JP2004115983A - Heat treatment oven for making flame-resistant and method for heat treatment for making flame-resistant - Google Patents

Heat treatment oven for making flame-resistant and method for heat treatment for making flame-resistant Download PDF

Info

Publication number
JP2004115983A
JP2004115983A JP2002284917A JP2002284917A JP2004115983A JP 2004115983 A JP2004115983 A JP 2004115983A JP 2002284917 A JP2002284917 A JP 2002284917A JP 2002284917 A JP2002284917 A JP 2002284917A JP 2004115983 A JP2004115983 A JP 2004115983A
Authority
JP
Japan
Prior art keywords
heat treatment
hot air
treatment chamber
heating
strand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002284917A
Other languages
Japanese (ja)
Inventor
Masanao Yamaguchi
山口 正直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2002284917A priority Critical patent/JP2004115983A/en
Publication of JP2004115983A publication Critical patent/JP2004115983A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment oven for making flame-resistant, capable of performing the treatment of a carbon fiber precursor strand for making it as flame-resistant uniformly and improving productivity without harming its quality. <P>SOLUTION: This heat treatment oven 2 for making flame-resistant consisting of a heat treatment chamber 8, an upper hot wind passage 16, a lower hot wind passage 18, a hot wind circulation passage 20 and turning back rollers 12a, 12b is provided with that the heat-treating chamber 8 is the heat treating chamber for sending hot wind to the carbon fiber precursor strand 6 to make it flame-resistant. Also, the chamber 8 has a plurality of slits 10a, 10b through which the strand 6 enters and exits, and the hot wind-heating means 22 installed at the hot wind circulation passage 20 is equipped with heating part 24a, 24b and 26 for heating to a higher temperature in the vicinity of both oven walls 4a, 4b (both end sides) than that at a central side. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は炭素繊維の前駆体であるポリアクリロニトリル等の繊維を耐炎化する熱処理炉、より詳しくは生産性に優れた炭素繊維の製造に適した前駆体繊維の耐炎化熱処理炉、及び耐炎化熱処理方法に関する。
【0002】
【従来の技術】
炭素繊維の製造工程において、炭素繊維の前駆体である繊維を耐炎化する方法として、酸化雰囲気中で熱風を循環させ、前駆体繊維を熱処理する方法がある(例えば、特許文献1)。この耐炎化熱処理方法において、前駆体繊維は通常束ねられたストランドとして耐炎化熱処理炉に投入される。
【0003】
図3は従来の耐炎化熱処理炉の一例を示す概略図で、(A)は側面断面図、(B)は正面断面図である。
【0004】
図3(A)において、耐炎化熱処理炉32は炉壁34a、34bに、炭素繊維前駆体ストランド36が熱処理室38内外に出入する複数のスリット40a、40bを備えている。この熱処理室38内には多数本のストランド36が水平面に並んだストランド群(パス)を形成して走行している。このパスを形成しているストランド36は、熱処理室38の両側に備えられた所定組の折返しローラー42a、42bによって折り返されて熱処理室38に繰り返し供給され、複数段のパス(本図では5段のパス)を形成している。
【0005】
図3(B)において、熱処理室38のストランド走行方向に直角方向の両側は、側壁44a、44bが設けられ、熱処理室38の内部と外部とを隔てている。そして、一方の側壁44bの外側〔図3(B)右側〕には熱風循環路50が設けられ、この熱風循環路50により熱処理室38の上方熱風流路46及び下方熱風流路48が連通している。
【0006】
熱風循環路50の両炉壁34a、34bの間には、その配列方向を熱処理室38内のストランド36の走行方向と平行にしてヒータ52が備えられており、このヒータ52で加熱された熱風(酸化性気体)が、ファン54により上方熱風流路46から熱処理室38内に送られ、この熱風により前記パスを形成して走行しているストランド36が耐炎化処理される。次いで熱風は下方熱風流路48を通って熱風循環路50に戻り、これを通って上記ヒータ52に循環されることを繰り返す。
【0007】
以上のように、パスに高温の酸化性気体を通過させることによって、ストランド36の酸化反応を促進すると共に、ストランド36の反応熱を除去して耐炎化繊維を生産することが出来る。
【0008】
耐炎化繊維の安定した生産をするためには、パスには均一な温度の熱風を与える必要がある。
