JP2004111182A - Re-activation method of electrode for redox flow battery - Google Patents

Re-activation method of electrode for redox flow battery Download PDF

Info

Publication number
JP2004111182A
JP2004111182A JP2002271184A JP2002271184A JP2004111182A JP 2004111182 A JP2004111182 A JP 2004111182A JP 2002271184 A JP2002271184 A JP 2002271184A JP 2002271184 A JP2002271184 A JP 2002271184A JP 2004111182 A JP2004111182 A JP 2004111182A
Authority
JP
Japan
Prior art keywords
electrode
redox flow
flow battery
oxidizing agent
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002271184A
Other languages
Japanese (ja)
Inventor
Tadahiro Kaibuki
貝吹 忠拓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2002271184A priority Critical patent/JP2004111182A/en
Publication of JP2004111182A publication Critical patent/JP2004111182A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a re-activation method of an electrode for a redox flow battery capable of improving battery efficiency by restoring increased cell resistance. <P>SOLUTION: Organic matter deposited on an electrode impregnated with an electrolytic solution for the redox flow battery is rinsed out by using an oxidant. As the oxidant, a solution including pentavalent vanadium ions, or at least one of hydrogen peroxide and sulfuric acid is preferable. Resolved matter/eluted matter from an organic compound used as a constituent material for a redox flow battery get mixed in the electrolytic solution and the electrolytic solution circulates in this state in a cell, whereby the organic matter deposited on the electrode is rinsed out by the oxidant to effectively restore the cell resistance. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電解液が含浸されるレドックスフロー電池用電極の再賦活方法に関するものである。特に、増大したセル抵抗を回復させるのに最適なレドックスフロー電池用電極の再賦活方法に関するものである。
【0002】
【従来の技術】
レドックスフロー電池は、従来、負荷平準化や瞬停対策用として利用されている。図3はレドックスフロー電池の動作原理を示す説明図である。この電池は、イオン交換膜からなる隔膜103で正極セル100Aと負極セル100Bとに分離されたセル100を具える。正極セル100Aと負極セル100Bの各々には正極電極104と負極電極105とを内蔵している。正極セル100Aには正極電解液を供給・排出するための正極用タンク101が導管106、107を介して接続されている。負極セル100Bにも負極電解液を導入・排出する負極用タンク102が同様に導管109、110を介して接続されている。各電解液にはバナジウムイオンなど原子価が変化するイオンの水溶液を用い、ポンプ108、111で循環させ、正負極電極104、105におけるイオンの価数変化反応に伴って充放電を行う。例えば、バナジウムイオンを含む電解液を用いた場合、セル内で充放電時に生じる反応は次のとおりである。
正極:V4+→V5++e(充電)   V4+←V5++e(放電)
負極:V3++e→V2+(充電)   V3++e←V2+(放電)
【0003】
このようなレドックスフロー電池は、電極にごみなどの異物が付着することで電池効率が徐々に低下する。そこで、電池効率を回復させる方法として、例えば、特許文献1記載の技術や、特許文献2記載の技術がある。
【0004】
【特許文献1】
特開平10−308232号公報
【特許文献2】
特開2000−200615号公報
【0005】
特許文献1には、電極にごみなどの異物が付着して電極が目詰まりし、セルの内部抵抗が増加することで低下した電池効率を改善するために、運転時と逆方向から蒸留水などの洗浄液を送り込み、異物を除去する技術が開示されている。特許文献2には、電極表面にバナジウムの酸化物などが析出して電極面積が減少することで低下した電池効率を改善するために、電極表面をアルカリ洗浄して、析出物を溶解除去する技術が開示されている。
【0006】
【発明が解決しようとする課題】
しかし、上記従来の技術では、電極表面に付着した有機物を除去することができないという問題がある。
本発明者は、電池効率が低下する原因として、種々検討した結果、レドックスフロー電池の構成材料に用いられている有機化合物が分解・溶出して電解液中に混入し、これら有機物が電極に付着することで電極の性能が低下する、即ちセル抵抗が増大する可能性が高いことを見出した。
【0007】
そこで、本発明の主目的は、増大したセル抵抗を回復させて電池効率を改善することができるレドックスフロー電池用電極の再賦活方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、電極に付着した有機物を酸化剤により除去することで上記目的を達成する。
即ち、本発明レドックスフロー電池用電極の再賦活方法は、電解液が含浸されるレドックスフロー電池用電極に付着した有機物を酸化剤で洗浄することを特徴とする。酸化剤には、特に、5価のバナジウムイオンを含む溶液や、過酸化水素、硫酸が好ましい。
【0009】
従来、電池効率が低下する原因として、電極に異物が付着することや電極表面にバナジウムの酸化物・硫酸塩などが析出することが知られており、これら異物や析出物を蒸留水やアルカリなどで除去することが行われている。しかし、本発明者は、電極に異物や析出物以外に有機物が付着して、電極の性能を低下させる可能性があることを見出した。レドックスフロー電池は、例えば、配管、電解液のタンク、セルフレーム、隔膜など、その構成材料に有機化合物が多く用いられている。これら構成材料は、通常、耐酸性であるが、電解液としてよく用いられる硫酸バナジウムイオン溶液などに長時間含浸されることで、上記有機物がわずかずつであるが分解、溶出する。そして、この分解物・溶出物が電解液中に混入し、その状態で電解液がセル内を流通することで、電極に有機物が付着すると推測される。
【0010】
ここで、特許文献1に記載される蒸留水や希硫酸などの洗浄液や、特許文献2に記載されるアルカリでは、有機物の洗浄液への溶解度が極めて小さく、電極に付着した有機物を効果的に除去することは困難である。一方、酸化剤は、その酸化力によって有機物を分解できる。そのため、酸化剤は、電極表面に付着した有機物を除去、或いは無害化できると考えられる。そこで、本発明は、電極に付着した有機物を無害化又は効果的に除去すべく、酸化剤で洗浄する。なお、本発明において酸化剤による洗浄は、酸化剤によって電池構成材料の分解や溶出が生じない程度の比較的短時間で行う。そのため、洗浄により、酸化剤によって電池構成材料が分解されたり溶出したりすることはほとんどない。しかし、一度、分解や溶出されて電極表面に付着した有機物は、本発明により容易に除去することができる。
