JP2004114195A - Grinding method and cylindrical grinding machine - Google Patents

Grinding method and cylindrical grinding machine Download PDF

Info

Publication number
JP2004114195A
JP2004114195A JP2002278876A JP2002278876A JP2004114195A JP 2004114195 A JP2004114195 A JP 2004114195A JP 2002278876 A JP2002278876 A JP 2002278876A JP 2002278876 A JP2002278876 A JP 2002278876A JP 2004114195 A JP2004114195 A JP 2004114195A
Authority
JP
Japan
Prior art keywords
grinding
workpiece
values
value
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002278876A
Other languages
Japanese (ja)
Inventor
Hiroshi Morita
森田 浩
Takayuki Yoshimi
吉見 隆行
Ryohei Mukai
向井 良平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP2002278876A priority Critical patent/JP2004114195A/en
Publication of JP2004114195A publication Critical patent/JP2004114195A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grinding method for setting suitable values of grinding conditions in a range to prevent generation of grinding burn and standardizing the setting work of the values of the grinding conditions, even if not based on experience, and a cylindrical grinding machine to be used for the execution of the grinding method. <P>SOLUTION: A peripheral surface of a workpiece W is ground by bringing the peripheral surface of the rotated and driven workpiece W into contact with a peripheral surface of a rotated and driven grinding tool G. At the time, the grinding is performed by setting values of two grinding conditions of values of three grinding conditions constituted of grinding speed, the number of rotation of the workpiece W and peripheral speed of the grinding tool G and setting the value of the remaining grinding condition by calculating the value from "a discriminant: A=kx(f/n)xV<SP>B</SP>, (B:coefficient(0 to -1), k:coefficient, f:grinding speed (mm/min), n:the number of rotation (min<SP>-1</SP>) of the workpiece W, V:peripheral speed (m/s)) of the grinding tool". <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、研削方法及び円筒研削盤に関し、詳しくは、回転駆動される工作物の周面に、回転駆動される砥石の周面を接触させて、工作物の周面を研削する際に、研削速度、工作物の回転数及び砥石の周速度からなる三つの研削条件の値として、好適な値を設定して研削を行う研削方法、及び、この研削方法の実施に使用される円筒研削盤に関する。
【0002】
【従来の技術】
円筒研削盤により、回転駆動される工作物の周面に、回転駆動される砥石の周面を接触させて、工作物の周面を研削する場合には、研削速度、工作物の回転数及び砥石の周速度からなる三つの研削条件の各値を設定して研削を行う。ここで、上記三つの研削条件の値とは、次のような値である。図1に示すように、研削速度は、工作物の径方向に砥石を送って工作物を砥石により切り込む際の速度であり(矢印f)、その値は、通常、「mm/min」の単位で表される。工作物の回転速度は、工作物の軸心を中心に回転させる速度であり(矢印n)、その値は、通常、「min−1」の単位で表される。砥石の周速度は、研削作用部分である工作物との接触部分における砥石の速度、すなわち砥石の外周面の速度であり(矢印V)、その値は、通常、「m/s」の単位で表される。
【0003】
そして、従来では、上記の各研削条件の値として、所望の表面粗さが得られ、しかも、研削加工によって生じる熱により、工作物の表面硬度が許容範囲外に変化する所謂「研削焼け」が生じない範囲で、研削加工に要する時間が少なくなるように、すなわち、加工能率が高くなるように、好適な値に設定していた。
【0004】
【発明が解決しようとする課題】
研削条件の値を設定するに際しては、研削加工によって得るべき表面粗さについて単に着目すれば、計算値によって求めることができる。しかしながら、研削焼けを生じさせずに能率を高めた値として好適に設定するためには、まず、適宜に設定した値によって試験的に研削を行い、研削焼けが生じないことを確認した上で、さらに好適な値を導かなければならず、作業者の経験に基づくところが多い。よって、研削条件の各値を設定するに際して、作業者によって設定値にばらつきを生じ易く、標準化することが困難であった。
【0005】
本発明は、上記実状を鑑みてなされたものであり、経験に基づかなくても、研削焼けが生じない範囲で研削条件の好適な値を設定することができ、研削条件の値の設定作業を標準化することができる研削方法、及び、この研削方法の実施に使用される円筒研削盤の提供を課題とする。
【0006】
【課題を解決するための手段】
請求項1に記載の発明に係る研削方法は、回転駆動される工作物の周面に、回転駆動される砥石の周面を接触させて、工作物の周面を研削する研削方法であって、研削速度、工作物の回転数及び砥石の周速度からなる三つの研削条件の値の内、二つの研削条件の値を設定すると共に、残りの研削条件の値を、次の判別式から算出して設定し、研削を行うことを特徴とするものである、
判別式:A=k×(f/n)×V
B:係数(0〜−1)、
k:係数、
f:研削速度(mm/min)、
n:工作物の回転数(min−1)、
V:砥石の周速度(m/s)。
【0007】
ここで、係数kは、工作物の材質、砥石の種類、冷却液の吐出態様等、研削加工の種々の状況に応じて定められる係数であり、研削焼けが生じる限度の値、所謂「しきい値」を、判別式のAの値として設定することにより、二つの研削条件の値を適宜決定すれば、判別式から、残りの研削条件の値を算出することができる。
【0008】
本発明では、三つの研削条件の値の内、二つの研削条件の値を、所望の表面粗さが得られる値、砥石の種類に好適な値、所望の能率を満たした値等、種々の要件に応じた値として適宜決定すれば、判別式によって、研削焼けが生じない範囲での残りの研削条件の値が導き出される。よって、作業者の経験に基づくことなく、研削焼けが生じない範囲で、研削条件の好適な値を設定することが可能となる。
【0009】
請求項2に記載の発明に係る円筒研削盤は、回転駆動される工作物の周面に、回転駆動される砥石の周面を接触させて、工作物の周面を研削する円筒研削盤であって、研削速度、工作物の回転数及び砥石の周速度からなる三つの研削条件の値の内、二つの研削条件の値が入力される入力手段と、入力された二つの研削条件の値から、
判別式:A=k×(f/n)×V
B:係数(0〜−1)、
k:係数、
f:研削速度(mm/min)、
n:工作物の回転数(min−1)、
V:砥石の周速度(m/s)、
に基づいて残りの研削条件の値を算出する算出手段と備えることを特徴とするものである。
【0010】
本発明に係る研削盤は、請求項1に記載の研削方法を実施するために使用されるものであり、二つの研削条件の値が入力される入力手段と、判別式から残りの研削条件の値を算出する算出手段とを備えるため、研削条件の値を別途に計算して導き出すことなく、請求項1に記載の研削方法を実施することが可能となる。
【0011】
なお、本発明では、入力手段に入力される二つの研削条件の値、及び、算出手段によって算出された残りの研削条件の値を、円筒研削盤の駆動系を制御する値として、別途入力する必要のある態様であってよく、或は、研削条件の各値が、円筒研削盤を制御する値として自動的に設定される態様であってもよい。
【0012】
また、算出手段によって残りの研削条件の値を算出するに際して、判別式の値Aや係数kの値を、別途入力する態様としてもよいが、予め、判別式の値Aや係数kの値として多様な値を記憶させておき、所望の能率、工作物の材質、砥石の種類等、種々の項目の入力に応じて、記憶された多様な値から対応する値が選択的に抽出される態様とし、この値に基づき、判別式によって残りの研削条件の値を算出することとしてもよい。
【0013】
請求項3に記載の発明に係る円筒研削盤は、請求項2に記載の発明に係る円筒研削盤において、前記算出手段により算出された値を表示する表示手段を備えることを特徴とするものである。
【0014】
本発明では、表示手段によって、算出手段により算出された残りの研削条件の値が表示されるため、この値を確認することが可能となる。また、表示手段によって表示された値は、当該円筒研削盤によって研削加工を行う際ばかりでなく、他の円筒研削盤によって研削加工を行うための研削条件の値として用いることができ、当該円筒研削盤を、「研削焼けに着目して研削条件の値を算出する計算機」として利用することも可能となる。
【0015】
請求項4に記載の発明に係る円筒研削盤は、請求項2または請求項3に記載の発明に係る円筒研削盤において、前記入力手段に入力された二つの研削条件の値と、前記算出手段により算出された残りの研削条件の値とを記憶する記憶手段を備え、該記憶手段に記憶された各値に基づいて研削を行うことを特徴とするものである。
【0016】
本発明では、記憶手段に記憶された研削条件の各値に基づいて研削を行うため、入力手段に入力された二つの研削条件の値と、算出手段により算出された残りの研削条件の値とを、駆動系の制御を行うための値として別途入力する必要がなく、研削を行うことができる。
【0017】
【発明の実施の形態】
以下に、本発明に係る研削方法及び円筒研削盤の実施形態を、図面に基づいて詳細に説明する。
【0018】
