JP2004111152A - Transparent conductive film - Google Patents

Transparent conductive film Download PDF

Info

Publication number
JP2004111152A
JP2004111152A JP2002270383A JP2002270383A JP2004111152A JP 2004111152 A JP2004111152 A JP 2004111152A JP 2002270383 A JP2002270383 A JP 2002270383A JP 2002270383 A JP2002270383 A JP 2002270383A JP 2004111152 A JP2004111152 A JP 2004111152A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
aliphatic
polyimide
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002270383A
Other languages
Japanese (ja)
Other versions
JP4247448B2 (en
Inventor
Hideta Kihara
木原 秀太
Hiroki Oguro
小黒 寛樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002270383A priority Critical patent/JP4247448B2/en
Priority to US10/284,370 priority patent/US6962756B2/en
Priority to CNB021483000A priority patent/CN1285080C/en
Priority to TW91132409A priority patent/TWI282560B/en
Priority to KR1020020067475A priority patent/KR100952588B1/en
Publication of JP2004111152A publication Critical patent/JP2004111152A/en
Application granted granted Critical
Publication of JP4247448B2 publication Critical patent/JP4247448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive film which has low surface resistance, excellent transparency, heat resistance and gas barrier properties and which is suitable for a transparent electrode of an organic electroluminescent display element, a liquid crystal display element, etc. <P>SOLUTION: The transparent conductive film having low surface resistance, excellent transparency, heat resistance and gas barrier properties is obtained by sputtering or vapor depositing an at least one gas barrier layer made of a silicon oxide and/or a silicon nitride and a transparent conductive thin film made of a metal oxide, such as, a tin oxide, an indium oxide, an indium-tin composite oxide, zinc oxide, etc., under the condition of a substrate temperature of 200°C or higher on the substrate which contains an aliphatic tetracarboxylic dianhydride having 4-29 carbon atoms or its derivative and an aliphatic and/or aromatic diamine having 2-29 carbon atoms as constituents and which is made of an aliphatic polyimide having low refractive properties, high heat resistance, low thermal expansion properties, etc. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は透明性および耐熱性が良好なポリイミドを用いた透明導電性フィルムに関するものであり、液晶表示素子、有機EL表示素子の透明基板やタッチパネルの透明電極などの電子・光デバイスに利用される。
【0002】
【従来の技術】
透明な高分子フィルム上に酸化スズ、酸化インジウム、インジウム−スズ複合酸化物、酸化亜鉛などの透明な導電性薄膜を形成した透明導電性フィルムは、液晶表示素子、有機EL表示素子やタッチパネルの透明電極などの電子・光デバイスに広く利用されている。
【0003】
基材になる透明な高分子フィルムとしては、ポリエチレンテレフタレートやポリカーボネート等が使用されている(例えば、特許文献1参照。)が、これらのフィルムは耐熱性が不充分で、透明導電性薄膜を製膜するプロセスの温度を低く保つ必要があり、そのために透明導電膜の結晶化度が低く、表面抵抗値が高くなるという欠点がある。また、耐熱性の高いプラスチック基板の構成材料として、ポリアリレート樹脂やポリエーテルスルホン樹脂等も一部使用されている(例えば、特許文献2参照。)が、透明導電性薄膜を200℃以上の高温で製膜する場合や透明導電性フィルム上にさらに薄膜トランジスタ(TFT)形成を行う場合には、このレベルの耐熱性でも不充分である。
【0004】
【特許文献1】特開平06−251631号公報(第2−3頁)
【特許文献2】特開平06−044826号公報(第2−3頁)
【0005】
一方、耐熱性や寸法安定性に優れる樹脂としてポリイミド樹脂が知られている。芳香族テトラカルボン酸二無水物と芳香族ジアミン類との重縮合反応により得られる全芳香族ポリイミド樹脂は400℃以上の高温で使用可能、、熱膨張係数が小さく、寸法安定性が良い等の優れた特性を有し、高温化で使用するフィルム、電線被覆、接着剤、塗料等の原料として、航空宇宙産業、電子産業を中心に様々な分野で利用されている。しかし、この様な全芳香族ポリイミド樹脂は、淡黄色から赤褐色に着色している為に、透明導電性フィルムの基材には不向きである。
【0006】
【発明が解決しようとする課題】
本発明の課題は、上述の従来用いられてきた透明導電性フィルムの有する問題点を解決し、透明性、耐熱性に優れ、表面抵抗値が低い透明導電性フィルムを提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは上記の課題を解決するため鋭意検討し、本発明に到達した。 すなわち本発明は、下記の一般式Iで示される繰り返し単位を有する脂肪族ポリイミドからなる基板上に透明導電性薄膜が積層された透明導電性フィルムに関する。
【0008】
【化2】