【0011】
本発明において電極の洗浄は、電池から取り出された電極を洗浄する場合と、電池から電極を取り出すことなく洗浄する場合、即ち電極を電池に具えたままの状態で電極を洗浄する場合とが考えられる。前者の場合、例えば、レドックスフロー電池のセル抵抗を測定しておき、セル抵抗が一定値以上になったら、電池の運転を停止し、電池を分解して電極を取り出した後、酸化剤に電極を浸漬させることで行うとよい。酸化剤で洗浄した電極は、再びレドックスフロー電池に用いる。
【0012】
酸化剤として、過酸化水素及び硫酸の少なくとも1種を用いる場合、酸化力がより大きいほうが好ましく、例えば、過酸化水素は3体積%、硫酸は6mol/L超が好ましい。このような酸化剤で洗浄することで、0.15Ω・cm以上、より好ましくは0.20Ω・cm以上のセル抵抗の回復量(洗浄処理前後のセル抵抗の差)が得られる。なお、上記酸化剤により電極を洗浄した後は、酸化剤の除去処理を施す。
【0013】
一方、酸化剤として、5価のバナジウムイオンを含む溶液を用いる場合、以下の条件のうち、少なくともいずれか一つを満たすと、再賦活効果がより顕著に得られて好ましい。具体的には、0.1Ω・cm以上、より好ましくは0.15Ω・cm以上のセル抵抗の回復量が得られる。
▲1▼ 溶液中の5価のバナジウムイオン濃度が0.1mol/L以上である。
▲2▼ 溶液中の4価のバナジウムイオンと5価のバナジウムイオンのイオン濃度の割合V5+/(V5++V4+)が0.5以上1以下である。
▲3▼ 溶液に電極を接触させる時間が1時間以上である。
【0014】
通常、5価のバナジウムイオンを含む溶液は、5価のバナジウムイオンと4価のバナジウムイオンとが共存している。そこで、好ましい再賦活効果が得られる条件として、4価のバナジウムイオンと5価のバナジウムイオンのイオン濃度の割合を上記▲2▼のように規定する。
【0015】
電解液が硫酸バナジウムイオン溶液などのバナジウムイオンを含む溶液である場合、酸化剤として5価のバナジウムイオンを含む溶液を用いると、酸化剤が電解液と同様の成分であるため、電極を酸化剤で洗浄後、酸化剤の除去処理などの後処理が不要であり、作業性がよい。
【0016】
上記は、レドックスフロー電池から電極が取り出された状態で洗浄する場合を説明したが、電池から取り出さず電極を電池に具えたままで、上記の酸化剤を電池のセル内に導入して電極を洗浄してもよい。
【0017】
酸化剤の電池内への導入は、例えば、以下のように行うとよい。図2は、本発明再賦活方法の概念を示す説明図であり、セルを中心に示しており、変換器などは省略している。
【0018】
(1) 図2に示すように別途用意した酸化剤タンク20、21を電解液の供給側導管106、109に、また汚液タンク22、23を電解液の排出側導管107、110に接続しておく。各導管106、107、109、110にはバルブ24、26、28、30を設けておく。また、各タンク20〜23と各導管106、107、109、110との接続管にも、バルブ25、27、29、31を設けておく。電池を運転する際は、バルブ24、26、28、30を開け、バルブ25、27、29、31を閉じる。
(2) レドックスフロー電池のセル抵抗を測定しておき、セル抵抗が一定値以上になったら、電池の運転を停止する。
(3) 電解液のタンク101、102側に酸化剤が流れ込まないようにバルブ24、26、28、30を閉じ、バルブ25、27、29、31を開ける。
(4) 酸化剤をセル100内に導入して電極104、105を洗浄する。このとき、ポンプなどを用いて酸化剤を導入するとよい。洗浄は、酸化剤を循環させて行う。このとき、酸化剤を循環させることで、酸化剤中の有機物が電極に再付着することが考えられる。そこで、セルに酸化剤を導入する導入側又は排出する排出側の少なくとも一方に、有機物の吸着能を有するろ過手段を具えることが好ましい。ろ過手段は、有機物の吸着に優れる活性炭フィルタなどが好ましい。
(5) 洗浄が終わったら、バルブ25、27、29、31を閉じ、バルブ24、26、28、30を開けて、再び、電解液を流通させて運転を再開する。
【0019】
ここで、酸化剤として過酸化水素及び硫酸の少なくとも1種を用いる場合、酸化剤で洗浄後、水で洗浄するなどして、酸化剤の除去処理を行ってから、運転を再開するとよい。
【0020】
一方、酸化剤として5価のバナジウムイオンを含む溶液を用いる場合で電解液が硫酸バナジウムイオン溶液などのバナジウムイオンを含む溶液であるときは、酸化剤が電解液と同様の成分であるため、酸化剤で洗浄後、上記のような酸化剤の除去処理などを行わなくてもよい。
【0021】
更に、電解液がバナジウムイオンを含む溶液である場合、レドックスフロー電池内の電解液を酸化剤として用いることもできる。即ち、電解液から5価のバナジウムイオンを含む溶液を得て、かつその電解液の循環システムをそのまま利用するものである。このとき、酸化剤を別途用意する必要がなく、電池システムをそのまま用いるため、作業性がよいだけでなく、経済的である。上記電解液はそのまま酸化剤として洗浄に用いてもよいが、酸化剤としてより有効な酸化力を有する5価のバナジウムイオンを含む溶液を得るには、定電圧条件で充電を行い、電解液中の5価のバナジウムイオンの割合を高めることが好ましい。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
(試験例1)
有機物を付着させた電極を用いて小型のレドックスフロー電池を作製し、充放電試験を行った後、酸化剤として5価のバナジウムイオンを含む溶液を用いて電極を洗浄処理し、処理前後のセル抵抗を見積もった。試験の手順を以下に示す。
【0023】
(1) 有機物を後述するようにして電極に付着させる。
(2) 有機物を付着させた電極を用いてレドックスフロー電池を作製し、下記の充放電条件で1回目の充放電試験を行い、セル抵抗を見積もる。
(3) 充放電後、レドックスフロー電池を分解して電極を取り出し、電極を5価のバナジウムイオンを含む溶液で洗浄する。
(4) 洗浄した電極を用いて、再びレドックスフロー電池を作製し、下記の充放電条件で2回目の充放電試験を行い、セル抵抗を見積もる。
【0024】
有機物は、電池構成物質から分解・溶出すると考えられる物質、具体的には、アクリル酸、カルボン酸、脂質、脂肪酸、フェノール類、エステル類、エーテル類、酸無水物、スチレン類、有機シリコン類、ピリジン類、含ハロゲン化合物を用意した。そして、上記物質をそれぞれ等量秤量し、これら有機物を溶解する有機溶剤、例えば、アセトンなどを用いて0.1重量%の濃度に薄め、この有機物溶液に電極を浸漬し、取り出して有機溶剤を揮発させることで、電極表面に有機物を塗布する。
【0025】
レドックスフロー電池は、図3に示す構成のもので、3cm×3cmの電極を1枚使用した小型のもの(セル全体:8cm×6cm)を用いた。電解液は、硫酸バナジウムイオン溶液を用いた。
【0026】
酸化剤は、表1に示すイオン濃度の5価のバナジウムイオンを含む溶液を用い、電極をこれら溶液(25℃)に24時間浸漬することで再賦活処理を行った。これら5価のバナジウムイオンを含む溶液中の4価のバナジウムイオンと5価のバナジウムイオンのイオン濃度割合V5+/(V5++V4+)はいずれも1.0である。なお、表1において、5価のバナジウムイオンを含む溶液のイオン濃度を最大5mol/Lとしているが、これは溶液温度25℃での析出限界濃度であり、特に濃度を限定するものではない。
【0027】
(充放電条件)
充放電方法:定電流
電流密度  :70(mA/cm
充電終了電圧:1.55(V)
放電終了電圧:1.00(V)
温度    :25℃
【0028】
試験の結果を表1に示す。また、比較として、洗浄に水を用いたもの、4価のバナジウムイオンを含む溶液(4価のバナジウムイオン濃度1.0mol/L)を用いたものも表1に示す。
【0029】
【表1】

Figure 2004111182
【0030】
表1に示すように、5価のバナジウムイオンを含む溶液で洗浄した試料No.1−1〜1−4は、セル抵抗の回復量(洗浄処理前のセル抵抗▲1▼から洗浄処理後のセル抵抗▲2▼を引いたもの)が大きく、セル抵抗を低減していることがわかる。特に、5価のバナジウムイオンの濃度が高くなるほど(酸化力が大きくなるほど)、セル抵抗の回復量が大きくなることがわかる。従って、5価のバナジウムイオンを含む溶液で洗浄することで、電池効率を改善できると推測される。
【0031】
これに対し、水で洗浄した試料No.1−5は、洗浄前後でセル抵抗がほとんど変化していない。また、5価のバナジウムイオンよりも酸化力が小さい4価のバナジウムイオンを含む溶液を用いた試料No.1−6も、試料No.1−5とほとんど差が見られなかった。
