JP2004114147A - Method and device for reducing tube diameter - Google Patents

Method and device for reducing tube diameter Download PDF

Info

Publication number
JP2004114147A
JP2004114147A JP2002285210A JP2002285210A JP2004114147A JP 2004114147 A JP2004114147 A JP 2004114147A JP 2002285210 A JP2002285210 A JP 2002285210A JP 2002285210 A JP2002285210 A JP 2002285210A JP 2004114147 A JP2004114147 A JP 2004114147A
Authority
JP
Japan
Prior art keywords
diameter
split
axis
pipe
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002285210A
Other languages
Japanese (ja)
Inventor
Toru Irie
入江 徹
Akinobu Morikawa
森川 彰信
Hisashi Hayakawa
早川 尚志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sango Co Ltd
Original Assignee
Sango Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sango Co Ltd filed Critical Sango Co Ltd
Priority to JP2002285210A priority Critical patent/JP2004114147A/en
Publication of JP2004114147A publication Critical patent/JP2004114147A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable the eccentric reduction process of a tube diameter without causing any buckling even if an offsetting amount is great and enhance working efficiency by making the process possible at a time of pressing. <P>SOLUTION: The device for reducing the tube diameter comprises split molds 1 placed outside the tube along its circumference and a clamping mold 3 which is placed outside the split molds 1 and moves in the direction of the tube axis to shift the split molds 1 in the centripetal direction of the tube. The axis X4 of the tube diameter reduction face 1b of the split mold 1 is offset by the amount OF against the axis X5 of the tube 2 placed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は管の縮径方法およびその装置に関する。
【0002】
【従来の技術】
従来、円筒状の金属管素材(以下ワークという)の端部および/または胴部を縮径する縮径方法として、図13に示すようにワーク101を回転支持手段102で支持して回転させるとともにスピニングロール103で縮径する方法がある(例えば特許文献1)。これを第1の従来の技術とする。
【0003】
更に、前記と同様なスピニング加工において、図14に示すように、ワーク201の端部外周にスピニングロール202を押し当てつつ、ワーク201と相対的に公転させるとともに、ワーク201の軸芯X1とスピニングロール202の公転軸X2を偏芯させて、管端に偏芯した縮径部203を形成するようにしたものがある(例えば特許文献2)。これを第2の従来の技術とする。
【0004】
また、図15に示すように、ワーク301の素管部(胴部)をクランプ302により挟持し、所望の縮管径と略同一の径の孔303を有する非分割の絞りダイス304を、その軸芯X3をワーク301の素管部の軸芯X3と同一にして、管軸方向においてワーク301の端部へ挿入し、プレス加工により縮径して縮径端部305を形成する方法がある(例えば特許文献3、特許文献4、特許文献5)。これらを第3の従来の技術とする。
【0005】
また、図16に示すように、周方向において分割された複数の分割型401の外周に外型402を配置し、該外型402と分割型401間に締付型403を摺動可能に介装し、分割型401の内周部にワーク404を挿入し、締付型403に荷重を加えてワーク404を縮径する方法がある(例えば特許文献6)。これを第4の従来の技術とする。
【0006】
また、図17に示すように、触媒担体504を金属管(ワーク)で被覆する方法において、ワーク501の外方に周方向に沿って複数分割配置され、内方に向かってそれぞれ移動してワーク501を縮径する分割型502と、この分割型502のさらに外側に配置されて分割型502を内方へ移動させる複数の入力部材503を設け、上記各分割型502の内方への移動量を異ならせることにより、縮径量の異なる段部505を形成するようにしたものがある(例えば特許文献7)。これを第5の従来の技術とする。
【0007】
【特許文献1】
特開平3−226327号公報(第2頁下段左欄第17行〜右欄第5行、図1E)。
【特許文献2】
特許第2957153号公報(第2頁[0008]、図5)。
【特許文献3】
特開昭54−62163号公報(第2頁、第4図〜第8図)。
【特許文献4】
特開平7−108333号公報(第3頁[0018]、図1〜図4)。
【特許文献5】
特開平3−226327号公報(第2頁下段左欄第10行〜第16行、図1A〜C)。
【特許文献6】
実公昭51−27239号公報(第1欄第28行〜第33行目及び第2欄第12行目〜第15行目、第1図、第2図)。
【特許文献7】
特開2002−97944号公報(第3頁[0016]、図2)。
【0008】
【発明が解決しようとする課題】
ところで、ワークの素管部の軸芯と縮径部の軸芯とを相互に所定量分偏芯(オフセット)させた金属製の管や容器の需要がある。例えば、自動車の消音器の外管において排気管との接合首部を偏芯して縮径させたり、排気集合管の集合部を偏芯して縮径すると、これら消音器や排気集合管の車両搭載性が向上し、また、排気ガス浄化装置における触媒担体を被覆する容器における排気ガスの流出入部を偏芯して縮径すると、その排気ガス浄化装置の車両搭載性の向上と、更にはエンジン側へ接近させて搭載し、触媒温度の上昇時間を短縮させることができる。
【0009】
このような要望に応えるために、前記図13に示す第1の従来のスピニング加工の技術を用いた前記図14に示す第2の従来の技術により縮径部を形成すると、その縮径加工の加工当初において、ワーク201とスピニングロール202とが点接触するため、成形加重がワーク201へ局所的に集中し易く、ワーク201が薄肉、例えばワーク板厚が1mm以下である場合には、ワーク201の座屈が発生し易い問題がある。
【0010】
また、前記図15に示す第3の従来の技術を用いて、公知ではないが、仮に、その絞りダイス303における孔303の軸芯X3とワーク素管部の軸芯X3とを偏芯させて絞り加工を行うと、その偏芯量が大きい場合には、1回の加工では座屈が発生するおそれがある。そのため、複数回の加工工程に分ける必要があり、作業効率の点で問題がある。更に、絞りダイスによるプレス加工は、本来、管の端部から胴部へ向かって加工されるため、縮径部305をワーク301の胴部のみに形成することができない問題がある。
