JP2004108864A - Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane - Google Patents

Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane Download PDF

Info

Publication number
JP2004108864A
JP2004108864A JP2002269662A JP2002269662A JP2004108864A JP 2004108864 A JP2004108864 A JP 2004108864A JP 2002269662 A JP2002269662 A JP 2002269662A JP 2002269662 A JP2002269662 A JP 2002269662A JP 2004108864 A JP2004108864 A JP 2004108864A
Authority
JP
Japan
Prior art keywords
sdi
pressure
measurement
membrane
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002269662A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwabori
岩堀 博
Masaaki Ando
安藤 雅明
Satoru Ishihara
石原 悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002269662A priority Critical patent/JP2004108864A/en
Publication of JP2004108864A publication Critical patent/JP2004108864A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a SDI measuring method for calculating highly accurate SDI values at all times in order to predict the pollution risk of a separation membrane and stably operate subsequent membrane processes, and a fresh water generating method using a reverse osmosis membrane, including a step of measuring the SDI values using the same. <P>SOLUTION: The SDI measuring method comprises previously applying pressure of 3MPa or greater to measuring separation membrane supply liquid and then measuring the SDI values under pressure as specified by ASTM. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、膜プロセスにおける分離膜供給水の水質汚染指標に使用されるSDI測定方法に関し、詳しくは、常に高精度のSDI値を算出することのできるSDI測定方法に関する。また、前記方法に用いられるSDI測定装置、及び前記方法によりSDI値を測定する工程を含む逆浸透膜を用いた造水方法に関する。
【0002】
【従来の技術】
海水や下水などの原水中には、種々の懸濁物質、コロイド性の有機物と無機物、ウイルス、及び細菌などの汚染物質を含んでいる。このような汚染物質は分離膜を汚染し、性能の低下を引き起こす原因となる。
【0003】
従来、逆浸透膜などの分離膜を用いる海水淡水化処理や下水再生処理においては、分離膜の汚染を防止するために、予め凝集沈殿処理、加圧浮上処理、及び砂ろ過処理などのプロセスを組み合わせて原水中の微生物、コロイド、及びシルトなどの微粒子成分を除去する前処理工程が行われてきた。近年、精密ろ過膜(MF)や限外ろ過膜(UF)などの膜分離によって原水を前処理する技術が開発された。そして、微粒子成分を除去した後の水中の微量懸濁物質等による汚染の程度を測定する方法として、均一微細な孔径を持つメンブレンフィルターを用いて、その目詰まり率をもって汚染指数とする方法が採用されている。特に、逆浸透膜法海水淡水化装置への供給水の監視指標として膜汚染防止に非常に有効であることが確認され、現在、膜プロセスにおける分離膜供給水の水質汚染指標としてASTM(Standard Test Method for Silt Density Index of Water D4189−95)によって規定されているSDI(Silt Density Index)測定方法が一般に使用されている。