【0009】
しかし、従来の耐炎化熱処理炉32は、熱処理室38に投入されるストランド36や、折返しローラーによって折り返されて熱処理室38に繰り返し供給されるストランド36が低温であるため、更にスリット40a、40bから冷気が熱処理室38内に侵入するため、熱処理室38内におけるパスの温度分布が不均一になる。特に上記スリット40a、40bの近傍56a、56bは、中央部58に比較して低温になる。
【0010】
このような部分的な温度の不均一〔温度斑(むら)〕は、熱処理室38内におけるストランド36の有効反応長が短くなって反応不足になったり、生産効率の低下を起したり、若しくは異常な発熱によりストランド36が切断する問題を生ずる。
【0011】
また、生産速度を高くするためストランドの走行速度を高める場合、ストランド36の反応開始までの時間が長くなり、その結果、熱処理室38内における有効反応長が短くなるといった問題を生ずる。
【0012】
【特許文献1】
特開2001−288623号公報 (第2頁〜第3頁)
【0013】
【発明が解決しようとする課題】
本発明者は、上記問題について鋭意検討しているうち、熱処理室内においてストランドを耐炎化処理した後の熱風の加熱手段を熱風循環路底部部の両炉壁間に設け、両側の炉壁近傍における加熱手段の出力を、両側炉壁近傍以外の部分、即ち中央部分における加熱手段の出力よりも高くすることにより、上記問題を解決できることを知得した。このようにすることにより、耐炎化繊維の生産性を上げるためにストランドの走行速度を上げても、熱処理室内におけるパスのスリット近傍が低温にならず、熱処理室内全域で温度分布は均一になり、有効反応長が長くなり、熱効率良く、良品質の耐炎化繊維を製造できる。更には、ストランドの反応開始までの時間が短くなり、熱処理室内での有効反応長を長く取ることが出来ることを知得し、本発明を完成するに至った。
【0014】
従って、本発明の目的とするところは、上述した問題点を解決した、より具体的にはストランドの耐炎化処理を均一に行うことができ、品質を損うことなく生産性を向上させうる耐炎化熱処理炉、及び耐炎化熱処理方法を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成する本発明は、以下に記載するものである。
【0016】
〔1〕  鉛直方向に熱風が流通する熱処理室と、熱処理室の上方に形成された上方熱風流路と、熱処理室の下方に形成された下方熱風流路と、前記上方及び下方熱風流路とを連通する熱風循環路と、前記熱処理室のストランド走行方向両側に備えられた折返しローラーであって前記熱処理室のストランド走行方向両側の炉壁に設けられた複数のスリットから出入するストランドを折返して熱処理室に戻す折返しローラーとからなる耐炎化熱処理炉において、熱風循環路にストランドの走行方向に沿って熱風加熱手段を設けると共に、前記熱風加熱手段が中央側よりも両端側で高出力で加熱する加熱部を備えた耐炎化熱処理炉。
【0017】
〔2〕  鉛直方向に熱風が流通する熱処理室と、熱処理室の上方に形成された上方熱風流路と、熱処理室の下方に形成された下方熱風流路と、前記上方及び下方熱風流路とを連通する熱風循環路と、前記熱処理室のストランド走行方向両側に備えられた折返しローラーであって前記熱処理室のストランド走行方向両側の炉壁に設けられた複数のスリットから出入するストランドを折返して熱処理室に戻す折返しローラーとからなる耐炎化熱処理炉において、熱風循環路にストランドの走行方向に沿って熱風加熱手段を設けると共に、前記熱風加熱手段が中央側よりも両端側で高出力で加熱する加熱部を備え、各加熱部間を分離する仕切板を設けた耐炎化熱処理炉。
【0018】
〔3〕  両端側の加熱部がガスバーナーである〔1〕に記載の耐炎化熱処理炉。
【0019】
〔4〕  両端側の各炉壁近傍における加熱部が、両端側の各炉壁から800mmまでの範囲における加熱部である〔1〕に記載の耐炎化熱処理炉。
【0020】
〔5〕  〔1〕に記載の耐炎化熱処理炉における耐炎化熱処理方法であって、両端側の各炉壁近傍における加熱部の出力を、中央側の加熱部の出力よりも高くする耐炎化熱処理方法。
【0021】
【発明の実施の形態】
以下、図1を参照して本発明を詳細に説明する。
【0022】
図1は本発明の耐炎化熱処理炉の一例を示す概略図で、(A)は側面断面図、(B)は正面断面図である。
【0023】
図1(A)において、耐炎化熱処理炉2は炉壁4a、4bに、炭素繊維前駆体ストランド6が熱処理室8内外に出入する複数のスリット10a、10bを備えている。この熱処理室8内には多数本のストランド6が水平面に並んだストランド群(パス)を形成して走行している。このパスを形成しているストランド6は、熱処理室8の両側に備えられた所定組の折返しローラー12a、12bによって折り返されて熱処理室8に繰り返し供給され、複数段のパス(本図では5段のパス)を形成している。
【0024】
図1(B)において、熱処理室8のストランド走行方向に直角方向の両側は、側壁14a、14bが設けられ、熱処理室8の内部と外部とを隔てている。そして、一方の側壁14bの外側〔図1(B)右側〕には熱風循環路20が設けられ、この熱風循環路20により熱処理室8の上方熱風流路16及び下方熱風流路18が連通している。
【0025】
ここまでは、従来の耐炎化熱処理炉の構成を用いることができる。本発明の耐炎化熱処理炉、及び耐炎化熱処理方法は、上記構成に加えて以下のようにしたことを特徴とする。
【0026】
即ち、本発明の耐炎化熱処理炉は、熱処理室8内においてストランド6を耐炎化処理した後の熱風の加熱手段22を、熱風循環路20中に、好ましくは底部の両炉壁4a、4bの間にストランド走行方向と平行に設け、この熱風加熱手段22を、両側の各炉壁4a、4bの近傍(両端側)における加熱部24a、24bと、これら両側の加熱部24a、24bの間(中央側)の加熱部26とから構成させ、各加熱部24a、26、24bが独立して加熱出力を変えることができ、加熱部24a、24bの出力を、加熱部26の出力よりも高くすることを特徴とする。
【0027】
なお、本発明の耐炎化熱処理炉は、各加熱部24a、26、24bの加熱出力調節が容易なことから、上記加熱手段22がガスバーナーであることが好ましい。
【0028】
この加熱手段22は、加熱部24a、24bをガスバーナーにし、加熱部26を抵抗発熱体、遠赤外線ヒータ又は熱風吹出し手段などガスバーナー以外のものにしても良い。
【0029】
但し、加熱手段22が、抵抗発熱体、遠赤外線ヒータなど広い方向を均一に加熱する手段の場合、その設置場所が熱風循環路20底部といっても、床面から300mm以上離すことが好ましい。これに対し、加熱手段22が、ガスバーナー、熱風吹出し手段など主に加熱手段それ自身の下流側を加熱する手段の場合、床面から300mm以内の熱風循環路20底部に設置しても良い。
【0030】
