JP2004117015A - Transmittance measuring apparatus - Google Patents

Transmittance measuring apparatus Download PDF

Info

Publication number
JP2004117015A
JP2004117015A JP2002276809A JP2002276809A JP2004117015A JP 2004117015 A JP2004117015 A JP 2004117015A JP 2002276809 A JP2002276809 A JP 2002276809A JP 2002276809 A JP2002276809 A JP 2002276809A JP 2004117015 A JP2004117015 A JP 2004117015A
Authority
JP
Japan
Prior art keywords
integrating sphere
light
measured
opening
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002276809A
Other languages
Japanese (ja)
Inventor
Sawako Chatani
茶谷 佐和子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002276809A priority Critical patent/JP2004117015A/en
Publication of JP2004117015A publication Critical patent/JP2004117015A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and precise transmittance measuring apparatus for measuring transmittance regardless of the shape and direction of injection luminous flux from an object to be measured. <P>SOLUTION: In the transmittance measuring apparatus having an integrating sphere that is used when measuring the quantity of light such as reflection and transmission light from the object to be measured, a light source, a light source condensation system for converging luminous flux from the light source, and a light receiver, the integrating sphere retains one portion of the object to be measured while being inserted into the integrating sphere, and has a retention section where a part facing the inside of the integrating sphere has the same properties as the inner wall of the integrating sphere on the surface of the sphere. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、透過率測定装置に関し、特に光学素子等の反射、透過光といった光量を測定する際に用いられる積分球、及びそれを用いた測定装置に関する。
【0002】
【従来の技術】
透過率を測定する装置では、光量を測定する為に、一般的に積分球を用いる。図7は分光透過率を測定する場合の一般的なシングルビーム方式の装置図である。一般的な分光透過率測定器は、主に、光源16、光源からの光束を集光するための集光系17、分光器19、分光器からの射出光を収束させるための集光系20、積分球24から成る。
【0003】
透過率は、被測定物に入射する光量に対する、被測定物を射出した光量の割合として算出することが出来るので、まず、被測定物を配さないで入射光量を測定し、次に被測定物22を集光系20と積分球24との間に配置し、射出した光量を測定する。より正確な透過率を得るために、積分球内部へ光束を適当に導く必要がある。そのために、積分球の入射光用開口には、入射光束の位置を確認するためのモニター23が配されている。また、被測定物22を透過した光束の径が、積分球に入射する際に入射光用開口よりも大きい場合は、図8に記したように被測定物22とモニター23との間に新たな集光系26を配して、積分球内部に全射出光束を導いている。
【0004】
また、積分球の入射光用の開口と、受光器25は正対しない位置に配されている。これは、積分球に入射した光束が一様な反射率を持った完全拡散反射面である積分球の内壁によって相互反射した照度を測定するためである。入射光束が内壁で反射することなく直接受光器に入射する場合は、測定再現性が低下するに加えて、受光器表面と積分球の内壁の完全拡散反射面との反射率の差が影響し、測定精度が低下してしまう。
【0005】
【発明が解決しようとする課題】
しかし、上述の分光透過率測定器は、被測定物が小型の場合、被測定物を保持するステージが測定物に対して大きく、装置の大型化を招いている。また、被測定物から射出した光束の径が、積分球の開口付近において大きい場合、図8に記したように、被測定物と積分球との間に新たに集光系を挿入する必要があり、その分装置が巨大化してしまう。その他、被測定物が、被測定物に入射する光束の方向と被測定物から射出する方向が同一でない場合、特に180度反転する場合は射出光を検出する機構が被測定物に入射する光束を遮ってしまう為に測定が不可能となってしまう。それには射出光束をミラー等で折り曲げるなどの対策が考えられるが、これも被測定物が小型で入射光束と射出光束との間隔が狭い場合には限界があり、しかも、被測定物による吸収光量が微量の場合には、光束を折り曲げる目的で配置したミラーによる光損失が測定精度の低下に影響することがある。また、被測定物に入射する光束の方向と被測定物から射出する方向が同一でない被測定物の場合、積分球の入射光用の開口と、受光器は正対しない位置に配されていても、受光器に射出光束が直接取り込まれることがあり得る。この場合、被測定物に入射する光量を測定する際は入射光束を相互反射光のみから検出し、被測定物を透過した光量を測定する際は、直接光も取り込まれるといった違いが生じる為に、正確な透過率を測定することが出来ない。
【0006】
そこで、本発明は、上記課題を解決し、被測定物からの射出光束の形状及び方向によらず、透過率の測定を可能とする小型で高精度な透過率測定装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するため、つぎのように構成した透過率測定装置を提供するものである。
本発明の透過率測定装置は、被測定物からの反射、透過光などの光量を測定する際に用いられる積分球と、光源、光源からの光束を収束させる光源集光系、受光器とを有する透過率測定装置において、前記積分球が、被測定物の一部を該積分球の内部に挿入した状態で保持する保持部を、球体の表面に有することを特徴としている。その際、前記積分球の保持部は、前記積分球の内側に面する部分が該積分球の内壁と同様の性質を有し、また、被測定物のサイズに応じて、それを挿入する開口面積を段階的に変化させることができ、積分球に設けられた開口をふさぐ蓋と兼用可能な保持部として構成することができる。
また、前記積分球は、積分球体上に入射光が入射する為の開口及び受光器を取り付ける為の開口を複数有し、測定時に使用する入射光用開口と受光器用開口との位置の組み合わせを変えられるように構成することができる。
【0008】
【発明の実施の形態】
上記構成を適用して、被測定物の保持部を積分球に取り付けられられるようにすることで、被測定物からの射出光束を集光するための集光系、及び、被測定物からの射出光束が積分球に取り込まれているかを確認するためのモニターを不要とすることができ、装置の小型化を図ることができる。また、被測定物からの射出光束を直接積分球に取り込む構成とすることで、測定精度の向上が可能となり、しかも、被測定物に入射する光束の方向と被測定物から射出する光束の方向が同一でない被測定物であっても、高精度な透過率の測定が可能となる。
また、被測定物の保持部は、被測定物を挿入する部分のサイズを変更するように構成することで、取り付ける被測定物のサイズの違いに対応することが可能となる。
【0009】
【実施例】
以下に本発明の実施例について説明する。
[実施例1]
以下、本発明の第1実施例を図面を参照して説明する。図1は入射する光束4aの方向と被測定物からの射出光束4bの方向が同一でない被測定物が取り付けられた積分球の断面の一部を示す。積分球の入射光用開口には、被測定物を固定するための複数の固定ネジ3を有する保持部2が、被測定物4が挿入された状態で、はめ込まれている。被測定物4は、保持部2によって光束の入射する面を積分球の外に、射出する面を積分球の内部に位置する状態で取り付けられている。また、1は積分球の内壁を示しており、内壁1には拡散反射率が高い硫酸バリウム等の白色塗料が均一に塗布されている。
【0010】
図2は保持部2の一例で、積分球の内側に入る面を斜め上方から見た図である。積分球にはめ込んだ時に積分球の内側にある面は、積分球の内壁と同様に白色塗料が塗布されている。保持部は図2にあるようにサイズの異なる複数のリング5a,5b,5cらが接続され、構成されている。6は保持部の開口を示し、ここに被測定物が挿入される。また、7は保持部の開口6の外周を示す。
【0011】
保持部を構成する、最も径の小さいリングの内周が、開口6の外周7となるので、リングを外したり、取り付けたりすることで、開口面積を段階的に変化させることができる。本実施例では、保持部は、内周及び外周が円である複数のリングから成っているが、その形状は円に限らず、しかも、一つのリングの内周と外周の形状が同じである必要はないので、保持部を構成するリングによっては、開口面積だけでなく、開口の形を変えることができる。保持部は以上のような構成になっているので、被測定物のサイズや形状に応じて保持部を複数個用意する必要はなく、一つの保持部で対応することができる。
