JP2004111072A - Flat angular ferromagnetic conductor and its manufacturing method, enamel-coated flat angular ferromagnetic wire, self-fusible enamel-coated flat angular ferromagnetic wire and ferromagnetic flat cable using the conductor - Google Patents

Flat angular ferromagnetic conductor and its manufacturing method, enamel-coated flat angular ferromagnetic wire, self-fusible enamel-coated flat angular ferromagnetic wire and ferromagnetic flat cable using the conductor Download PDF

Info

Publication number
JP2004111072A
JP2004111072A JP2002268216A JP2002268216A JP2004111072A JP 2004111072 A JP2004111072 A JP 2004111072A JP 2002268216 A JP2002268216 A JP 2002268216A JP 2002268216 A JP2002268216 A JP 2002268216A JP 2004111072 A JP2004111072 A JP 2004111072A
Authority
JP
Japan
Prior art keywords
ferromagnetic
conductor
rectangular
flat
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002268216A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitazawa
北沢 弘
Mamoru Takizawa
滝沢 守
Makoto Ide
井出 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP2002268216A priority Critical patent/JP2004111072A/en
Publication of JP2004111072A publication Critical patent/JP2004111072A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat angular ferromagnetic conductor for magnetic shielding exhibiting noise suppression effect as a wire rod for coil for various electric-devices or a signal cable such as a flat cable and its manufacturing method, an enamel-coated flat angular ferromagnetic wire, a self-fusible enamel-coated flat angular ferromagnetic wire and a ferromagnetic flat cable using the conductor. <P>SOLUTION: A copper wire is worked by rolling to form a flat angular copper conductor 1, the flat angular copper conductor 1 is annealed for removing stress distortion and electrolytically degreased subsequently. Then, the flat angular copper conductor 1 is electrically plated with iron after the annealing to form an iron electrodeposited film 2, and electrically plated with nickel to form a nickel electrodeposited film 3 subsequently. Then, the flat angular copper conductor 1 provided with the nickel electrodeposited film 3 is heat-treated in high temperature nitrogen gas atmosphere for releasing electrodeposition stress to manufacture the flat angular ferromagnetism copper conductor 10. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、各種電子機器部品のコイル用線材或いは信号ケーブル用線材として使用される、磁気シールド用平角強磁性導体およびその製造方法、及びエナメル被覆平角強磁性線、自己融着性エナメル被覆平角強磁性線および強磁性フラットケーブルに関する。
【0002】
【従来の技術】
近時、電子機器部品の軽薄短小化が進捗され、それらに使用されるあらゆる配線材に於いてもファインパターン化、薄肉化がその限界を日進月歩更新している状況にある。反面、それら技術に付随する形で発生ノイズによる電磁障害が日常生活と密接したエリアで見え始めてきている。
パソコン周辺機器や携帯電話などの情報機器、テレビや電子レンジのような家庭用機器などあらゆる電気・電子機器は本来の機能を動作させる際、電磁気エネルギーを発生する。電磁気エネルギーは基本的に、機能動作(データ伝送、記憶、映像表示、記録など)に必要な信号エネルギーと、必要動作エネルギーに付随して発生する不要放射エネルギーから成り立つ。そして、この不要放射エネルギーを少なく抑制し電子機器に電磁障害を引き起こさないレベルに発生ノイズを抑えることが必要とされている。
なお、上述したノイズ発生問題とは別の観点ではあるが、銅導体の外周に純鉄等の強磁性体のメッキ層を設け、更にその外周にエナメル塗料を塗布焼き付けしたエナメル絶縁電線を使用すると高周波特性Qの特性を改善できることが分かっている。また、銅導体の外周に純鉄等の強磁性体のメッキ層を設け、その外周にニッケルメッキを施し、更にその外周にポリウレタン絶縁塗料を塗布焼き付けした絶縁電線は、はんだ付け性を兼ね備えた高周波線輪用絶縁電線として実用に供されている。(実公昭42−1339号公報、特開昭62−151594号公報)
【0003】
【発明が解決しようとする課題】
しかしながら、前述した高周波線輪用絶縁電線の純鉄等の強磁性体メッキ層は、磁気シールド用のメッキ層として、ノイズ抑制効果を発揮することについて言及されていない。加えて、電子機器部品のコイル用線材としても平角導体が丸導体と比較し占積率を向上し軽薄短小化に大きく寄与することについても言及されていない。
【0004】
本発明は上記従来技術が有する各種問題点を解決するために成されたものであり、各種電子機器部品のコイル用線材或いはフラットケーブルなどの信号ケーブル用線材として、ノイズ抑制効果を発揮する磁気シールド用平角強磁性導体およびその製造方法、および該導体を用いたエナメル被覆平角強磁性線、自己融着性エナメル被覆平角強磁性線および強磁性フラットケーブルを提供することを目的とする。
【0005】
【課題を解決するための手段】
第1の観点として本発明は、平角導体の外周に強磁性材料からなる皮膜(以下、強磁性皮膜と略記する)を形成した後、当該強磁性材料の特性を維持し、且つはんだ接合が可能な材料からなる皮膜(以下、はんだ接合可能皮膜と略記する)をその外周に設けたことを特徴とする平角強磁性導体にある。
前記平角導体としては、銅または銅合金平角線、銅クラッドアルミニウム平角線、アルミニウムまたはアルミニウム合金平角線など、良導電性材料からなる平角導体が好適に使用できる。また、前記平角導体の製造方法としては、丸導体を圧延加工する方法、或いは平角ダイスやカセットローラーダイスによって冷間塑性加工を施す方法が好適に使用できる。
上記第1観点の平角強磁性導体は、平角導体の外周に強磁性皮膜を形成した後、はんだ接合可能皮膜をその外周に設けることにより、強磁性皮膜が不要放射ノイズを吸収しノイズ抑制効果が得られ、且つはんだ接合可能皮膜によりはんだ接合が容易となる。従って、例えば前記平角強磁性導体の外周に絶縁塗装を施すことによってコイル用線材とすることが可能となる。更には、丸導体と比較して占積率が向上されるため、各種電子機器部品の軽薄短小化が図れる。
【0006】
第2の観点として本発明は、平角導体の外周に、強磁性皮膜とはんだ接合可能皮膜を交互に積層して形成するとともに、最外層に、はんだ接合可能皮膜を設けたことを特徴とする平角強磁性導体にある。
上記2観点の平角強磁性導体は、強磁性皮膜とはんだ接合可能皮膜が交互に積層されることによって、使用周波数帯域の調整が容易となるため、コイル用線材、或いは信号用ケーブルの設計の自由度が図れる。更に最外層がはんだ接合可能皮膜であるので、はんだ付け作業が容易になる。
【0007】
第3の観点として本発明は、前記強磁性材料が鉄或いは鉄含有合金から成ることを特徴とする平角強磁性導体にある。
前記鉄含有合金としては、パーマロイ、鉄−コバルト、鉄−タングステン、鉄−クロムなどが好適に使用できる。
上記第3観点の平角強磁性導体は、強磁性皮膜の強磁性材料として、鉄或いは鉄含有合金から成るものを使用することによって鉄固有の強磁性が得られ、ノイズ抑制効果がより強力となる。
【0008】
第4の観点として本発明は、前記強磁性材料の特性を維持し、且つはんだ接合が可能な材料(以下、はんだ接合可能材料と略記する)が、銅、ニッケル、金、銀またはそれらを主体とする合金から成ることを特徴とする平角強磁性導体にある。
上記第4観点の平角強磁性導体は、強磁性皮膜の外周に設けるはんだ接合可能皮膜のはんだ接合可能材料として、銅、ニッケル、金、銀またはそれらを主体とする合金を使用することによって、強磁性材料の特性を維持することができると共に、はんだ付け作業が容易になる。
【0009】
第5の観点として本発明は、前記各観点の何れかに記載の平角強磁性導体の製造方法であって、平角導体を脱脂,活性化後、電解めっきによって強磁性材料を電析して強磁性皮膜を形成し、更に電解めっきによってはんだ接合可能材料を電析して、はんだ接合可能皮膜を形成することを特徴とする平角強磁性導体の製造方法にある。
上記第5観点の製造方法は、平角導体を脱脂,活性化後、電解めっきによって強磁性材料を電析して強磁性皮膜を形成し、更に電解めっきによってはんだ接合可能材料を電析して、はんだ接合可能皮膜を形成することによって好適に平角強磁性導体の製造が可能となる。
【0010】
第6の観点として本発明は、上記第5観点に記載の平角強磁性導体の製造方法に続いて、平角強磁性導体を不活性ガス雰囲気中で、300〜800℃の温度条件によって熱処理し、電着応力を緩和することを特徴とする平角強磁性導体の製造方法にある。
前記不活性ガスとしては、アルゴン、窒素などが好適に使用できる。
上記第6観点の製造方法は、平角強磁性導体を不活性ガス雰囲気中で、300〜800℃の温度条件で熱処理することによって、電解めっき中に共析されている水素など不可避不純物の電着応力を緩和することができ、コイル成型時のスプリングバックが抑えられ加工性に優れたものとなる。
【0011】
第7の観点として本発明は、上記第1から第4観点の何れかに記載の平角強磁性導体の外周に、エナメル塗料を塗布焼付けして絶縁皮膜を設けたことを特徴とするエナメル被覆平角強磁性線にある。
上記第7観点のエナメル被覆平角強磁性線は、上記平角強磁性導体の外周に、エナメル塗料を塗布焼付けした絶縁皮膜を設けることにより磁気シールド用に好適なコイル用線材とすることができる。