【0004】
前記SDI測定方法により算出されるSDI値(汚染指数)は、以下の計算式により算出される。
【0005】
SDI15=(1−T /T15)×100/15
 :孔径0.45μm、直径47mmのメンブレンフィルターに圧力206kPaで試料をろ過し、初期の試料500mlをろ過するのに要する時間(秒)
15:更にろ過を15分継続し、その後試料500mlをろ過するのに要する時間(秒)
前記SDI15の値は、0〜6.66の値を示し、数値が大きいほど汚染度は大きくなる。一般に海水や下水などの原水を前処理した後の逆浸透膜への供給水のSDI値は4以下とされている。
【0006】
【発明が解決しようとする課題】
しかし、近年上記SDI測定方法を用いて前処理後の膜ろ過水のSDI値を測定した場合に、必ずしもSDI値が正確な値を示すわけではなく、汚染指数の精度に問題があることが明らかになった。特にフミン質などの溶存有機物が存在する場合には、通常のSDI値と著しく異なる数値を示すことが明らかになった。例えば、SDI測定に用いられる孔径0.45μmのメンブレンフィルターよりも小さな孔径の限外ろ過膜(分画分子量:20000Daltons、名目孔径:0.007μmのもの、又は分画分子量:500000Daltons、名目孔径:0.029μmのもの等)、又は孔径0.1μm程度の精密ろ過膜を用いて海水などを前処理した後の膜ろ過水のSDI値が3を超す異常に大きな値を示すことがしばしば認められた。そのため、分離膜の汚染リスクを事前に予測し、膜プロセスを安定運転するために、常に高精度のSDI値を算出することのできるSDI測定方法の開発が望まれていた。
【0007】
本発明は、上記課題を解決するものであって、常に高精度のSDI値を算出することができるSDI測定方法を提供することにある。また、前記方法に用いられるSDI測定装置、及び前記方法によりSDI値を測定する工程を含む逆浸透膜を用いた造水方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、上述のような現状に鑑み、鋭意研究を重ねた結果、下記方法により上記課題を解決できることを見出した。
【0009】
即ち、本発明は、測定用の分離膜供給液に予め3MPa以上の圧力を掛け、その後ASTMに規定の圧力下で測定を行うことを特徴とするSDI測定方法、に関する。
【0010】
本発明者等は、前記のようにSDI値が異常値を示す理由として、MFやUFによって前処理した膜ろ過水を用いてSDI測定した場合に、膜ろ過水を15分間通水する過程において、膜ろ過水中に存在し、孔径0.45μmのメンブレンフィルターよりもはるかに小さい有機及び無機微粒子とミクロ気泡とが、フィルターを構成する硝酸セルロースエステル系高分子の微細流路構造部分の壁面に吸着して細孔の流路面積を狭めるか、又は細孔の流路を部分的に閉塞させることが原因であると推察した。特にミクロ気泡が大きく影響していることが推察され、通常このような溶存しているミクロ気泡を取り除くためには、真空脱気処理などなどの手段がとられるが、現行のSDI測定に真空脱気装置の様な設備を付加すると装置が大きくなるため好ましくなく、簡便で、現行のSDI測定方法をできるだけ変更しない方法が求められる。
【0011】
本発明者等は、SDI測定を行う前に、前処理後の砂ろ過又は膜ろ過水を圧力3MPa以上で加圧処理することによりミクロ気泡を砂ろ過又は膜ろ過水中に溶解・消失させることができ、該工程を予め行うことにより空気成分を溶液中に準安定の過飽和状態として溶解できるので、常にSDI値を正確に測定できることを見出したものである。
【0012】
前記SDI測定方法においては、測定試験用の分離膜供給液に3MPa以上の圧力を掛けた後、圧力調節弁を用いてASTMに規定の圧力に下げて測定を行うことが好ましい。このような方法を採用することにより、測定のための加圧を別途行う必要がなく、SDI測定装置を簡易にでき、また効率よく測定することができる。
【0013】
また、前記SDI測定方法においては、測定試験用の分離膜供給液に3MPa以上の圧力を掛け、その後圧力を常圧に戻し、SDI測定に際してASTMに規定の圧力を再び掛けてから測定を行うこともできる。このような方法を採用することにより、ASTMに規定された条件で正確なSDI値を得ることができる。
【0014】
また本発明は、前記SDI測定方法に用いられ、3MPa以上の圧力を掛ける加圧手段と、ASTMに規定の圧力にする圧力調節手段と、分離膜供給液に含まれる物質をろ過する膜分離手段とを少なくとも備えるSDI測定装置、に関する。
【0015】