まず、本発明に係る研削方法の実施形態の一例を説明する。図1に示すように、本例の研削方法では、回転駆動される工作物Wの周面に、回転駆動される砥石Gの周面を接触させて、工作物Wの周面を研削するのであるが、研削速度(矢印f)、工作物の回転数(矢印n)及び砥石の周速度(矢印V)からなる三つの研削条件の値の内、二つの研削条件の値を、適宜設定する。例えば、砥石の種類に応じた適切な砥石の周速度を優先する場合には、砥石の周速度を適宜設定し、粗研削や仕上げ研削等の研削内容に応じた適切な研削速度を優先する場合には、研削速度を適宜設定し、研削により確保する表面粗さに応じた適切な工作物の回転数を優先する場合には、工作物の回転数を適宜設定する。
【0019】
そして、残りの研削条件の値を、
判別式:A=k×(f/n)×V
B:係数(0〜−1)、
k:係数、
f:研削速度(mm/min)、
n:工作物の回転数(min−1)、
V:砥石の周速度(m/s)。
から算出する。
【0020】
ここで、係数kは、工作物の材質、砥石の種類、冷却液の吐出態様等、研削加工における種々の状況に応じて定められる係数であり、研削焼けが生じる限度の値、所謂「しきい値」を、判別式のAの値として設定することにより、二つの研削条件の値を適宜決定すれば、判別式から、残りの研削条件の値を算出することができる。
【0021】
次に、判別式の値Aを設定する具体的な態様を例示する。図2に、砥石の周速度及び研削能率を種々の値に設定して、工作物を実際に研削し、工作物の表面硬度の変化を検証した結果を示す。なお、図2は、縦軸を硬度低下率m、横軸を判別式によって求めた研削焼け判別値Aとしたグラフであり、研削能率の値を、「2」、「9」、「13」、「15」及び「20」の5種類とし、研削条件の一つである砥石の周速度Vを、3種類の研削条件の下で行った結果である。なお、このグラフにおける3種類の砥石の周速度は、それぞれ、黒菱形プロット、黒四角プロット、黒三角プロットにて示し、その関係は、黒菱形<黒四角<黒三角となる。また、プロットの近傍の数値は、研削能率の値を示す。
【0022】
ここで、研削能率とは、
Z=(f×d×π)/60、(dは工作物の直径(mm))、
から求められる値Zであり、研削速度fの値が大きい程、高くなる値である。
【0023】
また、硬度低下率mは、研削による工作物の表面硬度の変化を表す数値であり、研削加工後の工作物における表面の硬度と内部の硬度とを、ビッカース硬さ試験機によって測定し、内部の硬さを「X」とし、表面の硬度と内部の硬度との差(表面が内部より軟らかければ「+」とし、表面が内部より硬ければ「−」とする)を「Y」として、
m=(Y/X)×100(%)
から求められる値mである。ここで、工作物の内部の硬度については、工作物を切断して内部の材質を露呈させ、この内部の材質の表面硬度を測定している。
【0024】
なお、上記の研削結果は、砥石の種類としてCBN砥石を採用し、材質を焼入鋼とする直径50mmの工作物を採用し、工作物における研削直後の部位に少量の冷却液を浴びせる、といった研削状況にて、砥石の周速度v及び研削速度fから、所望の表面粗さが得られるように工作物の回転数nを設定して研削加工を行った結果である。また、上述の研削加工の状況では、係数k=1として、研削焼け判別値Aを算出している。
【0025】
砥石の周速度や研削能率によっては、工作物の表面硬度の変化に規則性を見出すことはできないのであるが、図2のグラフから解るように、研削焼け判別値Aの値が「0.013」を超えると、硬度低下率mが大きくなる。よって、研削焼け判別値Aの値に着目すれば、工作物の表面硬度の変化に規則性を見出すことができる。また、研削焼け判別値Aの値が「0.013」を超えた条件での研削加工後の工作物については、研削焼けが生じていることを、目視によっても確認することができる。従って、本例では、研削焼け判別値Aの「しきい値」として「A=0.013」を設定し、適宜設定した二つの研削条件の値から、「A=0.013」となるように、残りの研削条件の値を算出し、この値を、残りの研削条件の値として設定し、研削加工を行うこととする。
【0026】
なお、種々の研削加工の状況において、研削焼け判別値Aの「しきい値」を同値とする場合には、係数kを、種々の研削加工の状況に応じた値に設定すればよい。
【0027】
次に、本発明に係る円筒研削盤の実施形態の一例を説明する。まず、図示は省略するが、円筒研削盤の主体部分は、基台を構成するベッドと、ベッドの上面に摺動自在に載置され、工作物の軸方向(Z軸方向)に移動駆動されるテーブルと、装着された砥石を回転駆動する軸頭を有し、ベッドの上面に摺動自在に載置され、工作物の径方向(X軸方向)に移動駆動される砥石台と、テーブルの上面に搭載され、工作物を支持すると共に工作物の軸心周り(C軸周り)に回転駆動させる主軸台とから構成される。この主体部分の構成は、公知の通常の円筒研削盤と同様であり、詳述は省略する。
【0028】
また、円筒研削盤は、CNC制御によって上記の軸頭、砥石台、主軸台等、各種の機器の駆動が制御されるものであり、CNC制御装置を備えている。そして、このCNC制御装置とは別途に、判別式により研削条件の値を算出するために、図3に示すように、入力部10、演算部20及び出力部30を有する演算装置100を備えている。
【0029】
入力部10は、研削速度f、工作物の回転数n及び砥石の周速度vの内の二つの値が入力されるものであり、操作盤のテンキー等の入力装置により構成されている。この入力部10は、入力手段の一例を構成するものである。また、演算部20は、入力された二つの研削条件の値から、判別式に基づいて残りの研削条件の値を算出するものであり、操作盤に内蔵されたコンピュータのCPU等により構成されている。この演算部20は、算出手段の一例を構成するものである。さらに、出力部30は、操作盤のCRT等の表示装置31、及び、操作盤に内蔵されたコンピュータのRAM等の記憶装置32を備えたものであり、演算部30によって算出された残りの研削条件の値を表示装置31に表示するとと共に記憶装置32に記憶するものである。ここで、上記表示装置31は、算出手段により算出された値を表示する表示手段の一例を構成するものであり、上記記憶装置32は、入力された二つの研削条件の値と、算出手段により算出された残りの研削条件の値とを記憶する記憶手段の一例を構成するものである。
【0030】
ところで、算出手段によって残りの研削条件の値を算出させるに際しては、上記の入力部等から、研削条件の二つの値の他、「しきい値」としての判別式の値Aや、研削状況に応じた係数kの値を入力することとしてもよい。しかしながら、本例の円筒研削盤では、判別式の値Aを予め設定して別途の記憶装置等により記憶させてある。また、種々の研削状況に応じた係数kの値も、別途の記憶装置に記憶させてあり、種々の研削状況に応じて、砥石の種類や工作物の材質等の適宜項目を入力部等から入力することで、研削状況に応じた係数kの値が選択的に抽出されるようにしてある。よって、本例の円筒研削盤では、予め設定された判別式の値A及び選択的に抽出された係数kに基づいて、適宜入力された二つの研削条件の値から、残りの研削条件の値を算出し、この値を表示装置に表示すると共に、入力された値及び算出された値の全て研削条件の値を記憶手段に記憶する。そして、研削加工に際しては、記憶手段に記憶された研削条件の各値に基づいて、CNC制御装置によって、各種機器の駆動が制御される。
【0031】
【発明の効果】
以上説明した本発明に係る研削方法及び円筒研削盤によれば、次のような効果を得ることができる。
【0032】
請求項1に記載の発明によれば、研削速度、工作物の回転数及び砥石の周速度の三つの研削条件の値の内、二つの研削条件の値を適宜決定すれば、判別式によって、残りの研削条件の値を導き出すことができるため、作業者の経験に基づくことなく、研削焼けが生じない範囲で、研削条件の好適な値を設定することができ、研削条件の値の設定作業を標準化することができる。
【0033】
請求項2に記載の発明によれば、二つの研削条件の値が入力される入力手段と、判別式から残りの研削条件の値を算出する算出手段とを備えるため、研削条件の値を別途に計算して導き出すことなく、請求項1に記載の研削方法を実施することができる。
【0034】
請求項3に記載の発明によれば、算出手段により算出された研削条件の値を表示する表示手段を備えるため、この値を確認することができ、しかも、円筒研削盤を、「研削焼けに着目して研削条件の値を算出する計算機」として利用することもできる。
【0035】
請求項4に記載の発明によれば、研削条件の各値を記憶する記憶手段を備え、該記憶手段に記憶された研削条件の各値に基づいて研削を行うため、研削条件の各値を、駆動系の制御を行うための値として別途入力する必要がなく、研削を行うことができる。
【図面の簡単な説明】
【図1】本発明に係る研削方法の概略を示す要部側面図である。
【図2】硬度低下率mと研削焼け判別値Aとの関係を示すグラフである。
【図3】本発明に係る円筒研削盤が備える演算装置の概略を示すブロック図である。
【符号の説明】
W   工作物
G   砥石
10  入力部(入力手段)
20  演算部(算出手段)
30  出力部
31  表示装置(表示手段)
32  記憶装置(記憶手段)
100 演算装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a grinding method and a cylindrical grinder, in particular, when the peripheral surface of a rotationally driven workpiece is brought into contact with the peripheral surface of a rotationally driven grindstone to grind the peripheral surface of the workpiece, As a value of three grinding conditions consisting of a grinding speed, a rotational speed of a workpiece, and a peripheral speed of a grindstone, a grinding method for performing grinding by setting a suitable value, and a cylindrical grinding machine used for carrying out this grinding method About.
[0002]
[Prior art]
When the peripheral surface of the rotationally driven grindstone is brought into contact with the peripheral surface of the rotationally driven workpiece by the cylindrical grinding machine to grind the peripheral surface of the workpiece, the grinding speed, the number of revolutions of the workpiece and Grinding is performed by setting each value of three grinding conditions consisting of the peripheral speed of the grindstone. Here, the values of the above three grinding conditions are as follows. As shown in FIG. 1, the grinding speed is a speed at which a grinding wheel is fed in the radial direction of the workpiece and the workpiece is cut by the grinding wheel (arrow f), and its value is usually in the unit of “mm / min”. Is represented by The rotation speed of the workpiece is a speed at which the workpiece is rotated around the axis of the workpiece (arrow n), and its value is usually expressed in units of “min −1 ”. The peripheral speed of the grindstone is the speed of the grindstone at the contact portion with the workpiece which is the grinding action portion, that is, the speed of the outer peripheral surface of the grindstone (arrow V), and its value is usually in the unit of “m / s”. expressed.