【0032】
(試験例2)
酸化剤として、5価のバナジウムイオンを含む溶液を用い、溶液中の5価のバナジウムイオンの割合と、溶液中に電極を浸漬する時間を変化させて、セル抵抗の回復量(洗浄処理前のセル抵抗と洗浄処理後のセル抵抗の差)を測定してみた。本試験は、試験例1と同様の電池を用いて、試験例1と同様の手順、条件で行った。5価のバナジウムイオンを含む溶液温度は25℃、濃度は1.0mol/Lとした。図1に試験結果を示す。
【0033】
図1に示すように、5価のバナジウムイオンの割合が大きいものほど、セル抵抗の回復量が大きいことがわかる。また、浸漬時間をあまり長くしても回復量の増加率は小さく、約3時間程度の浸漬で0.13Ω・cm以上の回復量が得られる。より詳しく調べてみると、いずれの試料も浸漬時間を1時間以上とすると0.1Ω・cm以上の回復量が得られることがわかった。
【0034】
(試験例3)
試験例1と同様に、有機物を付着させた電極を用いて小型のレドックフロー電池を作製し、充放電試験を行った後、電解液である硫酸バナジウムイオン溶液を用いて電極を洗浄処理し、処理前後のセル抵抗を見積もった。試験の結果を表2に示す。また、試験の手順を以下に示す。
【0035】
(1)及び(2) 試験例1と同様。
(3) 充放電後、下記の定電圧条件で充電を行って電解液の5価のバナジウムイオンの割合を約90%(V5+/(V5++V4+)=約0.9)まで上げて、この電解液を1時間循環させて電極を洗浄する。洗浄の際は、電解液を循環させるだけで、充放電は行っていない。
(4) 洗浄後、試験例1と同様の条件で2回目の充放電試験を行い、セル抵抗を見積もる。
【0036】
(定電圧条件)
充放電方法 :定電圧運転
定電圧電圧 :1.55(V)
定電圧時間 :1時間
温度    :25℃
【0037】
【表2】
Figure 2004111182
【0038】
表2に示すように、電解液を酸化剤として用いて洗浄しても、セル抵抗を低減できることがわかる。また、洗浄を複数回行っても、セル抵抗を同様に低減できることがわかる。更に、本例のように電解液を酸化剤として用いると、レドックスフロー電池を分解して電極を取り出すことなく再賦活化することができ、作業性がよい。
【0039】
(試験例4)
試験例1と同様に、有機物を付着させた電極を用いて小型のレドックスフロー電池を作製し、充放電試験を行った後、酸化剤として表3に示すものを用いて電極を洗浄処理した前後のセル抵抗を見積もった。表3に試験結果を示す。また、試験の手順を以下に示す。
【0040】
(1)及び(2) 試験例1と同様。
(3) 充放電後、レドックスフロー電池を分解して電極を取り出し、電極を表3に示す酸化剤で洗浄する。酸化剤は、表3に示す濃度の各種の溶液を用い、電極をこれら溶液(25℃)に24時間浸漬することで再賦活処理を行う。
(4) 酸化剤で洗浄後、水で洗浄することで、酸化剤を除去する。
(5) 洗浄した電極を用いて、再びレドックスフロー電池を作製し、試験例1と同様の条件で2回目の充放電試験を行い、セル抵抗を見積もる。
【0041】
【表3】
Figure 2004111182
【0042】
表3に示すように、酸化剤として酸化力が大きい硫酸を用いた試料No.3−3や、硫酸と過酸化水素(3体積%)との混合溶液を用いた試料No.3−4は、いずれもセル抵抗を効果的に低減できることがわかる。具体的には、0.2Ω・cm以上の回復量が得られている。特に、酸化力が大きい試料No.3−4は、もっともセル抵抗の回復力が大きかった。これに対し、洗浄に水を用いた試料No.3−1や希硫酸を用いた試料No.3−2は、試料No.3−3、3−4と比較してセル抵抗の回復量が少ない。
【0043】
【発明の効果】
以上説明したように、本発明によれば、電極を酸化剤で洗浄することで有機物に汚染された電極を再賦活することができるという優れた効果を奏し得る。従って、本発明は、増大したセル抵抗を低減させて電池効率を改善することが可能である。また、電解液がバナジウムイオンを含む溶液である場合、レドックスフロー電池を分解して電極を取り出さなくても、酸化剤として電解液を用いて再賦活を行うことができ、作業性がよい。
【図面の簡単な説明】
【図1】5価のバナジウムイオンを含む溶液を酸化剤に用いた際の浸漬時間とセル抵抗の回復量との関係を表すグラフである。
【図2】本発明再賦活方法の概念を示す説明図である。
【図3】レドックスフロー電池の動作原理を示す説明図である。
【符号の説明】
20、21 酸化剤タンク 22、23 汚液タンク 24〜31 バルブ
100 セル 100A 正極セル 100B 負極セル 101 正極用タンク
102 負極用タンク 103 隔膜 104 正極電極 104 正負極電極
105 負極電極 106 導管 108 ポンプ 109 導管[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for reactivating an electrode for a redox flow battery impregnated with an electrolytic solution. In particular, the present invention relates to a method for reactivating an electrode for a redox flow battery which is optimal for recovering an increased cell resistance.
[0002]
[Prior art]
Redox flow batteries have conventionally been used for load leveling and countermeasures against momentary power failures. FIG. 3 is an explanatory diagram showing the operation principle of the redox flow battery. This battery includes a cell 100 separated into a positive electrode cell 100A and a negative electrode cell 100B by a diaphragm 103 made of an ion exchange membrane. Each of the positive electrode cell 100A and the negative electrode cell 100B has a built-in positive electrode 104 and a negative electrode 105. A positive electrode tank 101 for supplying and discharging a positive electrode electrolyte is connected to the positive electrode cell 100A via conduits 106 and 107. A negative electrode tank 102 for introducing and discharging a negative electrode electrolyte is also connected to the negative electrode cell 100B via conduits 109 and 110. An aqueous solution of ions whose valence changes, such as vanadium ions, is circulated by the pumps 108 and 111 for each electrolyte, and charge and discharge are performed in accordance with the valence change reaction of the ions at the positive and negative electrodes 104 and 105. For example, when an electrolyte containing vanadium ions is used, the reactions that occur during charging and discharging in the cell are as follows.
Positive electrode: V 4+ → V 5+ + e (charge) V 4+ ← V 5+ + e (discharge)