さらに本発明は、高圧ポンプで加圧された分離膜供給液の一部に対して、前記記載の方法によりSDI値を測定する工程を含む逆浸透膜を用いた造水方法、に関する。逆浸透膜プロセスにおける操作圧力を用いることにより、SDI測定装置に3MPa以上の圧力を掛ける加圧手段を別途設ける必要がなく、SDI測定装置を簡易にでき、また効率よく測定することができる。
【0016】
【発明の実施の形態】
本発明のSDI測定方法は、測定試験用の分離膜供給液に予め3MPa以上の圧力を掛け、その後ASTMに規定の方法で測定できれば、その測定装置、圧力の制御方法、分離膜供給水の種類、温度、及びpHなどは特に制限されない。
【0017】
以下、本発明のSDI測定方法の具体例を図1、2に基づいて説明する。図1は、本発明のSDI測定方法に用いられるSDI測定装置1の構成例を示したものである。図1において、SDI測定装置1は、膜分離手段であるフィルターホルダー2、ホルダー元弁3、圧力調節手段である圧力調節弁4、試料タンク5、タンク元弁6、減圧弁7、加圧手段であるガスボンベ8、及びろ液量を計測するメスシリンダー9などを備えている。フィルターホルダー2には、ASTMに規定されている孔径0.45μm、直径47mmのメンブレンフィルターが装着されている。試料タンク5には、MF、UF、又はDMF(砂−アンスラサイトからなる2層ろ過器)などにより前処理された海水や下水などの砂ろ過又は膜ろ過水が貯留されている。MF、UFなどによる前処理の方法は特に制限されず、通常用いられる方法により行うことができる。
【0018】
本発明のSDI測定方法は、まずガスボンベ8に設けられた減圧弁7を調節して試料タンク5内を3MPa以上の圧力になるように昇圧する。好ましくは4MPa以上であり、さらに好ましくは5MPa以上である。試料タンク3内が3MPa未満の圧力の場合には、ミクロ気泡を十分にろ過水中に溶解させることができず、正確なSDI値を測定することができなくなる。3MPa以上で加圧保持する時間は特に制限されないが、通常1秒間程度でミクロ気泡を十分にろ過水中に溶解させることができ、長時間加圧する必要はない。特に、2〜5秒間加圧することが好ましい。処理温度は特に制限されるものではないが、RO膜の上限40℃までが好ましい。
【0019】
3MPa以上で加圧後、砂ろ過又は膜ろ過水を圧力調節弁4に導入し、圧力調節弁4を調節してASTMに規定されている圧力(206kPa)まで減圧する。その後、フィルターホルダー2に当該砂ろ過又は膜ろ過水を導入し、ASTMに規定されている前記条件下でSDI測定を行う。ASTMには測定温度については規定されていないが、正確なSDI値を測定するためには、測定中には温度を一定に保つことが好ましい。通常、測定温度は5〜35℃程度である。測定温度が40℃以上であるとRO性能に異常をきたす傾向にあるため、前記温度以上の前処理水での本件の適用は行われない。また、ASTMには測定に用いる試料のpHについても規定されていないが、逆浸透膜処理でのスケール発生防止のため、予めpH6.5〜7程度に調製して行うことが好ましい。
【0020】
図2は、本発明のSDI測定方法に用いられるSDI測定装置1の他の例を示したものである。測定条件は前記と同様である。図2において、SDI測定装置1は、前記ガスボンベ8の代わりに高圧ポンプ10を備えている。該SDI測定装置1を用いたSDI測定方法では、まず高圧ポンプ吸入口から試料タンク中のろ過水を吸入させ、高圧ポンプ内でろ過水に3MPa以上の圧力かけて高圧ポンプ吐出口から吐出させる。そして、減圧弁7で減圧後、流量調節用に分岐した配管が設けられた圧力調節弁4に導き、圧力調節弁4を調節してASTMに規定されている圧力(206kPa)まで減圧する。その後、フィルターホルダー2にろ過水を導入し、ASTMに規定されている前記条件下でSDI測定を行う。なお、分岐した配管はメンブレンフィルターの透過流束の低下に伴う設定圧力の上昇を防ぐために、分岐配管からの放流量を調節するため設けられている。
【0021】
また、測定試験用の分離膜供給液に3MPa以上の圧力を掛け、その後圧力を常圧に戻してタンクに貯留した後、SDI測定に際してASTMに規定の圧力を掛けてから測定を行う構成としてもよい。なお、測定条件は前記と同様である。
【0022】
前記方法により測定されるSDI値は、フミン質などの溶存有機物が存在する前処理後の海水や下水などを測定した場合であっても異常値を示すことがなく常に正確な値を算出できる。そのため、逆浸透膜を用いた海水や下水など造水工程に前記方法によるSDI測定工程を取り入れると、逆浸透膜供給水の監視指標として非常に有効であり、逆浸透膜プロセスを安定運転することが可能となる。
【0023】
逆浸透膜プロセスは、水分子を選択的に透過させる性質を有する逆浸透膜を用い、該逆浸透膜を隔てて浸透平衡にある溶液と水に対し、溶液の浸透圧より高い圧力を溶液側から加えることにより、溶液中の水分子を水側へ移行させる技術である。つまり、逆浸透膜プロセスは、蒸発法のような相変化を起こすことなく溶液中から水を取り出せることができるので、エネルギ的に有利である上に運転管理が容易である。