【0012】
第8の観点として本発明は、上記第7観点に記載のエナメル被覆平角強磁性線の外周に、融着塗料を塗布焼付けして融着皮膜を設けたことを特徴とする自己融着性エナメル被覆平角強磁性線にある。
上記第8観点の自己融着性エナメル被覆平角強磁性線は、前記エナメル被覆平角強磁性線の外周に、融着塗料を塗布焼付けした融着皮膜を設けることにより磁気シールド用に好適で、更に自己支持型のコイル用線材とすることができる。
【0013】
第9の観点として本発明は、上記第1から第4観点の何れかに記載の平角強磁性導体の複数本を並列に配置し、その両側から熱溶融型接着剤付きのプラスチックテープで囲包し、熱溶融接着して一体化させたことを特徴とする強磁性フラットケーブルにある。
上記第9観点のフラットケーブルは、上記平角強磁性導体の複数本を用い、上記のように熱溶融接着して一体化させたフラットケーブルであるので、磁気シールド用に好適なフラットケーブルとすることができる。
【0014】
【発明の実施の形態】
以下、本発明の内容を、図に示す実施の形態により更に詳細に説明する。なお、これにより本発明が限定されるものではない。
図1は、本発明の平角強磁性導体の第1例を示す断面図である。図2は、本発明の平角強磁性導体の第2例を示す断面図である。図3は、本発明の第1例の平角強磁性導体を用いた自己融着性エナメル被覆平角強磁性銅線を示す断面図である(エナメル被覆平角強磁性銅線部分も示す)。また図4は、本発明の第1例の平角強磁性導体を用いた強磁性フラットケーブルを示す斜視図である。
これらの図において、1は平角導体(平角銅導体)、2,2a,2bは強磁性皮膜(鉄電析膜)、3,3a,3bははんだ接合可能皮膜(ニッケル電析膜)、10,20は平角強磁性導体(平角強磁性銅導体)、11は熱溶融型接着剤付きプラスチックテープ、40はエナメル被覆平角強磁性線(ポリウレタン平角強磁性銅線)、50は自己融着性エナメル被覆平角強磁性線(自己融着性ポリウレタン平角強磁性銅線)、また70は強磁性フラットケーブルである。
【0015】
−第1の実施の形態(実施例1)−
平角強磁性導体およびその製造方法について図1を用いて説明する。
外径φ0.214mmの銅線(銅99.9%)に圧延加工を施し、0.05×0.70mmの平角銅導体1を得た。続いて、前記平角銅導体1を炉中で焼鈍して応力歪を除去後、電解脱脂し(主成分:NaOH、40℃)、酸洗い(主成分:硫酸、25℃)した。次に、前記酸洗い後の平角銅導体1を鉄めっき槽中に浸漬して通電させ、鉄の電気めっきを行い、1.0μm厚さの鉄電析膜2を得た。次に、鉄電析膜2を設けた平角銅導体1を、ニッケルめっき槽中に浸漬して通電させ、ニッケルの電気めっきを行い、0.05μm厚さのニッケル電析膜3を得た。続いて前記鉄電析膜2およびニッケル電析膜3を設けた平角銅導体1を、500℃の窒素ガス雰囲気中で熱処理し、電着応力を緩和して平角強磁性銅導体10を製造した。
なお、前記鉄の電気めっきには、pH3に調整した硫酸第一鉄と塩化第一鉄の混合液で、液温25℃のめっき液を用い、陽極には高純度鉄を用いた。またニッケルの電気めっきには、pH4に調整した硫酸ニッケルと塩化ニッケルの混合液で、液温40℃のめっき液を用い、陽極には白金被覆チタン電極を使用した。
【0016】
−第2の実施の形態(実施例2)−
実施例2の平角強磁性導体およびその製造方法について図2を用いて説明する。先ず、外径φ0.214mmの銅線(銅99.9%)に圧延加工を施し、0.05×0.70mmの平角銅導体1を得た。続いて、前記平角銅導体1を炉中で焼鈍して応力歪を除去後、電解脱脂し(主成分:NaOH、40℃)、酸洗い(主成分:硫酸、25℃)した。次に、前記焼鈍後の平角銅導体1を鉄めっき槽中に浸漬して通電させ、鉄の電気めっきを行い、0.5μm厚さの鉄電析膜2aを得た。次に、鉄電析膜2aを設けた平角銅導体1を、ニッケルめっき槽中に浸漬して通電させ、ニッケルの電気めっきを行い、0.03μm厚さのニッケル電析膜3aを得た。続いて、上記と同様にして2回目の鉄の電気めっきを行い、0.5μm厚さの鉄電析膜2bを得た。次に、この鉄電析膜2bの外周に、上記と同様にして2回目のニッケルの電気めっきを行い、0.03μm厚さのニッケル電析膜3bを得て平角強磁性銅導体20を製造した。
なお、前記鉄の電気めっきおよびニッケルの電気めっきには、上記実施例1と同じめっき液、陽極等を使用した。
【0017】
−第3の実施の形態(実施例3)−
実施例3の平角強磁性導体およびその製造方法について図1を参照して説明する。先ず、外径φ0.214mmの銅クラッドアルミ線(銅比:15%)に圧延加工を施し、0.05×0.70mmの平角銅クラッドアルミ導体を得た。続いて、前記平角銅クラッドアルミ導体を炉中で焼鈍して応力歪を除去後、電解脱脂し(主成分:NaOH、40℃)、酸洗い(主成分:硫酸、25℃)した。次に、前記焼鈍後の平角銅クラッドアルミ導体を鉄めっき槽中に浸漬して通電させ、1.0μmの鉄電析膜を得た。更に、鉄電析膜を設けた平角銅クラッドアルミ導体をニッケルめっき槽中に浸漬して通電させ、0.05μmのニッケル電析膜を得て平角強磁性銅クラッドアルミ導体を製造した。
なお、前記鉄の電気めっきおよびニッケルの電気めっきには、上記実施例1と同じめっき液、陽極等を使用した。
【0018】
−第4の実施の形態(実施例4)−
実施例4の平角強磁性導体およびその製造方法について図1を参照して説明する。外径φ0.214mmのアルミ線(純度99.8%)に圧延加工を施し、0.05×0.70mmの平角アルミ導体を得た。続いて、前記平角アルミ導体を炉中で焼鈍して応力歪を除去後、電解脱脂し(主成分:NaOH、40℃)、酸洗い(主成分:硫酸、25℃)し、ジンケート浴により表面に亜鉛を形成させた。次に、前記表面に亜鉛を形成した平角アルミ導体を鉄めっき槽中に浸漬して通電させ、1.0μmの鉄電析膜を得た。更に、鉄電析膜を設けた平角アルミ導体をニッケルめっき槽中に浸漬して通電させ、0.05μmのニッケル電析膜を得て平角強磁性アルミ導体を製造した。
なお、前記鉄の電気めっきおよびニッケルの電気めっきには、上記実施例1と同じめっき液、陽極等を使用した。
【0019】
−第5の実施の形態(実施例5)−
本発明のエナメル被覆平角強磁性線、自己融着性エナメル被覆平角強磁性線について図3を用いて説明する。
先ず、前記平角強磁性銅導体10の外周に5μm厚さにポリウレタン塗料を塗布焼付けしてポリウレタン皮膜4を設けポリウレタン平角強磁性線40とした。続いて、前記ポリウレタン平角強磁性線40の外周に融着性のあるナイロンを4μm厚さに塗布焼付けして融着皮膜5を設けて自己融着性ポリウレタン平角強磁性銅線50とし、コイル用線材を作製した。
また前記平角強磁性銅導体10の替わりに、前記実施例2の平角強磁性銅導体20、実施例3の平角強磁性銅クラッドアルミ導体、または実施例4の平角強磁性アルミ導体を用い、その他は上記と同様にして、ポリウレタン平角強磁性線、自己融着性ポリウレタン平角強磁性線としてもよい。
【0020】
−第6の実施の形態(実施例6)−
本発明の強磁性フラットケーブルの一例について図4を用いて説明する。なお、製造工程については図示しない。
上記実施例1により得られた平角強磁性銅導体10をプラスチックボビンに巻き取り、15本用意した。続いて、15本のボビンからそれぞれの平角強磁性銅導体10を並行に走行させ、両サイドから熱溶融型接着剤付のPET(ポリエチレンテレフタレート)テープ7をサンドしてホットメルトさせ、図4に示す強磁性フラットケーブル70を得た(平角強磁性銅導体10は3本のみ示す)。更に、前記フラットケーブル70に端末加工を施しコネクタ付の強磁性フラットケーブル(図示せず)を作製した。
【0021】
【発明の効果】
本発明の平角強磁性導体およびその製造方法、及び該導体を用いたエナメル被覆平角強磁性線、自己融着性エナメル被覆平角強磁性線および強磁性フラットケーブルによれば、平角導体の外周に電解めっきにより強磁性層を電析させることによって、不要放射ノイズが吸収されノイズ抑制効果を発揮できるようになった。また、本発明の平角強磁性導体の最外層には、はんだ接合可能な皮膜があるため接続の加工性が向上されるようになった。更に、平角導体によって占積率が向上され小型化が可能となった。そのため、本発明の平角強磁性導体、エナメル被覆平角強磁性線および自己融着性エナメル被覆平角強磁性線は、各種電子機器部品のコイル用線材或いはフラットケーブルなどの信号ケーブル用線材としての高性能化が図れるようになった。また本発明の強磁性フラットケーブルは、前記平角強磁性導体を用いたフラットケーブルであるので、磁気シールド用として好適となった。従って、本発明は産業上に寄与する効果が極めて大である。
【図面の簡単な説明】
【図1】本発明の平角強磁性導体の第1例を示す断面図である。
【図2】本発明の平角強磁性導体の第2例を示す断面図である。
【図3】本発明の第1例の平角強磁性導体を用いた自己融着性エナメル被覆平角強磁性銅線を示す断面図である(エナメル被覆平角強磁性銅線部分も示す)。
【図4】本発明の第1例の平角強磁性導体を用いた強磁性フラットケーブルを示す斜視図である。
【符号の説明】
1  平角導体(平角銅導体)
2,2a,2b  強磁性皮膜(鉄電析膜)
3,3a,3b  はんだ接合可能皮膜(ニッケル電析膜)
10,20  平角強磁性導体(平角強磁性銅導体)
11 熱溶融型接着剤付きプラスチックテープ
40 エナメル被覆平角強磁性線(ポリウレタン平角強磁性銅線)
50 自己融着性エナメル被覆平角強磁性線(自己融着性ポリウレタン平角強磁性銅線)
70 強磁性フラットケーブル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rectangular ferromagnetic conductor for a magnetic shield, a method for manufacturing the same, and an enamel-coated rectangular ferromagnetic wire, a self-fusing enamel-coated rectangular solid used as a coil wire or a signal cable wire for various electronic device parts. It relates to magnetic wires and ferromagnetic flat cables.
[0002]
[Prior art]
Recently, electronic equipment parts have been reduced in size and thickness, and the limits of fine patterning and thinning of all wiring materials used in the parts have been rapidly increasing. On the other hand, electromagnetic interference caused by generated noise has begun to appear in areas close to daily life in a form associated with these technologies.
2. Description of the Related Art All electrical and electronic devices, such as information devices such as personal computer peripheral devices and mobile phones, and household devices such as televisions and microwave ovens, generate electromagnetic energy when operating their original functions. Electromagnetic energy basically consists of signal energy required for functional operations (data transmission, storage, video display, recording, etc.) and unnecessary radiant energy generated accompanying the required operating energy. There is a need to reduce the unnecessary radiation energy to a level that does not cause electromagnetic interference in electronic devices, and to reduce generated noise.