【0011】
また、前記図16に示す第4の従来の技術及び図17に示す第5の従来の技術のように分割型401,502を周方向に配置してプレス加工を行う方法において、前記特許文献7に開示されているように、複数の分割型502の移動量をそれぞれ異ならせて縮径することも考えられる。しかし、このような複数の分割型502のうちの1つの分割型を押し込むと、その両脇の分割型502は、先に押し込まれた分割型502の先端と干渉し、先の分割型502よりも深く押し込むことができない。したがって、前記のように分割型502の移動量をそれぞれ異ならせることは実質上困難かまたは可能であっても少量しか異ならせることができず、ワークの素管部に対して偏芯量が大きい縮径部505を形成するには適さない。
【0012】
そこで本発明は前記の問題を解決できる管の縮径方法およびその装置を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
前記の課題を解決するために、請求項1記載の第1の発明は、管の外方に、周方向に沿って分割型が複数配置され、該分割型の外方に配置された締付型を管軸方向へ移動させることにより、分割型を管の求心方向へ移動させて管を縮径する方法において、
前記分割型における縮径型面の軸芯を、管の軸芯に対して、偏芯させて縮径することを特徴とする管の縮径方法である。
【0014】
請求項2記載の第2の発明は、前記第1の発明における管の縮径方法に使用する管の縮径装置で、管の外方に周方向に沿って配置される分割型と、該分割型の外方に配置され、管軸方向へ移動することにより分割型を管の求心方向へ移動させる締付型とからなる管の縮径装置において、
前記分割型における縮径型面の軸芯を、配置される管の軸芯に対して偏芯させたことを特徴とする管の縮径装置である。
【0015】
本発明においては、複数の分割体をそれぞれ同量だけ求心方向へ移動させることにより、管の素管部に対して、周方向の一部が大きく縮径し、他部が小さく縮径する偏芯縮径加工が行われる。
【0016】
【発明の実施の形態】
本発明の好ましい実施の形態を図に示す実施例に基づいて説明する。
【0017】
図1乃至図5は第1実施例を示す。
図1は分割型によって金属製の素管或いは金属製の容器の素管(以下ワークという)を縮径加工した状態を示す側断面図、図2は図1におけるB−B線断面図、図3は図1における右側面図、図4はワークがない状態の側断面図、図5は図4の右側面図で、それぞれ分割型の保持手段及び締付型の駆動手段は省略されている。
【0018】
分割型1は、内面に、所望の内径に形成された大径面1aと、該大径面1aよりも小径で所望の内径に形成された縮径型面1bと、これら両面1aと1b間に形成されて内径が除変する除変面1cを一連に形成してなる型面を有し、外面に、軸方向の一方に縮径するテーパ面1dを有する中空円錐体を、該円錐体の略軸芯を含む平面で分割して形成したもので、複数の分割型が周方向に並列状態で配置されている。
【0019】
図の実施例では、分割型1は12個に分割形成されているが、この12個に限るものではなく、複数個、望ましくは3個以上で必要数に分割すればよい。
【0020】
前記実施例における12個に分割された分割型のうち、図2の上半分の分割型を1−1〜1−6とし、下半分の分割型を1−7〜1−12とする。
【0021】
また、前記各分割型1−1〜1−12の周方向の相互間には、各分割型1−1〜1−12が内外方向(放射方向)へ所定量移動できるように所定の隙間Dが形成されている。
【0022】
更に、前記各分割型1−1〜1−12における縮径型面1bで形成される円の軸芯、すなわち縮径型面1bの軸芯X4は、各分割型1−1〜1−12における大径面1aで形成される円の軸芯、すなわち、分割型内に配置されたワーク2の素管部(非縮径部)の軸芯X5より所定量OF分偏芯している。したがって、図の実施例においては、分割型1における大径面1aと縮径型面1bとの段差Hが、図2に示す最上部の分割型1−3,1−4において最大で、その両側において下方に至る分割体ほど徐々に少なくなり、最下部の分割型1−9,1−10で最小になっている。すなわち、分割型1における外周のテーパ面1dから縮径型面1bまでの長さLが、最上部の分割型1−3,1−4において最長で、その両側において下方に至る分割体ほど徐々に短くなり、最下部の分割型1−9,1−10で最短になっている。
【0023】
なお、前記のような縮径型面1bの軸芯X4と大径面1aの軸芯X5とを偏芯させることは、前記実施例の12分割のものに限るものではなく、前記のような他の数に分割する場合も同様である。
【0024】
前記分割型1の外面、すなわち、前記全分割型1−1〜1−12の外面であるテーパ面1dは、各分割型1における大径面1aで形成される円の軸芯X5を中心とする円で、かつ、軸方向の一方に縮径するテーパ面に形成されている。
【0025】
前記分割型1の外周には内面に前記テーパ面1dに沿ったテーパ面3aを形成した環状の締付型3が、そのテーパ面3aを分割型1のテーパ面1dに対して軸方向に摺動可能に嵌合して配置されている。
【0026】
前記締付型3には、該締付型3を、軸方向において分割型1のテーパ面1dの大径側(図1の矢印A方向)へ押圧する押圧手段(図示せず)が設けられており、該押圧手段によって締付型3に荷重Fを図の矢印方向へ付与して、締付型3を図の矢印A方向に移動させることにより、テーパ面1d,3aによって、各分割型1−1〜1−12がワーク2の求心方向へ移動するようになっている。
【0027】
なお、図示しないが、縮径加工後において締付型3による荷重を解除した場合に、締付型3を矢印A方向と反対方向へ復帰させる手段、および各分割型1−1〜1−12を開方向へ復帰させる手段が設けられている。
【0028】
次に、前記実施例の作用を説明する。
図1乃至図3の状態から締付型3を図1の右方へ後退させ、各分割型1−1〜1−12を外方に開いた状態において、素管状態のワーク2を、適宜保持手段により保持して各分割型1−1〜1−12内に挿入配置する。
【0029】
次に、前記の状態から図示しない押圧手段により締付型3に荷重Fを付与して締付型3を図1の矢印A方向へ移動させ、テーパ面1d,3aにより各分割型1−1〜1−12を求心方向(内方)へ押圧移動させる。このとき、各分割型1−1〜1−12の大径面1aで形成される円の直径がワーク2の素管部(胴部)2aの外径と略同径になるまで各分割型1−1〜1−12を求心方向へ移動させると、大径面1aによってはワーク2の素管部(胴部)2aは縮径されることなく、各分割型1−1〜1−12の縮径型面1bによってワーク2の端部2bが縮径される。
【0030】
この縮径加工は、各分割体1−1〜1−12における縮径型面1bの軸芯X4が大径面1aの軸芯、すなわち、ワーク2の素管部2aの軸芯X5と偏芯しているため、ワーク2の端部2bが素管部2aに対して偏芯して縮径され、図1に示すような偏芯縮径部4が形成される。すなわち、段差Hが大きい側の縮径型面1bでは大きく縮径され、段差Hが小さい側の縮径型面1bでは小さく縮径され、更にこれらの中間では除変して縮径される。
【0031】
したがって、各分割型1−1〜1−12の求心方向の移動量を同一量にして偏芯した縮径加工を行うことができ、前記従来のように分割型相互が干渉することなく一部での縮径量を多くすることができる。
【0032】
更に、偏芯量が大きくても座屈が発生しない管の偏芯縮径加工が可能になる。更に、1回の締付型3の押圧(プレス加工)で偏芯量が大きい縮径加工ができ、作業効率が向上する。
【0033】
更に、ワーク2の素管部(胴部)2aを含めワーク全体が分割型1によりプレス加工および規制がなされるため、加工精度が優れる効果もある。
【0034】
なお、前記実施例において、ワーク2の胴部2aに対応する部位、すなわち、大径面1aの内径寸法を、ワーク2の素管外径寸法よりも小さくして、ワーク2の胴部2aも同時に縮径してもよい。
【0035】
図6は第2実施例を示す。
本第2実施例は、前記第1実施例の分割型1における前記大径面1aを形成することなく前記縮径型面1b部のみとして分割型1Aを形成したものである。更に、この分割型1Aは、前記と同様に複数に分割されているとともに、その縮径型面1bと外面であるテーパ面1dは軸芯X4を中心として同芯に形成されている。