Figure 2004111152
(式中、Rは炭素数4〜39の4価の脂肪族基であり、Φは炭素数
2〜39の2価の脂肪族基または芳香族基である)
【0009】
さらにまた本発明は、一般式Iで示される繰り返し単位を有する脂肪族ポリイミドからなる基板上に少なくとも1層の酸化ケイ素および/または窒化ケイ素からなるガスバリア層と透明導電性薄膜とが積層された透明導電性フィルムに関する。
【0010】
【発明の実施の形態】
本発明に用いられる一般式Iの脂肪族ポリイミドは、4価の脂肪族テトラカルボン酸と2価のジアミンとを構成成分とするポリイミドであり、脂肪族テトラカルボン酸またはその誘導体とジアミンまたはその誘導体とを反応させることにより得られる。脂肪族テトラカルボン酸またはその誘導体としては、脂肪族テトラカルボン酸、脂肪族テトラカルボン酸エステル類、脂肪族テトラカルボン酸二無水物などが挙げられるが、好ましいのは脂肪族テトラカルボン酸二無水物である。ジアミンおよびその誘導体としては、ジアミン、ジイソシアネート、ジアミノジシラン類などが上げられるが、好ましいのはジアミンである。
【0011】
本発明の脂肪族ポリイミドの合成に用いられる脂肪族テトラカルボン酸二無水物としては、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,4,5−シクロペンタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2,2,2]オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物などが例示されるが、特に好ましいのは1,2,4,5−シクロヘキサンテトラカルボン酸二無水物である。
【0012】
一般に、脂肪族ジアミンを構成成分とするポリイミドは、中間生成物であるポリアミド酸とジアミンが強固な錯体を形成するために高分子化しにくいので、錯体の溶解性が比較的高い溶剤−例えばクレゾール−を用いるなどの工夫が必要になる。しかし、1,2,4,5−シクロへキサンテトラカルボン酸二無水物と脂肪族ジアミンを構成成分とするポリイミドでは、ポリアミド酸とジアミンの錯体は比較的弱い結合で結ばれているので、高分子量化容易で、フレキシブルなフィルムが得られ易い。
【0013】
本発明の脂肪族ポリイミドの合成に用いられるジアミンは、脂肪族ジアミンであっても芳香族ジアミンであってもよく、それらの混合物でもよいが、特に好ましいのは脂肪族ジアミンである。脂肪族ジアミンに芳香族ジアミンを併用する場合、脂肪族ジアミンに対する芳香族ジアミンの重量比率が大きくなるほど全光線透過率は小さくなるので、混合重量比率は3:1以下が好ましい。
【0014】
本発明の脂肪族ポリイミドの合成に用いられる脂肪族ジアミンとしては、例えば、エチレンジアミン、ヘキサメチレンジアミン、ポリエチレングリコールビス(3−アミノプロピル)エーテル、ポリプロピレングリコールビス(3−アミノプロピル)エーテル、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、メタキシリレンジアミン、パラキシリレンジアミン、イソフォロンジアミン、ノルボルナンジアミン、シロキサンジアミン類などが挙げられる。
【0015】
さらに、本発明の脂肪族ポリイミドの合成に用いられる芳香族ジアミンとしては、例えば、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、2,2−ビス(4−アミノフェニル)プロパン、メタフェニレンジアミン、パラフェニレンジアミン、ジアミノベンゾフェノン、2,6−ジアミノナフタレン、1,5−ジアミノナフタレンなどが挙げられる。
【0016】
本発明に用いられるポリイミド樹脂を製造するに当たっては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、テトラメチレンスルホン、P−クロルフェノール、m−クレゾール、2−クロル−4−ヒドロキシトルエンなどの溶剤が用いられる。
【0017】
本発明に用いられるポリイミドフィルムは、ジアミンの溶液に酸二無水物を添加、あるいは酸二無水物の溶液にジアミンを添加し、好ましくは80℃以下、特に室温付近ないしそれ以下の温度に保ってポリアミド酸溶液を得た後、その溶液をガラス板、金属板などの基板上に塗布し、200℃〜350℃に加熱して脱水反応を行うことにより製造される。また、下記の(1)から(3)の方法でポリイミド溶液を直接調整した後、その溶液をガラス板、金属板などの基板上に塗布し、200℃〜350℃に加熱して溶剤を蒸発させることにより製造される。
【0018】
(1)反応中間体のポリアミド酸溶液にトルエンあるいはキシレンなどの共沸脱水溶剤を添加して、生成水を共沸により系外へ除きつつ脱水反応を行い、ポリイミド溶液を得る。
(2)反応中間体のポリアミド酸溶液に無水酢酸などの脱水剤を用いてイミド化させた後、メタノールなどのポリイミドの溶解性が乏しい溶剤を添加して、ポリイミドを沈殿させ、ろ過・洗浄・乾燥により固体として分離し、N,N−ジメチルアセトアミドなどの溶剤に溶解させたポリイミド溶液を得る。イミドカに際しては、触媒としてトリエチルアミン、ピリジンあるいはβ―ピコリンなどの3級アミンを併用することが出来る。
(3)クレゾールなどの高沸点溶剤を用いてポリアミド酸溶液を調整し、そのまま150℃以上に保ってポリイミド化させた後、メタノールなどのポリイミドの溶解性が乏しい溶剤を添加して、ポリイミドを沈殿させ、ろ過・洗浄・乾燥により固体として分離し、N,N−ジメチルアセトアミドなどの溶剤に溶解させたポリイミド溶液を得る。
【0019】
透明性フィルムを有機EL素子や液晶表示素子などのディスプレーの基板に用いる場合、低屈折率が求められる。屈折率が大きいと反射率が大きくなり、表示能力が著しく低下する。本発明に用いられるポリイミドフィルムは、脂肪族の酸二無水物を用いることにより、屈折率<1.61が達成され、ディスプレーのプラスチック基板として好適に使用される。
【0020】
本発明における透明導電性薄膜層としては、公知の金属酸化物膜等が適用できる。例えば、不純物としてスズ、テルル、カドミウム、モリブテン、タングステン、フッ素、亜鉛、ゲルマニウム等を添加した酸化インジウム、酸化カドミウム及び酸化スズ、不純物としてアルミニウムを添加した酸化亜鉛、酸化チタン等の金属酸化物膜が挙げられる。中でも酸化スズを2〜15重量%含有した酸化インジウム(ITO)の薄膜が、透明性、導電性が優れており、好ましく用いられる。上記透明導電性薄膜層の膜厚は目的の表面抵抗に応じて設定されるが、5nm〜10nmが好ましい。
【0021】
これらの透明導電性薄膜層をポリイミドフィルム上に直接またはバリア層を介して積層する場合、スパッタ法、真空蒸着法、イオンプレーティング法、プラズマCVD法等の気相中より材料を堆積させて膜形成する気相堆積法が適用される。透明導電性薄膜層の比抵抗を1mΩ・cm以下にするためには、製膜時の基材温度を250℃から350℃とする必要があるために、ポリイミド基材のガラス転移温度は250℃以上が好ましい。
【0022】
本発明の透明導電性フィルムを有機EL素子や液晶表示素子用の電極基板として用いる場合は、ポリイミドフィルム上に少なくとも一層のガスバリヤー層を積層することが好ましい。ガスバリヤー層としては、珪素、アルミニウム、マグネシウムおよび亜鉛からなる群から選ばれる1種または2種以上の金属を主成分とする金属酸化物または金属窒化物を挙げることができる。これらは、ガスバリヤー性に優れている材料として知られているものである。これら酸化物の層は例えばスパッタ法、真空蒸着法、イオンプレーティング法、プラズマCVD法等の気相中より材料を堆積させて膜形成する気相堆積法により作製することができる。なお、ガスバリヤー層および透明導電性薄膜層等を形成する際に、亀裂や剥離の発生を防ぐためには、ポリイミド基材のガラス転移温度よりも低い温度における線膨張係数が、45ppm/℃以下であることが好ましい。
【0023】
【実施例】
以下、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例により何ら制限されるものではない。
【0024】
参考例
1,2,4,5−シクロヘキサンテトラカルボン酸二無水物の合成
内容積5リットルのハステロイ製(HC22)オートクレーブにピロメリット酸552g、活性炭にRhを担持させた触媒(エヌ・イーケムキャット(株)製)200g、水1656gを仕込み、攪拌をしながら反応器内を窒素ガスで置換した。次に水素ガスで反応器内を置換し、反応器の水素圧を5.0MPaとして60℃まで昇温した。水素圧を5.0MPaに保ちながら2時間反応させた。反応器内の水素ガスを窒素ガスで置換し、反応液をオートクレーブより抜き出し、この反応液を熱時濾過して触媒を分離した。濾過液をロータリーエバポレーターで減圧下に水を飛ばして濃縮し、結晶を析出させた。析出した結晶を室温で固液分離し、乾燥して1,2,4,5−シクロヘキサンテトラカルボン酸481g(収率85.0%)を得た。
【0025】
続いて、得られた1,2,4,5−シクロヘキサンテトラカルボン酸450gと無水酢酸4000gとを、5リットルのガラス製セパラブルフラスコ(ジムロート冷却管付)にを仕込み、攪拌をしながら反応器内を窒素ガスで置換した。窒素ガス雰囲気下に溶媒の還流温度まで昇温し、10分間溶媒を還流させた。攪拌しながら室温まで冷却し、結晶を析出させた。析出した結晶を固液分離し、乾燥して一次結晶を得た。更に分離母液をロータリーエバポレーターで減圧下に濃縮し、結晶を析出させた。この結晶を固液分離し、乾燥して二次結晶を得た。一次結晶、二次結晶を合わせて1,2,4,5−シクロヘキサンテトラカルボン酸二無水物375gが得られた(無水化の収率96.6%)。
【0026】
実施例1
温度計、撹拌器、窒素導入環、側管付き滴下ロート、分縮器付き冷却管を備えた500mL5つ口フラスコに、参考例で合成した1,2,4,5−シクロヘキサンテトラカルボン酸二無水物11.2g(0.05モル)と溶剤としてN−メチル−2−ピロリドン37.7gを仕込んで溶解させ、氷水バスを用いて5℃に冷却した。同温度に保ちながら、4、4‘−ジアミノジフェニルエーテル10.0g(0.05モル)を40.0gのN−メチル−2−ピロリドンに溶解させた溶液を滴下ロートより30分かけて滴下し、滴下終了後氷水バスを外して室温下2時間撹拌した。次に共沸脱水溶剤としてキシレン30.0gを添加して170℃に昇温し、留出液を留去させながら、4時間かけて200℃まで昇温て反応終了とし、内温が60℃になるまで空冷して反応液を取り出した。この溶液の重量は87.9g、また留出液総重量は37.7gであった。得られた溶液をガラス板に塗布し、50℃のホットプレート上で1時間乾燥後、ガラス板から剥がして自立膜を得、ステンレス製の固定治具に固定して熱風乾燥器中200℃で1時間乾燥させ、薄茶色のフレキシブルな膜厚100μmのフィルムを得た。このフィルムのIRスペクトルを図1に示す。ν(C=O)1772、1700(cm−1)よりイミドの生成が確認された。さらにこのフィルム0.5gを濃硫酸10mlに溶解させて30℃の温度条件で測定した固有粘度ηは、0.58、DSCで測定したガラス転移温度は315℃であった。
【0027】
得られれたポリイミドフィルム上に、スパッタ法にて厚さ500nmの酸化ケイ素層を、さらにその上に100nmの酸化インジウム・スズ(ITO,In:Sn=9:1)を積層して、透明導電性フィルムを得た。
【0028】
実施例2
実施例1と同じ500mlの5つ口のフラスコに、参考例で合成した1,2,4,5−シクロヘキサンテトラカルボン酸二無水物(11.2g(0.05モル)と1,4−ビス(アミノメチル)シクロヘキサン7.1g(0.05モル)および溶剤としてm−クレゾールを60g仕込んで溶解させて100℃に昇温した。同温度で4時間撹拌した後、さらに約200℃に昇温して、還流下4時間反応を行い、反応終了とした。反応液を室温まで冷却した後、1000mlのメタノールに注ぎ入れてポリマーを沈殿させ、ろ過、メタノール洗浄を行った後、100℃の乾燥機中24時間乾燥させ、白色粉末9.58g(収率96.8%)を得た。この粉末のIRスペクトルを図2に示す。ν(C=O)1768、1695(cm−1)よりイミドの生成が確認された。さらにこの粉末0.5gを濃硫酸10mlに溶解させて30℃の温度条件で測定した固有粘度ηは、0.44、DSCで測定したガラス転移温度は256℃であり、ジメチルホルムアミドあるいはN−メチル−2−ピロリドンに可溶であることが確認された。
【0029】
得られたポリイミド粉末5gを25gのN−メチル−2−ピロリドンに溶解させた溶液をガラス板に塗布し、80℃のホットプレート上で1時間乾燥後、ガラス板から剥がして自立膜を得、ステンレス製の固定治具に固定して熱風乾燥器中200℃で1時間乾燥させ、無色透明でフレキシブルな膜厚100μmのフィルムを得た。得られたポリイミドフィルム上に、スパッタ法にて厚さ500nmの酸化ケイ素層を、さらにその上に100nmの酸化インジウム・スズ(ITO,In:Sn=9:1)を積層して、透明導電性フィルムを得た。