【0012】
接するリング同士の取り付けは、一方のリング外周の側面にある突起と、もう一方のリング内周の側面にある溝を対応させることにより行う。図3では、リング5cの外周の側面にある突起物8をリング5bの内周の側面にある溝に対応させて、リング同士を固定する。また、保持部に開口を有さない部分を接続することで、被測定物の保持部としてではなく、積分球の開口をふさぐ蓋としての役割を果たすことができる。
【0013】
図4は保持部を積分球の外側に出る面の上方から見た図であり、その表面には、複数の固定ネジ3が配されている。固定ネジ3は、ネジを3aで押し引きすることにより、その先端3bを被測定物に押し付け、被測定物を固定する。
【0014】
図5は被測定物が取り付けられた積分球の断面図である。積分球15には複数の開口があり、そのうちの一つは受光器14が取り付けられている。また、そのうち一つの開口には、保持部12により固定された被測定物13が取り付けられている。その他の開口9、10、11には、開口のない状態の保持部が、積分球体上の開口の蓋として取り付けられている。仮に、開口11に受光器14が取り付けられている場合、射光用の開口と、受光器は正対していなくとも、被測定物13からの射出光は直接受光器に取り込まれてしまう。しかし、本発明における積分球では、被測定物を取り付ける開口を選択できることから、被測定物からの射出光束の方向によって、受光器または入射口の位置の組み合わせを変えることが出来る。
【0015】
[実施例2]
図6に、本発明の実施例2における積分球に、負のパワーを有するレンズが取り付けられた状態における断面の一部を示す。同図において、被測定物15は、開口面積を被測定物のサイズにあわせた保持部2によって、光束の入射する面を積分球の外側に、射出する面を積分球の内側になるように、積分球に取り付けられている。被測定物から射出する光束15bは発散しているが、被測定物の射出面は積分球の内部にあることから、積分球内部へ光束を導くために新たに集光系を配する必要がなく、装置が大きくなることはない。同様の効果は、被測定物が、焦点が短い凸レンズの場合にも得ることができる。
【0016】
【発明の効果】
本発明によれば、被測定物からの射出光束の形状及び方向によらず、透過率の測定を可能とする小型で高精度な透過率測定装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施例1における入射する光束の方向と被測定物から射出する方向が同一でない被測定物が取り付けられた積分球の断面の一部を示す概略図。
【図2】本発明の実施例1における保持部を積分球の内側に入る面を斜め上方から見た概略図。
【図3】本発明の実施例1における保持部を積分球の外側に出る面の上方から見た概略図。
【図4】本発明の実施例1における保持部が被測定物のサイズに合わせて、開口面積を変化させることが出来る ことを示す説明図。
【図5】本発明の実施例1における入射する光束の方向と被測定物から射出する方向が同一でない被測定物が取り付けられた積分球の断面を示す概略図。
【図6】本発明の実施例2における負のパワーを有する被測定物が取り付けられた積分球の断面の一部を示す概略図。
【図7】従来の分光透過率測定装置の説明図。
【符号の説明】
1:積分球の内壁
2:被測定物の保持部
3:被測定物の固定ネジ3
3a:固定ネジのつまみ部
3b:固定ネジの先端部
4:入射する光束の方向と被測定物から射出する方向が同一でない被測定物
4a:被測定物に入射する光束
4b:被測定物から射出する光束
5a:保持部を構成するリング1
5b:保持部を構成するリング1
5c:保持部を構成するリング1
6:保持部の開口
7:保持部の開口の外周
8:接するリング同士を接続する為の突起部
9:被測定物を取り付けない開口1
10:被測定物を取り付けない開口2
11:被測定物を取り付けない開口3
12:被測定物を取り付けるための保持部
13:入射する光束の方向と被測定物から射出する方向が同一でない被測定物
14:受光器
15:負のパワーを有する被測定物
15a:被測定物に入射する光束
15b:被測定物から射出する光束
16:光源
17:光源からの光束を集光するための集光系
18:スリット
19:分光器
20:分光器からの射出光を収束させるための集光系
21:偏光子
22:被測定物
23:モニター
24:積分球
25:受光器
26:集光系
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transmittance measuring apparatus, and more particularly to an integrating sphere used when measuring an amount of light such as reflection and transmitted light of an optical element and the like, and a measuring apparatus using the same.
[0002]
[Prior art]
In an apparatus for measuring transmittance, an integrating sphere is generally used to measure the amount of light. FIG. 7 is a diagram of a general single-beam system for measuring the spectral transmittance. A general spectral transmittance measuring apparatus mainly includes a light source 16, a light collecting system 17 for collecting light beams from the light source, a spectroscope 19, and a light collecting system 20 for converging light emitted from the spectroscope. , An integrating sphere 24.
[0003]
The transmittance can be calculated as the ratio of the amount of light emitted from the object to the amount of light incident on the object, so first measure the amount of incident light without disposing the object, and then measure The object 22 is disposed between the light-collecting system 20 and the integrating sphere 24, and the emitted light amount is measured. In order to obtain a more accurate transmittance, it is necessary to appropriately guide the light flux into the integrating sphere. For this purpose, a monitor 23 for confirming the position of the incident light beam is disposed in the incident light opening of the integrating sphere. In addition, when the diameter of the light beam transmitted through the DUT 22 is larger than the aperture for the incident light when entering the integrating sphere, as shown in FIG. A simple condensing system 26 is arranged to guide all the emitted light beams inside the integrating sphere.
[0004]
Further, the opening for the incident light of the integrating sphere and the light receiver 25 are arranged at positions not directly facing each other. This is for measuring the illuminance in which the light beam incident on the integrating sphere is interreflected by the inner wall of the integrating sphere which is a perfect diffuse reflection surface having a uniform reflectance. When the incident light beam is directly incident on the receiver without being reflected by the inner wall, the measurement reproducibility is reduced and the difference in reflectance between the receiver surface and the perfect diffuse reflection surface of the inner wall of the integrating sphere is affected. However, the measurement accuracy is reduced.