【0036】
また、ワーク2の素管部(胴部)2aの外周面は、環状で、かつ、分割されたクランプ5で挟持し、ワーク2の支持およびワーク2の素管部(胴部)2aの変形を防止するようになっている。
【0037】
そして、前記分割型1Aは、その軸芯、すなわち、縮径型面1bの軸芯X4が、クランプ5の軸芯、すなわち配置されたワーク2の素管部(胴部)2aの軸芯X5に対して所定量OF分偏芯して設けられている。
【0038】
その他の構造は前記第1実施例と同様であるため、前記と同一部分には前記と同一の符号を付してその説明は省略する。
【0039】
本第2実施例において、分割型1Aを開いた状態でワーク2の端部2bを分割型1A内に挿入し、そのワーク2の素管部(胴部)2aをクランプ5で挟持した状態で、締付型3を図6の矢印F方向へ押圧移動して分割型1Aを求心方向へ移動させると、その分割型1Aの縮径型面1bにより、ワーク2の端部2bが縮径される。この縮径により、端部2bは、図6に示すように、ワーク2の素管部(胴部)2aに対して所定量OF分偏芯した偏芯縮径部4となる。
【0040】
したがって、本第2実施例においても前記第1実施例と同様の効果を発揮する。
【0041】
図7は第3実施例を示す。
本第3実施例は、前記第2実施例におけるクランプ5の代わりに、ワーク2の素管部(胴部)2aに嵌入する芯金6を用いたものである。
【0042】
その他の構造は前記第2実施例と同様であるため、前記と同一部分には同一符号を付してその説明は省略する。
【0043】
本第3実施例においては、分割型1Aの縮径型面1bの軸芯X4が芯金6の軸芯、すなわちワーク2における素管部(胴部)2aの軸芯X5に対して偏芯した状態で縮径加工が行われ、前記第2実施例と同様に、ワーク2の素管部(胴部)2aに対して所定量OF偏芯した偏芯縮径部4が成形されている。
【0044】
したがって、本第2実施例においても前記第1実施例と同様の効果を発揮できる。
【0045】
図8は第4実施例を示す。
本第4実施例は、前記第1実施例における分割型1の縮径型面1bを中間部に形成し、その軸方向両側に前記大径面1aを設けて分割型1Bを形成したものである。
【0046】
その他の構造は前記第1実施例と同様であるため、前記と同一部分には前記と同一符号を付してその説明は省略する。
【0047】
本第4実施例において、分割型1Bを開いた状態でワーク2を分割型1B内に挿入し、その後、締付型3をF方向へ押圧移動して分割型1Bを求心方向へ移動することにより、縮径型面1bによって、ワーク2の中間部(胴部)に、素管部2aの軸芯X5に対して偏芯した軸X4を有する偏芯縮径部4が形成される。
【0048】
なお、本第4実施例において、その大径面1aの内径寸法を、ワーク2の素管外径寸法よりも小さくして、前記の素管部2aも同時に縮径してもよい。
【0049】
本第4実施例においても、前記第1実施例と同様の効果を発揮できる。
図9は第5実施例を示す。
【0050】
本第5実施例は、前記第2実施例(図6)における分割型1Aをワーク2の中間部(胴部)に配置し、ワーク2の素管部2aを前記第2実施例におけるクランプ5で支持した実施例である。
【0051】
その他の構造は前記第2実施例と同様であるため、前記と同一部分には前記と同一符号を付してその説明は省略する。
【0052】
本第5実施例において、締付型3をF方向へ押圧移動して各分割型1Aを求心方向へ移動することにより、分割型1Aによってワーク2の中間部(胴部)に、素管部2aの軸芯X5に対して偏芯した軸X4を有する偏芯縮径部4が形成される。
【0053】
本第5実施例においても、前記第1実施例と同様の効果を発揮できる。
図10は第6実施例を示す。
【0054】
本第6実施例は、前記第3実施例(図7)における分割型1Aをワーク2の中間部(胴部)に配置し、ワーク2の端部2b(素管部2a)を前記第3実施例における芯金6で支持したものである。
【0055】
その他の構造は前記第3実施例と同様であるため、前記と同一部分には前記と同一符号を付してその説明は省略する。
【0056】
本第6実施例において、締付型3をF方向へ押圧移動して各分割型1Aを求心方向へ移動することにより、分割型1Aによってワーク2の中間部(胴部)に、ワーク2の端部2bの軸芯X5に対して偏芯した軸X4を有する偏芯縮径部4が形成される。
【0057】
本第6実施例においても、前記第1実施例と同様の効果を発揮できる。
なお、前記各実施例は、ワーク2の胴部(中間部)形状および縮径された端部形状を真円とする場合の例であるが、これらの形状は真円に限定されるものではなく、楕円、長円等でもよい。
【0058】
また、前記実施例の他に次のような実施例で縮径加工してもよい。
前記図1乃至5に示す第1実施例、図6に示す第2実施例、図7に示す第3実施例を用いて、ワークの両端部(左右部)に偏芯縮径部4を形成するようにし、かつ、この左右の分割型の内面形状を相互に異ならせたり、左右の分割型の求心方向への移動量を相互に異ならせて、左右の端部の偏芯量OFを相互に異ならせてもよい。
【0059】
また、左右の偏芯縮径部4を、ワークの軸芯を含む一平面内で偏芯させて縮径して形成してもよいし、また、一方の偏芯縮径部4を、ワークの軸芯を含む一平面で偏芯縮径して形成し、他方の偏芯縮径部4を、前記の一平面と異なるワークの軸芯を含む他の平面内で偏芯縮径(3次元的に偏芯)して形成してもよい。
【0060】
次に、前記各実施例により縮径加工されたワークの使用例とその効果について説明する。
【0061】
図11(a)に示すような全長同一径の金属管11の端部をスピニング加工によって図11(b)に示すように曲げる場合、その曲げ部先端12を、金属管11の一般部11aよりも外側へ突出させることは、通常困難である。
【0062】
これに対し、前記各実施例により図11(c)に示すように、一端部に素管部2aを残し、他端部に偏芯した偏芯縮径部4を縮径加工した後、その素管部2aを図11(d)に示すようにスピニング加工することにより、前記偏芯縮径部4を一般部とし、該一般部4より外側への曲げ量Rが大きい曲げ部13を容易に形成することができる。
【0063】
また、前記実施例により偏芯縮径された複数の金属管を、図12に示すように、その偏芯縮径部4において、前記の段差Hが少ない側で集合して配置することにより、例えば自動車の排気マニホールド等の排気集合管の集合部に適用して、その集合部のコンパクト化を図ることができる。
【0064】
更に、本発明の管の縮径方法および縮径装置は、前記図17に示す第5の従来の技術(特許文献7)のような触媒担体を金属管で被覆する方法に用いる金属管の縮径加工(サイジング)に利用することもできる。
【0065】
【発明の効果】
以上のようであるから、本発明によれば、分割型により縮径するため、スピニング加工に比べ、偏芯量が大きい縮径加工を、座屈が生じることなく容易に行うことができる。
【0066】
また、絞りダイスに比べて大きな偏芯量の縮径加工が1回のプレス加工で行え、作業効率が向上する上に、管の胴部においても偏芯縮径加工が行える。
【0067】
更に、前記従来の分割型においては、大きな偏芯量の縮径加工が、分割型相互の干渉によって困難であったが、本発明においては、複数の分割体をそれぞれ同量だけ求心方向へ移動させる事により、管の素管部に対して、周方向の一部を大きく縮径し、他部を小さく縮径する偏芯縮径加工が行え、分割型の相互の干渉がなく大きな偏芯量の縮径加工が容易に行える。
【図面の簡単な説明】
【図1】本発明の第1実施例を示すもので、ワークを偏芯縮径加工した状態の側断面図。
【図2】図1におけるB−B線断面図。
【図3】図1における右側面図。
【図4】図1におけるワークがない状態の側断面図。
【図5】図4における右側面図。
【図6】
本発明の第2実施例を示すもので、ワークを偏芯縮径加工した状態の側断面図。
【図7】本発明の第3実施例を示すもので、ワークを偏芯縮径加工した状態の側断面図。
【図8】本発明の第4実施例を示すもので、ワークを偏芯縮径加工した状態の側断面図。
【図9】本発明の第5実施例を示すもので、ワークを偏芯縮径加工した状態の側断面図。
【図10】本発明の第6実施例を示すもので、ワークを偏芯縮径加工した状態の側断面図。
【図11】(a)(b)は本発明による偏芯縮径加工を行わない管を用いてスピニング加工を行う場合の説明図、(c)(d)は本発明による偏芯縮径加工を行った管を用いてスピニング加工を行う場合の説明図。