[0003]
Conventionally, as a value of each of the above-described grinding conditions, a desired surface roughness is obtained, and the so-called “grinding burn” in which the surface hardness of the workpiece changes outside an allowable range due to heat generated by the grinding process. The value is set to a suitable value so that the time required for the grinding processing is reduced, that is, the processing efficiency is increased within a range in which the processing does not occur.
[0004]
[Problems to be solved by the invention]
When setting the values of the grinding conditions, if simply paying attention to the surface roughness to be obtained by the grinding process, the values can be obtained from the calculated values. However, in order to appropriately set the value as an increased efficiency without causing grinding burns, first, a trial grinding is performed with appropriately set values, and after confirming that grinding burns do not occur, Further suitable values have to be derived and are often based on the experience of the workers. Therefore, when setting each value of the grinding condition, it is easy for the operator to vary the set value, and it is difficult to standardize the set value.
[0005]
The present invention has been made in view of the above-described circumstances, and even if not based on experience, it is possible to set a suitable value of the grinding condition within a range where grinding burn does not occur. It is an object of the present invention to provide a grinding method that can be standardized and a cylindrical grinding machine used for implementing the grinding method.
[0006]
[Means for Solving the Problems]
A grinding method according to the first aspect of the present invention is a grinding method for grinding a peripheral surface of a workpiece by bringing a peripheral surface of a rotationally driven grindstone into contact with a peripheral surface of a rotationally driven workpiece. Of the three grinding conditions consisting of the grinding speed, the number of revolutions of the workpiece, and the peripheral speed of the grindstone, set the values of the two grinding conditions, and calculate the values of the remaining grinding conditions from the following discriminant. It is characterized by performing setting and grinding.
Discriminant: A = k × (f / n) × V B ,
B: coefficient (0 to -1),
k: coefficient,
f: grinding speed (mm / min),
n: number of rotations of the workpiece (min −1 ),
V: peripheral speed of the grinding wheel (m / s).
[0007]
Here, the coefficient k is a coefficient determined according to various conditions of the grinding process such as the material of the workpiece, the type of the grindstone, the discharge mode of the coolant, and the like, and the value of the limit at which the grinding burn occurs, the so-called “threshold” By setting the “value” as the value of A in the discriminant, if the values of the two grinding conditions are appropriately determined, the values of the remaining grinding conditions can be calculated from the discriminant.
[0008]
In the present invention, among the values of the three grinding conditions, the values of the two grinding conditions are set to various values such as a value at which a desired surface roughness is obtained, a value suitable for a type of grinding wheel, and a value satisfying a desired efficiency. If appropriately determined as a value corresponding to the requirement, the discriminant formula derives the value of the remaining grinding conditions within a range where grinding burn does not occur. Therefore, it is possible to set a suitable value of the grinding condition within a range where grinding burn does not occur, based on the experience of the operator.
[0009]
The cylindrical grinding machine according to the second aspect of the present invention is a cylindrical grinding machine for grinding the peripheral surface of a workpiece by bringing the peripheral surface of a rotationally driven grindstone into contact with the peripheral surface of a rotationally driven workpiece. Input means for inputting two grinding condition values out of three grinding condition values consisting of a grinding speed, a rotation speed of a workpiece, and a peripheral speed of a grinding wheel, and two input grinding condition values From
Discriminant: A = k × (f / n) × V B ,
B: coefficient (0 to -1),
k: coefficient,
f: grinding speed (mm / min),
n: number of rotations of the workpiece (min −1 ),
V: peripheral speed of the grinding wheel (m / s),
And calculating means for calculating the value of the remaining grinding conditions based on the above.
[0010]