また、図1の例に示すように、ガスバーナー、熱風吹出し手段など主に加熱手段それ自身の下流側を加熱する手段22を、床面から300mm以内の熱風循環路20底部に設置すると共に、その加熱手段22の上方に、抵抗発熱体、遠赤外線ヒータなど広い方向を均一に加熱する手段27を、床面から300mm以上離して熱風循環路20底部に設置しても良い。
【0031】
この加熱手段22と加熱手段27とを二段に設置する場合、二段の加熱手段22、27のうち少なくとも一段の加熱手段を、高出力の両端側の加熱部と低出力の中央側の加熱部とで構成すれば良い(図1の例では、下段の加熱手段22が、高出力の両端側加熱部24a、24bと、低出力の中央側加熱部26とで構成されている。)。
【0032】
さらに、本発明の耐炎化熱処理炉は、両端側の各炉壁10a、10bの近傍が、両端側の各炉壁10a、10bから800mmまでの範囲であることが好ましく、200mmまでの範囲であることが特に好ましい。
【0033】
次いで、本発明の耐炎化熱処理炉では、上記加熱手段22で加熱された熱風(酸化性気体)が、ファン28により上方熱風流路16から熱処理室8内に送られ、ここで前記パスを形成して走行しているストランド6が耐炎化処理される。
【0034】
なお、本発明の耐炎化熱処理方法は、上記耐炎化熱処理炉において、両端側の加熱部24a、24bの出力を、中央側の加熱部26の出力よりも高くすることを特徴とする。
【0035】
即ち、本発明においては、上記各加熱部24a、26、24bの出力を制御することにより、熱処理室8内の温度を均一にするものである。
【0036】
このように、本発明では、加熱部24a、24bの出力と、加熱部26の出力を調節しているので、熱処理室8に投入されるストランド6や、折返しローラーによって折り返されて熱処理室8に繰り返し供給されるストランド6が低温であっても、スリット10a、10bから冷気が熱処理室8内に侵入しても、パスには均一な温度の熱風が与えられ、耐炎化繊維の安定した生産をすることが出来る。
【0037】
次に、熱風は下方熱風流路18を通って熱風循環路20に入り、この熱風循環路20の底部における上記加熱手段22に循環されることを繰り返す。
【0038】
なお、上記耐炎化熱処理炉2の熱風循環路20の底部には、図2に示すように、各加熱部24a、26、24b間を分離する仕切板30を設け、熱風を整流させることが好ましい。
【0039】
また、仕切板30は、熱風の整流程度に応じて設置すれば良く、その枚数は2枚以上が好ましく、2〜5枚が特に好ましい。
【0040】
【実施例】
以下、本発明の耐炎化熱処理炉、及び耐炎化熱処理方法を実施例及び比較例を用いて説明するが、本発明はこれら実施例及び比較例に限定されるものではない。
【0041】
(実施例1)
熱風循環路20の床面から400mmの地点に、長さ方向の各所において出力が均一な加熱手段(抵抗発熱体:ニクロム線発熱体)27を備え、さらに熱風循環路20の床面から200mmの地点に、加熱部24a、24b(それぞれ長さが800mmであり、片端が炉壁4a又は4bに接している)と、加熱部26とで出力が異なる加熱手段(ガスバーナー)22を備えた図1に示す耐炎化熱処理炉2を用い、熱風風速1.0m/秒、耐炎化炉の寸法:幅2.0m×長さ12m、パス数5の条件で炭素繊維前駆体(東邦テナックス社製)を耐炎化熱処理した。
【0042】
上記耐炎化熱処理炉2において、加熱手段22及び27の出力を調整することにより、特に加熱部24a及び24bを加熱部26よりも高出力に調整することにより熱処理室8内温度を調節した結果、熱処理室8内において、最高温度259℃、最低温度255℃と均一な温度分布が得られた。なお、得られた耐炎化繊維は比重1.37と良品質のものであった。
【0043】
(比較例1)
熱風循環路50の床面から400mmの地点に、長さ方向の各所において出力が均一な加熱手段(抵抗発熱体:ニクロム線発熱体)52を備えた図3に示す耐炎化熱処理炉32を用いて操作した以外は、実施例1と同様の条件で炭素繊維前駆体を耐炎化熱処理した。
【0044】
その結果、熱処理室38内において、最高温度260℃、最低温度244℃と均一な温度分布が得られなかった。なお、得られた耐炎化繊維は比重1.29と良品質のものではなかった。
【0045】
【発明の効果】
本発明の耐炎化熱処理炉を用いて炭素繊維前駆体ストランドの耐炎化熱処理をする場合、又は本発明の耐炎化熱処理方法によって同ストランドの耐炎化熱処理をする場合、加熱手段における、両炉壁側の加熱部の出力と、中央部の加熱部の出力を調節しているので、熱処理室に投入されるストランドや、折返しローラーによって折り返されて熱処理室に繰り返し供給されるストランドが低温であっても、スリットから冷気が熱処理室内に侵入しても、パスを形成して走行するストランドには均一な温度の熱風が与えられ、耐炎化繊維の安定した生産をすることが出来る。
【図面の簡単な説明】
【図1】本発明の耐炎化熱処理炉の一例を示す概略図で、(A)は側面断面図、(B)は正面断面図である。
【図2】本発明の耐炎化熱処理炉の他の例を示す概略正面断面図である。
【図3】従来の耐炎化熱処理炉の一例を示す概略図で、(A)は側面断面図、(B)は正面断面図である。
【符号の説明】
2    耐炎化熱処理炉
4a、4b    炉壁
6    炭素繊維前駆体ストランド
8    熱処理室
10a、10b    スリット
12a、12b    折返しローラー
14a、14b    側壁
16    上方熱風流路
18    下方熱風流路
20    熱風循環路
22、27    熱風加熱手段
24a、24b、26    加熱部
28    ファン
30    仕切板
32    耐炎化熱処理炉
34a、34b    炉壁
36    炭素繊維前駆体ストランド
38    熱処理室
40a、40b    スリット
42a、42b    折返しローラー
44a、44b    側壁
46    上方熱風流路
48    下方熱風流路
50    熱風循環路
52    ヒータ
54    ファン
56a、56b    熱処理室内におけるパスのスリットの近傍
58    熱処理室内におけるパスの中央部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat treatment furnace for oxidizing fibers such as polyacrylonitrile, which is a precursor of carbon fibers, and more specifically, a heat treatment furnace for oxidizing precursor fibers, which is suitable for production of carbon fibers with excellent productivity, and a heat treatment for oxidizing. About the method.