【図12】本発明による偏芯縮径加工を行った管を集合して使用する例を示す説明図。
【図13】第1の従来の技術を示す側断面図。
【図14】第2の従来の技術を示す側断面図。
【図15】第3の従来の技術を示す側断面図。
【図16】第4の従来の技術を示す側断面図。
【図17】第5の従来の技術を示すもので、(a)は側断面図、(b)は(a)におけるC−C線断面図。
【符号の説明】
1  分割型
1a 大径面
1b 縮径型面
1d テーパ面
2  管(ワーク)
2a 素管部
2b 端部
3  締付型
3a テーパ面
4  偏芯縮径部
X4 縮径型面の軸芯
X5 管の軸芯
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for reducing the diameter of a pipe.
[0002]
[Prior art]
Conventionally, as a diameter reduction method for reducing the diameter of an end portion and / or a body portion of a cylindrical metal tube material (hereinafter, referred to as a work), as shown in FIG. There is a method of reducing the diameter with a spinning roll 103 (for example, Patent Document 1). This is referred to as a first conventional technique.
[0003]
Further, in the same spinning process as described above, as shown in FIG. 14, the work 201 is revolved relatively to the work 201 while being pressed against the outer periphery of the end portion of the work 201, and is rotated with the axis X1 of the work 201. There is one in which the orbit axis X2 of the roll 202 is eccentric to form an eccentric reduced diameter portion 203 at the pipe end (for example, Patent Document 2). This is referred to as a second conventional technique.
[0004]
Further, as shown in FIG. 15, an undivided drawing die 304 having a hole 303 having substantially the same diameter as a desired reduced tube diameter is formed by clamping a raw tube portion (body portion) of a work 301 with a clamp 302. There is a method in which the axis X3 is made the same as the axis X3 of the raw tube portion of the work 301, inserted into the end of the work 301 in the tube axis direction, and reduced in diameter by press working to form the reduced diameter end 305. (For example, Patent Document 3, Patent Document 4, Patent Document 5). These are referred to as a third conventional technique.
[0005]
As shown in FIG. 16, an outer mold 402 is disposed on the outer periphery of a plurality of divided molds 401 divided in the circumferential direction, and a clamping mold 403 is slidably interposed between the outer mold 402 and the divided mold 401. There is a method in which the work 404 is inserted into the inner peripheral part of the split mold 401 and a load is applied to the clamping mold 403 to reduce the diameter of the work 404 (for example, Patent Document 6). This is referred to as a fourth conventional technique.
[0006]
As shown in FIG. 17, in the method of coating the catalyst support 504 with a metal tube (work), the work is divided into a plurality of pieces along the circumferential direction on the outside of the work 501, and is moved inward to move the work piece. A split mold 502 for reducing the diameter of the split mold 501 and a plurality of input members 503 arranged outside the split mold 502 to move the split mold 502 inward are provided. Are formed to form step portions 505 having different diameter reduction amounts (for example, Patent Document 7). This is referred to as a fifth conventional technique.
[0007]
[Patent Document 1]
JP-A-3-226327 (page 2, lower left column, line 17 to right column, fifth line, FIG. 1E).
[Patent Document 2]
Japanese Patent No. 2957153 (page 2 [0008], FIG. 5).
[Patent Document 3]
JP-A-54-62163 (page 2, FIG. 4 to FIG. 8).
[Patent Document 4]
JP-A-7-108333 (page 3, [0018], FIGS. 1-4).
[Patent Document 5]
JP-A-3-226327 (page 2, lower left column, lines 10 to 16; FIGS. 1A to 1C).
[Patent Document 6]
Japanese Utility Model Publication No. 51-27239 (column 1, line 28 to line 33 and column 2, line 12 to line 15, FIGS. 1 and 2).
[Patent Document 7]
JP-A-2002-97944 (page 3 [0016], FIG. 2).