Negative electrode: V 3+ + e → V 2+ (charge) V 3+ + e ← V 2+ (discharge)
[0003]
In such a redox flow battery, the foreign matter such as dust adheres to the electrode, and the battery efficiency gradually decreases. Therefore, as a method of restoring the battery efficiency, for example, there are a technique described in Patent Document 1 and a technique described in Patent Document 2.
[0004]
[Patent Document 1]
JP-A-10-308232 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-200615
Patent Literature 1 discloses that in order to improve the battery efficiency, which is reduced due to foreign matter such as dust adhering to the electrode and clogging the electrode and increasing the internal resistance of the cell, distilled water or the like is used in the opposite direction to the operation. A technique is disclosed in which a cleaning solution is supplied to remove foreign matter. Patent Literature 2 discloses a technique of dissolving and removing precipitates by washing the electrode surface with alkali in order to improve battery efficiency, which has been reduced due to reduction of the electrode area due to precipitation of vanadium oxide and the like on the electrode surface. Is disclosed.
[0006]
[Problems to be solved by the invention]
However, the above-described conventional technique has a problem that it is impossible to remove an organic substance attached to the electrode surface.
The present inventors have conducted various studies as a cause of the decrease in battery efficiency.As a result, the organic compounds used in the constituent materials of the redox flow battery were decomposed and eluted and mixed into the electrolytic solution, and these organic substances adhered to the electrodes. It has been found that there is a high possibility that the performance of the electrode will decrease, that is, the cell resistance will increase.
[0007]
Therefore, a main object of the present invention is to provide a method for reactivating an electrode for a redox flow battery, which can restore an increased cell resistance and improve battery efficiency.
[0008]
[Means for Solving the Problems]
The present invention achieves the above object by removing an organic substance attached to an electrode with an oxidizing agent.
That is, the method for reactivating an electrode for a redox flow battery of the present invention is characterized in that an organic substance attached to the electrode for a redox flow battery impregnated with an electrolytic solution is washed with an oxidizing agent. As the oxidizing agent, a solution containing pentavalent vanadium ions, hydrogen peroxide, and sulfuric acid are particularly preferable.
[0009]
Conventionally, it is known that foreign matter adheres to the electrode and that vanadium oxides and sulfates precipitate on the electrode surface as a cause of the decrease in battery efficiency. The removal has been done. However, the present inventor has found that there is a possibility that an organic substance other than a foreign substance or a deposit adheres to the electrode, thereby deteriorating the performance of the electrode. In the redox flow battery, for example, an organic compound is often used as a constituent material thereof, such as a pipe, a tank for an electrolytic solution, a cell frame, and a diaphragm. These constituent materials are generally acid-resistant, but when impregnated with a vanadium sulfate ion solution or the like often used as an electrolytic solution for a long time, the organic substances are decomposed and eluted little by little. Then, it is presumed that the decomposed product / eluted product is mixed into the electrolytic solution, and the electrolytic solution flows in the cell in that state, so that the organic substance adheres to the electrode.