[0002]
[Prior art]
In the carbon fiber manufacturing process, there is a method of circulating hot air in an oxidizing atmosphere and heat-treating the precursor fiber as a method of making the fiber which is the precursor of the carbon fiber flame-resistant (for example, Patent Document 1). In this oxidizing heat treatment method, the precursor fibers are usually put into an oxidizing heat treatment furnace as bundled strands.
[0003]
FIGS. 3A and 3B are schematic views showing an example of a conventional oxidizing heat treatment furnace, in which FIG. 3A is a side sectional view and FIG. 3B is a front sectional view.
[0004]
In FIG. 3 (A), the oxidizing heat treatment furnace 32 is provided with a plurality of slits 40a, 40b on the furnace walls 34a, 34b, through which the carbon fiber precursor strand 36 enters and exits the heat treatment chamber 38. In the heat treatment chamber 38, a large number of strands 36 are running while forming a group of strands (paths) arranged in a horizontal plane. The strands 36 forming this path are folded back by a predetermined set of folding rollers 42a and 42b provided on both sides of the heat treatment chamber 38, and are repeatedly supplied to the heat treatment chamber 38. Path).
[0005]
In FIG. 3B, sidewalls 44a and 44b are provided on both sides of the heat treatment chamber 38 in the direction perpendicular to the strand running direction, and separate the inside and outside of the heat treatment chamber 38 from each other. A hot air circulation path 50 is provided outside the one side wall 44b (on the right side in FIG. 3B). The hot air circulation path 50 allows the upper hot air flow path 46 and the lower hot air flow path 48 of the heat treatment chamber 38 to communicate with each other. ing.
[0006]
A heater 52 is provided between the furnace walls 34a and 34b of the hot air circulation path 50 so that the arrangement direction is parallel to the running direction of the strands 36 in the heat treatment chamber 38. The hot air heated by the heater 52 is provided. (Oxidizing gas) is sent from the upper hot air flow path 46 into the heat treatment chamber 38 by the fan 54, and the hot air causes the strand 36 forming the path and traveling to be subjected to flame-proof treatment. Then, the hot air returns to the hot air circulation path 50 through the lower hot air flow path 48, and is circulated to the heater 52 through the hot air circulation path 50.
[0007]
As described above, by passing a high-temperature oxidizing gas through the path, the oxidation reaction of the strand 36 can be promoted, and the heat of reaction of the strand 36 can be removed to produce the flame-resistant fiber.
[0008]
For stable production of flame-resistant fibers, it is necessary to provide hot air at a uniform temperature to the path.
[0009]
However, in the conventional oxidizing heat treatment furnace 32, the strands 36 fed into the heat treatment chamber 38 and the strands 36 that are turned back by the folding rollers and repeatedly supplied to the heat treatment chamber 38 have a low temperature. Since cold air enters the heat treatment chamber 38, the temperature distribution of the paths in the heat treatment chamber 38 becomes uneven. In particular, the temperature of the vicinity 56a, 56b of the slits 40a, 40b becomes lower than that of the central portion 58.
[0010]
Such partial non-uniformity of temperature [unevenness of temperature] causes a short effective reaction length of the strands 36 in the heat treatment chamber 38, resulting in insufficient reaction, a reduction in production efficiency, or A problem occurs in that the strand 36 is cut due to abnormal heat generation.
[0011]
When the running speed of the strand is increased in order to increase the production speed, the time until the reaction of the strand 36 starts becomes longer, and as a result, the effective reaction length in the heat treatment chamber 38 becomes shorter.
[0012]
[Patent Document 1]
JP 2001-288623 A (pages 2 to 3)
[0013]
[Problems to be solved by the invention]
The present inventor has been diligently studying the above problem, and provided a heating means for hot air after the flame stabilization treatment of the strand in the heat treatment chamber between the two furnace walls at the bottom of the hot air circulation path. It has been found that the above problem can be solved by making the output of the heating means higher than the output of the heating means in portions other than the vicinity of the both-side furnace wall, that is, in the central portion. By doing in this way, even if the running speed of the strand is increased to increase the productivity of the flame-resistant fiber, the temperature near the slit of the path in the heat treatment chamber does not become low, and the temperature distribution becomes uniform throughout the heat treatment chamber, The effective reaction length is increased, and a high-quality flame-resistant fiber with good thermal efficiency can be produced. Furthermore, the inventors have learned that the time required for the strand to start reacting is shortened, and that the effective reaction length in the heat treatment chamber can be increased, thereby completing the present invention.