【0030】
比較例1
実施例1と同じ500mlの5つ口のフラスコに、4、4‘−ジアミノジフェニルエーテル10.0g(0.05モル)と溶剤としてジメチルアセトアミド37.7gを仕込んで溶解させ、窒素気流下室温にてピロメリット酸二無水物10.9g(0.05モル)を固体のまま約1時間かけて添加し、添加終了後室温下3時間撹拌し、ポリアミド酸溶液を得た。得られた溶液をガラス板に塗布し、50℃のホットプレート上で1時間乾燥後、ガラス板から剥がして自立膜を得、ステンレス製の固定治具に固定して熱風乾燥機中、100℃で3時間、200℃で3時間、250℃で2時間、300℃で1時間、さらに400℃で1時間の乾燥を行い、褐色でフレキシブルな膜厚100μmのフィルムを得た。得られたポリイミドフィルム上に、スパッタ法にて100nmの酸化インジウム・スズ(ITO,In:Sn=9:1)を積層して、透明導電性フィルムを得た。
【0031】
比較例2
100μmのPETフィルム(東レ(株):ルミラー#100)上に、スパッタ法にて100nmの酸化インジウム・スズ(ITO,In:Sn=9:1)を積層して、透明導電性フィルムを得た。
【0032】
実施例および比較例で得られたポリイミドフィルムおよび透明導電性フィルムの評価は以下のように行った。
<ガラス転移温度>島津製作所製示差走査熱量計装置(DSC−50)を用い、昇温速度10℃/minの条件でDSC測定を行い、ガラス転移温度を求めた。
<屈折率>(株)アタゴ製屈折率測定装置(DR−M2)を用い、589nmの干渉フィルターをセットして、23℃で屈折率を測定した。
<線膨張係数>セイコー電子工業(株)製熱機械的分析装置(TMA100)を用いて、昇温速度10℃/minの条件で測定を行い、100℃〜200℃の平均値を求めた。
<全光線透過率>JIS K7105に準拠し、全光線透過率をヘイズメーター(日本電色(株)製、Z−Σ80)を用いて測定した。
<表面抵抗率>JIS K7194に準拠し、4端子法で表面抵抗率を測定した。測定機は三菱油化(株)製、Lotest AMCP−T400を使用した。
<酸素透過率>JIS K7126に準拠し、酸素透過率測定装置(モダンコントロール社製、OX−TRAN10/50A)を用いてフィルムの酸素透過率を23℃、相対湿度60%の条件下で測定した。
<水蒸気透過率>JIS Z0208に準拠し、フィルムの水蒸気透過率を40℃、相対湿度90%の条件下で水蒸気透過率を測定した。
【0033】
【表1】
Figure 2004111152
【0034】
CTDA:シクロヘキサンテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
ODA:オキシジアニリン
BAC:ビス(アミノメチル)シクロヘキサン
【0035】
【発明の効果】
本発明により得られる透明導電性フィルムは、透明性および耐熱性が良好で、表面抵抗が低く、液晶表示素子、有機EL表示素子の透明基板やタッチパネルの透明電極などの電子・光デバイスに利用される。
【図面の簡単な説明】
【図1】実施例1で得られたポリイミドフィルムの赤外吸収スペクトル
【図2】実施例2で得られたポリイミド粉末の赤外吸収スペクトル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent conductive film using polyimide having good transparency and heat resistance, and is used for electronic and optical devices such as liquid crystal display elements, transparent substrates of organic EL display elements, and transparent electrodes of touch panels. .
[0002]
[Prior art]
A transparent conductive film in which a transparent conductive thin film such as tin oxide, indium oxide, indium-tin composite oxide, and zinc oxide is formed on a transparent polymer film is a liquid crystal display element, an organic EL display element, and a touch panel. Widely used in electronic and optical devices such as electrodes.
[0003]
Polyethylene terephthalate, polycarbonate, or the like is used as a transparent polymer film as a base material (see, for example, Patent Document 1), but these films are insufficient in heat resistance, and a transparent conductive thin film is produced. It is necessary to keep the temperature of the film forming process low, and there are disadvantages that the crystallinity of the transparent conductive film is low and the surface resistance value is high. In addition, polyarylate resin, polyethersulfone resin, and the like are partially used as a constituent material of a plastic substrate having high heat resistance (see, for example, Patent Document 2). This level of heat resistance is inadequate when the film is formed by the above method or when a thin film transistor (TFT) is further formed on the transparent conductive film.
[0004]
[Patent Document 1] Japanese Patent Application Laid-Open No. 06-251631 (page 2-3)
[Patent Document 2] Japanese Patent Application Laid-Open No. 06-044826 (page 2-3)
[0005]
On the other hand, a polyimide resin is known as a resin excellent in heat resistance and dimensional stability. The wholly aromatic polyimide resin obtained by polycondensation reaction of aromatic tetracarboxylic dianhydride and aromatic diamines can be used at a high temperature of 400 ° C. or higher, has a low thermal expansion coefficient, good dimensional stability, etc. It has excellent characteristics and is used in various fields, mainly in the aerospace industry and the electronics industry, as raw materials for films, wire coatings, adhesives, paints, etc. used at high temperatures. However, such a wholly aromatic polyimide resin is colored from light yellow to reddish brown, and thus is not suitable for a substrate of a transparent conductive film.
[0006]
[Problems to be solved by the invention]
The subject of this invention is providing the transparent conductive film which is excellent in transparency and heat resistance, and has a low surface resistance value, solving the problem which the above-mentioned transparent conductive film used conventionally.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied to solve the above problems, and have reached the present invention. That is, the present invention relates to a transparent conductive film in which a transparent conductive thin film is laminated on a substrate made of an aliphatic polyimide having a repeating unit represented by the following general formula I.
[0008]
[Chemical formula 2]
Figure 2004111152
(Wherein R is a tetravalent aliphatic group having 4 to 39 carbon atoms, and Φ is a divalent aliphatic group or aromatic group having 2 to 39 carbon atoms)
[0009]
Furthermore, the present invention provides a transparent laminate in which at least one gas barrier layer made of silicon oxide and / or silicon nitride and a transparent conductive thin film are laminated on a substrate made of an aliphatic polyimide having a repeating unit represented by the general formula I. The present invention relates to a conductive film.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The aliphatic polyimide of the general formula I used in the present invention is a polyimide composed of a tetravalent aliphatic tetracarboxylic acid and a divalent diamine, and includes an aliphatic tetracarboxylic acid or a derivative thereof and a diamine or a derivative thereof. It is obtained by reacting. Aliphatic tetracarboxylic acids or derivatives thereof include aliphatic tetracarboxylic acids, aliphatic tetracarboxylic acid esters, aliphatic tetracarboxylic dianhydrides, etc., preferably aliphatic tetracarboxylic dianhydrides. It is. Examples of diamines and derivatives thereof include diamines, diisocyanates, and diaminodisilanes, with diamines being preferred.
