びこの固定接点に接離可能な可動接点からなる主接点と、この主接点の開離時に電流を移行させてアークを発生させる固定接点及びこの固定接点に接離可能な可動接点からなるアーク接点と、前記主接点の可動接点に取付けられ、前記アーク接点の開離時に消弧性ガスを導入し前記アーク接点間に吹付けてアークを消弧する絶縁物で構成されたほぼ円筒形状のノズルと、前記主接点の固定接点及び前記アーク接点の固定接点をそれぞれの可動接点に対峙する位置に設けた内面がほぼ円筒形の導電性構造部材とを備えたガス遮断器において、
前記ノズルを、その下流側先端が常時前記導電性構造部材の内面と微小ギャップを保ちつつ摺動する大きさ及び形状に構成し、且つ前記ノズルの下流側先端部の外周面に前記導電性構造部材と電気的接続を保持する接触手段を設けたことを特徴とするガス遮断器。
It comprises a main contact consisting of a fixed contact and a movable contact that can be brought into and out of contact with the fixed contact, a fixed contact that transfers an electric current when the main contact is opened to generate an arc, and a movable contact that can be brought into and out of the fixed contact. An arc contact and a substantially cylindrical shape which is attached to the movable contact of the main contact, and is made of an insulator which introduces an arc-extinguishing gas when the arc contact is opened and blows the arc between the arc contacts to extinguish the arc. Nozzle, a fixed contact of the main contact and a fixed contact of the arc contact provided at a position facing the respective movable contact, the inner surface provided with a substantially cylindrical conductive structural member, a gas circuit breaker,
The nozzle is configured to have a size and shape such that its downstream end always slides while maintaining a small gap with the inner surface of the conductive structural member, and the conductive structure is formed on the outer peripheral surface of the downstream end of the nozzle. A gas circuit breaker provided with contact means for maintaining electrical connection with a member.
請求項1記載のガス遮断器において、前記接触手段は、前記ノズルの下流側先端部の外周面に設けられた円周方向の溝内に導電性オーリングを嵌め込んだ構成として、前記ノズルと前記導電性構造部材とが摺動可能で且つ常時接触するようにしたことを特徴とするガス遮断器。2. The gas circuit breaker according to claim 1, wherein the contact unit has a configuration in which a conductive O-ring is fitted into a circumferential groove provided on an outer peripheral surface of a downstream end portion of the nozzle. A gas circuit breaker, wherein the conductive structural member is slidable and always in contact with the conductive structural member. 請求項2記載のガス遮断器において、前記導電性オーリングは、エチレン・プロピレンゴムを主成分として構成されたことを特徴とするガス遮断器。3. The gas circuit breaker according to claim 2, wherein the conductive O-ring is mainly composed of ethylene / propylene rubber. 請求項2又は請求項3記載のガス遮断器において、前記ノズルに設けられた溝に前記オーリングが密閉空間に閉じ込められるように樹脂製の摺動部材を嵌め込んだことを特徴とするガス遮断器。The gas circuit breaker according to claim 2 or 3, wherein a resin sliding member is fitted into a groove provided in the nozzle so that the O-ring is confined in a closed space. vessel. 請求項1記載のガス遮断器において、前記接触手段は、前記ノズルの下流側先端部の外周面に設けられた円周方向の溝内に波板バネを嵌め込んだ構成として、前記ノズルと前記導電性構造部材とが摺動可能で且つ常時接触するようにしたことを特徴とするガス遮断器。2. The gas circuit breaker according to claim 1, wherein the contact unit has a configuration in which a corrugated spring is fitted in a circumferential groove provided on an outer peripheral surface of a downstream end portion of the nozzle, and A gas circuit breaker characterized in that it is slidable and always in contact with a conductive structural member. 請求項5記載のガス遮断器において、前記ノズルに設けられた溝に前記波板バネが密閉空間に閉じ込められるように樹脂製の摺動部材を嵌め込んだことを特徴とするガス遮断器。6. The gas circuit breaker according to claim 5, wherein a sliding member made of resin is fitted into a groove provided in the nozzle so that the corrugated spring is confined in a closed space. 請求項1記載のガス遮断器において、前記接触手段は、前記ノズルの下流側先端部に複数個の半径方向の穴を円周方向に設け、この穴に樹脂製の摺動部材からなる頭付ピンを弾性体を介して取付けた構成として、前記ノズルと前記導電性構造部材とが摺動可能で且つ常時接触するようにしたことを特徴とするガス遮断器。2. The gas circuit breaker according to claim 1, wherein said contact means is provided with a plurality of radial holes at a downstream end of said nozzle in a circumferential direction, and said holes are provided with a head made of a resin sliding member. A gas circuit breaker, wherein a pin is attached via an elastic body so that the nozzle and the conductive structural member are slidable and in constant contact with each other.
JP2002283856A 2002-09-27 2002-09-27 Gas circuit breaker Expired - Fee Related JP4131926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283856A JP4131926B2 (en) 2002-09-27 2002-09-27 Gas circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283856A JP4131926B2 (en) 2002-09-27 2002-09-27 Gas circuit breaker