[0014]
Therefore, an object of the present invention is to solve the above-mentioned problems, and more specifically, to perform a flame-proof treatment of a strand uniformly, and to improve productivity without impairing quality. An object of the present invention is to provide a chemical oxidation heat treatment furnace and a method for heat treatment for oxidation resistance.
[0015]
[Means for Solving the Problems]
The present invention that achieves the above object is as described below.
[0016]
[1] A heat treatment chamber through which hot air flows vertically, an upper hot air flow path formed above the heat treatment chamber, a lower hot air flow path formed below the heat treatment chamber, and the upper and lower hot air flow paths Hot air circulation path, and a folding roller provided on both sides of the heat treatment chamber in the direction of travel of the strand, and folds strands entering and exiting from a plurality of slits provided in the furnace wall on both sides of the heat treatment chamber in the direction of strand travel. In a flameproofing heat treatment furnace comprising a folding roller returning to the heat treatment chamber, a hot air heating means is provided along a running direction of a strand in a hot air circulation path, and the hot air heating means heats at a higher output at both ends than at a center side. Oxidation heat treatment furnace with heating unit.
[0017]
[2] a heat treatment chamber in which hot air flows vertically, an upper hot air flow path formed above the heat treatment chamber, a lower hot air flow path formed below the heat treatment chamber, and the upper and lower hot air flow paths Hot air circulation path, and a folding roller provided on both sides of the heat treatment chamber in the direction of travel of the strand, and folds strands entering and exiting from a plurality of slits provided in the furnace wall on both sides of the heat treatment chamber in the direction of strand travel. In a flameproofing heat treatment furnace comprising a folding roller returning to the heat treatment chamber, a hot air heating means is provided along a running direction of a strand in a hot air circulation path, and the hot air heating means heats at a higher output at both ends than at a center side. An oxidizing heat treatment furnace having a heating section and a partition plate for separating the heating sections.
[0018]
[3] The oxidizing heat treatment furnace according to [1], wherein the heating sections on both ends are gas burners.
[0019]
[4] The oxidizing heat treatment furnace according to [1], wherein the heating sections in the vicinity of the furnace walls on both end sides are heating sections within a range of 800 mm from the furnace walls on both end sides.
[0020]
[5] The method for heat treatment for oxidation in the furnace for heat treatment for oxidation according to [1], wherein the output of the heating section near each furnace wall on both ends is higher than the output of the heating section on the center side. Method.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to FIG.
[0022]
FIG. 1 is a schematic view showing an example of the oxidizing heat treatment furnace of the present invention, in which (A) is a side sectional view and (B) is a front sectional view.
[0023]
In FIG. 1 (A), the oxidizing heat treatment furnace 2 has a plurality of slits 10a, 10b on the furnace walls 4a, 4b, through which the carbon fiber precursor strands 6 enter and exit the heat treatment chamber 8. In the heat treatment chamber 8, a large number of strands 6 are running while forming a group of strands (paths) arranged in a horizontal plane. The strands 6 forming this path are folded back by a predetermined set of folding rollers 12 a and 12 b provided on both sides of the heat treatment chamber 8 and repeatedly supplied to the heat treatment chamber 8, and a plurality of paths (five steps in this figure) Path).
[0024]
In FIG. 1B, sidewalls 14a and 14b are provided on both sides of the heat treatment chamber 8 in a direction perpendicular to the strand running direction, and separate the inside and outside of the heat treatment chamber 8 from each other. A hot air circulation path 20 is provided outside the one side wall 14b (right side of FIG. 1B), and the hot air circulation path 20 connects the upper hot air flow path 16 and the lower hot air flow path 18 of the heat treatment chamber 8 to each other. ing.
[0025]
Up to this point, the configuration of the conventional oxidizing heat treatment furnace can be used. An oxidizing heat treatment furnace and an oxidizing heat treatment method according to the present invention are characterized in that they are configured as follows in addition to the above-described configuration.
[0026]
That is, in the heat treatment furnace for oxidation treatment of the present invention, the heating means 22 for the hot air after the flame treatment of the strands 6 in the heat treatment chamber 8 is placed in the hot air circulation path 20, preferably at the bottom of both the furnace walls 4a, 4b. The hot air heating means 22 is provided between the heating sections 24a and 24b near the furnace walls 4a and 4b on both sides (both ends), and between the heating sections 24a and 24b on both sides (parallel to the strand running direction). (The center side), and the heating units 24a, 26, 24b can independently change the heating output, and the output of the heating units 24a, 24b is made higher than the output of the heating unit 26. It is characterized by the following.
[0027]
In the oxidizing heat treatment furnace of the present invention, the heating means 22 is preferably a gas burner because the heating output of each of the heating sections 24a, 26, and 24b can be easily adjusted.
[0028]
In the heating means 22, the heating sections 24a and 24b may be gas burners, and the heating section 26 may be other than a gas burner, such as a resistance heating element, a far infrared heater or a hot air blowing means.
[0029]
However, in the case where the heating means 22 is a means for uniformly heating a wide direction such as a resistance heating element or a far-infrared heater, even if the installation location is the bottom of the hot air circulation path 20, it is preferable to be separated from the floor by 300 mm or more. On the other hand, when the heating unit 22 is a unit that mainly heats the downstream side of the heating unit itself, such as a gas burner or a hot air blowing unit, the heating unit 22 may be installed at the bottom of the hot air circulation path 20 within 300 mm from the floor surface.