[0008]
[Problems to be solved by the invention]
By the way, there is a demand for a metal tube or container in which the axis of the raw tube portion of the work and the axis of the reduced diameter portion are mutually eccentric (offset) by a predetermined amount. For example, if the outer neck of the muffler of an automobile is eccentrically reduced in diameter at the junction with the exhaust pipe, or if the diameter of the exhaust manifold is reduced by eccentricity, the vehicle of these mufflers and exhaust manifolds If the mountability is improved, and the diameter of the exhaust gas inflow / outflow portion of the container covering the catalyst carrier in the exhaust gas purification device is eccentrically reduced in diameter, the mountability of the exhaust gas purification device in a vehicle is improved, and the engine is further improved. It can be mounted close to the side and the rise time of the catalyst temperature can be shortened.
[0009]
In order to respond to such a demand, if a reduced diameter portion is formed by the second conventional technique shown in FIG. 14 using the first conventional spinning technique shown in FIG. At the beginning of processing, the work 201 and the spinning roll 202 are in point contact with each other, so that the forming load is easily concentrated locally on the work 201, and when the work 201 is thin, for example, when the work plate thickness is 1 mm or less, the work 201 There is a problem that buckling is easily generated.
[0010]
Although not publicly known, using the third conventional technique shown in FIG. 15 suppose that the axis X3 of the hole 303 in the drawing die 303 and the axis X3 of the workpiece tube part are eccentric. When the drawing process is performed, if the amount of eccentricity is large, buckling may occur in one process. Therefore, it is necessary to divide the process into a plurality of processing steps, which is problematic in terms of work efficiency. Furthermore, since the press working by the drawing die is originally performed from the end of the tube toward the body, there is a problem that the reduced diameter portion 305 cannot be formed only on the body of the work 301.
[0011]
Also, in a method of performing press working by arranging the split dies 401 and 502 in the circumferential direction as in the fourth conventional technique shown in FIG. 16 and the fifth conventional technique shown in FIG. It is also conceivable to reduce the diameter by making the moving amounts of the plurality of split dies 502 different from each other, as disclosed in US Pat. However, when one of the plurality of split molds 502 is pushed in, the split molds 502 on both sides of the split molds 502 interfere with the tip of the split mold 502 that has been pushed in earlier. Cannot be pushed too deep. Therefore, as described above, it is practically difficult to make the movement amounts of the split dies 502 different from each other, or even if possible, it is possible to make only a small amount different, and the amount of eccentricity with respect to the raw pipe portion of the work is large. It is not suitable for forming the reduced diameter portion 505.
[0012]
Therefore, an object of the present invention is to provide a method and an apparatus for reducing the diameter of a pipe which can solve the above-mentioned problems.
[0013]
[Means for Solving the Problems]
According to a first aspect of the present invention, in order to solve the above-mentioned problem, a plurality of split dies are arranged outside a pipe along a circumferential direction, and a plurality of fastening dies are arranged outside the split dies. In the method of moving the mold in the axial direction of the tube to move the split mold in the centripetal direction of the tube to reduce the diameter of the tube,
A method of reducing the diameter of a pipe, characterized in that the diameter of the axis of the reduced diameter surface in the split mold is decentered with respect to the axis of the pipe to reduce the diameter.
[0014]
According to a second aspect of the present invention, there is provided a pipe diameter reducing apparatus used in the method for reducing the diameter of a pipe according to the first aspect of the present invention, wherein the split type is arranged outside the pipe along a circumferential direction; In a pipe diameter reducing device comprising a clamping die which is arranged outside the split die and moves the split die in the centripetal direction of the pipe by moving in the pipe axial direction,
A pipe diameter reducing device, wherein an axis of a diameter reducing surface of the split mold is eccentric with respect to an axis of a pipe to be arranged.
[0015]
In the present invention, by moving each of the plurality of divided bodies in the centripetal direction by the same amount, the diameter of one part in the circumferential direction is largely reduced and the diameter of the other part is reduced with respect to the raw pipe part of the pipe. Core reduction is performed.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
A preferred embodiment of the present invention will be described based on an embodiment shown in the drawings.
[0017]
1 to 5 show a first embodiment.
1 is a sectional side view showing a state in which a metal pipe or a metal pipe (hereinafter, referred to as a work) of a metal container is reduced in diameter by a split mold, and FIG. 2 is a cross-sectional view taken along the line BB in FIG. 3 is a right side view in FIG. 1, FIG. 4 is a side sectional view in a state where there is no work, and FIG. 5 is a right side view in FIG. 4, omitting a split type holding unit and a clamping type driving unit. .
[0018]
The split mold 1 has, on its inner surface, a large-diameter surface 1a formed with a desired inner diameter, a reduced-diameter die surface 1b formed with a smaller diameter than the large-diameter surface 1a and having a desired inner diameter, and between these two surfaces 1a and 1b. A hollow conical body having a mold surface formed by forming a series of deformable surfaces 1c whose inner diameters are formed in a series and having an outer surface having a tapered surface 1d whose diameter is reduced in one of the axial directions. And a plurality of split dies are arranged in parallel in the circumferential direction.
[0019]
In the embodiment shown in the figure, the split mold 1 is divided into twelve pieces. However, the number is not limited to twelve, and a required number may be divided into a plurality, preferably three or more.
[0020]
Of the twelve split molds in the above embodiment, the upper half split mold in FIG. 2 is 1-1-1-6, and the lower half split mold is 1-7-1-12.
[0021]
In addition, a predetermined gap D is provided between the divided dies 1-1 to 1-12 in the circumferential direction so that the divided dies 1-1 to 1-12 can move a predetermined amount inward and outward (radially). Is formed.
[0022]
Further, the axis of the circle formed by the reduced diameter surface 1b in each of the divided dies 1-1 to 1-12, that is, the axis X4 of the reduced diameter surface 1b is different from that of each of the divided dies 1-1 to 1-12. Is decentered by a predetermined amount OF from the axis of the circle formed by the large-diameter surface 1a, that is, the axis X5 of the raw tube portion (non-reduced-diameter portion) of the work 2 arranged in the split mold. Therefore, in the embodiment shown in the drawing, the step H between the large-diameter surface 1a and the reduced-diameter die surface 1b in the split die 1 is the largest in the uppermost split die 1-3, 1-4 shown in FIG. The lower the divided body on both sides, the smaller the number gradually, and the minimum in the lowermost divided molds 1-9 and 1-10. That is, the length L from the outer tapered surface 1d to the diameter-reduced surface 1b in the split mold 1 is the longest in the uppermost split molds 1-3 and 1-4, and the divided body that goes down on both sides gradually increases. And the shortest in the lowermost split molds 1-9 and 1-10.
[0023]
The eccentricity between the axis X4 of the reduced diameter surface 1b and the axis X5 of the large diameter surface 1a as described above is not limited to the twelve-division structure of the above-described embodiment. The same applies to division into other numbers.
[0024]
The outer surface of the split mold 1, that is, the tapered surface 1 d which is the outer surface of the all split molds 1-1 to 1-12 is centered on the axis X5 of the circle formed by the large-diameter surface 1 a in each split mold 1. And is formed on a tapered surface whose diameter is reduced in one of the axial directions.