In addition, although it is another viewpoint from the above-mentioned noise generation problem, when an enamel insulated wire is used in which a ferromagnetic plating layer such as pure iron is provided on the outer periphery of a copper conductor, and an enamel paint is applied and baked on the outer periphery. It has been found that the characteristics of the high frequency characteristics Q can be improved. An insulated wire with a ferromagnetic plating layer such as pure iron provided on the outer periphery of the copper conductor, nickel plating applied on the outer periphery, and a polyurethane insulating paint applied on the outer periphery and baked, is a high-frequency insulated wire with solderability. It is practically used as an insulated wire for wires. (Japanese Utility Model Publication No. 42-1339, Japanese Patent Application Laid-Open No. 62-151594)
[0003]
[Problems to be solved by the invention]
However, there is no mention that the above-described ferromagnetic plating layer of pure iron or the like of the insulated wire for a high-frequency coil exhibits a noise suppressing effect as a plating layer for magnetic shielding. In addition, no mention is made of the fact that the rectangular conductor improves the space factor as compared with the round conductor and greatly contributes to the reduction in size and weight as a wire for a coil of an electronic device part.
[0004]
The present invention has been made in order to solve the above-mentioned various problems of the prior art, and is a magnetic shield that exhibits a noise suppressing effect as a wire for a coil of various electronic device parts or a wire for a signal cable such as a flat cable. It is an object of the present invention to provide a rectangular ferromagnetic conductor for use, a method of manufacturing the same, and an enamel-coated rectangular ferromagnetic wire, a self-fusing enamel-coated rectangular ferromagnetic wire and a ferromagnetic flat cable using the conductor.
[0005]
[Means for Solving the Problems]
According to a first aspect of the present invention, after a film made of a ferromagnetic material (hereinafter abbreviated as a ferromagnetic film) is formed on the outer periphery of a rectangular conductor, the characteristics of the ferromagnetic material are maintained and solder bonding is possible. A flat ferromagnetic conductor characterized in that a film made of a suitable material (hereinafter abbreviated as a solderable film) is provided on its outer periphery.
As the rectangular conductor, a rectangular conductor made of a highly conductive material such as a copper or copper alloy rectangular wire, a copper-clad aluminum rectangular wire, or an aluminum or aluminum alloy rectangular wire can be suitably used. Further, as a method of manufacturing the flat conductor, a method of rolling a round conductor or a method of performing cold plastic working with a flat die or a cassette roller die can be suitably used.
The flat rectangular ferromagnetic conductor according to the first aspect has a ferromagnetic film formed on the outer periphery of the rectangular conductor, and a solderable film is provided on the outer surface thereof. The obtained and solderable film facilitates soldering. Therefore, for example, by applying an insulating coating to the outer periphery of the rectangular ferromagnetic conductor, it is possible to obtain a coil wire. Further, since the space factor is improved as compared with the round conductor, various electronic device parts can be reduced in weight and thickness.
[0006]
According to a second aspect of the present invention, there is provided a flat rectangular conductor characterized in that a ferromagnetic film and a solderable film are alternately laminated on the outer periphery of a rectangular conductor and a solderable film is provided as an outermost layer. In ferromagnetic conductor.
In the rectangular ferromagnetic conductor according to the above two aspects, since the ferromagnetic film and the solder-bondable film are alternately laminated, it is easy to adjust the frequency band to be used, so that the design of the coil wire or the signal cable is free. We can plan degree. Further, since the outermost layer is a solderable film, the soldering operation is facilitated.
[0007]
According to a third aspect of the present invention, there is provided a rectangular ferromagnetic conductor, wherein the ferromagnetic material is made of iron or an alloy containing iron.
As the iron-containing alloy, permalloy, iron-cobalt, iron-tungsten, iron-chromium and the like can be suitably used.
In the rectangular ferromagnetic conductor according to the third aspect, the use of a ferromagnetic material made of iron or an iron-containing alloy as a ferromagnetic material of the ferromagnetic film provides ferromagnetism inherent in iron, and the noise suppressing effect is further enhanced. .
[0008]
According to a fourth aspect of the present invention, a material that maintains the characteristics of the ferromagnetic material and is capable of being soldered (hereinafter, abbreviated as a solderable material) is made of copper, nickel, gold, silver, or a mixture of these materials. The ferromagnetic conductor according to claim 1, wherein said ferromagnetic conductor is made of an alloy.
