JP2004115744A - Method for producing phenolic resin composite material - Google Patents

Method for producing phenolic resin composite material Download PDF

Info

Publication number
JP2004115744A
JP2004115744A JP2002284535A JP2002284535A JP2004115744A JP 2004115744 A JP2004115744 A JP 2004115744A JP 2002284535 A JP2002284535 A JP 2002284535A JP 2002284535 A JP2002284535 A JP 2002284535A JP 2004115744 A JP2004115744 A JP 2004115744A
Authority
JP
Japan
Prior art keywords
composite material
phenolic resin
resin composite
phenolic
inorganic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002284535A
Other languages
Japanese (ja)
Inventor
Junya Goto
後藤 純也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002284535A priority Critical patent/JP2004115744A/en
Publication of JP2004115744A publication Critical patent/JP2004115744A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a phenolic resin composite material in which an inorganic substance and an organic component are highly dispersed, using a thermosetting resin as a raw material. <P>SOLUTION: The method for producing the phenolic resin composite material in which the organic component and the inorganic substance are highly dispersed uses a mononuclear phenolic compound or a mixture of water and the mononuclear phenolic compound as a reaction solvent, and comprises mixing the thermosetting resin, the inorganic substance and the reaction solvent and then subjecting the mixture to decomposition treatment in a supercritical or a subcritical state. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、フェノール系樹脂複合材料の製造方法に関するものである。更に詳しくは、産業廃棄物や一般廃棄物中に大量に含まれていながら、これまでリサイクルが実現できていない熱硬化性樹脂を原料として、有機成分と無機物が高度に分散されたフェノール系樹脂複合材料を製造する方法に関するものである。
【0002】
【従来の技術】
プラスチックの中でも熱硬化性樹脂は、優れた電気絶縁性・耐熱性・機械的強度を示すため、電気・電子部品、自動車部品等の材料として広く用いられている。しかし、熱硬化性樹脂は、一旦、硬化すると、熱により軟化・融解せず、溶剤にも溶解しないため、その硬化物から有価な化学原料を再生することは、技術的に困難であった。
【0003】
近年、これらの課題を克服するための、超臨界流体を用いて熱硬化性樹脂を分解処理して、化学原料を回収する方法に関する検討がなされている。例えば、超臨界又は亜臨界状態の、単核フェノール類化合物又は水/単核フェノール類化合物の溶液中で熱硬化性樹脂を可溶化処理して、オリゴマーを回収する方法が検討されている(例えば、特許文献1参照。)。この方法では、酸触媒やアルカリ触媒などを加えることなく、10分間程度の短い反応時間で熱硬化性樹脂が可溶化して、分子量200〜10,000のオリゴマー成分を回収でき、そのオリゴマーは化学原料として再利用可能であるとしている。
しかし、上記方法では、熱硬化性樹脂から、オリゴマー単体よりも、高機能・高性能な付加価値の高い化学原料を回収することは困難であった。
【0004】
一方で、オリゴマーやポリマーと無機化合物との複合材料にすれば、オリゴマーやポリマーの単体よりも、より高機能・高性能な材料に改質できることが知られている。例えば、オリゴマーやポリマ−中に、適宜な微粒子を、均一に混合・分散した複合材料とすれば、ポリマ−やオリゴマーを、単体で用いる場合に比較して、強度特性、耐熱性、耐摩耗性、耐薬品性、耐光性等に優れた性能を発現するほか、導電性や選択吸着性等の高付加価値機能性材料となることが知られている。
【0005】
近年では、超臨界流体の有する低粘性、高拡散性、高熱伝導性という特徴を利用して、複合材料を製造する方法や装置が検討されている。例えば、ポリマーと無機微粒子の複合材料を製造する方法、およびその装置が検討されている(例えば、特許文献2参照。)。前記従来技術では、反応槽に微粒子、モノマ−及び重合開始剤等の重合剤、並びに超臨界流体を仕込み、上記反応槽内を超臨界場にして重合反応を開始させることで、ポリマ−―微粒子複合材料を得ている。すなわち、低粘性、高拡散性の超臨界流体中で、モノマーが重合してポリマーが生成すること並行して、微粒子との混合を行うことで、高度に分散されたポリマ−と微粒子の複合材料を製造できるとしている。
しかし、上記の方法は、モノマーを原料としたポリマ−と微粒子の複合材料を対象としたものであるため、熱硬化性樹脂を分解処理して化学原料を回収することはできない。
【0006】
【特許文献1】
特開2001−151933号公報(第3−4頁)
【特許文献2】
特開2001−181401号公報(第3−6頁)
【0007】
【発明が解決しようとする課題】
本発明は、熱硬化性樹脂を、分解処理して再利用し、無機物と有機成分が高度に分散されたフェノール系樹脂複合材料を製造する方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明者らは、単核フェノール類化合物を含む反応溶媒を用いて、再利用される熱硬化性樹脂と無機物を混合して、超臨界又は亜臨界状態において分解処理を行うことにより、有機成分と無機物が高度に分散されたフェノール系樹脂複合材料を製造することが可能であることを見いだし、本発明を完成するに至った。
【0009】
すなわち、本発明は、
(1) 単核フェノール類化合物、または、水と単核フェノール類化合物との混合物を反応溶媒として、前記反応溶媒中で、熱硬化性樹脂および無機物を混合したのち、超臨界又は亜臨界状態において分解処理を行うことを特徴とするフェノール系樹脂複合材料の製造方法、
(2) 熱硬化性樹脂が、フェノール樹脂、エポキシ樹脂、メラミン樹脂、及びユリア樹脂の中から選択された1種又は2種以上である、前記第(1)項に記載のフェノール系樹脂複合材料の製造方法、
(3)無機物が、水酸化カルシウム、炭酸カルシウム、酸化マグネシウム、水酸化マグネシウム、シリカ、アルミナ、及びタルクの中から選択された1種又は2種以上である、前記第(1)項または第(2)項に記載のフェノール系樹脂複合材料の製造方法、