[0030]
Also, as shown in the example of FIG. 1, a means 22 for mainly heating the downstream side of the heating means itself, such as a gas burner and a hot air blowing means, is installed at the bottom of the hot air circulation path 20 within 300 mm from the floor surface, Above the heating means 22, a means 27 for uniformly heating a wide direction, such as a resistance heating element or a far-infrared heater, may be installed at the bottom of the hot air circulation path 20 at a distance of 300 mm or more from the floor surface.
[0031]
When the heating means 22 and the heating means 27 are installed in two stages, at least one of the two heating means 22 and 27 is provided with a high-power heating section at both ends and a low-power heating section at the center. (In the example of FIG. 1, the lower heating means 22 is composed of high-output both-end heating sections 24a and 24b and a low-output central heating section 26.)
[0032]
Furthermore, in the oxidation-resistant heat treatment furnace of the present invention, the vicinity of each of the furnace walls 10a, 10b on both ends is preferably within a range of 800 mm from each of the furnace walls 10a, 10b on both ends, and is preferably up to 200 mm. Is particularly preferred.
[0033]
Next, in the oxidizing heat treatment furnace of the present invention, the hot air (oxidizing gas) heated by the heating means 22 is sent from the upper hot air flow passage 16 into the heat treatment chamber 8 by the fan 28, where the path is formed. The running strand 6 is subjected to a flameproofing treatment.
[0034]
In addition, the oxidation-resistant heat treatment method of the present invention is characterized in that in the above-mentioned oxidation-resistant heat treatment furnace, the output of the heating units 24a and 24b on both ends is higher than the output of the heating unit 26 on the center.
[0035]
That is, in the present invention, the temperature in the heat treatment chamber 8 is made uniform by controlling the outputs of the heating units 24a, 26, and 24b.
[0036]
As described above, in the present invention, since the outputs of the heating units 24a and 24b and the output of the heating unit 26 are adjusted, the strands 6 that are fed into the heat treatment chamber 8 and the strands that are turned back by the folding rollers into the heat treatment chamber 8 Even if the repeatedly supplied strand 6 is at a low temperature, or even if cold air enters the heat treatment chamber 8 through the slits 10a and 10b, hot air at a uniform temperature is given to the path, and stable production of the flame-resistant fiber is achieved. You can do it.
[0037]
Next, the hot air enters the hot air circulation path 20 through the lower hot air flow path 18, and is repeatedly circulated to the heating means 22 at the bottom of the hot air circulation path 20.
[0038]
In addition, as shown in FIG. 2, it is preferable to provide a partition plate 30 for separating the heating units 24a, 26, and 24b at the bottom of the hot-air circulation path 20 of the oxidizing heat treatment furnace 2 to rectify the hot air. .
[0039]
The number of the partition plates 30 may be set according to the degree of rectification of the hot air. The number of the partition plates 30 is preferably two or more, and particularly preferably two to five.
[0040]
【Example】
Hereinafter, the oxidizing heat treatment furnace and oxidizing heat treatment method of the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples.
[0041]
(Example 1)
At a point 400 mm from the floor of the hot air circulation path 20, a heating means (resistance heating element: nichrome wire heating element) 27 having a uniform output at various points in the length direction is provided, and 200 mm from the floor of the hot air circulation path 20. At the point, a diagram provided with heating units 24a and 24b (each having a length of 800 mm, one end of which is in contact with the furnace wall 4a or 4b) and a heating means (gas burner) 22 having different outputs from the heating unit 26 The carbon fiber precursor (manufactured by Toho Tenax Co., Ltd.) under the conditions of a hot air velocity of 1.0 m / sec, a flame proofing furnace having a width of 2.0 m × length 12 m and five passes using the oxidizing heat treatment furnace 2 shown in FIG. Was subjected to an oxidizing heat treatment.
[0042]
As a result of adjusting the temperature in the heat treatment chamber 8 by adjusting the outputs of the heating means 22 and 27 in the oxidizing heat treatment furnace 2, particularly by adjusting the heating units 24 a and 24 b to a higher output than the heating unit 26, In the heat treatment chamber 8, a uniform temperature distribution of a maximum temperature of 259 ° C. and a minimum temperature of 255 ° C. was obtained. In addition, the obtained oxidized fiber was of good quality with a specific gravity of 1.37.
[0043]
(Comparative Example 1)
At the point 400 mm from the floor of the hot air circulation path 50, an oxidizing heat treatment furnace 32 shown in FIG. 3 equipped with a heating means (resistance heating element: nichrome wire heating element) 52 having a uniform output at various points in the longitudinal direction is used. The carbon fiber precursor was subjected to an oxidizing heat treatment under the same conditions as in Example 1 except that the operation was performed as described above.
[0044]
As a result, a uniform temperature distribution of 260 ° C. maximum and 244 ° C. minimum in the heat treatment chamber 38 could not be obtained. In addition, the obtained oxidized fiber was not of good quality with a specific gravity of 1.29.