[0025]
An annular clamping die 3 having an inner surface formed with a tapered surface 3a along the tapered surface 1d on the outer periphery of the split die 1 slides the tapered surface 3a in the axial direction with respect to the tapered surface 1d of the split die 1. They are movably fitted and arranged.
[0026]
The clamping die 3 is provided with a pressing means (not shown) for pressing the clamping die 3 toward the large diameter side (the direction of arrow A in FIG. 1) of the tapered surface 1d of the split die 1 in the axial direction. By applying a load F to the clamping die 3 in the direction of the arrow in the drawing by the pressing means and moving the clamping die 3 in the direction of the arrow A in the drawing, each divided die is formed by the tapered surfaces 1d and 3a. 1-1 to 1-12 move in the centripetal direction of the work 2.
[0027]
Although not shown, means for returning the clamping die 3 in the direction opposite to the arrow A direction when the load by the clamping die 3 is released after the diameter reduction processing, and each of the divided dies 1-1 to 1-12 Is provided in the opening direction.
[0028]
Next, the operation of the above embodiment will be described.
1 to 3, the clamping die 3 is retracted to the right in FIG. 1, and in a state where each of the split dies 1-1 to 1-12 is opened outward, the workpiece 2 in the raw tube state is appropriately removed. It is held by holding means and inserted and arranged in each of the split dies 1-1 to 1-12.
[0029]
Next, a load F is applied to the clamping die 3 from the above state by pressing means (not shown) to move the clamping die 3 in the direction of arrow A in FIG. 1−1-12 is pressed and moved in the centripetal direction (inward). At this time, until each of the divided dies 1-1 to 1-12 has a diameter formed by the large-diameter surface 1a substantially equal to the outer diameter of the raw tube portion (body portion) 2a of the workpiece 2, When 1-1 to 1-12 is moved in the centripetal direction, depending on the large-diameter surface 1a, the tube portion (body portion) 2a of the work 2 is not reduced in diameter, and each of the split molds 1-1 to 1-12 is reduced. The end portion 2b of the work 2 is reduced in diameter by the reduced diameter surface 1b.
[0030]
In this diameter reduction processing, the axis X4 of the diameter-reduced surface 1b in each of the divided bodies 1-1 to 1-12 is deviated from the axis X5 of the large-diameter surface 1a, that is, the axis X5 of the raw tube portion 2a of the work 2. Since the core 2 is cored, the end 2b of the work 2 is eccentric and reduced in diameter with respect to the raw tube portion 2a, and the eccentric reduced diameter portion 4 as shown in FIG. 1 is formed. In other words, the diameter is reduced greatly on the diameter-reduced surface 1b on the side where the step H is large, and reduced on the diameter-reduced surface 1b on the side where the step H is small.
[0031]
Therefore, eccentric diameter reduction processing can be performed with the same amount of movement in the centripetal direction of each of the split dies 1-1 to 1-12, and the split dies do not partially interfere with each other as in the conventional case. The amount of diameter reduction can be increased.
[0032]
Further, it is possible to reduce the eccentric diameter of a tube in which buckling does not occur even if the amount of eccentricity is large. Furthermore, a single pressing (pressing) of the clamping die 3 can perform a diameter reducing process with a large eccentricity, thereby improving the working efficiency.
[0033]
Further, since the entire work including the raw tube portion (body portion) 2a of the work 2 is subjected to press working and regulation by the split mold 1, there is also an effect that processing accuracy is excellent.
[0034]
In the above embodiment, the portion corresponding to the body 2a of the work 2, that is, the inner diameter of the large-diameter surface 1a is made smaller than the outer diameter of the raw tube of the work 2, and the body 2a of the work 2 is also The diameter may be reduced at the same time.
[0035]
FIG. 6 shows a second embodiment.
In the second embodiment, the split mold 1A is formed only in the reduced-diameter mold face 1b without forming the large-diameter surface 1a in the split mold 1 of the first embodiment. Further, the split mold 1A is divided into a plurality of pieces in the same manner as described above, and the reduced diameter face 1b and the tapered face 1d which is the outer face are formed concentrically with respect to the axis X4.
[0036]
In addition, the outer peripheral surface of the raw tube portion (body portion) 2a of the work 2 is annular and clamped by divided clamps 5 to support the work 2 and to deform the raw tube portion (body portion) 2a of the work 2 Is to be prevented.
[0037]
In the split mold 1A, the axis, that is, the axis X4 of the reduced-diameter mold surface 1b is the axis of the clamp 5, that is, the axis X5 of the raw tube portion (body portion) 2a of the placed work 2. Is provided eccentrically by a predetermined amount OF.
[0038]
Since other structures are the same as those of the first embodiment, the same parts as those described above are denoted by the same reference numerals and the description thereof will be omitted.
[0039]
In the second embodiment, the end 2b of the work 2 is inserted into the split mold 1A with the split mold 1A opened, and the raw tube (body) 2a of the work 2 is clamped by the clamp 5. When the clamping die 3 is pressed and moved in the direction of arrow F in FIG. 6 to move the split die 1A in the centripetal direction, the end 2b of the work 2 is reduced in diameter by the reduced diameter surface 1b of the split die 1A. You. Due to this diameter reduction, the end portion 2b becomes an eccentric diameter reduction portion 4 which is eccentric by a predetermined amount OF with respect to the raw tube portion (body portion) 2a of the work 2, as shown in FIG.
[0040]
Therefore, the second embodiment also has the same effects as the first embodiment.
[0041]
FIG. 7 shows a third embodiment.
In the third embodiment, a metal core 6 to be fitted into a raw tube (body) 2a of the work 2 is used instead of the clamp 5 in the second embodiment.
[0042]
Since the other structure is the same as that of the second embodiment, the same parts as those described above are denoted by the same reference numerals and description thereof will be omitted.
[0043]
In the third embodiment, the axis X4 of the reduced-diameter mold surface 1b of the split mold 1A is eccentric with respect to the axis of the metal core 6, that is, the axis X5 of the raw tube (body) 2a in the work 2. In the same manner as in the second embodiment, the eccentric reduced diameter portion 4 having a predetermined amount of OF eccentricity is formed on the raw tube portion (body portion) 2a of the work 2 as in the second embodiment. .
[0044]
Therefore, the second embodiment can exhibit the same effects as those of the first embodiment.
[0045]
FIG. 8 shows a fourth embodiment.
In the fourth embodiment, the split die 1B is formed by forming the reduced-diameter die surface 1b of the split die 1 in the first embodiment at an intermediate portion and providing the large-diameter surfaces 1a on both axial sides thereof. is there.
[0046]
Since the other structure is the same as that of the first embodiment, the same parts as those described above are denoted by the same reference numerals and the description thereof will be omitted.