[0010]
Here, in a cleaning liquid such as distilled water or dilute sulfuric acid described in Patent Literature 1, or in an alkali described in Patent Literature 2, the solubility of an organic substance in the cleaning liquid is extremely small, and the organic substance attached to the electrode is effectively removed. It is difficult to do. On the other hand, the oxidizing agent can decompose organic substances by its oxidizing power. Therefore, it is considered that the oxidizing agent can remove or detoxify the organic matter attached to the electrode surface. Therefore, in the present invention, the electrode is washed with an oxidizing agent in order to detoxify or effectively remove organic substances attached to the electrode. In the present invention, the cleaning with the oxidizing agent is performed in a relatively short period of time such that the oxidizing agent does not cause decomposition or elution of the battery constituent materials. Therefore, the battery material is hardly decomposed or eluted by the oxidizing agent due to the washing. However, the organic matter once decomposed or eluted and adhered to the electrode surface can be easily removed by the present invention.
[0011]
In the present invention, the cleaning of the electrode is considered to be a case where the electrode taken out of the battery is washed or a case where the electrode is washed without taking out the electrode from the battery, that is, a case where the electrode is washed while the electrode is kept in the battery. Can be In the former case, for example, the cell resistance of a redox flow battery is measured, and when the cell resistance becomes a certain value or more, the operation of the battery is stopped, the battery is disassembled, the electrode is taken out, and then the electrode is oxidized. It is good to carry out by immersing. The electrode washed with the oxidizing agent is used again in a redox flow battery.
[0012]
When at least one of hydrogen peroxide and sulfuric acid is used as the oxidizing agent, it is preferable that the oxidizing power is higher. For example, hydrogen peroxide is preferably 3% by volume and sulfuric acid is more than 6 mol / L. By washing with such an oxidizing agent, a recovery amount of cell resistance of 0.15 Ω · cm 2 or more, more preferably 0.20 Ω · cm 2 or more (difference in cell resistance before and after the cleaning treatment) can be obtained. After the electrodes are washed with the oxidizing agent, the oxidizing agent is removed.
[0013]
On the other hand, when a solution containing pentavalent vanadium ions is used as the oxidizing agent, it is preferable that at least one of the following conditions is satisfied, since the reactivation effect is more remarkably obtained. Specifically, 0.1 [Omega · cm 2 or more, more preferably recovery of 0.15Ω · cm 2 or more cells resistance.
{Circle around (1)} The pentavalent vanadium ion concentration in the solution is 0.1 mol / L or more.
{Circle around (2)} The ratio V 5+ / (V 5+ + V 4+ ) of the ion concentration of tetravalent vanadium ions and pentavalent vanadium ions in the solution is 0.5 or more and 1 or less.
{Circle around (3)} The time for bringing the electrode into contact with the solution is 1 hour or more.
[0014]
Usually, a solution containing pentavalent vanadium ions contains pentavalent vanadium ions and tetravalent vanadium ions. Therefore, as a condition for obtaining a preferable reactivation effect, the ratio of the ion concentrations of tetravalent vanadium ions and pentavalent vanadium ions is defined as in the above (2).
[0015]
When the electrolytic solution is a solution containing vanadium ions such as a vanadium sulfate ion solution, if a solution containing pentavalent vanadium ions is used as the oxidizing agent, the oxidizing agent is a component similar to the electrolytic solution. After the cleaning, post-processing such as oxidizing agent removal processing is not required, and workability is good.
[0016]
In the above description, the case where the electrode is taken out from the redox flow battery is described, but the electrode is washed by introducing the oxidizing agent into the cell of the battery without removing the electrode from the battery and keeping the electrode in the battery. May be.
[0017]
The oxidant may be introduced into the battery, for example, as follows. FIG. 2 is an explanatory diagram showing the concept of the reactivation method of the present invention, mainly showing cells, and omitting converters and the like.
[0018]
(1) As shown in FIG. 2, separately prepared oxidizing agent tanks 20 and 21 are connected to electrolyte supply conduits 106 and 109, and sewage tanks 22 and 23 are connected to electrolyte discharge conduits 107 and 110. Keep it. Each conduit 106, 107, 109, 110 is provided with a valve 24, 26, 28, 30. Also, valves 25, 27, 29, and 31 are provided in connection pipes between the tanks 20 to 23 and the conduits 106, 107, 109, and 110, respectively. When operating the battery, the valves 24, 26, 28, 30 are opened and the valves 25, 27, 29, 31 are closed.
(2) Measure the cell resistance of the redox flow battery, and stop the operation of the battery when the cell resistance exceeds a certain value.
(3) The valves 24, 26, 28, and 30 are closed and the valves 25, 27, 29, and 31 are opened so that the oxidizing agent does not flow into the electrolyte tanks 101 and 102.
(4) An oxidizing agent is introduced into the cell 100 to clean the electrodes 104 and 105. At this time, an oxidizing agent may be introduced using a pump or the like. The cleaning is performed by circulating an oxidizing agent. At this time, by circulating the oxidizing agent, it is conceivable that the organic substances in the oxidizing agent adhere to the electrode again. Therefore, it is preferable that at least one of the introduction side for introducing the oxidizing agent into the cell and the discharge side for discharging the cell include a filtering means having an ability to adsorb organic substances. The filtering means is preferably an activated carbon filter which is excellent in adsorbing organic substances.
(5) After the cleaning is completed, the valves 25, 27, 29, 31 are closed, the valves 24, 26, 28, 30 are opened, and the electrolytic solution is allowed to flow again to restart the operation.
[0019]
Here, in the case where at least one of hydrogen peroxide and sulfuric acid is used as the oxidizing agent, the operation may be restarted after the oxidizing agent is removed by washing with the oxidizing agent and then with water.
[0020]
On the other hand, when a solution containing pentavalent vanadium ions is used as the oxidizing agent and the electrolytic solution is a solution containing vanadium ions such as a vanadium sulfate ion solution, the oxidizing agent is a component similar to the electrolytic solution. After the cleaning with the agent, the above-described treatment for removing the oxidizing agent may not be performed.