[0045]
【The invention's effect】
If the carbon fiber precursor strand is subjected to the oxidizing heat treatment using the oxidizing heat treatment furnace of the present invention, or if the oxidizing heat treatment of the strand is performed by the oxidizing heat treatment method of the present invention, both the furnace wall sides in the heating means Since the output of the heating section and the output of the central heating section are adjusted, even if the strands fed into the heat treatment chamber or the strands turned back by the folding rollers and repeatedly supplied to the heat treatment chamber are at a low temperature, Even if cold air enters the heat treatment chamber from the slits, hot air at a uniform temperature is given to the strands that run while forming a path, and stable production of flame-resistant fibers can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of an oxidizing heat treatment furnace of the present invention, in which (A) is a side sectional view and (B) is a front sectional view.
FIG. 2 is a schematic front sectional view showing another example of the oxidizing heat treatment furnace of the present invention.
FIGS. 3A and 3B are schematic diagrams showing an example of a conventional oxidizing heat treatment furnace, wherein FIG. 3A is a side sectional view and FIG. 3B is a front sectional view.
[Explanation of symbols]
2 Oxidation heat treatment furnaces 4a, 4b Furnace wall 6 Carbon fiber precursor strand 8 Heat treatment chambers 10a, 10b Slits 12a, 12b Folded rollers 14a, 14b Side walls 16 Upper hot air flow path 18 Lower hot air flow path 20 Hot air circulation paths 22, 27 Hot air Heating means 24a, 24b, 26 Heating section 28 Fan 30 Partition plate 32 Oxidation heat treatment furnaces 34a, 34b Furnace wall 36 Carbon fiber precursor strand 38 Heat treatment chambers 40a, 40b Slits 42a, 42b Folding rollers 44a, 44b Side wall 46 Upper hot air flow Path 48 Lower hot air flow path 50 Hot air circulation path 52 Heater 54 Fans 56a, 56b Near slit of path in heat treatment chamber 58 Central part of path in heat treatment chamber

Claims (5)

鉛直方向に熱風が流通する熱処理室と、熱処理室の上方に形成された上方熱風流路と、熱処理室の下方に形成された下方熱風流路と、前記上方及び下方熱風流路とを連通する熱風循環路と、前記熱処理室のストランド走行方向両側に備えられた折返しローラーであって前記熱処理室のストランド走行方向両側の炉壁に設けられた複数のスリットから出入するストランドを折返して熱処理室に戻す折返しローラーとからなる耐炎化熱処理炉において、熱風循環路にストランドの走行方向に沿って熱風加熱手段を設けると共に、前記熱風加熱手段が中央側よりも両端側で高出力で加熱する加熱部を備えた耐炎化熱処理炉。A heat treatment chamber in which hot air flows in the vertical direction, an upper hot air flow path formed above the heat treatment chamber, a lower hot air flow path formed below the heat treatment chamber, and the upper and lower hot air flow paths are communicated. The hot air circulation path and the folding rollers provided on both sides of the heat treatment chamber in the strand traveling direction, and the strands entering and exiting from a plurality of slits provided in the furnace wall on both sides of the heat treatment chamber in the strand traveling direction are folded back into the heat treatment chamber. In the oxidizing heat treatment furnace consisting of the returning folding roller, a hot air heating means is provided along the running direction of the strand in the hot air circulation path, and the heating section in which the hot air heating means heats at a higher output at both ends than at the center. Equipped with an oxidation-resistant heat treatment furnace. 鉛直方向に熱風が流通する熱処理室と、熱処理室の上方に形成された上方熱風流路と、熱処理室の下方に形成された下方熱風流路と、前記上方及び下方熱風流路とを連通する熱風循環路と、前記熱処理室のストランド走行方向両側に備えられた折返しローラーであって前記熱処理室のストランド走行方向両側の炉壁に設けられた複数のスリットから出入するストランドを折返して熱処理室に戻す折返しローラーとからなる耐炎化熱処理炉において、熱風循環路にストランドの走行方向に沿って熱風加熱手段を設けると共に、前記熱風加熱手段が中央側よりも両端側で高出力で加熱する加熱部を備え、各加熱部間を分離する仕切板を設けた耐炎化熱処理炉。A heat treatment chamber in which hot air flows in the vertical direction, an upper hot air flow path formed above the heat treatment chamber, a lower hot air flow path formed below the heat treatment chamber, and the upper and lower hot air flow paths are communicated. The hot air circulation path and the folding rollers provided on both sides of the heat treatment chamber in the strand traveling direction, and the strands entering and exiting from a plurality of slits provided in the furnace wall on both sides of the heat treatment chamber in the strand traveling direction are folded back into the heat treatment chamber. In the oxidizing heat treatment furnace consisting of the returning folding roller, a hot air heating means is provided along the running direction of the strand in the hot air circulation path, and the heating section in which the hot air heating means heats at a higher output at both ends than at the center. An oxidation-resistant heat treatment furnace provided with a partition plate for separating between heating sections. 両端側の加熱部がガスバーナーである請求項1に記載の耐炎化熱処理炉。2. The oxidizing heat treatment furnace according to claim 1, wherein the heating sections at both ends are gas burners. 両端側の各炉壁近傍における加熱部が、両端側の各炉壁から800mmまでの範囲における加熱部である請求項1に記載の耐炎化熱処理炉。2. The oxidizing heat treatment furnace according to claim 1, wherein the heating unit in the vicinity of each furnace wall on both ends is a heating unit within a range of 800 mm from each furnace wall on both ends. 3. 請求項1に記載の耐炎化熱処理炉における耐炎化熱処理方法であって、両端側の各炉壁近傍における加熱部の出力を、中央側の加熱部の出力よりも高くする耐炎化熱処理方法。2. The method of claim 1, wherein the output of the heating section near each furnace wall at both ends is higher than the output of the heating section at the center.