(4) 単核フェノール類化合物が、フェノール、クレゾール、キシレノール、レゾルシン、及びアルキル置換フェノールの中から選ばれる、前記第(1)項〜第(3)項のいずれかに記載のフェノール系樹脂複合材料の製造方法、
を提供するものである。
【0010】
【発明の実施の形態】
本発明のフェノール系樹脂複合材料の製造方法は、単核フェノール類化合物、または、水と単核フェノール類化合物との混合物を反応溶媒として、前記反応溶媒中で、熱硬化性樹脂および無機物を混合したのち、超臨界又は亜臨界状態において分解処理を行うことを特徴とするものである。
なお、本発明においては、原料がフェノール樹脂以外の熱硬化性樹脂である、エポキシ樹脂、メラミン樹脂、ユリア樹脂であっても、単核フェノール類化合物を含む反応溶媒を用いて生成した有機成分をフェノール樹脂とみなし、その有機成分と無機物からなる複合材料をフェノール系樹脂複合材料と定義する。
【0011】
本発明の製造方法で分解される熱硬化性樹脂は、硬化した樹脂、未硬化もしくは半硬化の樹脂、樹脂を含有するワニスなどを含むものとする。また、単独の熱硬化性樹脂の他に、シリカ微粒子、ガラス繊維等の無機質系や、木粉等の有機質系の充填剤を含む成形材料もしくは成形品、ガラス布のような無機質系や、紙、布等の有機質系基材を用いた積層板、これに銅箔等の金属箔を張り合わせた金属張り積層板、さらには銅張り積層板などを加工して得られるプリント回路板のような熱硬化性樹脂製品も含むものとする。
本発明に用いる熱硬化性樹脂としては、特に限定されるものではないが、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂について、特に効果的に適応できる。
また、分解処理に供する熱硬化性樹脂の形状や大きさには特に制限はなく、粉砕に要するコスト、分解速度を考慮して、最適な大きさを選択すればよいが、通常は、粒子径500μm以下であり、好ましくは250μm以下、さらに好ましくは100μm以下である。
【0012】
本発明において用いる無機物としては、天然無機化合物、あるいは合成無機化合物いずれでも良く、水酸化カルシウム、炭酸カルシウム、酸化マグネシウム、水酸化マグネシウム、シリカ、アルミナ、及びタルクが好適に挙げられ、これらの1種又は2種以上を用いることができる。上記の無機物の形態としては、球形、不規則形状、繊維状、扁平な形状、いずれでも良い。また、上記の無機物の大きさとしては、粒径が数十mmの粗粒子から、数nm程度の超微粒子であっても良い。
【0013】
また、無機物の添加量は、熱硬化性樹脂100重量部に対して、好ましくは0.05〜100重量部の範囲であり、さらに好ましくは、0.1〜50重量部の範囲である。上記の添加量の範囲より少ないと、高機能性・高性能なフェノール系樹脂複合材料を製造することができなくなることがある。また、添加量が上記範囲よりも多いと、有機成分と無機物の分散状態が良くなく、やはり、高機能・高性能なフェノール系樹脂複合材料を製造することができなくなることがある。
【0014】
本発明において、反応溶媒として用いる単核フェノール類化合物は、フェノール、クレゾール、キシレノール、レゾルシン、及びアルキル置換フェノールが好適に挙げられ、これらの1種又は2種以上が用いられる。これらの内、コスト面および分解反応に与える効果から、フェノールが好ましい。
【0015】
また、反応溶媒として、水と単核フェノール類化合物の混合物を用いる場合、その組成は、単核フェノール類化合物100重量部に対して水1〜500重量部の範囲が好ましく、更に好ましくは、単核フェノール類化合物100重量部に対して水5〜50重量部の範囲である。
【0016】
また、反応溶媒(単核フェノール類化合物、または、水と単核フェノール類化合物との混合物)の使用割合は、熱硬化性樹脂100重量部に対して、50〜1000重量部の範囲が好ましく、さらに好ましくは100〜400重量部の範囲である。反応溶媒が上記の範囲よりも少なくなると、熱硬化性樹脂の分解反応を円滑に進行させるのが困難になることがある。一方、上記の範囲よりも多くなると、好ましい上限値の効果と比べ、格別の効果は得られないことがあり、その場合、反応溶媒を加熱するために要する熱量が増加するため、熱エネルギーの消費が多くなる。
【0017】
本発明のフェノール系複合材料の製造方法としては、まず、前記成分を加熱加圧が可能な反応装置などに添加して、分解処理を行う。分解処理条件としては、温度及び圧力を、通常、温度が200〜500℃、圧力が1〜60Mpaの範囲で、超臨界又は亜臨界の条件に調製すれば良いが、望ましくは、温度が300〜450℃、圧力が2〜40MPa範囲で温度および圧力を設定すれば良い。温度が上記の範囲よりも低くなると、熱硬化性樹脂の分解反応速度が小さいため、短時間での処理が困難になる。一方、上記の範囲よりも高くなると、熱分解などの副反応が併発して、回収したフェノール系樹脂複合材料を構成する有機成分の化学構造が変化するため、化学原料としての再利用が困難になる。反応時間は、1〜60分の範囲で調節できるが、通常は3〜30分程度で分解処理が終了する。また、反応装置内の攪拌は、必ずしも必要ではないが、攪拌すれば、より効率的にフェノール系樹脂複合材料を製造することができる。
【0018】
次いで、上記の分解処理により得られた、未反応の反応溶媒と分解生成物と無機物との混合物から、適当な分離方法を施して未反応の反応溶媒を除去することで、有機成分と無機物が高度に分散されたフェノール系樹脂複合材料を得ることができる。ここで、未反応の反応溶媒を分離する方法には、特に限定はなく、フラッシュ蒸留、減圧蒸留、溶媒抽出など、いずれの方法を用いても良い。
【0019】
本発明において、フェノール系樹脂複合材料を構成する有機成分は、主に、熱硬化性樹脂の分解反応により生成するものであり、分子量200〜10,000のオリゴマーを主体としている。ここで、分子量200〜10,000のオリゴマーを主体とするとは、ここで示した分子量のオリゴマーが50%以上含まれることを言うが、主体とする前記オリゴマーの他に分子量10,000以上のオリゴマーも含まれる。また、分子量200〜10,000のオリゴマーは、通常のフェノール系樹脂の場合は、原料モノマーの2〜100核体程度である。また、有機成分としては、上記のオリゴマー以外に、未反応の反応溶媒(単核フェノール類化合物)が少量含まれていても良い。
【0020】
また、本発明において、フェノール系樹脂複合材料を構成する無機物は、主に、熱硬化性樹脂を分解する際に混合した、天然無機化合物あるいは合成無機化合物である。ただし、熱硬化性樹脂が無機物を含む場合は、元々、熱硬化性樹脂に含まれる無機物と、熱硬化性樹脂を分解する際に混合した無機物との、双方が含まれる。
【0021】
図1に、本発明で、有機物と無機物が高度に分散されたフェノール系樹脂複合材料が製造される概念を示す。フェノール系樹脂複合材料は、以下の(1)〜(3)手順で製造される。
(1)仕込みの段階では、熱硬化性樹脂(固体)/無機物(固体)/反応溶媒(液体)の3相の状態で存在する。
(2)分解処理を行うと、熱硬化性樹脂が分解して生成した有機成分が、反応溶媒に溶解することで、無機物(固体)/反応溶媒(超臨界または亜臨界状態)の2相の状態となる。超臨界または亜臨界状態の反応溶媒は、低粘度、高拡散性という性質を有するために、無機物は反応溶媒中に均一に分散される。
(3)反応溶媒中に無機物が均一に分散された状態で、未反応の反応溶媒を除去することで、有機成分と無機物が高度に分散されたフェノール系樹脂複合材料が製造される。
【0022】
本発明で得られたフェノール系樹脂複合材料は、例えば、高強度、高耐熱性、耐磨耗性が要求される自動車部品や、高強度、速硬化性が求められる電気・電子部品、あるいは、耐磨耗性が求められる舐石・研磨布紙用の材料として用いることができる。