[0005]
[Problems to be solved by the invention]
However, in the above-described spectral transmittance measuring device, when the object to be measured is small, the stage for holding the object to be measured is large with respect to the object to be measured, which causes an increase in the size of the apparatus. When the diameter of the light beam emitted from the object to be measured is large near the opening of the integrating sphere, it is necessary to insert a new light condensing system between the object to be measured and the integrating sphere as shown in FIG. Yes, the device becomes huge. In addition, if the direction of the light beam incident on the object to be measured is not the same as the direction of the light beam emerging from the object to be measured, particularly if the direction of the light beam is inverted by 180 degrees, the mechanism for detecting the emitted light beam is incident on the object. The measurement is impossible because the light is blocked. For this purpose, measures such as bending the emitted light beam with a mirror or the like can be considered. However, this is also limited when the object to be measured is small and the distance between the incident light beam and the emitted light beam is narrow. When the amount of light is very small, the light loss due to the mirror arranged for bending the light beam may affect the measurement accuracy. In the case where the direction of the light beam incident on the object and the direction of emission from the object are not the same, the opening for the incident light of the integrating sphere and the light receiver are arranged at positions that do not face each other. Also, the emitted light beam may be directly taken into the light receiver. In this case, when measuring the amount of light incident on the object to be measured, the incident light beam is detected only from the interreflected light, and when measuring the amount of light transmitted through the object to be measured, there is a difference that direct light is also taken in. , Cannot accurately measure the transmittance.
[0006]
Therefore, an object of the present invention is to solve the above problems and provide a small and highly accurate transmittance measurement device capable of measuring transmittance regardless of the shape and direction of a light beam emitted from an object to be measured. It is assumed that.
[0007]
[Means for Solving the Problems]
The present invention, in order to solve the above-mentioned problems, provides a transmittance measuring device configured as follows.
The transmittance measuring apparatus of the present invention includes an integrating sphere used for measuring the amount of light such as reflected light and transmitted light from an object to be measured, a light source, a light source condensing system for converging a light flux from the light source, and a light receiver. In the transmittance measuring apparatus, the integrating sphere is characterized in that the integrating sphere has a holding portion for holding a part of the object to be measured inserted into the integrating sphere on a surface of the sphere. At that time, the holding portion of the integrating sphere has a portion facing the inside of the integrating sphere having the same properties as the inner wall of the integrating sphere, and an opening for inserting the same according to the size of the measured object. The area can be changed stepwise, and it can be configured as a holding portion that can also serve as a lid that covers an opening provided in the integrating sphere.
Further, the integrating sphere has a plurality of openings for receiving incident light on the integrating sphere and a plurality of openings for attaching a light receiver, and a combination of positions of the opening for the incident light and the opening for the light receiver used at the time of measurement. It can be configured to be changeable.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
By applying the above configuration and attaching the holding part of the object to be measured to the integrating sphere, a condensing system for condensing the emitted light beam from the object to be measured, and A monitor for checking whether or not the emitted light beam is captured by the integrating sphere can be eliminated, and the size of the apparatus can be reduced. Further, by adopting a configuration in which the light beam emitted from the object to be measured is directly taken into the integrating sphere, the measurement accuracy can be improved, and the direction of the light beam incident on the object to be measured and the direction of the light beam emitted from the object to be measured. Can be measured with high accuracy even if the objects are not the same.