[0011]
Examples of the aliphatic tetracarboxylic dianhydride used for the synthesis of the aliphatic polyimide of the present invention include 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 1,2,4,5-cyclopentanetetracarboxylic. Acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, etc. Are particularly preferred, but 1,2,4,5-cyclohexanetetracarboxylic dianhydride is particularly preferred.
[0012]
Generally, a polyimide having an aliphatic diamine as a constituent component is difficult to be polymerized because a polyamic acid, which is an intermediate product, and a diamine form a strong complex, so that a solvent having a relatively high solubility of the complex, such as cresol, is used. It is necessary to devise such as using. However, in polyimides composed of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and aliphatic diamine, the complex of polyamic acid and diamine is bound by a relatively weak bond. It is easy to obtain a molecular weight and a flexible film is easily obtained.
[0013]
The diamine used for the synthesis of the aliphatic polyimide of the present invention may be an aliphatic diamine or an aromatic diamine, or a mixture thereof, but an aliphatic diamine is particularly preferable. When the aromatic diamine is used in combination with the aliphatic diamine, the total light transmittance decreases as the weight ratio of the aromatic diamine to the aliphatic diamine increases, so that the mixing weight ratio is preferably 3: 1 or less.
[0014]
Examples of the aliphatic diamine used in the synthesis of the aliphatic polyimide of the present invention include ethylene diamine, hexamethylene diamine, polyethylene glycol bis (3-aminopropyl) ether, polypropylene glycol bis (3-aminopropyl) ether, 1,3. -Bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, metaxylylenediamine, paraxylylenediamine, isophorone diamine, norbornane diamine, siloxane diamines and the like.
[0015]
Furthermore, examples of the aromatic diamine used for the synthesis of the aliphatic polyimide of the present invention include 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, and 2,2- Bis (4-aminophenyl) propane, metaphenylenediamine, paraphenylenediamine, diaminobenzophenone, 2,6-diaminonaphthalene, 1,5-diaminonaphthalene and the like can be mentioned.
[0016]
In producing the polyimide resin used in the present invention, for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, hexamethylphosphoramide, tetramethylene sulfone, Solvents such as P-chlorophenol, m-cresol, and 2-chloro-4-hydroxytoluene are used.
[0017]
The polyimide film used in the present invention is prepared by adding acid dianhydride to a diamine solution, or adding diamine to an acid dianhydride solution, preferably at a temperature of 80 ° C. or less, particularly near room temperature or lower. After the polyamic acid solution is obtained, the solution is applied on a substrate such as a glass plate or a metal plate and heated to 200 ° C. to 350 ° C. to perform a dehydration reaction. In addition, after directly adjusting the polyimide solution by the following methods (1) to (3), the solution is applied onto a substrate such as a glass plate or a metal plate, and heated to 200 ° C. to 350 ° C. to evaporate the solvent. Manufactured.
[0018]
(1) An azeotropic dehydration solvent such as toluene or xylene is added to the polyamic acid solution of the reaction intermediate, and a dehydration reaction is performed while removing generated water out of the system by azeotropy to obtain a polyimide solution.
(2) After imidizing the polyamic acid solution of the reaction intermediate with a dehydrating agent such as acetic anhydride, a solvent having poor solubility of polyimide such as methanol is added to precipitate the polyimide, followed by filtration, washing, A polyimide solution which is separated as a solid by drying and dissolved in a solvent such as N, N-dimethylacetamide is obtained. In the case of imidoca, a tertiary amine such as triethylamine, pyridine or β-picoline can be used in combination as a catalyst.
(3) Prepare a polyamic acid solution using a high-boiling solvent such as cresol, and keep it at 150 ° C. or higher to make a polyimide, and then add a solvent having poor polyimide solubility such as methanol to precipitate the polyimide. Then, it is separated as a solid by filtration, washing and drying to obtain a polyimide solution dissolved in a solvent such as N, N-dimethylacetamide.
[0019]
When a transparent film is used for a display substrate such as an organic EL element or a liquid crystal display element, a low refractive index is required. When the refractive index is large, the reflectance is increased and the display capability is remarkably deteriorated. The polyimide film used in the present invention achieves a refractive index <1.61 by using an aliphatic acid dianhydride, and is suitably used as a plastic substrate for display.
[0020]
As the transparent conductive thin film layer in the present invention, a known metal oxide film or the like can be applied. For example, metal oxide films such as indium oxide, cadmium oxide and tin oxide to which tin, tellurium, cadmium, molybdenum, tungsten, fluorine, zinc, germanium and the like are added as impurities, zinc oxide and titanium oxide to which aluminum is added as impurities, Can be mentioned. Among them, an indium oxide (ITO) thin film containing 2 to 15% by weight of tin oxide is excellent in transparency and conductivity, and is preferably used. Although the film thickness of the said transparent conductive thin film layer is set according to the target surface resistance, 5-10 nm is preferable.