【0023】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明は、これによって何ら限定されるものではない。
【0024】
[実施例1]フェノール樹脂成形材料と水酸化カルシウムからのフェノール系樹脂複合材料の製造
熱硬化性樹脂として、フェノール樹脂成形材料(住友ベークライト(株)製 PM−8200)を粉砕
ふるいわけして、粒子径を250μm以下に調整したものを用いた。
上記のフェノール樹脂成形材料:58.3gと、フェノール:85.6gと水:21.3gの混合物からなる反応溶媒とを混合する際に、無機物として、粉末状の水酸化カルシウム(和光純薬製)1.8gを加えた。上記の混合物を、オートクレーブ(内容積200cm)に仕込んだのち、加熱して内温を400℃とすることで、反応器内圧を15MPaまで上昇させ高温高圧状態とした。反応系内を300rpmで攪拌しながら、400℃、15MPaで5分間保ったのち、冷却して常温常圧に戻した。反応終了後、分解生成物と反応溶媒の混合物から、常圧および減圧条件下で加熱することで、溶媒(フェノール、水)を除去して、フェノール系樹脂複合材料:66gを得た。生成したフェノール系複合材料を顕微鏡で観察したところ、複合材料内で水酸化カルシウム粉末は、極めて均一に分散していることを確認した。
【0025】
[実施例2]フェノール樹脂成形材料と炭酸カルシウムからのフェノール系樹脂複合材料の製造
実施例1において、無機物として、粉末状の炭酸カルシウム(和光純薬製)6.0gを加えた以外は、実施例1と同様な操作を行い、フェノール系樹脂複合材料:70gを得た。生成したフェノール系樹脂複合材料を顕微鏡で観察したところ、複合材料内で炭酸カルシウム粉末は、極めて均一に分散していることを確認した。
【0026】
[実施例3]フェノール樹脂成形材料とタルクからのフェノール系樹脂複合材料の製造
実施例1において、無機物として、粉末状のタルク(和光純薬製)6.0gを加えた以外は、実施例1と同様な操作を行い、フェノール系樹脂複合材料:71gを得た。生成したフェノール系樹脂複合材料を顕微鏡で観察したところ、複合材料内でタルクは、極めて均一に分散していることを確認した。
【0027】
[実施例4]フェノール樹脂成形材料と酸化マグネシウムからのフェノール系樹脂複合材料の製造
実施例1において、無機物として、粉末状の酸化マグネシウム(和光純薬製)6.0gを加えた以外は、実施例1と同様な操作を行い、フェノール系樹脂複合材料:69gを得た。生成したフェノール系樹脂複合材料を顕微鏡で観察したところ、複合材料内で酸化マグネシウムの粉末は、極めて均一に分散していることを確認した。
【0028】
[実施例5]フェノール樹脂成形材料と水酸化マグネシウムからのフェノール系樹脂複合材料の製造
実施例1において、無機物として、粉末状の水酸化マグネシウム(和光純薬製)6.0gを加えた以外は、実施例1と同様な操作を行い、フェノール系樹脂複合材料:70gを得た。生成したフェノール系樹脂複合材料を顕微鏡で観察したところ、複合材料内で水酸化マグネシウムの粉末は、極めて均一に分散していることを確認した。
【0029】
[実施例6]フェノール樹脂成形材料とシリカからのフェノール系樹脂複合材料の製造
実施例1において、無機物として、シリカ微粒子(電気化学製、FB−74)50gを加えた以外は、実施例1と同様な操作を行い、フェノール系樹脂複合材料:112gを得た。生成したフェノール系樹脂複合材料を顕微鏡で観察したところ、複合材料内でシリカ微粒子は、極めて均一に分散していることを確認した。
【0030】
[実施例7]フェノール樹脂成形材料とガラス繊維からのフェノール系樹脂複合材料の製造
実施例1において、無機物として、ガラス繊維(日本板硝子(株)製 RES010−BM)50gを
加えた以外は、実施例1と同様な操作を行い、フェノール系樹脂複合材料:110gを得た。生成したフェノール系樹脂複合材料を顕微鏡で観察したところ、複合材料内でガラス繊維は、極めて均一に分散していることを確認した。
【0031】
[実施例8]フェノール樹脂成形材料とアルミナからのフェノール系樹脂複合材料の製造
実施例1において、無機物として、粉末状のアルミナ(和光純薬製)50gを加えた以外は、実施例1と同様な操作を行い、フェノール系樹脂複合材料:112gを得た。生成したフェノール系樹脂複合材料を顕微鏡で観察したところ、複合材料内で粉末状のアルミナは、極めて均一に分散していることを確認した。
【0032】
[実施例9]エポキシ樹脂成形材料と水酸化カルシウムからのフェノール系樹脂複合材料の製造
実施例1において、熱硬化性樹脂として、半導体封止用のエポキシ樹脂成形材料(住友ベークライト(株)製 EME−6300H)を用いた以外は、実施例1と同様な操作を行い、フェノール系樹脂複
合材料:66gを得た。生成したフェノール系樹脂複合材料を顕微鏡で観察したところ、複合材料内で水酸化カルシウムの粉末は、極めて均一に分散していることを確認した。
【0033】
[実施例10]メラミン樹脂成形材料と水酸化カルシウムからのフェノール系樹脂複合材料の製造
実施例1において、熱硬化性樹脂として、メラミン樹脂成形材料(松下電工製ME−J)を用いた以外は、実施例1と同様な操作を行い、フェノール系樹脂複合材料:71gを得た。生成したフェノール系樹脂複合材料を顕微鏡で観察したところ、複合材料内で水酸化カルシウムの粉末は、極めて均一に分散していることを確認した。
【0034】
[実施例10]ユリア樹脂成形材料と水酸化カルシウムからのフェノール系樹脂複合材料の製造
実施例1において、熱硬化性樹脂として、ユリア樹脂成形材料(松下電工製 CU−A)を用いた以外は、実施例1と同様な操作を行い、フェノール系樹脂複合材料:70gを得た。生成したフェノール系樹脂複合材料を顕微鏡で観察したところ、複合材料内で水酸化カルシウムの粉末は、極めて均一に分散していることを確認した。
【0035】
[実施例11]フェノール樹脂成形材料と水酸化カルシウムからのフェノール系樹脂複合材料の製造
実施例1において、反応溶媒として、フェノールに代えて、オルトクレゾール(和光純薬製)を用いた以外は、実施例1と同様な操作を行い、フェノール系樹脂複合材料:73gを得た。生成したフェノール系樹脂複合材料を顕微鏡で観察したところ、複合材料内で水酸化カルシウムの粉末は、極めて均一に分散していることを確認した。
【0036】
[実施例12]フェノール樹脂成形材料と水酸化カルシウムからのフェノール系樹脂複合材料の製造
実施例1において、反応溶媒として、フェノールに代えて、パラクレゾール(和光純薬製)を用いた以外は、実施例1と同様な操作を行い、フェノール系樹脂複合材料:72gを得た。生成したフェノール系樹脂複合材料を顕微鏡で観察したところ、複合材料内で水酸化カルシウムの粉末は、極めて均一に分散していることを確認した。
【0037】
[実施例13]フェノール樹脂硬化物と水酸化カルシウムからのフェノール系樹脂複合材料の製造
実施例1において、熱硬化性樹脂として、フェノール樹脂硬化物を用いた以外は、実施例1と同様な操作を行い、フェノール系樹脂複合材料:68gを得た。ここで、フェノール樹脂硬化物は、ノボラック型フェノール樹脂(住友デュレズ(株)製 PR−51714):100重量部に対し、ヘキサメチレンテトラミン(和光純薬製、特級):15重量部を配合して、150℃で15分間加圧成形して、さらに180℃で4時間の熱処理を加えて作製した。なお、生成したフェノール樹脂系複合材料を顕微鏡で観察したところ、複合材料内で水酸化カルシウムは、極めて均一に分散していることを確認した。
【0038】
[実施例14]フェノール樹脂硬化物と水酸化カルシウムから製造したフェノール系樹脂複合材料を用いたフェノール樹脂成形材料