[0021]
Further, when the electrolyte is a solution containing vanadium ions, the electrolyte in the redox flow battery can be used as an oxidizing agent. That is, a solution containing pentavalent vanadium ions is obtained from the electrolytic solution, and the circulation system for the electrolytic solution is used as it is. At this time, there is no need to separately prepare an oxidizing agent, and the battery system is used as it is, so that not only workability is good but also economical. The electrolytic solution may be used as it is for washing as an oxidizing agent. However, in order to obtain a solution containing pentavalent vanadium ions having more effective oxidizing power as an oxidizing agent, the electrolytic solution is charged under constant voltage conditions, It is preferable to increase the ratio of the pentavalent vanadium ion.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
(Test Example 1)
A small redox flow battery is manufactured using the electrode to which organic substances are attached, and a charge / discharge test is performed. Then, the electrode is washed with a solution containing pentavalent vanadium ions as an oxidizing agent, and the cells before and after the treatment are washed. Estimated resistance. The test procedure is shown below.
[0023]
(1) An organic substance is attached to an electrode as described later.
(2) A redox flow battery is manufactured using an electrode to which an organic substance is attached, and a first charge / discharge test is performed under the following charge / discharge conditions to estimate a cell resistance.
(3) After charging and discharging, the redox flow battery is disassembled, the electrode is taken out, and the electrode is washed with a solution containing pentavalent vanadium ions.
(4) A redox flow battery is produced again using the washed electrode, and a second charge / discharge test is performed under the following charge / discharge conditions to estimate the cell resistance.
[0024]
Organic substances are substances that are considered to be decomposed and eluted from battery constituent substances, specifically, acrylic acid, carboxylic acid, lipid, fatty acid, phenols, esters, ethers, acid anhydrides, styrenes, organic silicons, Pyridines and halogen-containing compounds were prepared. Then, the above substances are weighed in equal amounts, diluted with an organic solvent dissolving these organic substances, for example, acetone to a concentration of 0.1% by weight, and immersed in the organic substance solution, taken out, and removed the organic solvent. By volatilizing, an organic substance is applied to the electrode surface.
[0025]
A redox flow battery having the configuration shown in FIG. 3 and having a small size using one electrode of 3 cm × 3 cm (the whole cell: 8 cm × 6 cm) was used. As the electrolyte, a vanadium sulfate ion solution was used.
[0026]
As the oxidizing agent, a solution containing pentavalent vanadium ions having an ion concentration shown in Table 1 was used, and a reactivation treatment was performed by immersing the electrode in these solutions (25 ° C.) for 24 hours. The ion concentration ratio V 5+ / (V 5+ + V 4+ ) of the tetravalent vanadium ion and the pentavalent vanadium ion in the solution containing these pentavalent vanadium ions is 1.0. In Table 1, the ion concentration of the solution containing pentavalent vanadium ions is set to a maximum of 5 mol / L, but this is a deposition limit concentration at a solution temperature of 25 ° C., and the concentration is not particularly limited.
[0027]
(Charging and discharging conditions)
Charge / discharge method: constant current, current density: 70 (mA / cm 2 )
Charge end voltage: 1.55 (V)
Discharge end voltage: 1.00 (V)
Temperature: 25 ° C
[0028]
Table 1 shows the test results. Table 1 also shows, as a comparison, those using water for washing and those using a solution containing tetravalent vanadium ions (tetravalent vanadium ion concentration of 1.0 mol / L).
[0029]
[Table 1]
Figure 2004111182
[0030]
As shown in Table 1, Sample No. 1 was washed with a solution containing pentavalent vanadium ions. In 1-1 to 1-4, the recovery amount of the cell resistance (the value obtained by subtracting the cell resistance (2) after the cleaning process from the cell resistance (1) before the cleaning process) is large, and the cell resistance is reduced. I understand. In particular, it can be seen that the higher the concentration of pentavalent vanadium ions (the greater the oxidizing power), the greater the amount of recovery of the cell resistance. Therefore, it is presumed that battery efficiency can be improved by washing with a solution containing pentavalent vanadium ions.
[0031]
On the other hand, for sample No. In No. 1-5, the cell resistance hardly changed before and after cleaning. In addition, the sample No. using a solution containing tetravalent vanadium ions having a lower oxidizing power than pentavalent vanadium ions. Sample Nos. 1-6 were also used. Almost no difference was seen from 1-5.
[0032]
(Test Example 2)
A solution containing pentavalent vanadium ions was used as an oxidizing agent, and the ratio of pentavalent vanadium ions in the solution and the time for immersing the electrodes in the solution were changed to recover the cell resistance (before the cleaning treatment). The difference between the cell resistance and the cell resistance after the cleaning treatment was measured. This test was performed using the same battery as in Test Example 1 under the same procedure and conditions as in Test Example 1. The temperature of the solution containing pentavalent vanadium ions was 25 ° C., and the concentration was 1.0 mol / L. FIG. 1 shows the test results.
[0033]
As shown in FIG. 1, it can be seen that the greater the proportion of pentavalent vanadium ions, the greater the recovery of cell resistance. Even if the immersion time is too long, the rate of increase of the recovery amount is small, and a recovery amount of 0.13 Ω · cm 2 or more can be obtained by immersion for about 3 hours. Upon closer examination, it was found that a recovery amount of 0.1 Ω · cm 2 or more was obtained for all samples when the immersion time was 1 hour or more.
[0034]
(Test Example 3)
In the same manner as in Test Example 1, a small redox flow battery was manufactured using an electrode to which an organic substance was attached, and after performing a charge / discharge test, the electrode was washed with a vanadium sulfate ion solution as an electrolytic solution. The cell resistance before and after the treatment was estimated. Table 2 shows the test results. The test procedure is shown below.
[0035]
(1) and (2) Same as in Test Example 1.
(3) After the charge and discharge, the ratio of the pentavalent vanadium ions about 90% of the electrolyte by performing charging in a constant voltage under the following conditions (V 5+ / (V 5+ + V 4+) = about 0.9) up to up to The electrolyte is circulated for one hour to wash the electrodes. At the time of cleaning, only the electrolyte solution is circulated, and charging and discharging are not performed.
(4) After washing, a second charge / discharge test is performed under the same conditions as in Test Example 1, and the cell resistance is estimated.