[0021]
When laminating these transparent conductive thin film layers directly on a polyimide film or through a barrier layer, the material is deposited from the gas phase such as sputtering, vacuum deposition, ion plating, plasma CVD, etc. The vapor deposition method to be formed is applied. In order to reduce the specific resistance of the transparent conductive thin film layer to 1 mΩ · cm or less, it is necessary to set the substrate temperature during film formation to 250 ° C. to 350 ° C. Therefore, the glass transition temperature of the polyimide substrate is 250 ° C. The above is preferable.
[0022]
When the transparent conductive film of the present invention is used as an electrode substrate for an organic EL device or a liquid crystal display device, it is preferable to laminate at least one gas barrier layer on the polyimide film. Examples of the gas barrier layer include metal oxides or metal nitrides mainly composed of one or more metals selected from the group consisting of silicon, aluminum, magnesium, and zinc. These are known as materials having excellent gas barrier properties. These oxide layers can be manufactured by vapor deposition such as sputtering, vacuum deposition, ion plating, plasma CVD, or the like, in which a material is deposited in a vapor phase to form a film. In order to prevent the occurrence of cracks and peeling when forming a gas barrier layer, a transparent conductive thin film layer, etc., the linear expansion coefficient at a temperature lower than the glass transition temperature of the polyimide substrate is 45 ppm / ° C. or less. Preferably there is.
[0023]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. However, this invention is not restrict | limited at all by these Examples.
[0024]
Reference Example 1,2,4,5-Cyclohexanetetracarboxylic dianhydride synthesis A catalyst (N-Echemcat) in which 552 g of pyromellitic acid and Rh are supported on activated carbon in a 5-liter Hastelloy (HC22) autoclave having an internal volume of 5 liters 200 g and 1656 g of water were charged, and the inside of the reactor was replaced with nitrogen gas while stirring. Next, the inside of the reactor was replaced with hydrogen gas, and the temperature of the reactor was increased to 60 ° C. with a hydrogen pressure of 5.0 MPa. The reaction was carried out for 2 hours while maintaining the hydrogen pressure at 5.0 MPa. The hydrogen gas in the reactor was replaced with nitrogen gas, the reaction solution was extracted from the autoclave, and the reaction solution was filtered while hot to separate the catalyst. The filtrate was concentrated by removing water with a rotary evaporator under reduced pressure to precipitate crystals. The precipitated crystals were separated into solid and liquid at room temperature and dried to obtain 481, g (yield: 85.0%) of 1,2,4,5-cyclohexanetetracarboxylic acid.
[0025]
Subsequently, 450 g of the obtained 1,2,4,5-cyclohexanetetracarboxylic acid and 4000 g of acetic anhydride were charged into a 5 liter glass separable flask (with Dimroth condenser), and the reactor was stirred. The inside was replaced with nitrogen gas. The temperature was raised to the reflux temperature of the solvent under a nitrogen gas atmosphere, and the solvent was refluxed for 10 minutes. While stirring, the mixture was cooled to room temperature to precipitate crystals. The precipitated crystals were separated into solid and liquid and dried to obtain primary crystals. Further, the separated mother liquor was concentrated under reduced pressure using a rotary evaporator to precipitate crystals. The crystals were separated into solid and liquid and dried to obtain secondary crystals. The primary crystal and the secondary crystal were combined to obtain 375 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride (anhydrous yield of 96.6%).
[0026]
Example 1
1,2,4,5-Cyclohexanetetracarboxylic dianhydride synthesized in Reference Example in a 500 mL five-necked flask equipped with a thermometer, stirrer, nitrogen introduction ring, dropping funnel with side tube and condenser tube with a condenser 11.2 g (0.05 mol) of the product and 37.7 g of N-methyl-2-pyrrolidone as a solvent were charged and dissolved, and cooled to 5 ° C. using an ice water bath. While maintaining the same temperature, a solution prepared by dissolving 10.0 g (0.05 mol) of 4,4′-diaminodiphenyl ether in 40.0 g of N-methyl-2-pyrrolidone was dropped from the dropping funnel over 30 minutes, After completion of dropping, the ice water bath was removed and the mixture was stirred at room temperature for 2 hours. Next, 30.0 g of xylene was added as an azeotropic dehydration solvent, the temperature was raised to 170 ° C., and the reaction was completed by raising the temperature to 200 ° C. over 4 hours while distilling off the distillate. The reaction solution was taken out by air cooling until. The weight of this solution was 87.9 g, and the total weight of the distillate was 37.7 g. The obtained solution was applied to a glass plate, dried on a hot plate at 50 ° C. for 1 hour, then peeled off from the glass plate to obtain a self-supporting film, fixed on a stainless steel fixing jig, and heated in a hot air dryer at 200 ° C. It was dried for 1 hour to obtain a light brown flexible film having a thickness of 100 μm. The IR spectrum of this film is shown in FIG. The production | generation of imide was confirmed from (nu) (C = O) 1772, 1700 (cm < -1 >). Furthermore, 0.5 g of this film was dissolved in 10 ml of concentrated sulfuric acid, the intrinsic viscosity η measured under the temperature condition of 30 ° C. was 0.58, and the glass transition temperature measured by DSC was 315 ° C.