The rectangular ferromagnetic conductor according to the fourth aspect is characterized in that copper, nickel, gold, silver or an alloy mainly containing them is used as a solderable material for a solderable film provided on the outer periphery of the ferromagnetic film. The properties of the magnetic material can be maintained and the soldering operation can be facilitated.
[0009]
As a fifth aspect, the present invention is the method for producing a rectangular ferromagnetic conductor according to any of the above aspects, wherein the rectangular conductor is degreased and activated, and then the ferromagnetic material is deposited by electrolytic plating to strengthen the ferromagnetic material. A method for producing a flat ferromagnetic conductor, comprising forming a magnetic film, and further depositing a solderable material by electrolytic plating to form a solderable film.
In the manufacturing method according to the fifth aspect, after the rectangular conductor is degreased and activated, a ferromagnetic material is deposited by electrolytic plating to form a ferromagnetic film, and a solderable material is further deposited by electrolytic plating. By forming a solderable film, a flat ferromagnetic conductor can be suitably manufactured.
[0010]
As a sixth aspect, the present invention provides a method of manufacturing a rectangular ferromagnetic conductor according to the fifth aspect, wherein the rectangular ferromagnetic conductor is heat-treated in an inert gas atmosphere at a temperature of 300 to 800 ° C., A method for manufacturing a rectangular ferromagnetic conductor characterized by relaxing electrodeposition stress.
As the inert gas, argon, nitrogen and the like can be suitably used.
In the manufacturing method according to the sixth aspect, the flat ferromagnetic conductor is subjected to a heat treatment in an inert gas atmosphere at a temperature of 300 to 800 ° C. so that electrodeposition of unavoidable impurities such as hydrogen co-deposited during electrolytic plating. Stress can be relieved, and springback during coil molding is suppressed, resulting in excellent workability.
[0011]
According to a seventh aspect of the present invention, there is provided an enamel-coated rectangular prism comprising an enamel paint applied and baked on an outer periphery of the rectangular ferromagnetic conductor according to any one of the first to fourth aspects to provide an insulating film. In the ferromagnetic line.
The enamel-covered rectangular ferromagnetic wire according to the seventh aspect can be formed into a coil wire suitable for magnetic shielding by providing an insulating film obtained by applying and baking an enamel paint on the outer periphery of the rectangular ferromagnetic conductor.
[0012]
According to an eighth aspect of the present invention, there is provided a self-fusing enamel which is characterized in that a fusion coating is formed by applying and baking a fusion paint on the outer periphery of the enamel-coated rectangular ferromagnetic wire according to the seventh aspect. In the coated rectangular ferromagnetic wire.
The self-fusing enamel-coated rectangular ferromagnetic wire according to the eighth aspect is suitable for a magnetic shield by providing a fusion coating obtained by applying and baking a fusion paint on the outer periphery of the enamel-coated rectangular ferromagnetic wire. It can be a self-supporting coil wire.
[0013]
As a ninth aspect, the present invention provides a method according to the first to fourth aspects, wherein a plurality of the rectangular ferromagnetic conductors according to any one of the first to fourth aspects are arranged in parallel, and surrounded by a plastic tape with a hot-melt adhesive from both sides. And a ferromagnetic flat cable characterized by being integrated by hot-melt bonding.
The flat cable according to the ninth aspect is a flat cable that uses a plurality of the flat rectangular ferromagnetic conductors and is integrated by heat melting and bonding as described above, so that the flat cable is suitable for magnetic shielding. Can be.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the contents of the present invention will be described in more detail with reference to the embodiments shown in the drawings. Note that the present invention is not limited to this.
FIG. 1 is a sectional view showing a first example of the rectangular ferromagnetic conductor of the present invention. FIG. 2 is a sectional view showing a second example of the rectangular ferromagnetic conductor of the present invention. FIG. 3 is a sectional view showing a self-fusing enamel-coated rectangular ferromagnetic copper wire using the rectangular ferromagnetic conductor of the first example of the present invention (the enamel-coated rectangular ferromagnetic copper wire portion is also shown). FIG. 4 is a perspective view showing a ferromagnetic flat cable using the rectangular ferromagnetic conductor according to the first embodiment of the present invention.