[0036]
(Constant voltage condition)
Charge / discharge method: Constant voltage operation Constant voltage voltage: 1.55 (V)
Constant voltage time: 1 hour Temperature: 25 ° C
[0037]
[Table 2]
Figure 2004111182
[0038]
As shown in Table 2, it can be seen that the cell resistance can be reduced even by washing using the electrolytic solution as the oxidizing agent. In addition, it can be seen that the cell resistance can be similarly reduced even if washing is performed a plurality of times. Furthermore, when an electrolytic solution is used as an oxidizing agent as in the present example, the redox flow battery can be reactivated without disassembling and removing the electrode, thereby improving workability.
[0039]
(Test Example 4)
In the same manner as in Test Example 1, a small-sized redox flow battery was manufactured using an electrode to which an organic substance was attached, and after performing a charge / discharge test, before and after cleaning the electrode using an oxidizing agent shown in Table 3. Was estimated. Table 3 shows the test results. The test procedure is shown below.
[0040]
(1) and (2) Same as in Test Example 1.
(3) After charging and discharging, the redox flow battery is disassembled, the electrode is taken out, and the electrode is washed with an oxidizing agent shown in Table 3. As the oxidizing agent, various solutions having the concentrations shown in Table 3 are used, and the electrode is immersed in these solutions (25 ° C.) for 24 hours to perform the reactivation treatment.
(4) After washing with the oxidizing agent, the oxidizing agent is removed by washing with water.
(5) A redox flow battery is prepared again using the washed electrode, and a second charge / discharge test is performed under the same conditions as in Test Example 1 to estimate the cell resistance.
[0041]
[Table 3]
Figure 2004111182
[0042]
As shown in Table 3, the sample No. using sulfuric acid having a large oxidizing power as the oxidizing agent. Sample No. 3-3 or a sample No. using a mixed solution of sulfuric acid and hydrogen peroxide (3% by volume). It can be seen that each of 3-4 can effectively reduce the cell resistance. Specifically, a recovery amount of 0.2 Ω · cm 2 or more is obtained. In particular, for sample No. In the case of 3-4, the recovery of the cell resistance was the largest. On the other hand, in Sample No. using water for cleaning. Sample No. 3-1 using diluted sulfuric acid. 3-2 is a sample No. The recovery amount of the cell resistance is smaller than that of 3-3 and 3-4.
[0043]
【The invention's effect】
As described above, according to the present invention, an excellent effect that the electrode contaminated with organic matter can be reactivated by washing the electrode with the oxidizing agent can be obtained. Thus, the present invention can improve battery efficiency by reducing increased cell resistance. When the electrolytic solution is a solution containing vanadium ions, reactivation can be performed using the electrolytic solution as an oxidizing agent without having to disassemble the redox flow battery and take out the electrode, thereby improving workability.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between an immersion time and a recovery amount of a cell resistance when a solution containing pentavalent vanadium ions is used as an oxidizing agent.
FIG. 2 is an explanatory view showing the concept of the reactivation method of the present invention.
FIG. 3 is an explanatory diagram showing the operation principle of a redox flow battery.
[Explanation of symbols]
20, 21 Oxidant tank 22, 23 Soil tank 24 to 31 Valve 100 cell 100A Positive cell 100B Negative cell 101 Positive tank 102 Negative tank 103 Diaphragm 104 Positive electrode 104 Positive / negative electrode 105 Negative electrode 106 Pipe 108 Pump 109 Pipe

Claims (9)

電解液が含浸されるレドックスフロー電池用電極に付着した有機物を酸化剤で洗浄することを特徴とするレドックスフロー電池用電極の再賦活方法。A method for reactivating an electrode for a redox flow battery, comprising washing an organic substance attached to the electrode for a redox flow battery impregnated with an electrolyte with an oxidizing agent. 電池から取り出された電極を洗浄することを特徴とする請求項1に記載のレドックスフロー電池用電極の再賦活方法。The method for reactivating an electrode for a redox flow battery according to claim 1, wherein the electrode taken out of the battery is washed. 電池から取り出すことなく電極を洗浄することを特徴とする請求項1に記載のレドックスフロー電池用電極の再賦活方法。The method for reactivating an electrode for a redox flow battery according to claim 1, wherein the electrode is washed without removing the electrode from the battery. 酸化剤は、5価のバナジウムイオンを含む溶液であることを特徴とする請求項1〜3のいずれかに記載のレドックスフロー電池用電極の再賦活方法。The method for reactivating an electrode for a redox flow battery according to any one of claims 1 to 3, wherein the oxidizing agent is a solution containing pentavalent vanadium ions. 溶液中の5価のバナジウムイオン濃度が0.1mol/L以上であることを特徴とする請求項4に記載のレドックスフロー電池用電極の再賦活方法。The method for reactivating an electrode for a redox flow battery according to claim 4, wherein the pentavalent vanadium ion concentration in the solution is 0.1 mol / L or more. 溶液中の4価のバナジウムイオンと5価のバナジウムイオンのイオン濃度の割合V5+/(V5++V4+)が0.5以上1以下であることを特徴とする請求項4に記載のレドックスフロー電池用電極の再賦活方法。Redox flow according to claim 4, the ratio V 5+ / ion concentration of tetravalent vanadium ions and pentavalent vanadium ions in the solution (V 5+ + V 4+) is characterized in that from 0.5 to 1 or less A method for reactivating a battery electrode. 溶液に電極を接触させる時間が1時間以上であることを特徴とする請求項4〜6のいずれかに記載のレドックスフロー電池用電極の再賦活方法。The method for reactivating an electrode for a redox flow battery according to any one of claims 4 to 6, wherein a time for bringing the electrode into contact with the solution is 1 hour or more. 酸化剤は、過酸化水素及び硫酸の少なくとも1種であることを特徴とする請求項1〜3のいずれかに記載のレドックスフロー電池用電極の再賦活方法。The method for reactivating an electrode for a redox flow battery according to any one of claims 1 to 3, wherein the oxidizing agent is at least one of hydrogen peroxide and sulfuric acid. 電解液はバナジウムイオンを含む溶液であり、酸化剤として前記電解液を利用することを特徴とする請求項3に記載のレドックスフロー電池用電極の再賦活方法。The method of reactivating an electrode for a redox flow battery according to claim 3, wherein the electrolytic solution is a solution containing vanadium ions, and the electrolytic solution is used as an oxidizing agent.