本発明の方法で製造したフェノール系樹脂複合材料を原料として、フェノール樹脂成形材料の試験片を作製して、その機械強度および熱変形温度を測定した。試験片は、実施例13で製造したフェノール系樹脂複合材料:48重量部に対して、ヘキサメチレンテトラミン(和光純薬製、特級):7重量部、木粉:45重量部を配合して、クッキングミル(松下電器製、ファイバーミキサー)で乾式混合したのち、プレス成形機(温度:175℃、圧力:10MPa、成形時間:3分間)で作製した。曲げ強度・曲げ弾性率、および、熱変形温度は、JIS−K6911「熱硬化性プラスチック一般試験方法」に準拠して測定を行った。表1に測定結果を示す。
【0039】
【表1】

Figure 2004115744
【0040】
[比較例1]
通常の合成方法で製造したノボラック型フェノール樹脂を原料として、フェノール樹脂成形材料の試験片を作製して、その機械強度および熱変形温度を測定した。
試験片は、ノボラック型フェノール樹脂(住友デュレズ(株)製 PR−51714):45重量部、ヘキサメチレンテトラミン(和光純薬製、特級):7重量部、木粉:45重量部に対して、水酸化カルシウム(和光純薬製):3重量部を配合して、クッキングミルで乾式混合したのち、プレス成形機(温度:175℃、圧力:10MPa、成形時間:3分間)で作製した。表に測定結果を示す。
【0041】
[比較例2]
比較例1と同じ配合で各々の原料を混合したのち、さらにニーダーによる溶融混錬を施してプレス成形機で成形することで、フェノール樹脂成形材料の試験片を作製して、その機械強度および熱変形温度を測定した。ここで、ニーダーによる混錬条件は、温度:100℃、回転数:50rpm、混錬時間:3分間とした。
【0042】
表に示した結果からわかるように、本発明で製造したフェノール系樹脂複合材料を用いれば、通常の乾式混合やニーダーによる溶融混錬により作製したフェノール樹脂成形材料よりも、高い機械強度と、高い熱変温度を有する、高機能・高性能なフェノール樹脂成形材料を作製することができる。
【0043】
【発明の効果】
本発明によれば、熱硬化性樹脂を原料として、有機成分と無機物が高度に分散されたフェノール系樹脂複合材料を製造することができる。
【図面の簡単な説明】
【図1】本発明により、有機成分と無機物が高度に分散されたフェノール系樹脂複合材料が製造される概念図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a phenolic resin composite material. More specifically, a phenolic resin composite containing highly dispersed organic and inorganic materials is used as a raw material for thermosetting resins that have not been able to be recycled, although they are contained in large amounts in industrial waste and general waste. The present invention relates to a method for manufacturing a material.
[0002]
[Prior art]
Among plastics, thermosetting resins are widely used as materials for electric / electronic parts, automobile parts, and the like because they exhibit excellent electric insulation, heat resistance, and mechanical strength. However, once a thermosetting resin is cured, it is not softened or melted by heat and does not dissolve in a solvent, so it has been technically difficult to regenerate a valuable chemical raw material from the cured product.
[0003]
In recent years, to overcome these problems, studies have been made on a method for recovering chemical raw materials by decomposing a thermosetting resin using a supercritical fluid. For example, a method of solubilizing a thermosetting resin in a solution of a mononuclear phenol compound or a water / mononuclear phenol compound in a supercritical or subcritical state to recover an oligomer has been studied (eg, And Patent Document 1.). In this method, the thermosetting resin is solubilized in a short reaction time of about 10 minutes without adding an acid catalyst or an alkali catalyst, and an oligomer component having a molecular weight of 200 to 10,000 can be recovered. It is said that it can be reused as a raw material.
However, in the above method, it has been difficult to recover a high-performance, high-performance, and high-value-added chemical raw material from a thermosetting resin as compared with a single oligomer.
[0004]
On the other hand, it is known that a composite material of an oligomer or a polymer and an inorganic compound can be modified into a material having higher functions and higher performance than a single substance of the oligomer or the polymer. For example, when a composite material in which appropriate fine particles are uniformly mixed and dispersed in an oligomer or a polymer is used, the strength characteristics, heat resistance, and abrasion resistance are higher than when the polymer or the oligomer is used alone. In addition to exhibiting excellent properties such as chemical resistance, light resistance, etc., it is known to be a high value-added functional material such as conductivity and selective adsorption.