In these figures, 1 is a rectangular conductor (rectangular copper conductor), 2, 2a, 2b are ferromagnetic films (iron electrodeposited films), 3, 3a, 3b are solderable films (nickel electrodeposited films), 10, 20 is a rectangular ferromagnetic conductor (rectangular ferromagnetic copper conductor), 11 is a plastic tape with a hot-melt adhesive, 40 is an enamel-coated rectangular ferromagnetic wire (polyurethane rectangular ferromagnetic copper wire), and 50 is a self-fusing enamel-coated enamel. A rectangular ferromagnetic wire (self-fusing polyurethane rectangular ferromagnetic copper wire) and 70 is a ferromagnetic flat cable.
[0015]
-First Embodiment (Example 1)-
A rectangular ferromagnetic conductor and a method for manufacturing the same will be described with reference to FIG.
A copper wire (copper 99.9%) having an outer diameter of 0.214 mm was rolled to obtain a rectangular copper conductor 1 having a size of 0.05 × 0.70 mm. Subsequently, after the flat copper conductor 1 was annealed in a furnace to remove stress strain, it was electrolytically degreased (main component: NaOH, 40 ° C.) and pickled (main component: sulfuric acid, 25 ° C.). Next, the rectangular copper conductor 1 after the pickling was immersed in an iron plating tank and energized to perform electroplating of iron, thereby obtaining an iron electrodeposited film 2 having a thickness of 1.0 μm. Next, the rectangular copper conductor 1 provided with the iron electrodeposited film 2 was immersed in a nickel plating tank and energized to perform nickel electroplating, thereby obtaining a nickel electrodeposited film 3 having a thickness of 0.05 μm. Subsequently, the rectangular copper conductor 1 provided with the iron electrodeposited film 2 and the nickel electrodeposited film 3 was heat-treated in a nitrogen gas atmosphere at 500 ° C. to reduce the electrodeposition stress, thereby producing a rectangular ferromagnetic copper conductor 10. .
For the electroplating of iron, a plating solution of a mixed solution of ferrous sulfate and ferrous chloride adjusted to pH 3 at a liquid temperature of 25 ° C. was used, and high-purity iron was used for the anode. For nickel electroplating, a plating solution of a mixed solution of nickel sulfate and nickel chloride adjusted to pH 4 and having a solution temperature of 40 ° C. was used, and a platinum-coated titanium electrode was used as an anode.
[0016]
-Second embodiment (Example 2)-
Second Embodiment A rectangular ferromagnetic conductor and a method of manufacturing the same according to a second embodiment will be described with reference to FIG. First, a copper wire (copper 99.9%) having an outer diameter of φ0.214 mm was rolled to obtain a rectangular copper conductor 1 of 0.05 × 0.70 mm. Subsequently, after the flat copper conductor 1 was annealed in a furnace to remove stress strain, it was electrolytically degreased (main component: NaOH, 40 ° C.) and pickled (main component: sulfuric acid, 25 ° C.). Next, the annealed rectangular copper conductor 1 was immersed in an iron plating tank and energized to perform electroplating of iron to obtain a 0.5 μm thick iron electrodeposited film 2a. Next, the rectangular copper conductor 1 provided with the iron electrodeposited film 2a was immersed in a nickel plating bath and energized to perform nickel electroplating, thereby obtaining a nickel electrodeposited film 3a having a thickness of 0.03 μm. Subsequently, a second electroplating of iron was performed in the same manner as above to obtain an iron electrodeposited film 2b having a thickness of 0.5 μm. Next, the outer periphery of the iron electrodeposited film 2b is subjected to a second electroplating of nickel in the same manner as described above to obtain a nickel electrodeposited film 3b having a thickness of 0.03 μm, thereby producing the flat ferromagnetic copper conductor 20. did.
The same plating solution, anode, and the like as in Example 1 were used for the electroplating of iron and the electroplating of nickel.
[0017]
-Third Embodiment (Example 3)-
Third Embodiment A rectangular ferromagnetic conductor according to a third embodiment and a method for manufacturing the same will be described with reference to FIG. First, a copper-clad aluminum wire (copper ratio: 15%) having an outer diameter of φ0.214 mm was subjected to rolling to obtain a 0.05 × 0.70 mm rectangular copper-clad aluminum conductor. Subsequently, the flat copper-clad aluminum conductor was annealed in a furnace to remove stress strain, electrolytic degreasing (main component: NaOH, 40 ° C.), and pickling (main component: sulfuric acid, 25 ° C.). Next, the annealed rectangular copper-clad aluminum conductor was immersed in an iron plating tank and energized to obtain a 1.0 μm-thick iron electrodeposited film. Furthermore, a rectangular copper-clad aluminum conductor provided with an iron electrodeposited film was immersed in a nickel plating bath and energized to obtain a nickel electrodeposited film of 0.05 μm to produce a rectangular ferromagnetic copper-clad aluminum conductor.
The same plating solution, anode, and the like as in Example 1 were used for the electroplating of iron and the electroplating of nickel.
[0018]
-Fourth embodiment (Example 4)-