JP2002271184A 2002-09-18 2002-09-18 Re-activation method of electrode for redox flow battery Pending JP2004111182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002271184A JP2004111182A (en) 2002-09-18 2002-09-18 Re-activation method of electrode for redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002271184A JP2004111182A (en) 2002-09-18 2002-09-18 Re-activation method of electrode for redox flow battery

Publications (1)

Publication Number Publication Date
JP2004111182A true JP2004111182A (en) 2004-04-08

Family

ID=32268576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002271184A Pending JP2004111182A (en) 2002-09-18 2002-09-18 Re-activation method of electrode for redox flow battery

Country Status (1)

Country Link
JP (1) JP2004111182A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012468A (en) * 2005-06-30 2007-01-18 Sumitomo Electric Ind Ltd Electrolyte for secondary battery
CN102244286A (en) * 2011-06-07 2011-11-16 中国东方电气集团有限公司 Flow battery system and repair device thereof
JP2012518247A (en) * 2009-02-18 2012-08-09 フラウンホーファー − ゲゼルシャフト ツル フェーデルング デル アンゲヴァントテン フォルシュング エー.ファォ. A method for storing electrical energy in ionic liquids
JP2013232434A (en) * 2013-07-11 2013-11-14 Sumitomo Electric Ind Ltd Electrolytic solution for redox flow battery, redox flow battery, and method for operating redox flow battery
JP2014137946A (en) * 2013-01-18 2014-07-28 Sumitomo Electric Ind Ltd Method for operating redox flow cell
CN103985883A (en) * 2014-05-22 2014-08-13 大连理工大学 Method for chemically plating Ni-W-P on carbon felt electrode material of modified redox flow battery
WO2014174999A1 (en) 2013-04-25 2014-10-30 住友電気工業株式会社 Electrolyte solution for redox flow batteries, and redox flow battery
WO2018123962A1 (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Redox flow battery system and redox flow battery operation method
WO2020138668A1 (en) * 2018-12-27 2020-07-02 울산과학기술원 Secondary battery generating hydrogen by using carbon dioxide and complex power generation system having same
KR20200090505A (en) * 2019-01-21 2020-07-29 울산과학기술원 Secondary battery using carbon dioxide and complex electric power generation system having the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012468A (en) * 2005-06-30 2007-01-18 Sumitomo Electric Ind Ltd Electrolyte for secondary battery
JP2012518247A (en) * 2009-02-18 2012-08-09 フラウンホーファー − ゲゼルシャフト ツル フェーデルング デル アンゲヴァントテン フォルシュング エー.ファォ. A method for storing electrical energy in ionic liquids
CN102244286A (en) * 2011-06-07 2011-11-16 中国东方电气集团有限公司 Flow battery system and repair device thereof
JP2014137946A (en) * 2013-01-18 2014-07-28 Sumitomo Electric Ind Ltd Method for operating redox flow cell
WO2014174999A1 (en) 2013-04-25 2014-10-30 住友電気工業株式会社 Electrolyte solution for redox flow batteries, and redox flow battery
JP2013232434A (en) * 2013-07-11 2013-11-14 Sumitomo Electric Ind Ltd Electrolytic solution for redox flow battery, redox flow battery, and method for operating redox flow battery
CN103985883A (en) * 2014-05-22 2014-08-13 大连理工大学 Method for chemically plating Ni-W-P on carbon felt electrode material of modified redox flow battery
WO2018123962A1 (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Redox flow battery system and redox flow battery operation method
WO2020138668A1 (en) * 2018-12-27 2020-07-02 울산과학기술원 Secondary battery generating hydrogen by using carbon dioxide and complex power generation system having same
KR20200090505A (en) * 2019-01-21 2020-07-29 울산과학기술원 Secondary battery using carbon dioxide and complex electric power generation system having the same
KR102163935B1 (en) * 2019-01-21 2020-10-12 울산과학기술원 Secondary battery using carbon dioxide and complex electric power generation system having the same

Similar Documents

Publication Publication Date Title
CN108423776B (en) Method for removing heavy metals and organic matters through capacitive deionization coupling electrocatalysis cooperation
US11626608B2 (en) Redox flow battery systems and methods of manufacture and operation and reduction of metallic impurities
JP2004111182A (en) Re-activation method of electrode for redox flow battery
JP2023501285A (en) Method and system for redox flow battery performance recovery
TW323306B (en)
CN110330080A (en) A kind of method that light helps automatically controlled ion-exchange process and handles anion in low concentration wastewater
JP4033388B2 (en) Method for operating an electrolyte circulating battery
CN112176145A (en) Method for recovering radioactive waste metal
CN113896361A (en) Method for cleaning and disposing stainless steel pickling acid waste liquid and recycling resources
JP2620839B2 (en) Method of treating a chelating agent solution containing radioactive contaminants
CN106830204A (en) A kind of electrochemical cathode excites the method and device of permanganate degraded water pollutant
JPH03192662A (en) Cell capacity recovery method for redox-flow cell
JPH10308232A (en) Electrolyte circulation type battery with internal resistance recovery mechanism
JP2004079229A (en) Method of reactivating redox flow battery electrode
JP3987597B2 (en) Recycling method of positive electrode active material for used lead-acid battery
JPH08138718A (en) Operating method of redox-flow cell
CN109437179A (en) A kind of purification process of graphene oxide
CN205088042U (en) Chemical engineering sewage treatment device
JP2000200615A (en) Reactivating method of electrode and redox-flow secondary battery
KR102273060B1 (en) Method for removing Mn in solution after SP-HyBRID decontamination and SP-HyBRID decontamination comprising the same
US20230352649A1 (en) Regenerating lead acid batteries
CN220371903U (en) Leaching-regenerating cyclic utilization device for soil heavy metals
JP2024002321A (en) Fuel cell system and metal ion removing device
CN116435635A (en) Deep impurity removal and recovery method for graphite negative electrode waste of waste lithium battery
JP3879271B2 (en) Method and apparatus for treating radioactive waste