[0005]
In recent years, a method and an apparatus for manufacturing a composite material using the characteristics of a supercritical fluid such as low viscosity, high diffusivity, and high thermal conductivity have been studied. For example, a method for producing a composite material of a polymer and inorganic fine particles and an apparatus therefor have been studied (for example, see Patent Document 2). In the prior art, polymer particles such as fine particles, a monomer and a polymerization initiator such as a polymerization initiator, and a supercritical fluid are charged into a reaction tank, and a polymerization reaction is started by setting the inside of the reaction tank to a supercritical field. I have a composite material. In other words, in a low-viscosity, high-diffusion supercritical fluid, a monomer is polymerized to form a polymer, and at the same time, a fine particle is mixed with the polymer to form a composite material of a highly dispersed polymer and a fine particle. It can be manufactured.
However, since the above-mentioned method is intended for a composite material of a polymer and fine particles using a monomer as a raw material, a chemical raw material cannot be recovered by decomposing a thermosetting resin.
[0006]
[Patent Document 1]
JP 2001-151933 A (page 3-4)
[Patent Document 2]
JP 2001-181401 A (page 3-6)
[0007]
[Problems to be solved by the invention]
The present invention provides a method for producing a phenolic resin composite material in which an inorganic substance and an organic component are highly dispersed, by reusing a thermosetting resin by decomposition treatment.
[0008]
[Means for Solving the Problems]
The present inventors use a reaction solvent containing a mononuclear phenolic compound, mix a thermosetting resin to be reused with an inorganic substance, and perform a decomposition treatment in a supercritical or subcritical state to thereby obtain an organic component. The present inventors have found that it is possible to produce a phenolic resin composite material in which inorganic substances are highly dispersed and the present invention has been completed.
[0009]
That is, the present invention
(1) Using a mononuclear phenol compound or a mixture of water and a mononuclear phenol compound as a reaction solvent, mixing a thermosetting resin and an inorganic substance in the reaction solvent, and then in a supercritical or subcritical state. A method for producing a phenolic resin composite material, characterized by performing a decomposition treatment,
(2) The phenolic resin composite material according to the above (1), wherein the thermosetting resin is one or more selected from a phenol resin, an epoxy resin, a melamine resin, and a urea resin. Manufacturing method,
(3) The above item (1) or (1), wherein the inorganic substance is one or more selected from calcium hydroxide, calcium carbonate, magnesium oxide, magnesium hydroxide, silica, alumina, and talc. 2) The method for producing a phenolic resin composite material according to the item,
(4) The phenolic resin composite according to any one of the above (1) to (3), wherein the mononuclear phenol compound is selected from phenol, cresol, xylenol, resorcin, and alkyl-substituted phenol. Method of manufacturing the material,
Is provided.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for producing a phenolic resin composite material of the present invention comprises mixing a thermosetting resin and an inorganic substance in the reaction solvent, using a mononuclear phenolic compound or a mixture of water and a mononuclear phenolic compound as a reaction solvent. Thereafter, the decomposition treatment is performed in a supercritical or subcritical state.
In the present invention, the raw material is a thermosetting resin other than the phenolic resin, epoxy resin, melamine resin, even if the urea resin, the organic component generated using a reaction solvent containing a mononuclear phenolic compound. It is regarded as a phenolic resin, and a composite material composed of an organic component and an inorganic substance is defined as a phenolic resin composite material.
[0011]
The thermosetting resin decomposed by the production method of the present invention includes a cured resin, an uncured or semi-cured resin, a varnish containing a resin, and the like. Further, in addition to a single thermosetting resin, inorganic materials such as silica fine particles and glass fibers, and molding materials or molded articles containing organic fillers such as wood powder, inorganic materials such as glass cloth, and papers. , Such as a laminate using an organic base material such as cloth, a metal-clad laminate obtained by laminating a metal foil such as a copper foil, and a printed circuit board obtained by processing a copper-clad laminate. It also includes curable resin products.
The thermosetting resin used in the present invention is not particularly limited, but phenol resins, epoxy resins, melamine resins, and urea resins can be particularly effectively applied.
In addition, the shape and size of the thermosetting resin to be subjected to the decomposition treatment are not particularly limited, and the optimal size may be selected in consideration of the cost required for pulverization and the decomposition speed. It is 500 μm or less, preferably 250 μm or less, more preferably 100 μm or less.
[0012]
As the inorganic substance used in the present invention, any of a natural inorganic compound or a synthetic inorganic compound may be used, and preferred examples thereof include calcium hydroxide, calcium carbonate, magnesium oxide, magnesium hydroxide, silica, alumina, and talc. Alternatively, two or more kinds can be used. The form of the above-mentioned inorganic substance may be spherical, irregular, fibrous, or flat. The size of the inorganic substance may be from coarse particles having a particle size of several tens of mm to ultrafine particles having a particle size of about several nm.
[0013]
The addition amount of the inorganic substance is preferably in the range of 0.05 to 100 parts by weight, more preferably in the range of 0.1 to 50 parts by weight, based on 100 parts by weight of the thermosetting resin. If the amount is less than the above range, it may not be possible to produce a phenolic resin composite material having high functionality and high performance. On the other hand, if the amount is larger than the above range, the dispersion state of the organic component and the inorganic substance is not good, and it may not be possible to produce a high-performance and high-performance phenolic resin composite material.
[0014]
In the present invention, preferred examples of the mononuclear phenol compound used as a reaction solvent include phenol, cresol, xylenol, resorcin, and alkyl-substituted phenol, and one or more of these are used. Of these, phenol is preferred from the viewpoint of cost and effect on the decomposition reaction.
[0015]
When a mixture of water and a mononuclear phenol compound is used as the reaction solvent, the composition thereof is preferably in the range of 1 to 500 parts by weight of water, more preferably 100 parts by weight of the mononuclear phenol compound, more preferably Water is in the range of 5 to 50 parts by weight based on 100 parts by weight of the core phenol compound.
[0016]
The use ratio of the reaction solvent (mononuclear phenolic compound or a mixture of water and mononuclear phenolic compound) is preferably in the range of 50 to 1000 parts by weight with respect to 100 parts by weight of the thermosetting resin. More preferably, it is in the range of 100 to 400 parts by weight. If the amount of the reaction solvent is less than the above range, it may be difficult to smoothly progress the decomposition reaction of the thermosetting resin. On the other hand, if the amount exceeds the above range, a special effect may not be obtained as compared with the effect of the preferable upper limit, and in that case, the amount of heat required to heat the reaction solvent increases, so that heat energy consumption is increased. Increase.