[0027]
On the obtained polyimide film, a silicon oxide layer having a thickness of 500 nm is laminated by sputtering, and further 100 nm of indium tin oxide (ITO, In: Sn = 9: 1) is laminated thereon to obtain a transparent conductive material. A film was obtained.
[0028]
Example 2
Into the same 500 ml five-necked flask as in Example 1, 1,2,4,5-cyclohexanetetracarboxylic dianhydride (11.2 g (0.05 mol) and 1,4-bis) synthesized in Reference Example were added. 7.1 g (0.05 mol) of (aminomethyl) cyclohexane and 60 g of m-cresol as a solvent were added and dissolved, and the temperature was raised to 100 ° C. After stirring at the same temperature for 4 hours, the temperature was further raised to about 200 ° C. After the reaction was completed for 4 hours under reflux, the reaction was completed, and the reaction solution was cooled to room temperature, poured into 1000 ml of methanol to precipitate a polymer, filtered, washed with methanol, and dried at 100 ° C. After drying in the machine for 24 hours, 9.58 g (yield 96.8%) of a white powder was obtained, and the IR spectrum of this powder is shown in Fig. 2. From ν (C = O) 1768 and 1695 (cm -1 ). Imi Furthermore, 0.5 g of this powder was dissolved in 10 ml of concentrated sulfuric acid and the intrinsic viscosity η measured at 30 ° C. was 0.44, and the glass transition temperature measured by DSC was 256 ° C. It was confirmed that it was soluble in dimethylformamide or N-methyl-2-pyrrolidone.
[0029]
A solution obtained by dissolving 5 g of the obtained polyimide powder in 25 g of N-methyl-2-pyrrolidone was applied to a glass plate, dried on an 80 ° C. hot plate for 1 hour, and then peeled off from the glass plate to obtain a self-supporting film. The film was fixed on a stainless steel fixing jig and dried at 200 ° C. for 1 hour in a hot air dryer to obtain a colorless, transparent and flexible film with a thickness of 100 μm. On the obtained polyimide film, a silicon oxide layer having a thickness of 500 nm is laminated by sputtering, and further 100 nm of indium tin oxide (ITO, In: Sn = 9: 1) is laminated thereon to obtain a transparent conductive material. A film was obtained.
[0030]
Comparative Example 1
In the same 500 ml five-necked flask as in Example 1, 10.0 g (0.05 mol) of 4,4′-diaminodiphenyl ether and 37.7 g of dimethylacetamide as a solvent were dissolved and dissolved at room temperature under a nitrogen stream. 10.9 g (0.05 mol) of pyromellitic dianhydride was added as a solid over about 1 hour, and after completion of the addition, the mixture was stirred at room temperature for 3 hours to obtain a polyamic acid solution. The obtained solution was applied to a glass plate, dried on a hot plate at 50 ° C. for 1 hour, then peeled off from the glass plate to obtain a self-supporting film, fixed on a stainless steel fixing jig, and heated in a hot air dryer at 100 ° C. For 3 hours, 200 ° C. for 3 hours, 250 ° C. for 2 hours, 300 ° C. for 1 hour, and further 400 ° C. for 1 hour to obtain a brown and flexible film having a thickness of 100 μm. On the obtained polyimide film, 100 nm of indium tin oxide (ITO, In: Sn = 9: 1) was laminated by sputtering to obtain a transparent conductive film.
[0031]
Comparative Example 2
On a 100 μm PET film (Toray Industries, Inc .: Lumirror # 100), 100 nm indium tin oxide (ITO, In: Sn = 9: 1) was laminated by sputtering to obtain a transparent conductive film. .
[0032]
The polyimide films and transparent conductive films obtained in Examples and Comparative Examples were evaluated as follows.
<Glass Transition Temperature> Using a differential scanning calorimeter device (DSC-50) manufactured by Shimadzu Corporation, DSC measurement was performed under a temperature rising rate of 10 ° C./min to obtain a glass transition temperature.
<Refractive Index> Using Atago Co., Ltd. refractive index measuring device (DR-M2), an interference filter of 589 nm was set, and the refractive index was measured at 23 ° C.
<Linear expansion coefficient> Using a thermomechanical analyzer (TMA100) manufactured by Seiko Electronic Industry Co., Ltd., measurement was performed under the condition of a temperature rising rate of 10 ° C / min, and an average value of 100 ° C to 200 ° C was obtained.
<Total light transmittance> Based on JIS K7105, the total light transmittance was measured using a haze meter (Nippon Denshoku Co., Ltd. product, Z-Σ80).
<Surface resistivity> The surface resistivity was measured by a four-terminal method in accordance with JIS K7194. The measuring machine used was Lotest AMCP-T400 manufactured by Mitsubishi Yuka Co., Ltd.
<Oxygen permeability> Based on JIS K7126, the oxygen permeability of the film was measured under the conditions of 23 ° C. and 60% relative humidity using an oxygen permeability measuring device (Modern Control, OX-TRAN10 / 50A). .
<Water vapor transmission rate> Based on JIS Z0208, the water vapor transmission rate of the film was measured under the conditions of 40 ° C. and relative humidity of 90%.
[0033]
[Table 1]
Figure 2004111152
[0034]
CTDA: cyclohexanetetracarboxylic dianhydride PMDA: pyromellitic dianhydride ODA: oxydianiline BAC: bis (aminomethyl) cyclohexane
【The invention's effect】
The transparent conductive film obtained by the present invention has good transparency and heat resistance, low surface resistance, and is used in electronic and optical devices such as liquid crystal display elements, transparent substrates of organic EL display elements and transparent electrodes of touch panels. The
[Brief description of the drawings]
1 is an infrared absorption spectrum of the polyimide film obtained in Example 1. FIG. 2 is an infrared absorption spectrum of the polyimide powder obtained in Example 2.