Publications (2)

Publication Number Publication Date
JP2004119290A true JP2004119290A (en) 2004-04-15
JP4131926B2 JP4131926B2 (en) 2008-08-13

Family

ID=32277603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283856A Expired - Fee Related JP4131926B2 (en) 2002-09-27 2002-09-27 Gas circuit breaker

Country Status (1)

Country Link
JP (1) JP4131926B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222247A (en) * 2010-04-08 2011-11-04 Toshiba Corp Gas circuit breaker
KR20150090767A (en) * 2014-01-29 2015-08-06 엘에스산전 주식회사 Puffer type Gas Circuit Breaker
JP2016213146A (en) * 2015-05-13 2016-12-15 株式会社東芝 Electric power breaker
WO2019073671A1 (en) * 2017-10-12 2019-04-18 株式会社日立製作所 Gas circuit breaker
EP3588528A1 (en) * 2018-06-29 2020-01-01 ABB Schweiz AG Gas-insulated high or medium voltage circuit breaker with ring-like element
EP3748663A4 (en) * 2018-02-02 2021-11-10 Kabushiki Kaisha Toshiba Gas circuit breaker

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222247A (en) * 2010-04-08 2011-11-04 Toshiba Corp Gas circuit breaker
KR20150090767A (en) * 2014-01-29 2015-08-06 엘에스산전 주식회사 Puffer type Gas Circuit Breaker
KR101578699B1 (en) 2014-01-29 2015-12-21 엘에스산전 주식회사 Puffer type Gas Circuit Breaker
JP2016213146A (en) * 2015-05-13 2016-12-15 株式会社東芝 Electric power breaker
WO2019073671A1 (en) * 2017-10-12 2019-04-18 株式会社日立製作所 Gas circuit breaker
JP2019075194A (en) * 2017-10-12 2019-05-16 株式会社日立製作所 Gas-blast circuit breaker
US10991529B2 (en) 2017-10-12 2021-04-27 Hitachi, Ltd. Gas-blast circuit breaker
EP3748663A4 (en) * 2018-02-02 2021-11-10 Kabushiki Kaisha Toshiba Gas circuit breaker
EP3588528A1 (en) * 2018-06-29 2020-01-01 ABB Schweiz AG Gas-insulated high or medium voltage circuit breaker with ring-like element

Also Published As

Publication number Publication date
JP4131926B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
RU2738087C2 (en) Gas isolated low or medium voltage load breaker
JPS58165221A (en) Disconnecting switch
US11676778B2 (en) Methods and systems for DC current interrupter based on thermionic arc extinction via anode ion depletion
JP6029524B2 (en) Switchgear
KR101484897B1 (en) Dual current path for high rated currents
US8901447B2 (en) Circuit breaker with parallel rated current paths
JP2004119290A (en) Gas-blast circuit breaker
US11348748B2 (en) Switch device
JP4262928B2 (en) Gas circuit breaker
JP2014146515A (en) Gas insulation apparatus for electric power
US10991528B2 (en) Gas-insulated load break switch and switchgear comprising a gas-insulated load break switch
JP5459283B2 (en) Puffer type gas circuit breaker
JP2008123761A (en) Gas-blast circuit breaker
EP3477675B1 (en) Gas-insulated medium-voltage switch with shield device
EP4117006A1 (en) Gas-insulated high or medium voltage circuit breaker
RU2148281C1 (en) Arc-control device of self-compression gas-filled high-voltage switch
EP3588528B1 (en) Gas-insulated high or medium voltage circuit breaker with ring-like element
KR20180103247A (en) Eco-friendly Gas Insulated Load Break Switch
JP2004039312A (en) Switch
JP5143677B2 (en) Puffer type gas circuit breaker
JP6736345B2 (en) Gas circuit breaker
WO2023152205A1 (en) High-voltage disconnector switch
KR20230008400A (en) Gas Insulated Switchgear
EP3132461B1 (en) High voltage switching device with auxiliary nozzle
WO2023025724A1 (en) Metal enclosed circuit breaker

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080529

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees