JP2004117826A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2004117826A
JP2004117826A JP2002281042A JP2002281042A JP2004117826A JP 2004117826 A JP2004117826 A JP 2004117826A JP 2002281042 A JP2002281042 A JP 2002281042A JP 2002281042 A JP2002281042 A JP 2002281042A JP 2004117826 A JP2004117826 A JP 2004117826A
Authority
JP
Japan
Prior art keywords
group
power
zoom lens
lens system
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002281042A
Other languages
Japanese (ja)
Inventor
Yasushi Yamamoto
山本 康
Hiroyuki Matsumoto
松本 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2002281042A priority Critical patent/JP2004117826A/en
Publication of JP2004117826A publication Critical patent/JP2004117826A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging apparatus which is compact in structure and less in residual chromatic aberration in spite of the apparatus being equipped with a high-performance and high variable-power zoom lens system. <P>SOLUTION: The imaging apparatus is equipped with a zoom lens system which has a plurality of lens groups and continuously and optically varies the power for an optical image of a body by varying the gaps between the plurality of lens groups and an imaging element which converts the optical image formed by the zoom lens system into an electric signal. The zoom lens system is provided with a 1st lens group which has a positive optical power and moves in power variation, a 2nd lens group which is arranged on the image side of the 1st group at a variable interval and has a negative optical power, a 3rd lens group which is arranged on the image side of the 2nd group at a variable interval and has a positive optical power, and an image-side group which is arranged on the image side of the 3rd group at a variable interval and comprises at least two lens groups, and further equipped with one diffracting optical surface in the zoom lens system. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、CCD(Charge Coupled Device 電荷結合素子)やCMOSセンサ(Complementary Metal−oxide Semiconductor 相補性金属酸化膜半導体センサ)等の受光面上に形成された光学像を電気信号に変換する固体撮像素子を備えた撮像装置に関し、特にデジタルカメラ;パーソナルコンピュータ,モバイルコンピュータ,携帯電話,情報携帯端末(PDA:Personal Digital Assistance)等に内蔵又は外付けされるカメラの主たる構成要素である撮像装置に関する。詳しくは、特にズームレンズ系を備えた小型の撮像装置に関する。
【0002】
【従来の技術】
近年、銀塩フィルムの代わりにCCDやCMOSセンサなどの固体撮像素子を用いて、光学像を電気信号に変換し、そのデータをデジタル化して記録したり転送したりするデジタルカメラが急速に普及してきている。このようなデジタルカメラにおいては、最近、200万画素や300万画素といった高画素を有するCCDやCMOSセンサが比較的安価に提供されるようになったため、高画素を有する固体撮像素子を装着した高性能な撮像装置に対する需要が非常に増大しているおり、特に、画質を劣化させずに変倍が可能なズームレンズ系を搭載したコンパクトな撮像装置が切望されている。なお、デジタルカメラの語は、従来は専ら光学的な静止画を記録するものを指していたが、動画を同時に扱えるものや家庭用のデジタルビデオカメラも提案されており、現在では特に区別されなくてなってきている。したがって、以下、デジタルカメラの語は、デジタルスチルカメラやデジタルムービー等の固体撮像素子の受光面上に形成された光学像を電気信号に変換する固体撮像素子を備えた撮像装置を主たる構成要素とするカメラをすべて含むものとする。
【0003】
さらに、近年では、半導体素子等の画像処理能力の向上により、パーソナルコンピュータ,モバイルコンピュータ,携帯電話,情報携帯端末(PDA:Personal Digital Assistance)等に撮像装置が内蔵又は外付けされるようになっており、高性能な撮像装置に対する需要に拍車をかけている。
【0004】
このような撮像装置に用いられるズームレンズ系としては、最も物体側に配置されたレンズ群が正のパワーを有する、いわゆるプラスリードのズームレンズ系が数多く提案されている。
【0005】
プラスリードのズームレンズ系としては、従来から銀塩フィルム用カメラの撮影レンズ系として提案されたズームレンズ系がある。しかしながら、これらのズームレンズ系は、特に最短焦点距離状態でのレンズ系の射出瞳位置が比較的像面の近くに位置するため、特に高画素を有する固体撮像素子の各画素に対応して設けられたマイクロレンズの瞳と整合せず、周辺光量が十分に確保できないという問題があった。また、変倍時に射出瞳位置が大きく変動するため、マイクロレンズの瞳の設定が困難であるという問題もあった。また、そもそも銀塩フィルムと固体撮像素子では、求められる空間周波数特性等の光学性能が全く異なるため、固体撮像素子に要求される十分な光学性能を確保できなかった。このため、固体撮像素子を備えた撮像装置に最適化された専用のズームレンズ系を開発する必要が生じている。
【0006】
また、固体撮像素子用の高倍率かつ高画質なズームレンズ系においては、残存色収差を小さくする必要があり、高価な異常分散レンズを用いるの一般的であった。さらに、色週差補正のために、ズームレンズ系に含まれるズーム群を構成するレンズ素子の枚数が多くなる傾向であった(例えば、特許文献1乃至3)。これらの公報には、第1群が正のパワーを持つ5成分で構成されるズームレンズが開示されている。
【0007】
【特許文献1】
特開平10−111457号公報
【特許文献2】
特開平09−5624号公報
【特許文献3】
特開平12−284173号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上記3つの公報では、高画質のデジタルカメラ用の撮像装置にもちいらるズームレンズ系としては、なお残存色収差が大きいという問題を有していた。
【0009】
本発明は、以上の課題に鑑み、高性能で高倍率ズームレンズ系を備えながら、コンパクトで残存色収差の少ない撮像装置を提供することを目的とする。
【0010】
また、本発明の別の側面は、上記撮像装置を含むデジタルカメラであることを特徴とする。なお、デジタルカメラの語は、従来は専ら光学的な静止画を記録するものを指していたが、動画を同時に扱えるものや家庭用のデジタルビデオカメラも提案されており、現在では特に区別されなくてなってきている。したがって、以下、デジタルカメラの語は、デジタルスチルカメラやデジタルムービー等の固体撮像素子の受光面上に形成された光学像を電気信号に変換する固体撮像素子を備えた撮像装置を主たる構成要素とするカメラをすべて含むものとする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る撮像装置は、複数のレンズ群を有し、該複数のレンズ群間の間隔を変化させることによって物体の光学像を連続的に光学的に変倍可能に形成するズームレンズ系と、ズームレンズ系が形成した光学像を電気信号に変換する撮像素子を備えた撮像装置であって、前記ズームレンズ系は、物体側から順に、正のパワーを有し、変倍時に移動する第1群と、前記第1群の像側に可変間隔を介して配置され、負のパワーを有する第2群と、前記第2群の像側に可変間隔を介して配置され、正のパワーを有する第3群と、前記第3群の像側に可変間隔を介して配置され、少なくとも2つのレンズ群から構成される像側群と、を備え、ズームレンズ系中に少なくとも1面の回折光学面を備えたことを特徴とする。
【0012】
【発明の実施の形態】
以下、図面を参照して、本発明の一実施形態について説明する。
【0013】
本発明の一実施形態である撮像装置は、例えば図13に示すように、物体側(被写体側)から順に、物体の光学像を変倍可能に形成するズームレンズ系とTL、光学的ローパスフィルタLPFと、ズームレンズ系TLにより形成された光学像を電気的な信号に変換する固体撮像素子SRと、で構成されている。撮像装置は、デジタルカメラ;ビデオカメラ;パーソナルコンピュータ,モバイルコンピュータ,携帯電話,情報携帯端末(PDA:Personal Digital Assistance)等に内蔵又は外付けされるカメラの主たる構成要素である。
【0014】
ズームレンズ系TLは、第1レンズ群Gr1、第2レンズ群Gr2、第3レンズ群Gr3を含む複数のレンズ群から構成されており、各レンズ群の間の間隔を変化させることによって光学像の大きさを変化させることが可能である。第1レンズ群Gr1は正のパワー、第2レンズ群Gr2は負のパワー、第3レンズ群Gr3は正のパワーをそれぞれ有している。
【0015】
光学ローパスフィルタLPFは、撮影レンズ系の空間周波数特性を調整し固体撮像素子で発生する色モアレを解消するための特定の遮断周波数を有している。実施形態の光学ローパスフィルタは、結晶軸を所定方向に調整された水晶等の複屈折材料や偏光面を変化させる波長板等を積層して作成された複屈折型ローパスフィルタである。なお、光学ローパスフィルタとしては、必要な光学的な遮断周波数の特性を回折効果により達成する位相型ローパスフィルタ等を採用してもよい。
【0016】
固体撮像素子SRは、複数の画素を有するCCDからなり、ズームレンズ系が形成した光学像をCCDで電気信号に変換する。固体撮像素子SRで生成された信号は、必要に応じて所定のデジタル画像処理や画像圧縮処理等を施されてデジタル映像信号としてメモリー(半導体メモリー,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号に変換されたりして他の機器に伝送される。なお、CCDの代わりにCMOSセンサ(Complementary Metal−oxide Semiconductor)を用いてもよい。
【0017】
図1乃至図6は、本発明の第1乃至第6実施形態の撮像装置に含まれるズームレンズ系の最短焦点距離状態でのレンズ配置を示す構成図である。なお、各図において最も像側に配置されている平行平板は光学的ローパスフィルタを含むフィルタを表している。
【0018】
図1に示された第1実施形態のズームレンズ系は、物体側から順に、正のパワーを有する第1群Gr1と、負のパワーを有する第2群Gr2と、正のパワーを有する第3群Gr3と、負のパワーを有する第4群Gr4と、正のパワーを有する第5群Gr5とから構成されており最短焦点距離状態から最長焦点距離状態への変倍に際して、第5群Gr5を像面に対して固定させつつ、第2群Gr2を非線形な物体側に凹の軌跡を描かせて像側へ移動させ、第1群Gr1、第3群Gr3及び第4群Gr4を物体側へ移動させるズームレンズ系である。このズームレンズ系では、第2群Gr2及び第5群Gr5に回折光学面が設けられている。
【0019】
図2に示された第2実施形態のズームレンズ系は、物体側から順に、正のパワーを有する第1群Gr1と、負のパワーを有する第2群Gr2と、正のパワーを有する第3群Gr3と、負のパワーを有する第4群Gr4と、正のパワーを有する第5群Gr5とから構成されており最短焦点距離状態から最長焦点距離状態への変倍に際して、第5群Gr5を像面に対して固定させつつ、第2群Gr2を非線形な物体側に凹の軌跡を描かせて像側へ移動させ、第1群Gr1、第3群Gr3及び第4群Gr4を物体側へ移動させるズームレンズ系である。このズームレンズ系では、第3群Gr3に2面の回折光学面が設けられている。
【0020】
図3に示された第3実施形態のズームレンズ系は、物体側から順に、正のパワーを有する第1群Gr1と、負のパワーを有する第2群Gr2と、正のパワーを有する第3群Gr3と、負のパワーを有する第4群Gr4と、正のパワーを有する第5群Gr5とから構成されており最短焦点距離状態から最長焦点距離状態への変倍に際して、第5群Gr5を像面に対して固定させつつ、第2群Gr2を非線形な物体側に凹の軌跡を描かせて像側へ移動させ、第1群Gr1、第3群Gr3及び第4群Gr4を物体側へ移動させるズームレンズ系である。このズームレンズ系では、第3群Gr3及び第5群Gr5に回折光学面が設けられている。
【0021】
図4に示された第4実施形態のズームレンズ系は、物体側から順に、正のパワーを有する第1群Gr1と、負のパワーを有する第2群Gr2と、正のパワーを有する第3群Gr3と、負のパワーを有する第4群Gr4と、正のパワーを有する第5群Gr5とから構成されており最短焦点距離状態から最長焦点距離状態への変倍に際して、第5群Gr5を像面に対して固定させつつ、第1群Gr1乃至第4群Gr4を物体側へ移動させるズームレンズ系である。このズームレンズ系では、第2群Gr2及び第5群Gr5に回折光学面が設けられている。
【0022】
図5に示された第5実施形態のズームレンズ系は、物体側から順に、正のパワーを有する第1群Gr1と、負のパワーを有する第2群Gr2と、正のパワーを有する第3群Gr3と、正のパワーを有する第4群Gr4と、正のパワーを有する第5群Gr5とから構成されており最短焦点距離状態から最長焦点距離状態への変倍に際して、第2群Gr2を像側へ、第1群Gr1及び第3群Gr3乃至第5群Gr5をそれぞれ物体側へ移動させるズームレンズ系である。このズームレンズ系では、第2群Gr2、第3群Gr3及び第5群Gr5に回折光学面が設けられている。
【0023】
図6に示された第6実施形態のズームレンズ系は、物体側から順に、正のパワーを有する第1群Gr1と、負のパワーを有する第2群Gr2と、正のパワーを有する第3群Gr3と、正のパワーを有する第4群Gr4と、正のパワーを有する第5群Gr5とから構成されており最短焦点距離状態から最長焦点距離状態への変倍に際して、第5群Gr5を像面に対して固定させつつ、第2群Gr2を像側へ、第1群Gr1、第3群Gr3及び第4群Gr4を物体側へ移動させるズームレンズ系である。このズームレンズ系では、第2群Gr2、第3群Gr3及び第5群Gr5に回折光学面が設けられている。
【0024】
なお、いずれの実施形態のズームレンズ系も、第2群Gr2と第3群Gr3の間に絞りSTが配置されている。また、最も像側に配置されている平行平板LPFは光学的ローパスフィルタを含むフィルタを表している。
【0025】
各実施形態のズームレンズ系は、少なくとも1面の回折光学面を備えている。一般に、回折光学素子を含む光学系のある面で発生する軸上色収差は薄肉系で取り扱った場合に以下の式で表される。
【0026】
L = φre / νre +φde / νde     (a)
νre = (Nd − 1) / (Nf − Nc)        (b)
νde = λd / (λf − λc) = −3.45   (c)
ただし、
L:軸上色収差、
φre:屈折光学素子のパワー、
νre:屈折光学素子の分散値(アッベ数)、
φde:回折光学素子のパワー、
νde:回折光学素子の分散値、
Nd:d線に対する屈折光学素子のレンズ光軸上での屈折率、
Nf:f線に対する屈折光学素子のレンズ光軸上での屈折率、
Nc:c線に対する屈折光学素子のレンズ光軸上での屈折率、
λd:d線の波長、
λf:f線の波長、
λc:c線の波長、
である。
【0027】
従来の屈折光学面のみで構成される光学系では、上記式(a)の第2項がなく、屈折光学面では分散値νreは正の値しかとりえないので、ある面で発生した軸上色収差Lを打ち消すためには、光路上にパワーの符号が反対の面を配置するしか方法がなかった。このため必然的に軸上色収差の補正のためにレンズ枚数が増加していた。
【0028】
ところが、(c)式から確認できるように、回折光学面を含む光学系では、上記式(a)の第2項があり、回折光学面の分散値νdeが大きな負の値を持つので、正のパワーを持つ屈折光学面に正のパワーを持つ回折光学面を組み合わせるだけで、軸上色収差を小さくすることができる。特に、屈折面上に回折パターンを設けた回折−屈折Hybrid型レンズ素子とすることにより、レンズ枚数を増加させることなく軸上色収差の補正が可能となる。
【0029】
各実施形態のズームレンズ系では、上記の回折−屈折Hybrid型レンズ素子を効果的に配置することにより、高倍率で高画質でありながらレンズ枚数の少ないズームレンズ系を達成している。
【0030】
次に、各実施形態のズームレンズ系が満足すべき条件式範囲について説明する。なお、以下に説明する各条件式範囲は、すべてを満足することが望ましいが、必ずしもすべて満足する必要はなく、それぞれ規定する範囲を満足することにより所定の作用効果を達成することが可能である。
【0031】
0.02 < |φd / φg ×10| < 2    (1)
ただし、
φd:回折光学面のパワー、
φg:回折光学面が設けられたレンズ素子の屈折光学面のパワー、
である。
【0032】
条件式範囲(1)は、回折光学面のパワーと回折光学面が設けられたレンズ素子の屈折光学面のパワーとの比を規定している。条件式範囲(1)の上限値を超えると、回折光学面でのパワーが強くなりすぎ、軸上色収差の補正が過剰となり望ましくない。逆に条件式範囲(1)の下限値を超えると、回折光学面のパワーが弱くなりすぎるため、色補正能力が低下して望ましくない。
【0033】
0.02 < |φd / φgr ×10| < 2    (2)
ただし、
φd:回折光学面のパワー、
φgr:回折光学面を含むズーム群(変倍時に間隔が変化しないレンズのブロックであるレンズ群)の屈折光学面の合成パワー、
である。
【0034】
条件式範囲(2)は、回折光学面のパワーと回折光学面を含むズーム群の屈折光学面の合成パワーとの比を規定している。条件式範囲(2)の上限値を超えると、ズーム群内での回折光学面でのパワーが強くなりすぎ、軸上色収差の補正が過剰となり望ましくない。逆に条件式範囲(2)の下限値を超えると、回折光学面のパワーが弱くなりすぎるため、色補正能力が低下して望ましくない。
【0035】
0.01 < |φd × fw ×10| < 1    (3)
ただし、
φd:回折光学面のパワー、
fw:ズームレンズ系の最短焦点距離状態での焦点距離、
である。
【0036】
条件式範囲(3)は、回折光学面のパワーとズームレンズ系の最短焦点距離状態での焦点距離の積(すなわち、回折光学面のパワーと最短焦点距離状態での全系のパワーとの比)を規定している。条件式範囲(3)の上限値を超えると、全系での回折光学面でのパワーが強くなりすぎ、軸上色収差の補正が過剰となり望ましくない。逆に条件式範囲(3)の下限値を超えると、回折光学面のパワーが弱くなりすぎるため、色補正能力が低下して望ましくない。
【0037】
0.5 < |R2 × Hmax / λ0| < 50     (4)
ただし、
R2:回折光学面の2次の位相係数(1/mm)、
Hmax:レンズ有効径(mm)、
λ0:設計中心波長(mm)
である。
【0038】
条件式範囲(4)は、レンズ面上に設けられた回折光学面の回折パターンのピッチに関係する式である。条件式範囲(4)の上限値を超えると、回折パターンのピッチが小さくなりすぎ、製造が困難となり望ましくない。逆に、条件式範囲(4)の下限値を超えると、回折光学面のパワーが弱くなりすぎるため、色補正能力が低下して望ましくない。
【0039】
0.5 < |β2T| < 1     (5)
ただし、
β2T:最長焦点距離状態での第2群の横倍率、
である。
【0040】
条件式範囲(5)は、最長焦点距離状態での第2群の横倍率を規定している。条件式範囲(5)の上限を超えると、球面収差のアンダー傾向が著しくなり望ましくない。逆に、条件式範囲(5)の下限値を超えると、全長及び前玉径の増大を招くとともに、球面収差のオーバー傾向が著しくなり望ましくない。
【0041】
0.2 < log (β2T / β2W) / log (Z)< 0.9     (6)
ただし、
β2T:最長焦点距離状態での第2群の横倍率、
β2W:最短焦点距離状態での第2群の横倍率、
Z:ズーム比(= fW / fT;  fT:全系の最長焦点距離状態の焦点距離、fW:全系の最短焦点距離状態の焦点距離)
である。
【0042】
条件式範囲(6)は、全系中の第2群の変倍負担の割合を示している。条件式範囲(6)の上限値を超えると、第2群の変倍負担が大きくなり過ぎ、歪曲収差及び像面湾曲の補正が困難になる。逆に条件式範囲(6)の下限値を超えると、第2群より像側にあるレンズ群の変倍負担が大きくなり過ぎるため、球面収差の補正が困難になる。
【0043】
0.2 < |φGr2 × fw| < 1.5     (7)
ただし、
φGr2:第2群の全合成パワー、
fw:ズームレンズ系の最短焦点距離状態での焦点距離、
である。
【0044】
条件式範囲(7)は、第2群のパワーとズームレンズ系の最短焦点距離状態での焦点距離の積(すなわち、第2群のパワーと最短焦点距離状態での全系のパワーとの比)を規定している。条件式範囲(7)の上限値を超えると、第2群のパワーが強くなり過ぎ、光学系のコンパクト化には有利ではあるが、各種収差の劣化が著しくなり特に像面のオーバー側へ倒れが許容できなくなる。逆に、条件式範囲(7)の下限値を超えると、第2群のパワーが弱くなり過ぎ、光学系が大型化して望ましくない。
【0045】
0.05 < |φGrL × fw| < 1     (8)
ただし、
φGrL:最も像側に位置するレンズ群の全合成パワー、
fw:ズームレンズ系の最短焦点距離状態での焦点距離、
である。
【0046】
条件式範囲(8)は、最も像側に位置するレンズ群のパワーとズームレンズ系の最短焦点距離状態での焦点距離の積(すなわち、最も像側に位置するレンズ群のパワーと最短焦点距離状態での全系のパワーとの比)を規定している。条件式範囲(8)の上限値を超えると、最も像側に位置するレンズ群で発生する各種収差を補正することが困難となる。逆に、下限値を超えると、最も像側に位置するレンズ群のパワーが弱くなり過ぎ、像側へ射出する光線の射出瞳位置が像面側へ近づくので、デジタルカメラの撮影光学系として必要なテレセントリック性を達成できず好ましくない。
【0047】
−15 < M1 / Ymax < −1     (9)
ただし、
M1:最短焦点距離状態に対する最長焦点距離状態での第1群の位置の変化量(物体側方向を負とする)
Ymax:像面での光軸からの最大像高さ、
である。
【0048】
条件式範囲(9)は、第1群の変倍時の移動量を規定する。条件式範囲(9)の上限値を超えると、第1群の移動量が小さくなり過ぎるため、最短焦点距離状態での光学系の全長が増大するとともに、最短焦点距離状態での像面での周辺照度を確保するために第1群の前玉径が増大して望ましくない。逆に、条件式範囲(9)の下限値を超えると、最長焦点距離状態での光学系の全長が増大するとともに、最長焦点距離状態での像面での周辺照度を確保するために第1群の前玉径が増大して望ましくない。
【0049】
回折光学面の回折パターンは、ブレーズド(鋸歯状)化されることが望ましい。ブレーズド化することにより回折効率を向上させることができる。ブレーズド化する方法としては、半導体製造技術を応用して鋸歯状のパターン形状をステップ形状で近似して製作したり(バイナリオプティクス)、精密な切削加工等により金型を製作し、ガラスあるいは樹脂材料をモールド成形する方法等により実現することが可能である。成形する方法では、回折面を持つ素子自体をガラスあるいは樹脂を一体的に成形する方法と、ガラス等で製造した基体レンズ上に、樹脂層を成形する方法のいずれも可能である。
【0050】
【実施例】
以下、本発明を実施した撮像装置に含まれるズームレンズ系の構成等を、コンストラクションデータ,収差図等を挙げて、更に具体的に説明する。ここで実施例として説明する実施例1乃至6は、前述した第1乃至第5の実施形態にそれぞれ対応しており第1乃至第5の実施形態を表すレンズ構成図(図1乃至6)は、対応する実施例1乃至6のレンズ構成をそれぞれ示している。
【0051】
各実施例のコンストラクションデータにおいて、ri (i = 1,2,3....)は物体側から数えてi番目の面の曲率半径(mm)、di (i = 1,2,3....)は物体側から数えてi番目の軸上面間隔(mm)を示しており、Ni (i = 1,2,3....),νi(i = 1,2,3....)は物体側から数えてi番目の光学要素のd線に対する屈折率(Nd),アッベ数(νd)を示している。また、コンストラクションデータ中、ズーミングにおいて変化する軸上面間隔は、最短焦点距離状態(広角端、W)〜中間焦点距離状態(ミドル、M)〜最長焦点距離状態(望遠端、T)での可変間隔の値を示す。各焦点距離状態(W),(M),(T)に対応する全系の焦点距離(f,mm)及びFナンバー(FNO)を他のデータと併せて示す。
【0052】
曲率半径riに*が付された面は、非球面で構成された面であることを示し、非球面の面形状を表す以下の式(AS)で定義されるものとする。各実施例の非球面データを他のデータと併せて示す。
【0053】
Z(h) = r−(r^2−ε・h^2)^1/2+(A4・H^4+A6・H^6+A8・H^8+・・)     (AS)
ただし、
r:非球面の近軸曲率半径、
h:光軸から垂直な方向の距離、
ε:楕円係数、
Ai:非球面のi次の非球面係数、
である。
【0054】
曲率半径riに#が付された面は、回折光学面であることを示し、回折パターン形状を決定する位相形状を表す以下の式(DE)で定義されるものとする。各実施例の回折光学面データを他のデータと併せて示す。
【0055】
φ(h) = 2π (R2・h^2 + R4・h^4 + R6・h^6+・・) / λ0    (DE)
ただし、
h:光軸から垂直な方向の距離、
Ri:i次の位相係数、
λ0:設計中心波長、
である。

Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
以下の表1及び表2は、条件式に対する各実施例の数値を示している。
【0056】
【表1】
Figure 2004117826
【0057】
【表2】
Figure 2004117826
【0058】
図7乃至図12は実施例1〜実施例6の収差図であり、各実施例のズームレンズ系の無限遠合焦状態での収差を表している。図6乃至図12中、それぞれ上から順に、最短焦点距離状態,中間焦点距離状態,最長焦点距離状態での諸収差を示している。各焦点距離状態での収差図は、左から順に、球面収差,非点収差,歪曲収差を表している。球面収差図において、縦軸は入射瞳への入射高さHをその最大高さH0(=1)で規格化した値(すなわち入射瞳平面を切る相対高さ)H/H0であり、横軸は近軸結像位置からの光軸方向のズレ量(mm)である。実線はd線(波長:λd=587.6nm)に対する球面収差量を表している。非点収差図において、縦軸は像高Y’(mm)であり、横軸は近軸結像位置からの光軸方向のズレ量(mm)である。また、実線Xはサジタル面での非点収差を表しており、実線Yはメリディオナル面での非点収差を表している。歪曲収差図において、縦軸は像高Y’(mm)であり、横軸は歪曲収差量(%)である。
【0059】
【発明の効果】
以上説明したように、各実施形態のズームレンズ系によれば、高性能で高倍率ズームレンズ系を備えながら、コンパクトで残存色収差の少ない撮像装置を提供することができる。
【図面の簡単な説明】
【図1】第1の実施形態(実施例1)のレンズ構成図。
【図2】第2の実施形態(実施例2)のレンズ構成図。
【図3】第3の実施形態(実施例3)のレンズ構成図。
【図4】第4の実施形態(実施例4)のレンズ構成図。
【図5】第5の実施形態(実施例5)のレンズ構成図。
【図6】第6の実施形態(実施例6)のレンズ構成図。
【図7】実施例1の無限遠合焦状態での収差図。
【図8】実施例2の無限遠合焦状態での収差図。
【図9】実施例3の無限遠合焦状態での収差図。
【図10】実施例4の無限遠合焦状態での収差図。
【図11】実施例5の無限遠合焦状態での収差図。
【図12】実施例6の無限遠合焦状態での収差図。
【図13】本発明の概略を示す構成図。
【符号の説明】
LPF:光学的ローパスフィルタに相当する平行平面板
SR:固体撮像素子
TL:ズームレンズ系
Gr1:第1レンズ群Gr1
Gr2:第2レンズ群Gr2
Gr3:第3レンズ群Gr3
ST:絞り[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid-state imaging device that converts an optical image formed on a light receiving surface such as a CCD (Charge Coupled Device) or a CMOS sensor (Complementary Metal-oxide Semiconductor) into an electric signal. More particularly, the present invention relates to an imaging device that is a main component of a camera built in or external to a digital camera; a personal computer, a mobile computer, a mobile phone, a personal digital assistant (PDA), or the like. More specifically, the present invention particularly relates to a small-sized imaging device having a zoom lens system.
[0002]
[Prior art]
In recent years, digital cameras that convert an optical image into an electric signal using a solid-state imaging device such as a CCD or a CMOS sensor instead of a silver halide film, digitize the data, and record or transfer the data have been rapidly spreading. ing. In such digital cameras, recently, CCDs and CMOS sensors having high pixels such as 2 million pixels and 3 million pixels have been provided at relatively low cost. The demand for a high-performance imaging device has been greatly increased. In particular, a compact imaging device equipped with a zoom lens system capable of zooming without deteriorating the image quality has been desired. In the past, the term digital camera used to refer exclusively to those that record optical still images, but those that can simultaneously handle moving pictures and digital video cameras for home use have also been proposed, and at present there is no particular distinction between them. It is getting better. Therefore, hereinafter, the term digital camera mainly refers to an imaging device having a solid-state imaging device that converts an optical image formed on a light receiving surface of a solid-state imaging device such as a digital still camera or a digital movie into an electric signal. And all cameras that do so.
[0003]
Further, in recent years, with the improvement of image processing capability of semiconductor elements and the like, an imaging device has been built in or externally attached to a personal computer, a mobile computer, a mobile phone, a personal digital assistant (PDA), and the like. This has spurred demand for high-performance imaging devices.
[0004]
As a zoom lens system used in such an image pickup apparatus, many so-called plus-lead zoom lens systems in which a lens group arranged closest to the object side has positive power have been proposed.
[0005]
As a plus lead zoom lens system, there is a zoom lens system conventionally proposed as a photographing lens system of a silver halide film camera. However, these zoom lens systems are provided corresponding to each pixel of the solid-state imaging device having a high number of pixels, particularly since the exit pupil position of the lens system in the shortest focal length state is relatively close to the image plane. There is a problem that the pupil does not match with the pupil of the obtained micro lens, and the peripheral light amount cannot be sufficiently secured. In addition, since the exit pupil position fluctuates greatly at the time of zooming, there is also a problem that it is difficult to set the pupil of the micro lens. In addition, since the required optical performance such as spatial frequency characteristics is completely different between the silver halide film and the solid-state imaging device, sufficient optical performance required for the solid-state imaging device cannot be secured. For this reason, it has been necessary to develop a dedicated zoom lens system optimized for an imaging device having a solid-state imaging device.
[0006]
Further, in a high-magnification and high-quality zoom lens system for a solid-state imaging device, it is necessary to reduce residual chromatic aberration, and an expensive extraordinary dispersion lens is generally used. Further, the number of lens elements constituting a zoom group included in a zoom lens system tends to increase for color week difference correction (for example, Patent Documents 1 to 3). These publications disclose zoom lenses in which the first group is composed of five components having positive power.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H10-111457 [Patent Document 2]
JP-A-09-5624 [Patent Document 3]
Japanese Patent Application Laid-Open No. 12-284173
[Problems to be solved by the invention]
However, the above three publications have a problem that the residual chromatic aberration is still large as a zoom lens system used for an imaging device for a high-quality digital camera.
[0009]
In view of the above problems, an object of the present invention is to provide a compact imaging apparatus having a high-performance and high-magnification zoom lens system and having small residual chromatic aberration.
[0010]
Another aspect of the present invention is a digital camera including the imaging device. In the past, the term digital camera used to refer exclusively to those that record optical still images, but those that can simultaneously handle moving pictures and digital video cameras for home use have also been proposed, and at present there is no particular distinction between them. It is getting better. Therefore, hereinafter, the term digital camera mainly refers to an imaging device having a solid-state imaging device that converts an optical image formed on a light receiving surface of a solid-state imaging device such as a digital still camera or a digital movie into an electric signal. And all cameras that do so.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, an imaging apparatus according to the present invention has a plurality of lens groups, and continuously changes the optical image of an object optically by changing an interval between the plurality of lens groups. An image pickup apparatus comprising: a zoom lens system formed so as to be capable of forming; and an image pickup device for converting an optical image formed by the zoom lens system into an electric signal, wherein the zoom lens system has positive power in order from the object side. A first lens unit that moves at the time of zooming, a second lens unit that is disposed on the image side of the first lens unit at a variable interval and has a negative power, and a second lens unit that has a negative power on the image side of the second lens unit. A third lens unit having a positive power, a third lens unit, and an image-side lens unit including at least two lens units disposed at a variable distance from the image side of the third lens unit. At least one diffractive optical surface is provided therein.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0013]
An image pickup apparatus according to an embodiment of the present invention includes a zoom lens system, a TL, and an optical low-pass filter that form an optical image of an object so as to be variable in order from the object side (subject side), as shown in FIG. It comprises an LPF and a solid-state imaging device SR that converts an optical image formed by the zoom lens system TL into an electric signal. The imaging device is a main component of a digital camera; a video camera; a camera built in or external to a personal computer, a mobile computer, a mobile phone, a personal digital assistant (PDA), or the like.
[0014]
The zoom lens system TL includes a plurality of lens groups including a first lens group Gr1, a second lens group Gr2, and a third lens group Gr3, and changes an interval between the lens groups to form an optical image. It is possible to change the size. The first lens group Gr1 has positive power, the second lens group Gr2 has negative power, and the third lens group Gr3 has positive power.
[0015]
The optical low-pass filter LPF has a specific cutoff frequency for adjusting the spatial frequency characteristics of the taking lens system and eliminating color moiré generated in the solid-state imaging device. The optical low-pass filter of the embodiment is a birefringent low-pass filter formed by laminating a birefringent material such as quartz whose crystal axis is adjusted in a predetermined direction, a wave plate that changes the plane of polarization, and the like. Note that, as the optical low-pass filter, a phase-type low-pass filter or the like that achieves the required optical cutoff frequency characteristics by the diffraction effect may be employed.
[0016]
The solid-state imaging device SR includes a CCD having a plurality of pixels, and converts an optical image formed by the zoom lens system into an electric signal by the CCD. The signal generated by the solid-state imaging device SR is subjected to predetermined digital image processing or image compression processing as necessary, and is recorded as a digital video signal in a memory (semiconductor memory, optical disk, or the like). Or is converted to an infrared signal and transmitted to another device. Note that a CMOS sensor (Complementary Metal-oxide Semiconductor) may be used instead of the CCD.
[0017]
FIGS. 1 to 6 are configuration diagrams showing the lens arrangement in the shortest focal length state of the zoom lens system included in the imaging apparatus according to the first to sixth embodiments of the present invention. In each of the drawings, a parallel plate closest to the image side represents a filter including an optical low-pass filter.
[0018]
The zoom lens system according to the first embodiment shown in FIG. 1 includes, in order from the object side, a first group Gr1 having a positive power, a second group Gr2 having a negative power, and a third group Gr2 having a positive power. The zoom lens includes a group Gr3, a fourth group Gr4 having a negative power, and a fifth group Gr5 having a positive power. When the magnification is changed from the shortest focal length state to the longest focal length state, the fifth lens group Gr5 is While being fixed to the image plane, the second group Gr2 is moved to the image side by drawing a concave locus on the non-linear object side, and the first group Gr1, the third group Gr3 and the fourth group Gr4 are moved to the object side. This is a zoom lens system that moves. In this zoom lens system, the second group Gr2 and the fifth group Gr5 are provided with diffractive optical surfaces.
[0019]
The zoom lens system according to the second embodiment shown in FIG. 2 includes, in order from the object side, a first unit Gr1 having a positive power, a second unit Gr2 having a negative power, and a third unit Gr2 having a positive power. The zoom lens includes a group Gr3, a fourth group Gr4 having a negative power, and a fifth group Gr5 having a positive power. When the magnification is changed from the shortest focal length state to the longest focal length state, the fifth lens group Gr5 is While being fixed to the image plane, the second group Gr2 is moved to the image side by drawing a concave locus on the non-linear object side, and the first group Gr1, the third group Gr3 and the fourth group Gr4 are moved to the object side. This is a zoom lens system that moves. In this zoom lens system, the third group Gr3 is provided with two diffractive optical surfaces.
[0020]
The zoom lens system according to the third embodiment shown in FIG. 3 includes, in order from the object side, a first unit Gr1 having positive power, a second unit Gr2 having negative power, and a third unit Gr2 having positive power. The zoom lens includes a group Gr3, a fourth group Gr4 having a negative power, and a fifth group Gr5 having a positive power. When the magnification is changed from the shortest focal length state to the longest focal length state, the fifth lens group Gr5 is While being fixed to the image plane, the second group Gr2 is moved to the image side by drawing a concave locus on the non-linear object side, and the first group Gr1, the third group Gr3 and the fourth group Gr4 are moved to the object side. This is a zoom lens system that moves. In this zoom lens system, the third group Gr3 and the fifth group Gr5 are provided with diffractive optical surfaces.
[0021]
The zoom lens system according to the fourth embodiment shown in FIG. 4 includes, in order from the object side, a first unit Gr1 having a positive power, a second unit Gr2 having a negative power, and a third unit Gr2 having a positive power. The zoom lens includes a group Gr3, a fourth group Gr4 having a negative power, and a fifth group Gr5 having a positive power. When the magnification is changed from the shortest focal length state to the longest focal length state, the fifth lens group Gr5 is This is a zoom lens system that moves the first to fourth groups Gr1 to Gr4 toward the object side while fixing the lens to the image plane. In this zoom lens system, the second group Gr2 and the fifth group Gr5 are provided with diffractive optical surfaces.
[0022]
The zoom lens system according to the fifth embodiment shown in FIG. 5 includes, in order from the object side, a first unit Gr1 having a positive power, a second unit Gr2 having a negative power, and a third unit Gr2 having a positive power. The zoom lens includes a group Gr3, a fourth group Gr4 having a positive power, and a fifth group Gr5 having a positive power. When the magnification is changed from the shortest focal length state to the longest focal length state, the second group Gr2 is moved. This is a zoom lens system that moves the first group Gr1 and the third to fifth groups Gr3 to Gr5 toward the image side, respectively. In this zoom lens system, the second group Gr2, the third group Gr3, and the fifth group Gr5 are provided with diffractive optical surfaces.
[0023]
The zoom lens system according to the sixth embodiment shown in FIG. 6 includes, in order from the object side, a first unit Gr1 having a positive power, a second unit Gr2 having a negative power, and a third unit Gr2 having a positive power. The zoom lens includes a group Gr3, a fourth group Gr4 having a positive power, and a fifth group Gr5 having a positive power. When the magnification is changed from the shortest focal length state to the longest focal length state, the fifth group Gr5 is This is a zoom lens system that moves the second group Gr2 to the image side and moves the first group Gr1, the third group Gr3, and the fourth group Gr4 to the object side while being fixed to the image plane. In this zoom lens system, the second group Gr2, the third group Gr3, and the fifth group Gr5 are provided with diffractive optical surfaces.
[0024]
In each of the zoom lens systems according to the embodiments, the stop ST is disposed between the second group Gr2 and the third group Gr3. The parallel plate LPF disposed closest to the image represents a filter including an optical low-pass filter.
[0025]
The zoom lens system of each embodiment has at least one diffractive optical surface. In general, axial chromatic aberration generated on a certain surface of an optical system including a diffractive optical element is expressed by the following equation when handled in a thin-walled system.
[0026]
L = φre / νre + φde / νde (a)
νre = (Nd−1) / (Nf−Nc) (b)
νde = λd / (λf−λc) = − 3.45 (c)
However,
L: axial chromatic aberration,
φre: power of refractive optical element,
νre: dispersion value (Abbe number) of the refractive optical element,
φde: power of the diffractive optical element,
νde: dispersion value of the diffractive optical element,
Nd: refractive index on the lens optical axis of the refractive optical element with respect to the d line,
Nf: refractive index on the lens optical axis of the refractive optical element with respect to the f-line,
Nc: refractive index on the lens optical axis of the refractive optical element for c-line,
λd: wavelength of d-line,
λf: wavelength of f-line,
λc: wavelength of c-line,
It is.
[0027]
In a conventional optical system composed only of a refractive optical surface, the second term of the above equation (a) does not exist, and the dispersion value νre can take only a positive value in the refractive optical surface. The only way to cancel the chromatic aberration L is to dispose a surface with the opposite sign on the optical path. For this reason, the number of lenses has inevitably increased to correct axial chromatic aberration.
[0028]
However, as can be confirmed from the expression (c), in the optical system including the diffractive optical surface, the second term in the expression (a) is present, and the dispersion value νde of the diffractive optical surface has a large negative value. The axial chromatic aberration can be reduced only by combining a refractive optical surface having a positive power with a diffractive optical surface having a positive power. In particular, by using a diffraction-refraction hybrid type lens element in which a diffraction pattern is provided on a refraction surface, axial chromatic aberration can be corrected without increasing the number of lenses.
[0029]
In the zoom lens system according to each embodiment, a zoom lens system having a small number of lenses while achieving high magnification and high image quality is achieved by effectively arranging the above-described diffraction-refraction Hybrid type lens elements.
[0030]
Next, the range of conditional expressions that should be satisfied by the zoom lens system of each embodiment will be described. It is desirable that all of the conditional expression ranges described below satisfy all, but it is not always necessary to satisfy all of them, and it is possible to achieve a predetermined operation and effect by satisfying the respective defined ranges. .
[0031]
0.02 <| φd / φg × 10 | <2 (1)
However,
φd: power of diffractive optical surface,
φg: power of the refractive optical surface of the lens element provided with the diffractive optical surface,
It is.
[0032]
The conditional expression range (1) defines the ratio between the power of the diffractive optical surface and the power of the refractive optical surface of the lens element provided with the diffractive optical surface. When the value exceeds the upper limit of the conditional expression range (1), the power on the diffractive optical surface becomes too strong, and the axial chromatic aberration is excessively corrected, which is not desirable. Conversely, if the value exceeds the lower limit of the conditional expression range (1), the power of the diffractive optical surface becomes too weak, and the color correction ability is undesirably reduced.
[0033]
0.02 <| φd / φgr × 10 | <2 (2)
However,
φd: power of diffractive optical surface,
φgr: combined power of the refractive optical surfaces of the zoom group including the diffractive optical surface (a lens group that is a block of lenses whose distance does not change during zooming)
It is.
[0034]
The conditional expression range (2) defines the ratio between the power of the diffractive optical surface and the combined power of the refractive optical surfaces of the zoom group including the diffractive optical surface. When the value exceeds the upper limit of the conditional expression range (2), the power on the diffractive optical surface in the zoom group becomes too strong, and the axial chromatic aberration is excessively corrected, which is not desirable. Conversely, if the lower limit value of the conditional expression range (2) is exceeded, the power of the diffractive optical surface becomes too weak, and the color correction capability is undesirably reduced.
[0035]
0.01 <| φd × fw × 10 | <1 (3)
However,
φd: power of diffractive optical surface,
fw: focal length in the shortest focal length state of the zoom lens system,
It is.
[0036]
The conditional expression range (3) is the product of the power of the diffractive optical surface and the focal length of the zoom lens system in the shortest focal length state (that is, the ratio of the power of the diffractive optical surface to the power of the entire system in the shortest focal length state). ). When the value exceeds the upper limit of the conditional expression range (3), the power on the diffractive optical surface in the entire system becomes too strong, and the axial chromatic aberration is excessively corrected, which is not desirable. Conversely, if the value exceeds the lower limit of the conditional expression range (3), the power of the diffractive optical surface becomes too weak, and the color correction ability is undesirably reduced.
[0037]
0.5 <| R2 × Hmax / λ0 | <50 (4)
However,
R2: second-order phase coefficient (1 / mm) of the diffractive optical surface,
Hmax: lens effective diameter (mm),
λ0: Design center wavelength (mm)
It is.
[0038]
The conditional expression range (4) is an expression relating to the pitch of the diffraction pattern on the diffractive optical surface provided on the lens surface. If the value exceeds the upper limit of conditional expression range (4), the pitch of the diffraction pattern becomes too small, making the production difficult, which is not desirable. Conversely, if the value exceeds the lower limit of the conditional expression range (4), the power of the diffractive optical surface becomes too weak, and the color correction ability is undesirably reduced.
[0039]
0.5 <| β2T | <1 (5)
However,
β2T: lateral magnification of the second group in the longest focal length state,
It is.
[0040]
The conditional expression range (5) defines the lateral magnification of the second lens unit in the longest focal length state. When the value exceeds the upper limit of the conditional expression range (5), the spherical aberration tends to be underunderly noticeable, which is not desirable. Conversely, when the value exceeds the lower limit of the conditional expression range (5), the total length and the diameter of the front lens are increased, and the tendency of spherical aberration to be excessive is remarkable, which is not desirable.
[0041]
0.2 <log (β2T / β2W) / log (Z) <0.9 (6)
However,
β2T: lateral magnification of the second group in the longest focal length state,
β2W: lateral magnification of the second group in the shortest focal length state,
Z: zoom ratio (= fW / fT; fT: focal length of the longest focal length state of the whole system, fW: focal length of the shortest focal length state of the whole system)
It is.
[0042]
The conditional expression range (6) indicates the ratio of the variable magnification load of the second group in the whole system. When the value exceeds the upper limit of the conditional expression range (6), the zooming load of the second lens unit becomes too large, and it becomes difficult to correct distortion and curvature of field. Conversely, if the lower limit of the conditional expression range (6) is exceeded, the lens unit on the image side of the second unit will have too much variable power, and it will be difficult to correct spherical aberration.
[0043]
0.2 <| φGr2 × fw | <1.5 (7)
However,
φGr2: total combined power of the second group,
fw: focal length in the shortest focal length state of the zoom lens system,
It is.
[0044]
Conditional expression range (7) is the product of the power of the second lens unit and the focal length in the shortest focal length state of the zoom lens system (that is, the ratio of the power of the second lens unit to the power of the entire system in the shortest focal length state). ). When the value exceeds the upper limit of the conditional expression range (7), the power of the second lens unit becomes too strong, which is advantageous for downsizing the optical system. Becomes unacceptable. Conversely, when the value goes below the lower limit value of the conditional expression range (7), the power of the second lens unit becomes too weak, and the size of the optical system increases, which is not desirable.
[0045]
0.05 <| φGrL × fw | <1 (8)
However,
φGrL: total combined power of the lens group located closest to the image side,
fw: focal length in the shortest focal length state of the zoom lens system,
It is.
[0046]
The conditional expression range (8) is the product of the power of the lens group located closest to the image side and the focal length in the shortest focal length state of the zoom lens system (that is, the power of the lens group located closest to the image side and the shortest focal length). Ratio with the power of the entire system in the state). Exceeding the upper limit of conditional expression range (8) makes it difficult to correct various aberrations that occur in the lens group located closest to the image side. Conversely, if the lower limit value is exceeded, the power of the lens group located closest to the image side becomes too weak, and the exit pupil position of the light beam emitted to the image side approaches the image plane side. It is not preferable because a high telecentricity cannot be achieved.
[0047]
−15 <M1 / Ymax <−1 (9)
However,
M1: the amount of change in the position of the first lens unit in the longest focal length state with respect to the shortest focal length state (the object side direction is negative)
Ymax: maximum image height from the optical axis on the image plane,
It is.
[0048]
The conditional expression range (9) defines the amount of movement of the first lens unit during zooming. When the value exceeds the upper limit value of the conditional expression range (9), the moving amount of the first lens unit becomes too small, so that the total length of the optical system in the shortest focal length state increases and the image plane in the shortest focal length state increases. The diameter of the front lens of the first lens unit is undesirably increased to secure the peripheral illuminance. Conversely, if the lower limit of the conditional expression range (9) is exceeded, the total length of the optical system in the longest focal length state increases, and the first illuminance on the image plane in the longest focal length state is ensured. The front lens diameter of the group increases, which is not desirable.
[0049]
It is desirable that the diffraction pattern on the diffractive optical surface is blazed (sawtoothed). The blazed structure can improve the diffraction efficiency. As a method of blazing, a semiconductor manufacturing technology is applied to produce a saw-tooth pattern by approximating it in a step shape (binary optics), or a die is manufactured by precision cutting, etc., and a glass or resin material is produced. Can be realized by a method of molding. As a method of molding, both a method of integrally molding the element having the diffraction surface itself with glass or resin, and a method of molding a resin layer on a base lens made of glass or the like are possible.
[0050]
【Example】
Hereinafter, the configuration and the like of the zoom lens system included in the imaging apparatus embodying the present invention will be described more specifically with reference to construction data, aberration diagrams, and the like. Examples 1 to 6 described here as examples correspond to the above-described first to fifth embodiments, respectively, and the lens configuration diagrams (FIGS. 1 to 6) representing the first to fifth embodiments are shown in FIGS. And the corresponding lens configurations of Examples 1 to 6 are shown.
[0051]
In the construction data of each embodiment, ri (i = 1, 2, 3,...) Is the radius of curvature (mm) of the i-th surface counted from the object side, and di (i = 1, 2, 3,. ...) indicate the i-th axial top surface interval (mm) counted from the object side, and Ni (i = 1, 2, 3, ...), νi (i = 1, 2, 3, ...). .) Indicate the refractive index (Nd) and Abbe number (νd) of the i-th optical element counted from the object side with respect to the d-line. In the construction data, the axial top surface interval that changes during zooming is a variable interval from the shortest focal length state (wide-angle end, W) to the intermediate focal length state (middle, M) to the longest focal length state (telephoto end, T). Shows the value of The focal length (f, mm) and F number (FNO) of the entire system corresponding to each focal length state (W), (M), (T) are shown together with other data.
[0052]
The surface with * added to the radius of curvature ri indicates a surface constituted by an aspheric surface, and is defined by the following expression (AS) representing the surface shape of the aspheric surface. The aspherical surface data of each example is shown together with other data.