A grinding machine according to the present invention is used for carrying out the grinding method according to claim 1, and an input means for inputting two grinding condition values and a discriminant formula for determining the remaining grinding conditions. The provision of the calculating means for calculating the value makes it possible to carry out the grinding method according to claim 1 without separately calculating and deriving the value of the grinding condition.
[0011]
In the present invention, the values of the two grinding conditions input to the input unit and the values of the remaining grinding conditions calculated by the calculation unit are separately input as values for controlling the drive system of the cylindrical grinding machine. It may be a mode in which it is necessary, or a mode in which each value of the grinding conditions is automatically set as a value for controlling the cylindrical grinding machine.
[0012]
Further, when calculating the values of the remaining grinding conditions by the calculating means, the value A of the discriminant and the value of the coefficient k may be separately input. Various values are stored, and corresponding values are selectively extracted from the stored various values in accordance with input of various items such as desired efficiency, material of a workpiece, kind of grinding wheel, and the like. Based on this value, the value of the remaining grinding conditions may be calculated by a discriminant.
[0013]
A cylindrical grinding machine according to a third aspect of the present invention is the cylindrical grinding machine according to the second aspect of the present invention, further comprising a display unit for displaying a value calculated by the calculation unit. is there.
[0014]
In the present invention, since the value of the remaining grinding condition calculated by the calculation means is displayed on the display means, this value can be confirmed. Further, the value displayed by the display means can be used not only when performing grinding by the cylindrical grinding machine but also as a value of grinding conditions for performing grinding by another cylindrical grinding machine. The board can also be used as a “computer that calculates the value of the grinding condition by paying attention to the burning burn”.
[0015]
A cylindrical grinding machine according to a fourth aspect of the present invention is the cylindrical grinding machine according to the second or third aspect, wherein the values of the two grinding conditions input to the input means and the calculation means Storage means for storing the remaining values of the grinding conditions calculated according to the above, and the grinding is performed based on each value stored in the storage means.
[0016]
In the present invention, in order to perform grinding based on each value of the grinding conditions stored in the storage means, the value of the two grinding conditions input to the input means, the value of the remaining grinding conditions calculated by the calculation means, Need not be separately input as a value for controlling the drive system, and the grinding can be performed.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a grinding method and a cylindrical grinder according to the present invention will be described in detail with reference to the drawings.
[0018]
First, an example of an embodiment of a grinding method according to the present invention will be described. As shown in FIG. 1, in the grinding method of the present example, the peripheral surface of the rotationally driven work W is brought into contact with the peripheral surface of the rotationally driven work W to grind the peripheral surface of the workpiece W. Although there are three grinding conditions consisting of the grinding speed (arrow f), the number of rotations of the workpiece (arrow n), and the peripheral speed of the grindstone (arrow V), two grinding conditions are appropriately set. . For example, when giving priority to an appropriate peripheral speed of the grinding wheel according to the type of the grinding wheel, setting the peripheral speed of the grinding wheel appropriately, and giving priority to an appropriate grinding speed according to the grinding content such as rough grinding and finish grinding. In this case, the grinding speed is appropriately set, and when priority is given to the appropriate rotation speed of the workpiece according to the surface roughness secured by the grinding, the rotation speed of the workpiece is appropriately set.
[0019]
Then, the values of the remaining grinding conditions are
Discriminant: A = k × (f / n) × V B ,
B: coefficient (0 to -1),
k: coefficient,
f: grinding speed (mm / min),
n: number of rotations of the workpiece (min −1 ),
V: peripheral speed of the grinding wheel (m / s).
Calculated from
[0020]
Here, the coefficient k is a coefficient determined according to various conditions in the grinding processing such as the material of the workpiece, the type of the grindstone, the discharge mode of the coolant, and the like, and the value of the limit at which the grinding burn occurs, the so-called “threshold” By setting the “value” as the value of A in the discriminant, if the values of the two grinding conditions are appropriately determined, the values of the remaining grinding conditions can be calculated from the discriminant.