In addition, by configuring the holding section for the DUT to change the size of the portion into which the DUT is inserted, it is possible to cope with the difference in the size of the DUT to be attached.
[0009]
【Example】
Hereinafter, examples of the present invention will be described.
[Example 1]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a part of a cross section of an integrating sphere to which an object to be measured is attached in which the direction of the incident light beam 4a and the direction of the outgoing light beam 4b from the object are not the same. A holding unit 2 having a plurality of fixing screws 3 for fixing the object to be measured is fitted into the opening for incident light of the integrating sphere with the object to be measured 4 inserted. The DUT 4 is attached by the holding unit 2 such that the surface on which the light beam enters is located outside the integrating sphere, and the surface on which the light flux exits is located inside the integrating sphere. Reference numeral 1 denotes an inner wall of the integrating sphere, and a white paint such as barium sulfate having a high diffuse reflectance is uniformly applied to the inner wall 1.
[0010]
FIG. 2 is an example of the holding unit 2 and is a diagram in which a surface entering the inside of the integrating sphere is viewed obliquely from above. The surface on the inside of the integrating sphere when fitted into the integrating sphere is coated with a white paint like the inner wall of the integrating sphere. As shown in FIG. 2, the holding portion is configured by connecting a plurality of rings 5a, 5b, 5c of different sizes. Reference numeral 6 denotes an opening of the holder, into which an object to be measured is inserted. Reference numeral 7 denotes the outer periphery of the opening 6 of the holding unit.
[0011]
Since the inner circumference of the ring having the smallest diameter that forms the holding portion is the outer circumference 7 of the opening 6, the opening area can be changed stepwise by removing or attaching the ring. In the present embodiment, the holding portion is composed of a plurality of rings whose inner and outer circumferences are circular, but the shape is not limited to a circle, and the shape of the inner circumference and the outer circumference of one ring is the same. Since there is no necessity, not only the opening area but also the shape of the opening can be changed depending on the ring constituting the holding portion. Since the holding unit is configured as described above, it is not necessary to prepare a plurality of holding units according to the size and shape of the measured object, and one holding unit can be used.
[0012]
Attachment of the rings in contact with each other is performed by associating a protrusion on the outer peripheral side surface of one ring with a groove on the inner peripheral side surface of the other ring. In FIG. 3, the projections 8 on the outer peripheral side surface of the ring 5c correspond to the grooves on the inner peripheral side surface of the ring 5b, and the rings are fixed to each other. In addition, by connecting a portion having no opening to the holding portion, it can serve not as a holding portion for the object to be measured but as a lid for closing the opening of the integrating sphere.
[0013]
FIG. 4 is a view of the holding unit as viewed from above a surface protruding outside the integrating sphere, and a plurality of fixing screws 3 are arranged on the surface. The fixing screw 3 pushes and pulls the screw 3a to press the tip 3b thereof against the object to be measured, thereby fixing the object to be measured.
[0014]
FIG. 5 is a cross-sectional view of an integrating sphere to which an object to be measured is attached. The integrating sphere 15 has a plurality of openings, one of which is provided with a light receiver 14. An object 13 fixed by the holder 12 is attached to one of the openings. In the other openings 9, 10, and 11, a holding portion having no opening is attached as a lid of the opening on the integrating sphere. If the light receiving device 14 is attached to the opening 11, the light emitted from the DUT 13 is directly taken into the light receiving device even if the light emitting opening and the light receiving device do not face each other. However, in the integrating sphere according to the present invention, since the opening for mounting the object to be measured can be selected, the combination of the positions of the light receiver or the entrance can be changed depending on the direction of the light beam emitted from the object to be measured.