Fourth Embodiment A rectangular ferromagnetic conductor and a method of manufacturing the same according to a fourth embodiment will be described with reference to FIG. An aluminum wire having an outer diameter of 0.214 mm (purity: 99.8%) was rolled to obtain a flat aluminum conductor of 0.05 × 0.70 mm. Subsequently, the rectangular aluminum conductor is annealed in a furnace to remove stress strain, electrolytic degreasing (main component: NaOH, 40 ° C.), pickling (main component: sulfuric acid, 25 ° C.), and surface treated by a zincate bath. To form zinc. Next, the rectangular aluminum conductor having zinc formed on the surface was immersed in an iron plating tank and energized to obtain a 1.0 μm iron electrodeposited film. Further, the rectangular aluminum conductor provided with the iron electrodeposited film was immersed in a nickel plating tank and energized to obtain a nickel electrodeposited film having a thickness of 0.05 μm to produce a rectangular iron ferromagnetic aluminum conductor.
The same plating solution, anode, and the like as in Example 1 were used for the electroplating of iron and the electroplating of nickel.
[0019]
-Fifth Embodiment (Example 5)-
The enamel-coated rectangular ferromagnetic wire of the present invention and the self-fusing enamel-coated rectangular ferromagnetic wire will be described with reference to FIG.
First, a polyurethane coating was applied to the outer periphery of the rectangular ferromagnetic copper conductor 10 to a thickness of 5 μm and baked to form a polyurethane film 4 to obtain a polyurethane rectangular ferromagnetic wire 40. Subsequently, a self-fusing polyurethane rectangular ferromagnetic copper wire 50 is formed by coating and baking nylon having a fusible property to a thickness of 4 μm on the outer periphery of the polyurethane rectangular ferromagnetic wire 40 to form a self-fusing polyurethane rectangular ferromagnetic copper wire 50. A wire was produced.
Instead of the flat ferromagnetic copper conductor 10, the flat ferromagnetic copper conductor 20 of the second embodiment, the flat ferromagnetic copper clad aluminum conductor of the third embodiment, or the flat ferromagnetic aluminum conductor of the fourth embodiment is used. May be a polyurethane flat ferromagnetic wire or a self-fusing polyurethane flat ferromagnetic wire in the same manner as described above.
[0020]
-Sixth embodiment (Example 6)-
An example of the ferromagnetic flat cable of the present invention will be described with reference to FIG. The manufacturing process is not shown.
The rectangular ferromagnetic copper conductor 10 obtained in Example 1 was wound around a plastic bobbin, and fifteen were prepared. Subsequently, each of the rectangular ferromagnetic copper conductors 10 was run in parallel from the fifteen bobbins, and a PET (polyethylene terephthalate) tape 7 with a hot-melt adhesive was sandwiched and hot-melted from both sides. The ferromagnetic flat cable 70 shown was obtained (only three rectangular ferromagnetic copper conductors 10 are shown). Further, the flat cable 70 was subjected to terminal processing to produce a ferromagnetic flat cable (not shown) with a connector.
[0021]
【The invention's effect】
According to the rectangular ferromagnetic conductor and the method for producing the same of the present invention, and the enamel-coated rectangular ferromagnetic wire, the self-fusing enamel-coated rectangular ferromagnetic wire and the ferromagnetic flat cable using the conductor, the outer periphery of the rectangular conductor is electrolyzed. By depositing the ferromagnetic layer by plating, unnecessary radiation noise is absorbed and the noise suppression effect can be exhibited. Further, since the outermost layer of the rectangular ferromagnetic conductor of the present invention has a film that can be soldered, the workability of connection has been improved. Furthermore, the space factor was improved by the rectangular conductor, and miniaturization became possible. Therefore, the rectangular ferromagnetic conductor, enamel-coated rectangular ferromagnetic wire and self-fusing enamel-coated rectangular ferromagnetic wire of the present invention have high performance as a coil wire for various electronic device parts or a signal cable wire such as a flat cable. Can now be planned. Further, the ferromagnetic flat cable of the present invention is a flat cable using the rectangular ferromagnetic conductor, and thus is suitable for magnetic shielding. Therefore, the present invention has an extremely large effect of contributing to industry.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a first example of a rectangular ferromagnetic conductor of the present invention.
FIG. 2 is a sectional view showing a second example of the rectangular ferromagnetic conductor of the present invention.
FIG. 3 is a sectional view showing a self-fusing enamel-coated rectangular ferromagnetic copper wire using the rectangular ferromagnetic conductor of the first example of the present invention (the enamel-coated rectangular ferromagnetic copper wire portion is also shown).
FIG. 4 is a perspective view showing a ferromagnetic flat cable using a rectangular ferromagnetic conductor according to the first embodiment of the present invention.
[Explanation of symbols]
1 Flat conductor (flat copper conductor)
2,2a, 2b ferromagnetic film (iron deposit)
3,3a, 3b Solderable film (nickel electrodeposited film)
10,20 rectangular ferromagnetic conductor (rectangular ferromagnetic copper conductor)
11 Plastic tape 40 with hot-melt type adhesive Enamel-coated rectangular ferromagnetic wire (polyurethane rectangular ferromagnetic copper wire)
50 Self-fusing enamel coated rectangular ferromagnetic wire (self-fusing polyurethane rectangular ferromagnetic copper wire)
70 Ferromagnetic flat cable