[0021]
Next, a specific example of setting the value A of the discriminant will be described. FIG. 2 shows the results of verifying the change in the surface hardness of the workpiece by actually grinding the workpiece by setting the peripheral speed of the grinding wheel and the grinding efficiency to various values. FIG. 2 is a graph in which the vertical axis represents the hardness reduction rate m and the horizontal axis represents the grinding burn discrimination value A obtained by a discriminant, and the values of the grinding efficiency are “2”, “9”, and “13”. , “15”, and “20”, and the results are obtained by performing the grinding wheel peripheral speed V, which is one of the grinding conditions, under three kinds of grinding conditions. The peripheral velocities of the three types of grindstones in this graph are shown by a black diamond plot, a black square plot, and a black triangle plot, respectively, and the relationship is black diamond <black square <black triangle. Numerical values near the plot indicate values of the grinding efficiency.
[0022]
Here, the grinding efficiency is
Z = (f × d × π) / 60, (d is the diameter of the workpiece (mm)),
The value Z is obtained from the formula (1), and is higher as the value of the grinding speed f is larger.
[0023]
Further, the hardness reduction rate m is a numerical value representing a change in the surface hardness of the workpiece due to the grinding, and the hardness of the surface and the internal hardness of the workpiece after the grinding are measured by a Vickers hardness tester. Is defined as “X”, and the difference between the surface hardness and the internal hardness (“+” if the surface is softer than the inside, “−” if the surface is harder than the inside) is “Y”. ,
m = (Y / X) × 100 (%)
Is the value m obtained from Here, regarding the internal hardness of the workpiece, the workpiece is cut to expose the internal material, and the surface hardness of the internal material is measured.
[0024]
In addition, the above-mentioned grinding result employs a CBN grindstone as a kind of a grindstone, employs a 50 mm diameter workpiece made of hardened steel, and allows a part of the workpiece to be exposed to a small amount of coolant immediately after grinding. This is a result of performing a grinding process by setting the number of revolutions n of the workpiece such that a desired surface roughness is obtained from the peripheral speed v and the grinding speed f of the grindstone in the grinding situation. Further, in the above-described grinding process, the grinding burn determination value A is calculated with the coefficient k = 1.
[0025]
Depending on the peripheral speed of the grinding wheel and the grinding efficiency, it is not possible to find regularity in the change in the surface hardness of the workpiece. However, as can be seen from the graph of FIG. Is exceeded, the hardness reduction rate m increases. Therefore, if attention is paid to the value of the grinding burn determination value A, regularity can be found in the change in the surface hardness of the workpiece. Further, with respect to the workpiece after grinding under the condition where the value of the grinding burn determination value A exceeds “0.013”, it can be visually confirmed that grinding burn has occurred. Therefore, in this example, “A = 0.13” is set as the “threshold value” of the grinding burn determination value A, and “A = 0.13” is obtained from the values of the two appropriately set grinding conditions. Next, the value of the remaining grinding conditions is calculated, and this value is set as the value of the remaining grinding conditions, and the grinding is performed.
[0026]
In addition, when the "threshold value" of the grinding burn determination value A is the same in various grinding processes, the coefficient k may be set to a value corresponding to the various grinding processes.
[0027]
Next, an example of an embodiment of a cylindrical grinding machine according to the present invention will be described. First, although not shown, the main part of the cylindrical grinder is slidably mounted on a bed constituting a base and an upper surface of the bed, and is moved and driven in the axial direction (Z-axis direction) of the workpiece. A table having a shaft head for rotating and driving the mounted grinding wheel, slidably mounted on the upper surface of the bed, and being driven to move in the radial direction (X-axis direction) of the workpiece; And a headstock that supports the workpiece and rotates and drives around the axis of the workpiece (around the C axis). The configuration of the main part is the same as that of a known ordinary cylindrical grinder, and a detailed description thereof will be omitted.
[0028]
In addition, the cylindrical grinder controls the driving of various devices such as the above-described shaft head, wheel head, and headstock by CNC control, and includes a CNC control device. And, in order to calculate the value of the grinding condition by a discriminant separately from the CNC control device, as shown in FIG. 3, a calculation device 100 having an input unit 10, a calculation unit 20, and an output unit 30 is provided. I have.
[0029]