[0015]
[Example 2]
FIG. 6 shows a part of a cross section in a state where a lens having negative power is attached to the integrating sphere according to the second embodiment of the present invention. In the drawing, the object 15 is held by the holder 2 having an opening area corresponding to the size of the object so that the surface on which the light flux enters is outside the integrating sphere and the surface on which the light flux exits is inside the integrating sphere. , Attached to an integrating sphere. Although the light beam 15b emitted from the object to be measured is divergent, since the exit surface of the object to be measured is inside the integrating sphere, it is necessary to newly provide a light condensing system to guide the light beam into the integrating sphere. And the device does not become large. The same effect can be obtained when the object to be measured is a convex lens having a short focal point.
[0016]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the small and highly accurate transmittance | permeability measuring apparatus which can measure the transmittance | permeability regardless of the shape and direction of the luminous flux emitted from a to-be-measured object can be implement | achieved.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a part of a cross section of an integrating sphere to which an object to be measured is attached in which the direction of an incident light beam and the direction of emission from the object are not the same in Embodiment 1 of the present invention.
FIG. 2 is a schematic diagram of a holding part in Example 1 of the present invention when viewed from obliquely above a surface entering the inside of an integrating sphere.
FIG. 3 is a schematic diagram of the holding unit according to the first embodiment of the present invention, as viewed from above a surface that is outside the integrating sphere.
FIG. 4 is an explanatory diagram showing that the holding area according to the first embodiment of the present invention can change the opening area in accordance with the size of an object to be measured.
FIG. 5 is a schematic diagram showing a cross section of an integrating sphere on which a device under test in which a direction of an incident light beam and a direction of light exiting from the device under test are not the same according to the first embodiment of the present invention.
FIG. 6 is a schematic diagram showing a part of a cross section of an integrating sphere on which an object to be measured having negative power according to a second embodiment of the present invention is attached.
FIG. 7 is an explanatory diagram of a conventional spectral transmittance measuring device.
[Explanation of symbols]
1: Inner wall of integrating sphere 2: Holder for DUT 3: Fixing screw 3 for DUT
3a: knob portion of the fixing screw 3b: tip portion of the fixing screw 4: the direction of the incident light beam is not the same as the direction of emission from the object to be measured 4a: the light beam incident on the object to be measured 4b: from the object to be measured Emitted light beam 5a: ring 1 forming a holding unit
5b: Ring 1 constituting the holding unit
5c: Ring 1 constituting the holding unit
6: Opening of holding section 7: Outer circumference of opening of holding section 8: Projecting section 9 for connecting rings that contact each other 9: Opening 1 to which object to be measured is not attached
10: Opening 2 not to be measured
11: Opening 3 not to attach DUT
12: Holder 13 for mounting the object to be measured 13: Object to be measured 14 in which the direction of the incident light beam is not the same as the direction to exit from the object to be measured 14: Optical receiver 15: Object to be measured 15a having negative power: Object to be measured Light beam 15b incident on the object: light beam 16 emitted from the object to be measured 16: light source 17: light collecting system 18 for condensing the light beam from the light source: slit 19: spectroscope 20: converges the light emitted from the spectroscope. Light collecting system 21: polarizer 22: device under test 23: monitor 24: integrating sphere 25: light receiver 26: light collecting system