[0017]
In the method for producing the phenolic composite material of the present invention, first, the above components are added to a reaction device capable of heating and pressurizing, and a decomposition treatment is performed. As the decomposition treatment conditions, the temperature and the pressure may be adjusted to a supercritical or subcritical condition, usually at a temperature of 200 to 500 ° C. and a pressure of 1 to 60 Mpa. The temperature and pressure may be set at 450 ° C. and a pressure in the range of 2 to 40 MPa. If the temperature is lower than the above range, the decomposition reaction rate of the thermosetting resin is low, so that it is difficult to perform the treatment in a short time. On the other hand, when the temperature is higher than the above range, side reactions such as thermal decomposition occur concurrently, and the chemical structure of the organic component constituting the recovered phenolic resin composite material changes, making it difficult to reuse as a chemical raw material. Become. The reaction time can be adjusted in the range of 1 to 60 minutes, but usually the decomposition treatment is completed in about 3 to 30 minutes. In addition, stirring in the reaction apparatus is not always necessary, but by stirring, the phenolic resin composite material can be manufactured more efficiently.
[0018]
Subsequently, by removing the unreacted reaction solvent by performing an appropriate separation method from a mixture of the unreacted reaction solvent, the decomposition product, and the inorganic substance obtained by the above decomposition treatment, the organic component and the inorganic substance are removed. A highly dispersed phenolic resin composite can be obtained. Here, the method of separating the unreacted reaction solvent is not particularly limited, and any method such as flash distillation, vacuum distillation, and solvent extraction may be used.
[0019]
In the present invention, the organic component constituting the phenolic resin composite material is mainly generated by a decomposition reaction of a thermosetting resin, and is mainly composed of an oligomer having a molecular weight of 200 to 10,000. Here, “mainly comprising an oligomer having a molecular weight of 200 to 10,000” means that 50% or more of the oligomer having the molecular weight shown here is contained. In addition to the main oligomer, an oligomer having a molecular weight of 10,000 or more is included. Is also included. The oligomer having a molecular weight of 200 to 10,000 is about 2 to 100 nuclei of the raw material monomer in the case of a normal phenolic resin. As the organic component, a small amount of an unreacted reaction solvent (mononuclear phenol compound) may be contained in addition to the oligomer.
[0020]
In the present invention, the inorganic substance constituting the phenolic resin composite material is mainly a natural inorganic compound or a synthetic inorganic compound mixed when decomposing the thermosetting resin. However, when the thermosetting resin contains an inorganic substance, both the inorganic substance originally contained in the thermosetting resin and the inorganic substance mixed when the thermosetting resin is decomposed are included.
[0021]
FIG. 1 shows the concept of producing a phenolic resin composite material in which an organic substance and an inorganic substance are highly dispersed in the present invention. The phenolic resin composite material is manufactured by the following procedures (1) to (3).
(1) At the stage of charging, there is a three-phase state of thermosetting resin (solid) / inorganic substance (solid) / reaction solvent (liquid).
(2) When the decomposition treatment is performed, the organic component generated by the decomposition of the thermosetting resin dissolves in the reaction solvent, thereby forming a two-phase inorganic substance (solid) / reaction solvent (supercritical or subcritical state). State. Since the reaction solvent in a supercritical or subcritical state has properties of low viscosity and high diffusivity, inorganic substances are uniformly dispersed in the reaction solvent.
(3) By removing the unreacted reaction solvent in a state where the inorganic substance is uniformly dispersed in the reaction solvent, a phenolic resin composite material in which an organic component and an inorganic substance are highly dispersed is produced.
[0022]
The phenolic resin composite material obtained in the present invention is, for example, high strength, high heat resistance, automotive parts or abrasion resistance is required, high strength, electrical and electronic parts are required fast curing, or, It can be used as a material for licks and abrasive cloths requiring abrasion resistance.
[0023]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
[0024]
[Example 1] Production of phenolic resin composite material from phenolic resin molding material and calcium hydroxide As thermosetting resin, phenolic resin molding material (PM-8200 manufactured by Sumitomo Bakelite Co., Ltd.) was crushed and sieved. The particle diameter was adjusted to 250 μm or less.
When mixing the above phenolic resin molding material: 58.3 g and a reaction solvent composed of a mixture of phenol: 85.6 g and water: 21.3 g, powdered calcium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.) ) 1.8 g were added. After the above mixture was charged into an autoclave (internal volume 200 cm 3 ), it was heated to an internal temperature of 400 ° C., whereby the internal pressure of the reactor was raised to 15 MPa and a high-temperature high-pressure state was established. The reaction system was kept at 400 ° C. and 15 MPa for 5 minutes while stirring the reaction system at 300 rpm, and then cooled to normal temperature and normal pressure. After the completion of the reaction, the solvent (phenol, water) was removed from the mixture of the decomposition product and the reaction solvent by heating under normal pressure and reduced pressure conditions to obtain 66 g of a phenolic resin composite material. When the produced phenolic composite material was observed with a microscope, it was confirmed that the calcium hydroxide powder was extremely uniformly dispersed in the composite material.
[0025]
Example 2 Production of a phenolic resin composite material from a phenolic resin molding material and calcium carbonate Example 1 was repeated except that 6.0 g of powdered calcium carbonate (manufactured by Wako Pure Chemical Industries) was added as an inorganic substance. The same operation as in Example 1 was performed to obtain 70 g of a phenolic resin composite material. When the produced phenolic resin composite material was observed with a microscope, it was confirmed that the calcium carbonate powder was extremely uniformly dispersed in the composite material.
[0026]
[Example 3] Production of phenolic resin composite material from phenolic resin molding material and talc Example 1 was repeated except that, in Example 1, 6.0 g of powdery talc (manufactured by Wako Pure Chemical Industries) was added as an inorganic substance. The same operation as described above was performed to obtain 71 g of a phenolic resin composite material. When the produced phenolic resin composite material was observed with a microscope, it was confirmed that talc was extremely uniformly dispersed in the composite material.
[0027]
[Example 4] Production of phenolic resin composite material from phenolic resin molding material and magnesium oxide The procedure of Example 1 was repeated except that 6.0 g of powdered magnesium oxide (manufactured by Wako Pure Chemical Industries) was added as an inorganic substance. The same operation as in Example 1 was performed to obtain 69 g of a phenolic resin composite material. When the produced phenolic resin composite material was observed with a microscope, it was confirmed that the magnesium oxide powder was extremely uniformly dispersed in the composite material.
[0028]
[Example 5] Production of phenolic resin composite material from phenolic resin molding material and magnesium hydroxide Except that in Example 1, 6.0 g of powdered magnesium hydroxide (manufactured by Wako Pure Chemical Industries) was added as an inorganic substance. The same operation as in Example 1 was performed to obtain 70 g of a phenolic resin composite material. When the produced phenolic resin composite material was observed with a microscope, it was confirmed that the magnesium hydroxide powder was extremely uniformly dispersed in the composite material.