[0047]
In the fourth embodiment, the work 2 is inserted into the split mold 1B with the split mold 1B opened, and then the clamping mold 3 is pressed and moved in the F direction to move the split mold 1B in the centripetal direction. Accordingly, the eccentric reduced diameter portion 4 having the axis X4 eccentric relative to the axis X5 of the raw tube portion 2a is formed in the intermediate portion (body portion) of the work 2 by the reduced diameter surface 1b.
[0048]
In the fourth embodiment, the inner diameter of the large-diameter surface 1a may be made smaller than the outer diameter of the raw tube of the workpiece 2, and the diameter of the raw tube portion 2a may be reduced at the same time.
[0049]
Also in the fourth embodiment, the same effects as in the first embodiment can be exhibited.
FIG. 9 shows a fifth embodiment.
[0050]
In the fifth embodiment, the split mold 1A in the second embodiment (FIG. 6) is arranged at an intermediate portion (body portion) of the work 2, and the raw tube portion 2a of the work 2 is clamped in the second embodiment (FIG. 6). This is an embodiment supported by.
[0051]
Since the other structure is the same as that of the second embodiment, the same parts as those described above are denoted by the same reference numerals and the description thereof will be omitted.
[0052]
In the fifth embodiment, the clamping die 3 is pressed and moved in the F direction to move each split die 1A in the centripetal direction, so that the split die 1A moves the pipe 2 to the intermediate portion (body portion) of the workpiece 2. An eccentric reduced diameter portion 4 having an axis X4 eccentric with respect to the axis X5 of 2a is formed.
[0053]
In the fifth embodiment, the same effects as in the first embodiment can be exhibited.
FIG. 10 shows a sixth embodiment.
[0054]
In the sixth embodiment, the split mold 1A in the third embodiment (FIG. 7) is arranged at an intermediate portion (body portion) of the work 2, and the end 2b (base tube portion 2a) of the work 2 is placed in the third position. It is supported by the cored bar 6 in the embodiment.
[0055]
Since the other structure is the same as that of the third embodiment, the same parts as those described above are denoted by the same reference numerals and the description thereof will be omitted.
[0056]
In the sixth embodiment, the clamping die 3 is pressed and moved in the F direction to move each split die 1A in the centripetal direction, so that the split die 1A moves the work 2 to the intermediate portion (body portion) of the work 2. An eccentric reduced diameter portion 4 having an axis X4 eccentric to an axis X5 of the end 2b is formed.
[0057]
Also in the sixth embodiment, the same effects as in the first embodiment can be exhibited.
Each of the above embodiments is an example in which the shape of the body (intermediate portion) and the reduced end portion of the workpiece 2 is a perfect circle, but these shapes are not limited to perfect circles. Alternatively, the shape may be an ellipse, an ellipse, or the like.
[0058]
In addition to the above-described embodiment, the diameter may be reduced in the following embodiment.
Using the first embodiment shown in FIGS. 1 to 5, the second embodiment shown in FIG. 6, and the third embodiment shown in FIG. 7, eccentric reduced diameter portions 4 are formed at both ends (left and right portions) of the work. In addition, the left and right split molds have different inner surface shapes, and the left and right split molds have different amounts of movement in the centripetal direction. May be different.
[0059]
Further, the left and right eccentric reduced diameter portions 4 may be formed to be reduced in diameter by being eccentric within one plane including the axis of the work, or one of the eccentric reduced diameter portions 4 may be formed by the work. And the other eccentric diameter-reducing portion 4 is formed in another plane including the axis of the workpiece different from the one plane. (Dimensionally eccentric).
[0060]
Next, a description will be given of examples of the use of the workpiece whose diameter has been reduced by the above-described embodiments and the effects thereof.
[0061]
In the case where the end of a metal tube 11 having the same overall length as shown in FIG. 11A is bent by spinning as shown in FIG. 11B, the bent end portion 12 is moved from the general portion 11a of the metal tube 11. It is usually difficult to protrude outward.
[0062]
On the other hand, as shown in FIG. 11 (c) by the above embodiments, after reducing the diameter of the eccentric reduced diameter portion 4 which is left eccentric at the other end while leaving the pipe portion 2a at one end. 11D, the eccentric reduced diameter portion 4 is made into a general portion, and the bent portion 13 having a larger bending amount R outward than the general portion 4 is easily formed. Can be formed.
[0063]
In addition, as shown in FIG. 12, a plurality of metal tubes whose eccentric diameters are reduced by the above-described embodiment are arranged in the eccentric diameter-reduced portion 4 on the side where the step H is smaller, as shown in FIG. For example, the present invention can be applied to a collecting portion of an exhaust manifold such as an exhaust manifold of an automobile, so that the collecting portion can be made compact.
[0064]
Further, the method and apparatus for reducing the diameter of a tube according to the present invention provide a method for reducing the diameter of a metal tube used in a method of coating a catalyst support with a metal tube as in the fifth prior art (Patent Document 7) shown in FIG. It can also be used for sizing.
[0065]
【The invention's effect】
As described above, according to the present invention, since the diameter is reduced by the split mold, the diameter reduction with a larger eccentric amount can be easily performed without buckling as compared with the spinning.
[0066]
Further, the diameter reduction processing with a larger eccentric amount than the drawing die can be performed by one press processing, and the working efficiency is improved, and the eccentric diameter reduction processing can also be performed on the body of the pipe.
[0067]
Furthermore, in the conventional split mold, it was difficult to reduce the diameter of the eccentric amount by a large amount due to mutual interference between the split molds. However, in the present invention, each of the plurality of divided bodies is moved in the centripetal direction by the same amount. By doing so, eccentric diameter reduction processing can be performed to reduce the diameter of one part in the circumferential direction and reduce the diameter of the other part to the elemental tube part of the tube, and large eccentricity without mutual interference of split molds The diameter can be easily reduced.
[Brief description of the drawings]
FIG. 1 shows a first embodiment of the present invention, and is a side sectional view showing a state in which a workpiece is subjected to eccentric diameter reduction processing.
FIG. 2 is a sectional view taken along line BB in FIG.
FIG. 3 is a right side view in FIG. 1;
FIG. 4 is a side sectional view of FIG. 1 without a work.
FIG. 5 is a right side view in FIG.
FIG. 6
FIG. 6 shows a second embodiment of the present invention, and is a side cross-sectional view of a state in which a workpiece has been subjected to eccentric diameter reduction processing.
FIG. 7 shows a third embodiment of the present invention, and is a side cross-sectional view showing a state where a workpiece has been subjected to eccentric diameter reduction processing.
FIG. 8 shows the fourth embodiment of the present invention, and is a side sectional view showing a state where a workpiece is subjected to eccentric diameter reduction processing.