The input unit 10 receives two values of the grinding speed f, the rotational speed n of the workpiece, and the peripheral speed v of the grindstone, and is constituted by an input device such as a numeric keypad of an operation panel. The input unit 10 constitutes an example of an input unit. The arithmetic unit 20 calculates the values of the remaining grinding conditions based on the discriminant from the input values of the two grinding conditions, and is configured by a CPU or the like of a computer built in the operation panel. I have. The calculation unit 20 forms an example of a calculation unit. Further, the output unit 30 includes a display device 31 such as a CRT of an operation panel, and a storage device 32 such as a RAM of a computer built in the operation panel. The value of the condition is displayed on the display device 31 and stored in the storage device 32. Here, the display device 31 constitutes an example of a display device that displays the value calculated by the calculation device, and the storage device 32 stores the values of the two input grinding conditions by the calculation device. This constitutes an example of a storage means for storing the calculated values of the remaining grinding conditions.
[0030]
By the way, when the remaining grinding condition values are calculated by the calculation means, the above input unit and the like determine, in addition to the two values of the grinding condition, the discriminant value A as the “threshold value” and the grinding condition. The value of the corresponding coefficient k may be input. However, in the cylindrical grinding machine of this example, the value A of the discriminant is set in advance and stored in a separate storage device or the like. In addition, the value of the coefficient k according to various grinding situations is also stored in a separate storage device, and appropriate items such as the type of a grindstone and the material of a workpiece are input from an input unit or the like according to various grinding situations. By inputting, the value of the coefficient k according to the grinding situation is selectively extracted. Therefore, in the cylindrical grinding machine of this example, based on the value A of the discriminant equation set in advance and the coefficient k selectively extracted, the values of the two grinding conditions input as appropriate are used to determine the values of the remaining grinding conditions. Is calculated, and this value is displayed on a display device, and all of the input value and the calculated value are stored in the storage means. Then, at the time of grinding, the driving of various devices is controlled by the CNC control device based on the respective values of the grinding conditions stored in the storage means.
[0031]
【The invention's effect】
According to the grinding method and the cylindrical grinder according to the present invention described above, the following effects can be obtained.
[0032]
According to the invention described in claim 1, among the three grinding condition values of the grinding speed, the rotation speed of the workpiece and the peripheral speed of the grindstone, if the values of the two grinding conditions are appropriately determined, Since the values of the remaining grinding conditions can be derived, suitable values of the grinding conditions can be set within a range where grinding burn does not occur, based on the experience of the operator, and the work of setting the values of the grinding conditions Can be standardized.
[0033]
According to the second aspect of the present invention, since there are provided input means for inputting values of two grinding conditions and calculating means for calculating values of the remaining grinding conditions from a discriminant, the values of the grinding conditions are separately set. The grinding method according to claim 1 can be implemented without calculating and deriving the above.
[0034]
According to the third aspect of the present invention, since the display means for displaying the value of the grinding condition calculated by the calculation means is provided, the value can be confirmed. It can also be used as a "computer that calculates the value of the grinding condition by paying attention."
[0035]
According to the invention as set forth in claim 4, a storage means for storing each value of the grinding condition is provided, and the grinding is performed based on each value of the grinding condition stored in the storage means. It is not necessary to separately input a value for controlling the drive system, and the grinding can be performed.
[Brief description of the drawings]
FIG. 1 is a main part side view schematically showing a grinding method according to the present invention.
FIG. 2 is a graph showing a relationship between a hardness reduction rate m and a grinding burn discrimination value A.
FIG. 3 is a block diagram schematically showing an arithmetic unit provided in the cylindrical grinding machine according to the present invention.
[Explanation of symbols]
W Workpiece G Whetstone 10 Input unit (input means)
20 arithmetic unit (calculation means)
30 output part 31 display device (display means)
32 storage device (storage means)
100 arithmetic unit