Claims (4)

被測定物からの反射、透過光などの光量を測定する際に用いられる積分球と、光源、光源からの光束を収束させる光源集光系、受光器とを有する透過率測定装置において、
前記積分球が、被測定物の一部を該積分球の内部に挿入した状態で保持する保持部を、球体の表面に有することを特徴とする透過率測定装置。
Reflection from the object to be measured, an integrating sphere used when measuring the amount of light such as transmitted light, a light source, a light source condensing system that converges a light flux from the light source, and a transmittance measurement device having a light receiver,
A transmittance measuring apparatus, characterized in that the integrating sphere has a holding portion on a surface of the sphere, the holding portion holding a part of an object to be measured inserted into the integrating sphere.
前記保持部が、前記積分球の内側に面する部分が該積分球の内壁と同様の性質を有することを特徴とする請求項1に記載の透過率測定装置。The transmittance measuring apparatus according to claim 1, wherein a portion of the holding section facing the inside of the integrating sphere has a property similar to an inner wall of the integrating sphere. 前記積分球の保持部は、被測定物のサイズに応じて、それを挿入する開口面積を段階的に変化させることができ、積分球に設けられた開口をふさぐ蓋と兼用可能な保持部であることを特徴とする請求項1または請求項2に記載の透過率測定装置。The holding portion of the integrating sphere can change the opening area for inserting the same in a stepwise manner according to the size of the object to be measured, and is a holding portion that can also serve as a lid that covers the opening provided in the integrating sphere. The transmittance measuring device according to claim 1 or 2, wherein the transmittance measuring device is provided. 前記積分球は、積分球体上に入射光が入射する為の開口及び受光器を取り付ける為の開口を複数有し、測定時に使用する入射光用開口と受光器用開口との位置の組み合わせを変えられることを特徴とする請求項1〜3のいずれか1項に記載の透過率測定装置。The integrating sphere has a plurality of openings for receiving incident light and a plurality of openings for mounting a light receiver on the integrating sphere, and a combination of positions of the opening for the incident light and the opening for the light receiver used for measurement can be changed. The transmittance measuring apparatus according to claim 1, wherein
JP2002276809A 2002-09-24 2002-09-24 Transmittance measuring apparatus Pending JP2004117015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002276809A JP2004117015A (en) 2002-09-24 2002-09-24 Transmittance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002276809A JP2004117015A (en) 2002-09-24 2002-09-24 Transmittance measuring apparatus