FIG. 9 shows a fifth embodiment of the present invention, and is a side cross-sectional view showing a state where a workpiece is subjected to eccentric diameter reduction processing.
FIG. 10 shows a sixth embodiment of the present invention, and is a side cross-sectional view showing a state where a workpiece has been subjected to eccentric diameter reduction processing.
11 (a) and (b) are explanatory views of a case where spinning is performed using a pipe which is not subjected to eccentric diameter reduction according to the present invention, and (c) and (d) are eccentric diameter reduction processing according to the present invention. Explanatory drawing in the case of performing a spinning process using the pipe | tube which performed.
FIG. 12 is an explanatory diagram showing an example in which tubes subjected to eccentric diameter reduction processing according to the present invention are assembled and used.
FIG. 13 is a side sectional view showing a first conventional technique.
FIG. 14 is a side sectional view showing a second conventional technique.
FIG. 15 is a side sectional view showing a third conventional technique.
FIG. 16 is a side sectional view showing a fourth conventional technique.
17 (a) is a side sectional view, and FIG. 17 (b) is a sectional view taken along the line CC in FIG. 17 (a), showing a fifth conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Split type 1a Large diameter surface 1b Reduced diameter surface 1d Tapered surface 2 Pipe (work)
2a Base tube portion 2b End 3 Clamping die 3a Tapered surface 4 Eccentric reduced diameter portion X4 Reduced diameter surface axis X5 Pipe axis

Claims (2)

管の外方に、周方向に沿って分割型が複数配置され、該分割型の外方に配置された締付型を管軸方向へ移動させることにより、分割型を管の求心方向へ移動させて管を縮径する方法において、
前記分割型における縮径型面の軸芯を、管の軸芯に対して、偏芯させて縮径することを特徴とする管の縮径方法。
A plurality of split dies are arranged outside the pipe along the circumferential direction, and the split dies are moved in the centripetal direction of the pipe by moving the clamping dies arranged outside the split dies in the pipe axis direction. In the method of reducing the diameter of the pipe by
A method for reducing the diameter of a pipe, wherein the diameter of the axis of the reduced diameter surface in the split mold is decentered with respect to the axis of the pipe to reduce the diameter.
管の外方に周方向に沿って配置される分割型と、該分割型の外方に配置され、管軸方向へ移動することにより分割型を管の求心方向へ移動させる締付型とからなる管の縮径装置において、
前記分割型における縮径型面の軸芯を、配置される管の軸芯に対して偏芯させたことを特徴とする管の縮径装置。
From a split mold that is arranged along the circumferential direction outside the pipe, and a clamping mold that is arranged outside the split mold and moves the split mold in the centripetal direction of the pipe by moving in the pipe axis direction. In the pipe diameter reduction device,
A pipe diameter reducing device, wherein an axis of a diameter reducing surface of the split mold is eccentric with respect to an axis of a pipe to be arranged.
JP2002285210A 2002-09-30 2002-09-30 Method and device for reducing tube diameter Withdrawn JP2004114147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285210A JP2004114147A (en) 2002-09-30 2002-09-30 Method and device for reducing tube diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285210A JP2004114147A (en) 2002-09-30 2002-09-30 Method and device for reducing tube diameter

Publications (1)

Publication Number Publication Date
JP2004114147A true JP2004114147A (en) 2004-04-15

Family

ID=32278573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285210A Withdrawn JP2004114147A (en) 2002-09-30 2002-09-30 Method and device for reducing tube diameter

Country Status (1)

Country Link
JP (1) JP2004114147A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801644A (en) * 2012-11-12 2014-05-21 中国南方航空工业(集团)有限公司 Eccentric check reducer forging method
CN105127316A (en) * 2015-09-18 2015-12-09 重庆金仑机械制造有限责任公司 Pipe end reduction device and reduction machining method
CN106623468A (en) * 2015-10-31 2017-05-10 常州良旭车辆配件有限公司 Pipe contracting die and pipe contracting method thereof
CN109663864A (en) * 2018-12-21 2019-04-23 冯光芬 A kind of ductule tip machine particular manufacturing craft
CN109967637A (en) * 2019-04-10 2019-07-05 江铃集团山东华岳车辆部件有限公司 A kind of central siphon molding machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801644A (en) * 2012-11-12 2014-05-21 中国南方航空工业(集团)有限公司 Eccentric check reducer forging method
CN105127316A (en) * 2015-09-18 2015-12-09 重庆金仑机械制造有限责任公司 Pipe end reduction device and reduction machining method
CN106623468A (en) * 2015-10-31 2017-05-10 常州良旭车辆配件有限公司 Pipe contracting die and pipe contracting method thereof
CN109663864A (en) * 2018-12-21 2019-04-23 冯光芬 A kind of ductule tip machine particular manufacturing craft
CN109663864B (en) * 2018-12-21 2021-01-12 冯光芬 Special die for small catheter tip machine
CN109967637A (en) * 2019-04-10 2019-07-05 江铃集团山东华岳车辆部件有限公司 A kind of central siphon molding machine

Similar Documents

Publication Publication Date Title
JP4427177B2 (en) Diameter reduction processing apparatus and diameter reduction processing method
JPH1071430A (en) Bending device for hollow double pipe
JP2004114147A (en) Method and device for reducing tube diameter
JP5009364B2 (en) Method for manufacturing hydroformed products
JP5934062B2 (en) Spinning method
JP2001205350A (en) Manufacturing method for tube stock for hydroforming and pipe bender
JP2004001023A (en) Method for shaping metal vessel
JP2002239657A (en) Spinning method for tube
JP2000263161A (en) Method and device for spinning
US6907762B2 (en) Method and forming machine for deforming a hollow workpiece
JP5756618B2 (en) Manufacturing method of purification equipment for automobile
JP2015200219A (en) Catalytic converter manufacturing method and catalytic converter
JP2004122189A (en) Pipe contracting method and pipe contracting device
JP2007185697A (en) Machining method and machining device for metallic tube
JP2000317533A (en) Catalyst converter container, and its manufacture
JP5037020B2 (en) Manufacturing method of metal pipe parts
JP2003326322A (en) Method of producing hollow member and catalytic converter having catalyst vessel consisting of hollow member
JP2002045935A (en) Stepped part of metal tube and its forming method
JP2011185115A (en) Method of manufacturing cleaning device for automobile
US20020168303A1 (en) Metal case of exhaust device and method of producing same
JP4182335B2 (en) Spinning molding method and catalytic converter container
JP7433523B2 (en) Spinning method
JP2001259764A (en) Tubular forming and its forming method
JP7224077B1 (en) Forging method and forging apparatus for cylindrical collar
JPH115265A (en) Honeycomb main body, device to close passage of honeycomb main body, and process and device to manufacture honeycomb main body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110