Claims (7)

下記の一般式Iで示される繰り返し単位を有する脂肪族ポリイミドからなる基板上に透明導電性薄膜が積層された透明導電性フィルム。
Figure 2004111152
(式中、Rは炭素数4〜39の4価の脂肪族基であり、Φは炭素数
2〜39の2価の脂肪族基または芳香族基である)
A transparent conductive film in which a transparent conductive thin film is laminated on a substrate made of an aliphatic polyimide having a repeating unit represented by the following general formula I.
Figure 2004111152
(Wherein R is a tetravalent aliphatic group having 4 to 39 carbon atoms, and Φ is a divalent aliphatic group or aromatic group having 2 to 39 carbon atoms)
一般式Iで示される繰り返し単位を有する脂肪族ポリイミドからなる基板上に少なくとも1層の酸化ケイ素および/または窒化ケイ素からなるガスバリア層と透明導電性薄膜とが積層された透明導電性フィルム。A transparent conductive film in which a gas barrier layer made of at least one silicon oxide and / or silicon nitride and a transparent conductive thin film are laminated on a substrate made of an aliphatic polyimide having a repeating unit represented by the general formula I. 一般式Iで示される繰り返し単位を有する脂肪族ポリイミドの屈折率が1.61以下であることを特徴とする請求項1〜請求項2記載の透明導電性フィルム。3. The transparent conductive film according to claim 1, wherein the refractive index of the aliphatic polyimide having a repeating unit represented by the general formula I is 1.61 or less. 一般式Iで示される繰り返し単位を有する脂肪族ポリイミドのガラス転移温度が250℃以上であることを特徴とする請求項1〜請求項3記載の透明導電性フィルム。The transparent conductive film according to claim 1, wherein the aliphatic polyimide having the repeating unit represented by the general formula I has a glass transition temperature of 250 ° C. or higher. 一般式Iで示される繰り返し単位を有する脂肪族ポリイミドのガラス転移温度よりも低い温度における線膨張係数が、45ppm/℃以下であることを特徴とする請求項1〜請求項4記載の透明導電性フィルム。The linear conductivity coefficient at a temperature lower than the glass transition temperature of the aliphatic polyimide having the repeating unit represented by the general formula I is 45 ppm / ° C. or less, and the transparent conductive material according to claim 1. the film. 一般式IのRがシクロヘキサン環であることを特徴とする請求項1〜請求項5記載の透明導電性フィルム。6. The transparent conductive film according to claim 1, wherein R in the general formula I is a cyclohexane ring. 請求項1〜請求項6記載の透明導電性フィルム上に少なくとも発光層と電子を注入する陰極とを積層してなる有機EL素子。The organic electroluminescent element formed by laminating | stacking at least a light emitting layer and the cathode which injects an electron on the transparent conductive film of Claims 1-6.
JP2002270383A 2001-11-02 2002-09-17 Transparent conductive film Expired - Lifetime JP4247448B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002270383A JP4247448B2 (en) 2002-09-17 2002-09-17 Transparent conductive film
US10/284,370 US6962756B2 (en) 2001-11-02 2002-10-31 Transparent electrically-conductive film and its use
CNB021483000A CN1285080C (en) 2001-11-02 2002-11-01 Transparent conducting film and its use
TW91132409A TWI282560B (en) 2001-11-02 2002-11-01 Transparent electrically-conductive film and its use
KR1020020067475A KR100952588B1 (en) 2001-11-02 2002-11-01 Transparent electrically-conductive film and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002270383A JP4247448B2 (en) 2002-09-17 2002-09-17 Transparent conductive film