Claims (9)

平角導体の外周に強磁性材料からなる皮膜を形成した後、当該強磁性材料の特性を維持し、且つはんだ接合が可能な材料からなる皮膜をその外周に設けたことを特徴とする平角強磁性導体。After forming a film made of a ferromagnetic material on the outer periphery of a rectangular conductor, a film made of a material that can be soldered is provided on the outer periphery thereof while maintaining the characteristics of the ferromagnetic material. conductor. 平角導体の外周に、強磁性材料からなる皮膜と当該強磁性材料の特性を維持し、且つはんだ接合が可能な材料からなる皮膜を交互に積層して形成するとともに、最外層に、はんだ接合が可能な材料からなる皮膜を設けたことを特徴とする平角強磁性導体。On the outer periphery of the rectangular conductor, a film made of a ferromagnetic material and a film made of a material that maintains the characteristics of the ferromagnetic material and that can be soldered are alternately laminated and formed. A flat ferromagnetic conductor characterized by having a coating made of a possible material. 前記強磁性材料が、鉄或いは鉄含有合金から成ることを特徴とする請求項1または2記載の平角強磁性導体。3. The rectangular ferromagnetic conductor according to claim 1, wherein the ferromagnetic material is made of iron or an iron-containing alloy. 前記強磁性材料の特性を維持し、且つはんだ接合が可能な材料が、銅、ニッケル、金、銀またはそれらを主体とする合金から成ることを特徴とする請求項1、2または3記載の平角強磁性導体。The flat angle according to claim 1, 2 or 3, wherein the material which maintains the characteristics of the ferromagnetic material and can be soldered is made of copper, nickel, gold, silver or an alloy mainly composed of them. Ferromagnetic conductor. 請求項1から4の何れかに記載の平角強磁性導体の製造方法であって、平角導体を脱脂,活性化後、電解めっきによって強磁性材料を電析して強磁性材料からなる皮膜を形成し、更に電解めっきによってはんだ接合が可能な材料を電析して、はんだ接合が可能な材料からなる皮膜を形成することを特徴とする平角強磁性導体の製造方法。5. The method for manufacturing a rectangular ferromagnetic conductor according to claim 1, wherein the rectangular conductor is degreased and activated, and then the ferromagnetic material is deposited by electrolytic plating to form a film made of the ferromagnetic material. A method for producing a flat ferromagnetic conductor, further comprising: depositing a material that can be soldered by electrolytic plating to form a film made of a material that can be soldered. 請求項5に記載の平角強磁性導体の製造方法に続いて、平角強磁性導体を不活性ガス雰囲気中で、300〜800℃の温度条件によって熱処理し、電着応力を緩和することを特徴とする平角強磁性導体の製造方法。Subsequent to the method for producing a rectangular ferromagnetic conductor according to claim 5, the rectangular ferromagnetic conductor is heat-treated in an inert gas atmosphere at a temperature of 300 to 800 ° C to reduce electrodeposition stress. To manufacture a rectangular ferromagnetic conductor. 請求項1から4の何れかに記載の平角強磁性導体の外周に、エナメル塗料を塗布焼付けして絶縁皮膜を設けたことを特徴とするエナメル被覆平角強磁性線。5. An enamel-coated rectangular ferromagnetic wire, wherein an enamel paint is applied and baked on the outer periphery of the rectangular ferromagnetic conductor according to claim 1 to provide an insulating film. 請求項5に記載のエナメル被覆平角強磁性線の外周に、融着塗料を塗布焼付けして融着皮膜を設けたことを特徴とする自己融着性エナメル被覆平角強磁性線。A self-fusing enamel-coated rectangular ferromagnetic wire, characterized in that a fusion coating is formed by applying and baking a fusion coating to the outer periphery of the enamel-coated rectangular ferromagnetic wire according to claim 5. 請求項1から4の何れかに記載の平角強磁性導体の複数本を並列に配置し、その両側から熱溶融型接着剤付きのプラスチックテープで囲包し、熱溶融接着して一体化させたことを特徴とする強磁性フラットケーブル。A plurality of rectangular ferromagnetic conductors according to any one of claims 1 to 4 are arranged in parallel, surrounded by plastic tape with a hot-melt adhesive from both sides, and integrated by hot-melt bonding. A ferromagnetic flat cable, characterized in that:
JP2002268216A 2002-09-13 2002-09-13 Flat angular ferromagnetic conductor and its manufacturing method, enamel-coated flat angular ferromagnetic wire, self-fusible enamel-coated flat angular ferromagnetic wire and ferromagnetic flat cable using the conductor Pending JP2004111072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002268216A JP2004111072A (en) 2002-09-13 2002-09-13 Flat angular ferromagnetic conductor and its manufacturing method, enamel-coated flat angular ferromagnetic wire, self-fusible enamel-coated flat angular ferromagnetic wire and ferromagnetic flat cable using the conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002268216A JP2004111072A (en) 2002-09-13 2002-09-13 Flat angular ferromagnetic conductor and its manufacturing method, enamel-coated flat angular ferromagnetic wire, self-fusible enamel-coated flat angular ferromagnetic wire and ferromagnetic flat cable using the conductor