[0029]
[Example 6] Production of phenolic resin composite material from phenolic resin molding material and silica Example 1 was repeated except that in Example 1, 50 g of silica fine particles (FB-74, manufactured by Denki Kagaku) was added as an inorganic substance. The same operation was performed to obtain 112 g of a phenolic resin composite material. When the formed phenolic resin composite material was observed with a microscope, it was confirmed that the silica fine particles were extremely uniformly dispersed in the composite material.
[0030]
[Example 7] Production of a phenolic resin composite material from a phenolic resin molding material and glass fiber In Example 1, except that 50 g of glass fiber (RES010-BM manufactured by Nippon Sheet Glass Co., Ltd.) was added as an inorganic substance. The same operation as in Example 1 was performed to obtain 110 g of a phenolic resin composite material. When the formed phenolic resin composite material was observed with a microscope, it was confirmed that the glass fibers were extremely uniformly dispersed in the composite material.
[0031]
Example 8 Production of a phenolic resin composite material from a phenolic resin molding material and alumina The same as Example 1 except that 50 g of powdery alumina (manufactured by Wako Pure Chemical Industries) was added as the inorganic substance in Example 1. By performing various operations, 112 g of a phenolic resin composite material was obtained. When the produced phenolic resin composite material was observed with a microscope, it was confirmed that the powdery alumina was extremely uniformly dispersed in the composite material.
[0032]
Example 9 Production of a phenolic resin composite material from an epoxy resin molding material and calcium hydroxide In Example 1, an epoxy resin molding material for semiconductor encapsulation (EME manufactured by Sumitomo Bakelite Co., Ltd.) was used as the thermosetting resin. Except for using -6300H), the same operation as in Example 1 was performed to obtain 66 g of a phenolic resin composite material. When the produced phenolic resin composite material was observed with a microscope, it was confirmed that the calcium hydroxide powder was extremely uniformly dispersed in the composite material.
[0033]
[Example 10] Production of phenolic resin composite material from melamine resin molding material and calcium hydroxide Except for using melamine resin molding material (ME-J manufactured by Matsushita Electric Works) as thermosetting resin in Example 1, The same operation as in Example 1 was performed to obtain 71 g of a phenolic resin composite material. When the produced phenolic resin composite material was observed with a microscope, it was confirmed that the calcium hydroxide powder was extremely uniformly dispersed in the composite material.
[0034]
[Example 10] Production of phenolic resin composite material from urea resin molding material and calcium hydroxide In Example 1, except that urea resin molding material (CU-A manufactured by Matsushita Electric Works) was used as the thermosetting resin. The same operation as in Example 1 was performed to obtain 70 g of a phenolic resin composite material. When the produced phenolic resin composite material was observed with a microscope, it was confirmed that the calcium hydroxide powder was extremely uniformly dispersed in the composite material.
[0035]
[Example 11] Production of phenolic resin composite material from phenolic resin molding material and calcium hydroxide In Example 1, except that ortho-cresol (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of phenol as a reaction solvent. By performing the same operation as in Example 1, 73 g of a phenolic resin composite material was obtained. When the produced phenolic resin composite material was observed with a microscope, it was confirmed that the calcium hydroxide powder was extremely uniformly dispersed in the composite material.
[0036]
[Example 12] Production of phenolic resin composite material from phenolic resin molding material and calcium hydroxide In Example 1, except that paracresol (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of phenol as a reaction solvent. By performing the same operation as in Example 1, 72 g of a phenolic resin composite material was obtained. When the produced phenolic resin composite material was observed with a microscope, it was confirmed that the calcium hydroxide powder was extremely uniformly dispersed in the composite material.
[0037]
[Example 13] Production of phenolic resin composite material from cured phenolic resin and calcium hydroxide The same operation as in Example 1 except that a cured phenolic resin was used as the thermosetting resin in Example 1. Was performed to obtain a phenolic resin composite material: 68 g. Here, the cured phenolic resin is prepared by mixing 15 parts by weight of hexamethylenetetramine (special grade, manufactured by Wako Pure Chemical Industries) with 100 parts by weight of a novolak type phenolic resin (PR-51714 manufactured by Sumitomo Durez Co., Ltd.). , At 150 ° C. for 15 minutes, and further subjected to a heat treatment at 180 ° C. for 4 hours. In addition, when the produced phenolic resin-based composite material was observed with a microscope, it was confirmed that calcium hydroxide was extremely uniformly dispersed in the composite material.
[0038]
[Example 14] Phenolic resin molding material using phenolic resin composite material produced from cured phenolic resin and calcium hydroxide Test of phenolic resin molding material using phenolic resin composite material produced by the method of the present invention as a raw material A piece was prepared and its mechanical strength and heat distortion temperature were measured. The test piece was prepared by mixing 7 parts by weight of hexamethylenetetramine (special grade, manufactured by Wako Pure Chemical Industries) and 45 parts by weight of wood flour with 48 parts by weight of the phenolic resin composite material produced in Example 13. After dry-mixing with a cooking mill (manufactured by Matsushita Electric Co., Ltd., fiber mixer), it was produced with a press molding machine (temperature: 175 ° C., pressure: 10 MPa, molding time: 3 minutes). The flexural strength, flexural modulus, and thermal deformation temperature were measured in accordance with JIS-K6911 “General thermosetting plastic test method”. Table 1 shows the measurement results.
[0039]
[Table 1]
Figure 2004115744
[0040]
[Comparative Example 1]
A test piece of a phenolic resin molding material was prepared from a novolak-type phenolic resin produced by an ordinary synthesis method, and its mechanical strength and heat distortion temperature were measured.
The test pieces were 45 parts by weight of a novolak type phenol resin (PR-51714 manufactured by Sumitomo Durez Co., Ltd.), 7 parts by weight of hexamethylenetetramine (manufactured by Wako Pure Chemical Industries, Ltd.), and 45 parts by weight of wood flour. Calcium hydroxide (manufactured by Wako Pure Chemical Industries, Ltd.): 3 parts by weight was mixed and dry-mixed with a cooking mill, and then produced by a press molding machine (temperature: 175 ° C., pressure: 10 MPa, molding time: 3 minutes). Table shows the measurement results.
[0041]
[Comparative Example 2]
After mixing the respective raw materials with the same composition as in Comparative Example 1, the mixture was further melt-kneaded by a kneader and molded by a press molding machine to prepare a test piece of a phenolic resin molding material, and its mechanical strength and heat The deformation temperature was measured. Here, the kneading conditions by the kneader were as follows: temperature: 100 ° C., rotation speed: 50 rpm, kneading time: 3 minutes.
[0042]
As can be seen from the results shown in the table, using the phenolic resin composite material produced in the present invention, higher mechanical strength and higher than the phenolic resin molding material produced by ordinary dry mixing or melt kneading with a kneader. A high-performance, high-performance phenolic resin molding material having a heat distortion temperature can be produced.