Publications (2)

Publication Number Publication Date
JP2004111152A true JP2004111152A (en) 2004-04-08
JP4247448B2 JP4247448B2 (en) 2009-04-02

Family

ID=32268033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002270383A Expired - Lifetime JP4247448B2 (en) 2001-11-02 2002-09-17 Transparent conductive film

Country Status (1)

Country Link
JP (1) JP4247448B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085541A (en) * 2003-09-05 2005-03-31 Jsr Corp Manufacturing method of transparent conductive layered product and touch panel
JP2005338394A (en) * 2004-05-26 2005-12-08 Mitsubishi Gas Chem Co Inc Color filter substrate
JP2006083209A (en) * 2004-09-14 2006-03-30 Fuji Photo Film Co Ltd Optical film and image display device
WO2006112286A1 (en) * 2005-04-14 2006-10-26 Mitsubishi Gas Chemical Company, Inc. Process for producing polyimide film
KR100717375B1 (en) 2005-07-04 2007-05-10 부산대학교 산학협력단 Fully Aliphatic Polyimide with Enhanced Flexibility and Optical Transparency
WO2013021942A1 (en) 2011-08-08 2013-02-14 Jx日鉱日石エネルギー株式会社 Transparent film, transparent conductive laminate, and touch panel, solar cell and display device, using same
JP5224011B2 (en) * 2011-04-15 2013-07-03 東洋紡株式会社 LAMINATE, MANUFACTURING METHOD THEREOF, AND DEVICE STRUCTURE MANUFACTURING METHOD USING THE SAME
WO2013114685A1 (en) * 2012-02-01 2013-08-08 東洋紡株式会社 Laminate, method for producing same, and method for producing device structure using same
US9456495B2 (en) 2012-09-26 2016-09-27 Jx Nippon Oil & Energy Corporation Norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic acid and ester thereof, method for producing norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, polyimide obtained by using the same, and method for producing polyimide
JP2016186936A (en) * 2016-05-30 2016-10-27 新日鉄住金化学株式会社 Method for producing transparent conductive film
JP2017073348A (en) * 2015-10-09 2017-04-13 新日鉄住金マテリアルズ株式会社 Metal laminate substrate for organic el element and manufacturing method for the same
KR20200098641A (en) 2017-12-20 2020-08-20 스미또모 가가꾸 가부시키가이샤 Transparent film substrate for touch sensor panel and touch sensor panel using the same
KR20210146921A (en) 2019-03-27 2021-12-06 가부시키가이샤 오사카소다 Polyamic acid composition, polyimide composition, and polyimide molded article
WO2023199718A1 (en) * 2022-04-15 2023-10-19 三菱瓦斯化学株式会社 Copolyimide

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085541A (en) * 2003-09-05 2005-03-31 Jsr Corp Manufacturing method of transparent conductive layered product and touch panel
JP2005338394A (en) * 2004-05-26 2005-12-08 Mitsubishi Gas Chem Co Inc Color filter substrate
JP4525903B2 (en) * 2004-05-26 2010-08-18 三菱瓦斯化学株式会社 Color filter substrate
JP2006083209A (en) * 2004-09-14 2006-03-30 Fuji Photo Film Co Ltd Optical film and image display device
JP4490217B2 (en) * 2004-09-14 2010-06-23 富士フイルム株式会社 Optical film and image display device
WO2006112286A1 (en) * 2005-04-14 2006-10-26 Mitsubishi Gas Chemical Company, Inc. Process for producing polyimide film
JPWO2006112286A1 (en) * 2005-04-14 2008-12-11 三菱瓦斯化学株式会社 Method for producing polyimide film
US7871554B2 (en) 2005-04-14 2011-01-18 Mitsubishi Gas Chemical Company, Inc. Process for producing polyimide film
JP4826583B2 (en) * 2005-04-14 2011-11-30 三菱瓦斯化学株式会社 Method for producing polyimide film
KR100717375B1 (en) 2005-07-04 2007-05-10 부산대학교 산학협력단 Fully Aliphatic Polyimide with Enhanced Flexibility and Optical Transparency
JP5224011B2 (en) * 2011-04-15 2013-07-03 東洋紡株式会社 LAMINATE, MANUFACTURING METHOD THEREOF, AND DEVICE STRUCTURE MANUFACTURING METHOD USING THE SAME
WO2013021942A1 (en) 2011-08-08 2013-02-14 Jx日鉱日石エネルギー株式会社 Transparent film, transparent conductive laminate, and touch panel, solar cell and display device, using same
US9768328B2 (en) 2011-08-08 2017-09-19 Jx Nippon Oil & Energy Corporation Transparent film, transparent electro-conductive laminate, and touch panel, solar cell, and display device using the same
WO2013114685A1 (en) * 2012-02-01 2013-08-08 東洋紡株式会社 Laminate, method for producing same, and method for producing device structure using same
US9456495B2 (en) 2012-09-26 2016-09-27 Jx Nippon Oil & Energy Corporation Norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic acid and ester thereof, method for producing norbornane-2-spiro-α-cycloalkanone-α′-spiro-2″-norbornane-5,5″,6,6″-tetracarboxylic dianhydride, polyimide obtained by using the same, and method for producing polyimide
JP2017073348A (en) * 2015-10-09 2017-04-13 新日鉄住金マテリアルズ株式会社 Metal laminate substrate for organic el element and manufacturing method for the same
JP2016186936A (en) * 2016-05-30 2016-10-27 新日鉄住金化学株式会社 Method for producing transparent conductive film
KR20200098641A (en) 2017-12-20 2020-08-20 스미또모 가가꾸 가부시키가이샤 Transparent film substrate for touch sensor panel and touch sensor panel using the same
KR20210146921A (en) 2019-03-27 2021-12-06 가부시키가이샤 오사카소다 Polyamic acid composition, polyimide composition, and polyimide molded article
WO2023199718A1 (en) * 2022-04-15 2023-10-19 三菱瓦斯化学株式会社 Copolyimide

Also Published As

Publication number Publication date
JP4247448B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US6962756B2 (en) Transparent electrically-conductive film and its use
JP6721070B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
KR101238967B1 (en) Process for producing polyimide film
JP2003141936A (en) Transparent conductive film
US9073297B2 (en) Method for manufacturing transparent, heat-resistant gas-barrier film
JP4247448B2 (en) Transparent conductive film
WO2016063993A1 (en) Polyimide film, polyimide precursor, and polyimide
WO2015053312A1 (en) Polyimide precursor, polyimide, polyimide film, varnish, and substrate
WO2016063988A1 (en) Polyimide precursor, polyimide, and polyimide film
JP2003168800A (en) Thin film transistor substrate
WO2006022207A1 (en) Metal-clad white laminate
CN111363354A (en) Polyimide colorless transparent film, preparation method thereof and optical PI film
JP2009286854A (en) Polyesterimide precursor and polyesterimide
JP2008101187A (en) Polyesterimide and method for producing the same
KR20060049446A (en) Color filter substrate
JP5124921B2 (en) Metal-clad white laminate
JP6687442B2 (en) Utilization of polyamic acid, polyimide, polyamic acid solution, and polyimide
JP2009286853A (en) Polyesterimide precursor and polyesterimide
JP2007314443A (en) Ester group-containing tetracarboxylic acid compound, polyesterimide precursror, polyesterimide, and method for producing them
CN113348200A (en) Method for producing polyimide resin powder
WO2022071443A1 (en) Polyamidimide copolymer and film which uses same
WO2024122599A1 (en) Multilayer body
JP2021178881A (en) Polyamide acid, polyamide acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
KR20230092934A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate, electronic device, and method for producing polyimide film
CN115216005A (en) Polyamic acid, polyimide, assembly containing polyamic acid and polyimide and forming method of assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080625

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080801

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080806

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

TRDD Decision of grant or rejection written
A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4247448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

EXPY Cancellation because of completion of term