Claims (4)

回転駆動される工作物の周面に、回転駆動される砥石の周面を接触させて、工作物の周面を研削する研削方法であって、
研削速度、工作物の回転数及び砥石の周速度からなる三つの研削条件の値の内、二つの研削条件の値を設定すると共に、残りの研削条件の値を、次の判別式から算出して設定し、研削を行うことを特徴とする研削方法、
判別式:A=k×(f/n)×V
B:係数(0〜−1)、
k:係数、
f:研削速度(mm/min)、
n:工作物の回転数(min−1)、
V:砥石の周速度(m/s)。
A grinding method for grinding the peripheral surface of the workpiece by bringing the peripheral surface of the rotating stone into contact with the peripheral surface of the workpiece that is rotationally driven,
Of the three grinding condition values consisting of the grinding speed, the number of revolutions of the workpiece and the peripheral speed of the grindstone, two of the grinding condition values are set, and the remaining grinding condition values are calculated from the following discriminant. Grinding method characterized by performing setting and grinding
Discriminant: A = k × (f / n) × V B ,
B: coefficient (0 to -1),
k: coefficient,
f: grinding speed (mm / min),
n: number of rotations of the workpiece (min −1 ),
V: peripheral speed of the grinding wheel (m / s).
回転駆動される工作物の周面に、回転駆動される砥石の周面を接触させて、工作物の周面を研削する円筒研削盤であって、
研削速度、工作物の回転数及び砥石の周速度からなる三つの研削条件の値の内、二つの研削条件の値が入力される入力手段と、
入力された二つの研削条件の値から、
判別式:A=k×(f/n)×V
B:係数(0〜−1)、
k:係数、
f:研削速度(mm/min)、
n:工作物の回転数(min−1)、
V:砥石の周速度(m/s)、
に基づいて残りの研削条件の値を算出する算出手段と
備えることを特徴とする円筒研削盤。
A cylindrical grinder for grinding the peripheral surface of the workpiece by bringing the peripheral surface of the rotationally driven grindstone into contact with the peripheral surface of the rotationally driven workpiece,
Of the three grinding condition values consisting of the grinding speed, the number of revolutions of the workpiece and the peripheral speed of the grinding wheel, input means for inputting two grinding condition values,
From the values of the two input grinding conditions,
Discriminant: A = k × (f / n) × V B ,
B: coefficient (0 to -1),
k: coefficient,
f: grinding speed (mm / min),
n: number of rotations of the workpiece (min −1 ),
V: peripheral speed of the grinding wheel (m / s),
And a calculating means for calculating the value of the remaining grinding conditions based on the grinding condition.
前記算出手段により算出された値を表示する表示手段を備えることを特徴とする請求項2に記載の円筒研削盤。The cylindrical grinding machine according to claim 2, further comprising a display unit that displays a value calculated by the calculation unit. 前記入力手段に入力された二つの研削条件の値と、前記算出手段により算出された残りの研削条件の値とを記憶する記憶手段を備え、該記憶手段に記憶された各値に基づいて研削を行うことを特徴とする請求項2または請求項3に記載の円筒研削盤。Storage means for storing the values of the two grinding conditions input to the input means and the values of the remaining grinding conditions calculated by the calculation means; and grinding based on the respective values stored in the storage means. The cylindrical grinder according to claim 2 or 3, wherein the grinding is performed.
JP2002278876A 2002-09-25 2002-09-25 Grinding method and cylindrical grinding machine Pending JP2004114195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278876A JP2004114195A (en) 2002-09-25 2002-09-25 Grinding method and cylindrical grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278876A JP2004114195A (en) 2002-09-25 2002-09-25 Grinding method and cylindrical grinding machine