[0053]
Z (h) = r- (r ^ 2-εh ^ 2) ^ 1/2 + (A4 ・ H ^ 4 + A6 ・ H ^ 6 + A8 ・ H ^ 8 ++) (AS)
However,
r: radius of paraxial curvature of aspheric surface
h: distance in a direction perpendicular to the optical axis;
ε: elliptic coefficient,
Ai: the i-th order aspherical surface coefficient of the aspherical surface,
It is.
[0054]
A surface in which the curvature radius ri is marked with # indicates a diffractive optical surface, and is defined by the following equation (DE) representing a phase shape that determines the shape of the diffraction pattern. The diffractive optical surface data of each example is shown together with other data.
[0055]
φ (h) = 2π (R2 · h ^ 2 + R4 · h ^ 4 + R6 · h ^ 6 + ··) / λ0 (DE)
However,
h: distance in a direction perpendicular to the optical axis;
Ri: the i-th phase coefficient,
λ0: design center wavelength,
It is.
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Figure 2004117826
Tables 1 and 2 below show numerical values of the respective examples with respect to the conditional expressions.
[0056]
[Table 1]
Figure 2004117826
[0057]
[Table 2]
Figure 2004117826
[0058]
7 to 12 are aberration diagrams of the first to sixth embodiments, and illustrate aberrations of the zoom lens systems of the respective embodiments in an infinity in-focus state. 6 to 12, the aberrations in the shortest focal length state, the intermediate focal length state, and the longest focal length state are shown in order from the top. The aberration diagrams at each focal length state show, in order from the left, spherical aberration, astigmatism, and distortion. In the spherical aberration diagram, the vertical axis represents a value H / H0 obtained by normalizing the entrance height H to the entrance pupil by its maximum height H0 (= 1) (ie, a relative height that cuts the entrance pupil plane), and the horizontal axis represents Denotes a shift amount (mm) in the optical axis direction from the paraxial imaging position. The solid line represents the amount of spherical aberration with respect to the d-line (wavelength: λd = 587.6 nm). In the astigmatism diagram, the vertical axis represents the image height Y ′ (mm), and the horizontal axis represents the amount of deviation (mm) in the optical axis direction from the paraxial imaging position. The solid line X represents astigmatism on the sagittal surface, and the solid line Y represents astigmatism on the meridional surface. In the distortion diagram, the vertical axis represents the image height Y ′ (mm), and the horizontal axis represents the distortion amount (%).
[0059]
【The invention's effect】
As described above, according to the zoom lens system of each embodiment, it is possible to provide a compact imaging device with little residual chromatic aberration, while having a high-performance and high-magnification zoom lens system.
[Brief description of the drawings]
FIG. 1 is a lens configuration diagram of a first embodiment (Example 1).
FIG. 2 is a lens configuration diagram of a second embodiment (Example 2).
FIG. 3 is a lens configuration diagram of a third embodiment (Example 3).
FIG. 4 is a lens configuration diagram of a fourth embodiment (Example 4).
FIG. 5 is a lens configuration diagram of a fifth embodiment (Example 5).
FIG. 6 is a lens configuration diagram of a sixth embodiment (Example 6).
FIG. 7 is an aberration diagram of Example 1 in a state of focusing on infinity.
FIG. 8 is an aberration diagram of Example 2 in a state of focusing on infinity.
FIG. 9 is an aberration diagram for Example 3 in a state of focusing on infinity.
FIG. 10 is an aberration diagram of Example 4 upon focusing on infinity.
FIG. 11 is an aberration diagram for Example 5 in a state of focusing on infinity.
FIG. 12 is an aberration diagram of Example 6 upon focusing on infinity.
FIG. 13 is a configuration diagram showing an outline of the present invention.
[Explanation of symbols]
LPF: parallel plane plate SR corresponding to an optical low-pass filter SR: solid-state imaging device TL: zoom lens system Gr1: first lens group Gr1
Gr2: second lens group Gr2
Gr3: third lens group Gr3
ST: Aperture

Claims (5)

複数のレンズ群を有し、該複数のレンズ群間の間隔を変化させることによって物体の光学像を連続的に光学的に変倍可能に形成するズームレンズ系と、ズームレンズ系が形成した光学像を電気信号に変換する撮像素子を備えた撮像装置であって、
前記ズームレンズ系は、物体側から順に、
正のパワーを有し、変倍時に移動する第1群と、
前記第1群の像側に可変間隔を介して配置され、負のパワーを有する第2群と、
前記第2群の像側に可変間隔を介して配置され、正のパワーを有する第3群と、
前記第3群の像側に可変間隔を介して配置され、少なくとも2つのレンズ群から構成される像側群と、を備え、ズームレンズ系中に少なくとも1面の回折光学面を備えたことを特徴とする撮像装置。
A zoom lens system having a plurality of lens groups, wherein the distance between the plurality of lens groups is changed so that an optical image of an object can be continuously and optically zoomable, and an optical system formed by the zoom lens system An imaging device including an imaging element that converts an image into an electric signal,
The zoom lens system, in order from the object side,
A first lens group having a positive power and moving at the time of zooming;
A second group having a negative power and arranged at a variable interval on the image side of the first group;
A third group having a positive power and arranged at a variable interval on the image side of the second group;
An image side group arranged at a variable interval on the image side of the third group, the image side group including at least two lens groups, and at least one diffractive optical surface in the zoom lens system. An imaging device characterized by the following.
以下の条件式範囲(1)を満足することを特徴とする請求項1に記載の撮像装置:
0.02 < |φd / φg ×10| < 2    (1)
ただし、
φd:回折光学面のパワー、
φg:回折光学面が設けられたレンズ素子の屈折光学面のパワー、
である。
The imaging apparatus according to claim 1, wherein the following conditional expression range (1) is satisfied:
0.02 <| φd / φg × 10 | <2 (1)
However,
φd: power of diffractive optical surface,
φg: power of the refractive optical surface of the lens element provided with the diffractive optical surface,
It is.
以下の条件式範囲(2)を満足することを特徴とする請求項1に記載の撮像装置:
0.02 < |φd / φgr ×10| < 2    (2)
ただし、
φd:回折光学面のパワー、
φgr:回折光学面を含むズーム群(変倍時に間隔が変化しないレンズのブロックであるレンズ群)の屈折光学面の合成パワー、
である。
The imaging apparatus according to claim 1, wherein the following conditional expression range (2) is satisfied:
0.02 <| φd / φgr × 10 | <2 (2)
However,
φd: power of diffractive optical surface,
φgr: combined power of the refractive optical surfaces of the zoom group including the diffractive optical surface (a lens group that is a block of lenses whose distance does not change during zooming)
It is.
以下の条件式範囲(3)を満足することを特徴とする請求項1に記載の撮像装置:
0.01 < |φd × fw ×10| < 1    (3)
ただし、
φd:回折光学面のパワー、
fw:ズームレンズ系の最短焦点距離状態での焦点距離、
である。
The imaging apparatus according to claim 1, wherein the following conditional expression range (3) is satisfied:
0.01 <| φd × fw × 10 | <1 (3)
However,
φd: power of diffractive optical surface,
fw: focal length in the shortest focal length state of the zoom lens system,
It is.
以下の条件式範囲(4)を満足することを特徴とする請求項1に記載の撮像装置:
0.5 < |R2 × Hmax / λ0| < 50     (4)
ただし、
R2:回折光学面の2次の位相係数(1/mm)、
Hmax:レンズ有効径(mm)、
λ0:設計中心波長(mm)
である。
The imaging apparatus according to claim 1, wherein the following conditional expression range (4) is satisfied:
0.5 <| R2 × Hmax / λ0 | <50 (4)
However,
R2: second-order phase coefficient (1 / mm) of the diffractive optical surface,
Hmax: lens effective diameter (mm),
λ0: Design center wavelength (mm)
It is.