JP2002284917A 2002-09-30 2002-09-30 Heat treatment oven for making flame-resistant and method for heat treatment for making flame-resistant Pending JP2004115983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284917A JP2004115983A (en) 2002-09-30 2002-09-30 Heat treatment oven for making flame-resistant and method for heat treatment for making flame-resistant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284917A JP2004115983A (en) 2002-09-30 2002-09-30 Heat treatment oven for making flame-resistant and method for heat treatment for making flame-resistant

Publications (1)

Publication Number Publication Date
JP2004115983A true JP2004115983A (en) 2004-04-15

Family

ID=32278346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284917A Pending JP2004115983A (en) 2002-09-30 2002-09-30 Heat treatment oven for making flame-resistant and method for heat treatment for making flame-resistant

Country Status (1)

Country Link
JP (1) JP2004115983A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132005A (en) * 2004-11-02 2006-05-25 Toho Tenax Co Ltd Treating oven for imparting flame resistance
JP2008063688A (en) * 2006-09-06 2008-03-21 Mitsubishi Rayon Co Ltd Apparatus for flameproof treatment of acryl fiber bundle
JP2009138207A (en) * 2007-12-03 2009-06-25 Aisin Seiki Co Ltd Method and apparatus for manufacturing steel having carbon concentration-controlled steel surface
WO2012068977A1 (en) * 2010-11-26 2012-05-31 漳州灿坤实业有限公司 Oven with thermal insulation air guiding plate
KR101211738B1 (en) * 2010-12-24 2012-12-12 주식회사 효성 Heat treatment apparatus for oxidation of carbon fiber with additional heating fan
WO2013127104A1 (en) * 2012-03-02 2013-09-06 Lee Wen-Ching A whirlwind baking pan
CN109972234A (en) * 2019-05-08 2019-07-05 广州赛奥碳纤维技术有限公司 A kind of tow parallel oxidation furnace and oxidation furnaces for realizing more operating temperatures
CN113100643A (en) * 2021-05-26 2021-07-13 海信家电集团股份有限公司 Oven and food cooking method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132005A (en) * 2004-11-02 2006-05-25 Toho Tenax Co Ltd Treating oven for imparting flame resistance
JP4493468B2 (en) * 2004-11-02 2010-06-30 東邦テナックス株式会社 Flameproofing furnace
JP2008063688A (en) * 2006-09-06 2008-03-21 Mitsubishi Rayon Co Ltd Apparatus for flameproof treatment of acryl fiber bundle
JP2009138207A (en) * 2007-12-03 2009-06-25 Aisin Seiki Co Ltd Method and apparatus for manufacturing steel having carbon concentration-controlled steel surface
WO2012068977A1 (en) * 2010-11-26 2012-05-31 漳州灿坤实业有限公司 Oven with thermal insulation air guiding plate
KR101211738B1 (en) * 2010-12-24 2012-12-12 주식회사 효성 Heat treatment apparatus for oxidation of carbon fiber with additional heating fan
WO2013127104A1 (en) * 2012-03-02 2013-09-06 Lee Wen-Ching A whirlwind baking pan
CN109972234A (en) * 2019-05-08 2019-07-05 广州赛奥碳纤维技术有限公司 A kind of tow parallel oxidation furnace and oxidation furnaces for realizing more operating temperatures
CN109972234B (en) * 2019-05-08 2024-01-09 广州赛奥碳纤维技术股份有限公司 Tow parallel oxidation furnace and oxidation equipment capable of realizing multi-working-temperature
CN113100643A (en) * 2021-05-26 2021-07-13 海信家电集团股份有限公司 Oven and food cooking method

Similar Documents

Publication Publication Date Title
JPWO2002077337A1 (en) Oxidation heat treatment apparatus and method of operating the apparatus
JP5037978B2 (en) Flameproof furnace and flameproofing method
JP2004115983A (en) Heat treatment oven for making flame-resistant and method for heat treatment for making flame-resistant
JP2010100967A (en) Heat-treatment furnace, flame retardant fiber bundle, and method for producing carbon fiber
JP5487662B2 (en) Heat treatment furnace, flameproof fiber bundle, and method for producing carbon fiber
JP2018529609A (en) Method and equipment for producing cross-linked glass fiber materials
JP2009242962A (en) Flameproofing apparatus and method for flameproofing precursor fiber bundle
WO2014007169A1 (en) Method for producing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle
JP4138368B2 (en) Flameproof heat treatment apparatus and flameproof heat treatment method
JP4236316B2 (en) Flame-resistant heat treatment equipment for yarn
JP2006193863A (en) Flame resisting treatment furnace
JP2000160435A (en) Continuous thermal treatment of acrylic fiber bundle
JP2004124310A (en) Flameproofing furnace
JP5740887B2 (en) Flame resistant furnace heating medium heating system
JP2006057223A (en) Flame resisting treatment furnace
JP4493468B2 (en) Flameproofing furnace
JP2004197239A (en) Flame resisting treatment furnace
KR20110078251A (en) Heat treatment apparatus for oxidation of carbon fiber with heating means
JP5037977B2 (en) Flameproofing furnace and method for producing flameproofed fiber
JP4413699B2 (en) Flameproof heat treatment equipment
JP2002266175A (en) Flame-resistant heat-treating apparatus
CN213708122U (en) Airflow auxiliary processing equipment and glass production device
JP4565737B2 (en) Flameproof heat treatment equipment
JP2002115125A (en) Heat treatment oven and method for producing carbon fiber using the same
JP2006348463A (en) Flame resistant rendering heat treating device, and operation method for the device