Publications (1)

Publication Number Publication Date
JP2004111072A true JP2004111072A (en) 2004-04-08

Family

ID=32266494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002268216A Pending JP2004111072A (en) 2002-09-13 2002-09-13 Flat angular ferromagnetic conductor and its manufacturing method, enamel-coated flat angular ferromagnetic wire, self-fusible enamel-coated flat angular ferromagnetic wire and ferromagnetic flat cable using the conductor

Country Status (1)

Country Link
JP (1) JP2004111072A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331710A (en) * 2005-05-24 2006-12-07 Mitsubishi Cable Ind Ltd Method of manufacturing coaxial cable
US7399928B2 (en) * 2004-07-16 2008-07-15 Pioneer Corporation Flexible flat cable and method of manufacturing the same
JP2010050241A (en) * 2008-08-21 2010-03-04 Totoku Electric Co Ltd Coil for electric equipment and electric wire for coil
WO2013042671A1 (en) * 2011-09-22 2013-03-28 株式会社フジクラ Electric wire and coil
CN104681145A (en) * 2015-02-04 2015-06-03 国网山东省电力公司日照供电公司 Cable for computer
WO2016080071A1 (en) * 2014-11-18 2016-05-26 東洋鋼鈑株式会社 Soldering material
JP2017162769A (en) * 2016-03-11 2017-09-14 株式会社ユニマック Insulation wire and manufacturing method therefor
JP2018129304A (en) * 2018-02-14 2018-08-16 株式会社ユニマック Method of manufacturing insulated wire

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7399928B2 (en) * 2004-07-16 2008-07-15 Pioneer Corporation Flexible flat cable and method of manufacturing the same
JP2006331710A (en) * 2005-05-24 2006-12-07 Mitsubishi Cable Ind Ltd Method of manufacturing coaxial cable
JP2010050241A (en) * 2008-08-21 2010-03-04 Totoku Electric Co Ltd Coil for electric equipment and electric wire for coil
US8946560B2 (en) 2011-09-22 2015-02-03 Fujikura Ltd. Electric wire and coil
JP2013254738A (en) * 2011-09-22 2013-12-19 Fujikura Ltd Cable and coil
CN103827982A (en) * 2011-09-22 2014-05-28 株式会社藤仓 Electric wire and coil
US20140284074A1 (en) * 2011-09-22 2014-09-25 Fujikura Ltd. Electric wire and coil
WO2013042671A1 (en) * 2011-09-22 2013-03-28 株式会社フジクラ Electric wire and coil
US8987600B2 (en) 2011-09-22 2015-03-24 Fujikura Ltd. Electric wire and coil
JP5342703B2 (en) * 2011-09-22 2013-11-13 株式会社フジクラ Electric wires and coils
CN107109678A (en) * 2014-11-18 2017-08-29 东洋钢钣株式会社 Solderable material
WO2016080071A1 (en) * 2014-11-18 2016-05-26 東洋鋼鈑株式会社 Soldering material
JP2016098379A (en) * 2014-11-18 2016-05-30 東洋鋼鈑株式会社 Soldering material
CN107109678B (en) * 2014-11-18 2020-10-27 东洋钢钣株式会社 Soft soldering material
CN104681145A (en) * 2015-02-04 2015-06-03 国网山东省电力公司日照供电公司 Cable for computer
CN104681145B (en) * 2015-02-04 2017-05-17 国网山东省电力公司日照供电公司 cable for computer
JP2017162769A (en) * 2016-03-11 2017-09-14 株式会社ユニマック Insulation wire and manufacturing method therefor
JP2018129304A (en) * 2018-02-14 2018-08-16 株式会社ユニマック Method of manufacturing insulated wire

Similar Documents

Publication Publication Date Title
TW201005124A (en) Composite material for electrical/electronic component and electrical/electronic component using the same
JP2004111072A (en) Flat angular ferromagnetic conductor and its manufacturing method, enamel-coated flat angular ferromagnetic wire, self-fusible enamel-coated flat angular ferromagnetic wire and ferromagnetic flat cable using the conductor
JP2004319570A (en) Method of manufacturing planar coil
JP2003301292A (en) Plated aluminum wire and enamel-coated plated aluminum wire
JP4640260B2 (en) Flat cable manufacturing method
JP4269374B2 (en) Tin-plated flat conductor manufacturing method and flat cable manufacturing method
KR101803308B1 (en) A HIGH CURRENT MULTILAYER INDUCTOR APPLICABLE FREQUENCY 5MHz BAND
JPH10237674A (en) Plated aluminum electric wire, insulating plated aluminum electric wire and their production
JP2003073883A (en) Electrodeposited iron film for high-frequency, insulated wire for high-frequency coil, and manufacturing method for these
JP3346535B2 (en) Plated aluminum electric wire, insulated plated aluminum electric wire, and method of manufacturing these
JP7146449B2 (en) Wires and coils for high frequency coils
JP2002231060A (en) Magnetic wire
JPH0471112A (en) Manufacture of aluminum stabilized super conductor
JP6896677B2 (en) Wires and electronic components for high frequency coils
TWI729910B (en) Magnetic core, manufacturing method of magnetic core electrode and inductor
JP3089428B2 (en) Method for producing insulating high magnetic permeability alloy
TWI772446B (en) Wires and electronic parts for high frequency coils
JPH10237673A (en) Plated aluminum electric wire, insulating plated aluminum electric wire and their production
JP2003077719A (en) High frequency coil enameled wire
JP2008124048A (en) Conductor for flexible board, its production process and flexible board
JPH11111067A (en) Laminated insulated flat wire for high frequency
JP2009280917A (en) Wire
JP4914009B2 (en) Electrical conductor
JPH04171609A (en) Light-weight heat resistant magnet wire capable of being soldered
JPH0115145Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A977 Report on retrieval

Effective date: 20070906

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081031