JP2002281042A 2002-09-26 2002-09-26 Imaging apparatus Pending JP2004117826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281042A JP2004117826A (en) 2002-09-26 2002-09-26 Imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281042A JP2004117826A (en) 2002-09-26 2002-09-26 Imaging apparatus

Publications (1)

Publication Number Publication Date
JP2004117826A true JP2004117826A (en) 2004-04-15

Family

ID=32275598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281042A Pending JP2004117826A (en) 2002-09-26 2002-09-26 Imaging apparatus

Country Status (1)

Country Link
JP (1) JP2004117826A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276712A (en) * 2005-03-30 2006-10-12 Nikon Corp Zoom lens
US7545577B2 (en) 2007-02-28 2009-06-09 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
US7616385B2 (en) 2006-12-14 2009-11-10 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2010032701A (en) * 2008-07-28 2010-02-12 Nikon Corp Zoom lens, optical device having the same and method for varying magnification
WO2010018727A1 (en) * 2008-08-12 2010-02-18 株式会社ニコン Zoom lens, optical apparatus with the zoom lens, and method of manufacturing zoom lens
JP2010044191A (en) * 2008-08-12 2010-02-25 Nikon Corp Zoom lens, optical equipment having the same, and method of manufacturing the same
JP2010044190A (en) * 2008-08-12 2010-02-25 Nikon Corp Zoom lens, optical equipment having the same, and method of manufacturing the same
WO2010041704A1 (en) * 2008-10-09 2010-04-15 オリンパスイメージング株式会社 Image forming optical system and electronic image pickup device comprising same
JP2012098699A (en) * 2010-10-07 2012-05-24 Canon Inc Zoom lens and imaging device with the same
WO2012101959A1 (en) * 2011-01-24 2012-08-02 パナソニック株式会社 Zoom-lens system, imaging device, and camera
US8437090B2 (en) 2009-08-06 2013-05-07 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2013105142A (en) * 2011-11-16 2013-05-30 Konica Minolta Advanced Layers Inc Zoom lens and imaging apparatus
WO2013114515A1 (en) * 2012-02-02 2013-08-08 パナソニック株式会社 Zoom lens system, image-capturing device, and camera
JP2014089385A (en) * 2012-10-31 2014-05-15 Canon Inc Zoom lens and optical device having the same
JP2014089287A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
JP2014089288A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
JP2014089286A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
US8736968B2 (en) 2008-07-28 2014-05-27 Nikon Corporation Zoom lens, optical apparatus having same, and method of manufacturing zoom lens
US20140204462A1 (en) * 2011-04-06 2014-07-24 Miho Matsumoto Zoom optical system and imaging device having the same
US8792182B2 (en) 2012-02-09 2014-07-29 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having zoom lens
JP2014178478A (en) * 2013-03-14 2014-09-25 Olympus Imaging Corp Zoom lens and image capturing device having the same
US9069156B2 (en) 2012-05-21 2015-06-30 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
CN104769477A (en) * 2012-10-30 2015-07-08 株式会社尼康 Variable magnification optical system, optical device, and production method for variable magnification optical system
US9535240B2 (en) 2012-02-29 2017-01-03 Nikon Corporation Zoom optical system
JP2017067847A (en) * 2015-09-28 2017-04-06 富士フイルム株式会社 Zoom lens and imaging apparatus

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276712A (en) * 2005-03-30 2006-10-12 Nikon Corp Zoom lens
US7616385B2 (en) 2006-12-14 2009-11-10 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
US7545577B2 (en) 2007-02-28 2009-06-09 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
US8736968B2 (en) 2008-07-28 2014-05-27 Nikon Corporation Zoom lens, optical apparatus having same, and method of manufacturing zoom lens
JP2010032701A (en) * 2008-07-28 2010-02-12 Nikon Corp Zoom lens, optical device having the same and method for varying magnification
JP2010044190A (en) * 2008-08-12 2010-02-25 Nikon Corp Zoom lens, optical equipment having the same, and method of manufacturing the same
US8503094B2 (en) 2008-08-12 2013-08-06 Nikon Corporation Zoom lens, optical apparatus with the zoom lens, and method of manufacturing zoom lens
JP2010044191A (en) * 2008-08-12 2010-02-25 Nikon Corp Zoom lens, optical equipment having the same, and method of manufacturing the same
WO2010018727A1 (en) * 2008-08-12 2010-02-18 株式会社ニコン Zoom lens, optical apparatus with the zoom lens, and method of manufacturing zoom lens
CN102037388B (en) * 2008-08-12 2013-11-06 株式会社尼康 Zoom lens, optical apparatus with the zoom lens, and method of manufacturing zoom lens
WO2010041704A1 (en) * 2008-10-09 2010-04-15 オリンパスイメージング株式会社 Image forming optical system and electronic image pickup device comprising same
US8149522B2 (en) 2008-10-09 2012-04-03 Olympus Imaging Corp. Image forming optical system and electronic image pickup apparatus using the same
US8437090B2 (en) 2009-08-06 2013-05-07 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including the same
JP2012098699A (en) * 2010-10-07 2012-05-24 Canon Inc Zoom lens and imaging device with the same
WO2012101959A1 (en) * 2011-01-24 2012-08-02 パナソニック株式会社 Zoom-lens system, imaging device, and camera
US8542446B2 (en) 2011-01-24 2013-09-24 Panasonic Corporation Zoom lens system, imaging device and camera
CN102782555A (en) * 2011-01-24 2012-11-14 松下电器产业株式会社 Zoom-lens system, imaging device, and camera
JPWO2012101959A1 (en) * 2011-01-24 2014-06-30 パナソニック株式会社 Zoom lens system, imaging device and camera
US9625733B2 (en) 2011-04-06 2017-04-18 Nikon Corporation Zoom optical system comprising diffractive optical element and imaging device having the same
US20140204462A1 (en) * 2011-04-06 2014-07-24 Miho Matsumoto Zoom optical system and imaging device having the same
JP2013105142A (en) * 2011-11-16 2013-05-30 Konica Minolta Advanced Layers Inc Zoom lens and imaging apparatus
CN104204895A (en) * 2012-02-02 2014-12-10 松下电器产业株式会社 Zoom lens system, image-capturing device, and camera
JPWO2013114515A1 (en) * 2012-02-02 2015-05-11 パナソニックIpマネジメント株式会社 Zoom lens system, imaging device and camera
WO2013114515A1 (en) * 2012-02-02 2013-08-08 パナソニック株式会社 Zoom lens system, image-capturing device, and camera
US8792182B2 (en) 2012-02-09 2014-07-29 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having zoom lens
US9535240B2 (en) 2012-02-29 2017-01-03 Nikon Corporation Zoom optical system
US9069156B2 (en) 2012-05-21 2015-06-30 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP2014089286A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
JP2014089287A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
CN104769477A (en) * 2012-10-30 2015-07-08 株式会社尼康 Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2014089288A (en) * 2012-10-30 2014-05-15 Nikon Corp Variable power optical system, optical device, and method of manufacturing variable power optical system
US9874730B2 (en) 2012-10-30 2018-01-23 Nikon Corporation Variable magnification optical system, optical device, and production method for variable magnification optical system
CN104769477B (en) * 2012-10-30 2018-11-09 株式会社尼康 The production method of variable magnification optical system, Optical devices and variable magnification optical system
JP2014089385A (en) * 2012-10-31 2014-05-15 Canon Inc Zoom lens and optical device having the same
JP2014178478A (en) * 2013-03-14 2014-09-25 Olympus Imaging Corp Zoom lens and image capturing device having the same
JP2017067847A (en) * 2015-09-28 2017-04-06 富士フイルム株式会社 Zoom lens and imaging apparatus

Similar Documents

Publication Publication Date Title
JP3598971B2 (en) Imaging lens device
JP2004117827A (en) Imaging apparatus
JP2004117826A (en) Imaging apparatus
JP4259495B2 (en) Variable magnification optical system
KR101389037B1 (en) Zoom lens and imaging apparatus
JP4103475B2 (en) Imaging lens device
JP2004037924A (en) Imaging apparatus
US20070121218A1 (en) Variable magnification optical system and imaging device
US6751030B2 (en) Zoom lens and image-taking apparatus
JP2001194590A (en) Image pickup lens device
JP4323796B2 (en) Zoom lens and imaging apparatus having the same
KR20070115771A (en) Zoom lens and image capture apparatus
JP2004102089A (en) Imaging apparatus
JP2002082284A (en) Imaging lens device
JP2007025123A (en) Variable power optical system
JP2003140041A (en) Zoom lens system
JP2004184627A (en) Image pickup lens device
JP2004117828A (en) Image pickup device
JP4917922B2 (en) Zoom lens system, imaging device and camera
JP2004037927A (en) Imaging apparatus
JP2004037926A (en) Imaging apparatus
JP2004037967A (en) Image pickup lens device
JP3821087B2 (en) Imaging lens device
US7440195B2 (en) Zoom lens system and imaging device having the same
JP2004226510A (en) Imaging lens device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050615