[0043]
【The invention's effect】
According to the present invention, a phenolic resin composite material in which an organic component and an inorganic substance are highly dispersed can be produced using a thermosetting resin as a raw material.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram in which a phenolic resin composite material in which an organic component and an inorganic substance are highly dispersed according to the present invention is manufactured.

Claims (4)

単核フェノール類化合物、または、水と単核フェノール類化合物との混合物を反応溶媒として、前記反応溶媒中で、熱硬化性樹脂および無機物を混合したのち、超臨界又は亜臨界状態において分解処理を行うことを特徴とするフェノール系樹脂複合材料の製造方法。Mononuclear phenolic compound, or a mixture of water and a mononuclear phenolic compound as a reaction solvent, in the reaction solvent, after mixing a thermosetting resin and an inorganic substance, a decomposition treatment in a supercritical or subcritical state. A method for producing a phenolic resin composite material. 熱硬化性樹脂が、フェノール樹脂、エポキシ樹脂、メラミン樹脂、及びユリア樹脂の中から選択された1種または2種以上である、請求項1に記載のフェノール系樹脂複合材料の製造方法。The method for producing a phenolic resin composite material according to claim 1, wherein the thermosetting resin is at least one selected from a phenol resin, an epoxy resin, a melamine resin, and a urea resin. 無機物が、水酸化カルシウム、炭酸カルシウム、酸化マグネシウム、水酸化マグネシウム、シリカ、アルミナ、及びタルクの中から選択された1種又は2種以上である、請求項1または2に記載のフェノール系樹脂複合材料の製造方法。The phenolic resin composite according to claim 1 or 2, wherein the inorganic substance is one or more selected from calcium hydroxide, calcium carbonate, magnesium oxide, magnesium hydroxide, silica, alumina, and talc. Material manufacturing method. 単核フェノール類化合物が、フェノール、クレゾール、キシレノール、レゾルシン、及びアルキル置換フェノールの中から選ばれる、請求項1〜3のいずれかに記載のフェノール系樹脂複合材料の製造方法。The method for producing a phenolic resin composite material according to any one of claims 1 to 3, wherein the mononuclear phenol compound is selected from phenol, cresol, xylenol, resorcin, and alkyl-substituted phenol.
JP2002284535A 2002-09-27 2002-09-27 Method for producing phenolic resin composite material Pending JP2004115744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284535A JP2004115744A (en) 2002-09-27 2002-09-27 Method for producing phenolic resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284535A JP2004115744A (en) 2002-09-27 2002-09-27 Method for producing phenolic resin composite material

Publications (1)

Publication Number Publication Date
JP2004115744A true JP2004115744A (en) 2004-04-15

Family

ID=32278052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284535A Pending JP2004115744A (en) 2002-09-27 2002-09-27 Method for producing phenolic resin composite material

Country Status (1)

Country Link
JP (1) JP2004115744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325240A1 (en) * 2008-09-12 2011-05-25 Sumitomo Bakelite Co., Ltd. Method for decomposing polymer material, process for producing reprocessed resin, and method for recovering inorganic filler
CN110591297A (en) * 2019-10-17 2019-12-20 上海第二工业大学 Nano composite material and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325240A1 (en) * 2008-09-12 2011-05-25 Sumitomo Bakelite Co., Ltd. Method for decomposing polymer material, process for producing reprocessed resin, and method for recovering inorganic filler
EP2325240A4 (en) * 2008-09-12 2014-08-13 Sumitomo Bakelite Co Method for decomposing polymer material, process for producing reprocessed resin, and method for recovering inorganic filler
JP5605224B2 (en) * 2008-09-12 2014-10-15 住友ベークライト株式会社 Polymer material decomposition treatment method, recycled resin production method
US9085666B2 (en) 2008-09-12 2015-07-21 Sumitomo Bakelite Co., Ltd. Method for decomposing polymer material, method for producing recycled resin, and method for recovering inorganic filler
EP2987823A1 (en) * 2008-09-12 2016-02-24 Sumitomo Bakelite Co., Ltd. Method for recovering inorganic filler
US9822209B2 (en) 2008-09-12 2017-11-21 Sumitomo Bakelite Co., Ltd. Method for decomposing polymer material, method for producing recycled resin, and method for recovering inorganic filler
CN110591297A (en) * 2019-10-17 2019-12-20 上海第二工业大学 Nano composite material and preparation method thereof
CN110591297B (en) * 2019-10-17 2021-11-23 上海第二工业大学 Nano composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN108884325B (en) Resin composition containing liquid crystal polymer particles, molded article using the same, and method for producing the same
CN105399959B (en) A kind of alkyd resin moulding material additive and preparation method thereof based on polyphosphazene microspheres
KR100353282B1 (en) Method and apparatus for decomposition treating article having cured thermosetting resin
WO2006051663A1 (en) Decomposition reaction apparatus, system for producing raw material for recycled resin composition, method for producing raw material for recycled resin composition, raw material for recycled resin composition, and formed article
JP2016003260A (en) Resin composition for printed wiring board, prepreg for printed wiring board, laminate, metal-clad laminate, printed wiring board and magnesium oxide
WO2010050220A1 (en) Organic-inorganic composite and manufacturing method therefor
Kang et al. Novel application of mechanochemistry in waste epoxy recycling via solid-state shear milling
JP2000198877A5 (en)
WO2010029733A1 (en) Method for decomposing polymer material, process for producing reprocessed resin, and method for recovering inorganic filler
JP3946390B2 (en) Recycling method of thermosetting resin
JP5007671B2 (en) Manufacturing method of recycled resin
JP2004115744A (en) Method for producing phenolic resin composite material
JP2006233141A (en) Phenolic resin molding material
CN114641532A (en) Resin composition, cured product, composite molded body, and semiconductor device
JP3693869B2 (en) Method for decomposing and recycling thermosetting resin
JP3922625B2 (en) Method for decomposing and recycling thermosetting resin
CN110564105A (en) Regenerated plastic particles and preparation process thereof
JP2002284925A (en) Method for recycling cured resin
CN102199341A (en) Preparation method of microwave absorbing material
JP2015048361A (en) Lignin resin composition, resin molded article, prepreg, and molding material
JP4581607B2 (en) Plastic processing method, recycling method, plastic processing collection and recycled plastic
JP2006160794A (en) Method for treating plastic, recycling method, treated and recovered material and recycled plastic
JP3888979B2 (en) Method for decomposing and recycling thermosetting resin
JP2006124480A (en) Plastic regeneration method, regenerated product, recycling method, and recycled plastic
JP2005126669A (en) Method for recycling plastic, treated and recovered plastic, thermosetting resin-forming material and recycled plastic