Publications (1)

Publication Number Publication Date
JP2004117015A true JP2004117015A (en) 2004-04-15

Family

ID=32272591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002276809A Pending JP2004117015A (en) 2002-09-24 2002-09-24 Transmittance measuring apparatus

Country Status (1)

Country Link
JP (1) JP2004117015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047732A (en) * 2010-07-30 2012-03-08 Hoya Corp Transmittance measuring instrument, photomask transmittance inspection device, transmittance inspection method, photomask manufacturing method, pattern transfer method, and photomask product
JP2014185854A (en) * 2013-03-21 2014-10-02 Shimadzu Corp Optical measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012047732A (en) * 2010-07-30 2012-03-08 Hoya Corp Transmittance measuring instrument, photomask transmittance inspection device, transmittance inspection method, photomask manufacturing method, pattern transfer method, and photomask product
JP2014185854A (en) * 2013-03-21 2014-10-02 Shimadzu Corp Optical measuring device

Similar Documents

Publication Publication Date Title
KR100521616B1 (en) Spectral reflectance measuring apparatus and spectral reflectance measuring method
US10180352B2 (en) Measuring light source, and measuring system for detecting a reflection spectrum
JP2004513363A (en) Especially for plasma resonance sensors for biosensor technology
KR100425412B1 (en) A device for measuring the photometric and colorimetric characteristics of an object
JPH07509315A (en) Spectrometer for Renzometer
US5268732A (en) Apparatus for measuring spectral transmissivity of optical fiber
JPH02114151A (en) Refractometer having aperture distribution depending upon refractive index
JP2004117015A (en) Transmittance measuring apparatus
CN208537405U (en) A kind of spectral photometric colour measuring device
US20080198370A1 (en) Method and Device For Measuring the Concentricity of an Optical Fiber Core
CN215727622U (en) Fixing device suitable for portable spectrum detection device of multipurpose
JP3871415B2 (en) Spectral transmittance measuring device
JP3184487B2 (en) Total reflection measuring device
JP3790630B2 (en) Spectrophotometer and spectral wavelength calibration method
JP2518171B2 (en) Lighting fiber bundle inspection device
JPS62148819A (en) Photodetecting probe of spectocolorimeter
JPH095167A (en) Ear drum thermometer
JPH0979906A (en) Spectrocolorimeter
JP3829663B2 (en) Spectrophotometer
KR101715003B1 (en) Spectral reflectivity measurement device for small lenz
JP2002323404A (en) Surface inspection device
JPH0516510Y2 (en)
JPS60202317A (en) Probe of colorimeter and the like
CN113503964A (en) Multipurpose portable spectrum detection device
JPH0473739B2 (en)