Publications (1)

Publication Number Publication Date
JP2004114195A true JP2004114195A (en) 2004-04-15

Family

ID=32274044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278876A Pending JP2004114195A (en) 2002-09-25 2002-09-25 Grinding method and cylindrical grinding machine

Country Status (1)

Country Link
JP (1) JP2004114195A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781026B1 (en) 2005-03-11 2007-11-29 유나이티드 테크놀로지스 코포레이션 Super-abrasive machining tool and method of use
JP2009083048A (en) * 2007-09-28 2009-04-23 Jtekt Corp Simulation device and method for calculating grinding burn depth
JP2009083049A (en) * 2007-09-28 2009-04-23 Jtekt Corp Device and method for determining grinding process condition
EP2476513A1 (en) * 2009-09-11 2012-07-18 JTEKT Corporation Machine tool and machining method
CN108247434A (en) * 2018-01-17 2018-07-06 华侨大学 A kind of abrasive grain cuts thick distributed problem solving method and its application method in grinding process design

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781026B1 (en) 2005-03-11 2007-11-29 유나이티드 테크놀로지스 코포레이션 Super-abrasive machining tool and method of use
JP2009083048A (en) * 2007-09-28 2009-04-23 Jtekt Corp Simulation device and method for calculating grinding burn depth
JP2009083049A (en) * 2007-09-28 2009-04-23 Jtekt Corp Device and method for determining grinding process condition
EP2476513A1 (en) * 2009-09-11 2012-07-18 JTEKT Corporation Machine tool and machining method
EP2476513A4 (en) * 2009-09-11 2014-09-03 Jtekt Corp Machine tool and machining method
US8900034B2 (en) 2009-09-11 2014-12-02 Jtekt Corporation Machine tool and machining method
CN108247434A (en) * 2018-01-17 2018-07-06 华侨大学 A kind of abrasive grain cuts thick distributed problem solving method and its application method in grinding process design

Similar Documents

Publication Publication Date Title
JPH07205023A (en) Confirming method for dressing of superfine particle grinding wheel in nc grinding device
JPH07100761A (en) Grinding device
TW202033293A (en) Machine tool and control device
JP2004114195A (en) Grinding method and cylindrical grinding machine
JP2020069599A (en) Support device of machine tool and machine tool system
JP4261493B2 (en) Dressing device, grinding device, dressing method, and numerical control program
JP2020179431A (en) Dressing method for grinding wheel and correction device for grinding wheel
JP2005115560A (en) Control program of centerless grinding machine, and adjusting method of same
JPH0288169A (en) Numerical control grinder
US7435157B1 (en) Grinding machine, computer software to operate such a machine, and their uses therefor
JP2012168742A (en) Machining center provided with grindstone wear correction function
JPH0276678A (en) Improved device and method for controlling grinding process and device and method for correcting grindstone
JP3023400B2 (en) Gear honing method and apparatus
JP3205827B2 (en) Processing data creation device for non-circular workpieces
JP4526027B2 (en) Dressing device, grinding device, dressing method, and numerical control program
JP2002307304A (en) Grinding wheel dressing method and grinding machine used in the same
JP2000127040A (en) Grinding condition setting device for grinding machine
JP2003076409A (en) Numerical control grinding machine
WO2023105633A1 (en) Dressing method and dressing device for grinding wheel
JP2792401B2 (en) Control device for multi-axis grinding machine
JP2003311592A (en) Method for grinding roll based on preliminary measurement of grinding quantity
JPH04193473A (en) Setting device for grinding conditions of grinder
JP2839685B2 (en) Automatic determination of grinding data
JP2880567B2 (en) Processing diagnostic device
JP6612696B2 (en) Dressing method and workpiece grinding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Effective date: 20070320

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070521

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A02