【0024】
そして、この逆浸透膜分離を実用規模で行う場合、以下のような逆浸透分離装置が通常用いられる。まず、逆浸透膜がスパイラル状、管状、平膜の積層体、又は中空糸膜状に加工され、適宜流路材を介装した状態でケースに収容されてエレメントと呼ばれる膜素子構成する。このエレメントは適宜直列に接続され、耐圧容器に収容されてモジュールとなり、さらに、このモジュールが並列に接続されて逆浸透分離モジュールユニットとなる。そして、逆浸透分離モジュールユニット全体に所定の圧力を負荷することにより逆浸透分離が行われる。
【0025】
以下、逆浸透膜を用いた造水方法の具体例を図3に基づいて説明する。図3において、逆浸透分離装置12は、逆浸透膜モジュールユニット16、高圧ポンプ10等を備えている。そして、原海水13は除濁装置14(MF、UF、又はDMFなどを備えた装置)で前処理されて逆浸透供給水15となり、この供給水15は、高圧ポンプ10により所定の操作圧力になるまで昇圧されて逆浸透膜モジュールユニット16に導入され、ここで逆浸透処理されて塩類などが除去された透過水17aと、塩類などが濃縮された濃縮水17bとに分離される。なお、この逆浸透分離装置12の場合、逆浸透分離は単一の操作圧力で1段で行われるが、多段の逆浸透分離を行ってもよい。このようにして得られた透過水17aは適宜タンク18に貯留され、脱塩水として使用に供される。本発明においては、SDI測定装置に3MPa以上の圧力を掛ける加圧手段を省略するため、高圧ポンプ10による操作圧力が3MPa以上である場合、高圧ポンプ10による昇圧を行った後、逆浸透分離モジュールユニット16に供給水を導入する前のいずれかの箇所で、サンプルとなる供給水を抜き取り、前記記載の方法でSDI測定を行う。なお、海水淡水化用として一般的に高圧ポンプ10による操作圧力は3MPa以上であるが、希釈海水などの用途での操作圧力が3MPa未満の場合には、更に3MPa以上に加圧してからSDI測定を行う。そして、算出されたSDI値から供給水の汚染度を確認し、それにより操作条件を適宜変更しつつその後の運転を行う。
【0026】
〔作用効果〕
本発明のSDI測定方法を用いることにより、常に高精度のSDI値を算出することができる。これにより逆浸透膜などの分離膜の汚染リスクを事前に、かつ的確に予測することができ、その後の膜プロセスを効率よく安定運転することが可能となる。
【0027】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、SDI15値は、ASTMに規定の条件下で測定し、以下の計算式により算出した。
【0028】
SDI15=(1−T /T15)×100/15
 :孔径0.45μm、直径47mmのメンブレンフィルターに圧力206kPaで試料をろ過し、初期の試料500mlをろ過するのに要する時間(秒)
15:更にろ過を15分継続し、その後試料500mlをろ過するのに要する時間(秒)
【0029】
実施例1
図2に示す構成のSDI測定装置を用いてSDI測定を行った。測定サンプルとしては、日本海近海海水をDMFを用いて前処理をしたろ過水を用いた。前処理したろ過水(pH:7.0)を試料タンクに貯留し、高圧ポンプ(Hydra−cell製、F20−X)を用いて、25℃に調節したろ過水に5.6MPaの予備圧力を掛けて吐出し、そして圧力調節弁を調節して206kPaまで減圧して、メンブレンフィルター(ミリポア社製、HAWP04700、孔径0.45μm、直径47mm)を装着したフィルターホルダーにろ過水を導入し、ASTMに規定の条件下でSDI測定を行った。なお、測定温度は27℃であった。T 、T15の測定の結果、及びSDI15値を表1に示す。
【0030】
比較例1
予備加圧を省略した以外は実施例1と同様の方法によりSDI測定を行った。T 、T15の測定の結果、及びSDI15値を表1に示す。
【0031】
実施例2
測定サンプルとして、瀬戸内海の海水を用い、UF(日東電工製、RS35−S8)で前処理を行った。前処理したろ過水のpHは8.2であった。
そして、予備加圧を6MPa、測定温度を18℃とした以外は実施例1と同様の方法によりSDI測定を行った。T 、T15の測定の結果、及びSDI15値を表1に示す。
【0032】
比較例2
予備加圧を省略した以外は実施例2と同様の方法によりSDI測定を行った。T 、T15の測定の結果、及びSDI15値を表1に示す。
【0033】
実施例3
測定サンプルとして、アラビア湾バーレン近海の海水を用い、UF(日東電工製、RS50−S8)で前処理を行った。前処理したろ過水のpHは8.0であった。
そして、予備加圧を6MPaとし、測定温度を31℃とした以外は実施例1と同様の方法によりSDI測定を行った。T 、T15の測定の結果、及びSDI15値を表1に示す。
【0034】
比較例3
予備加圧を省略し、ろ過水のpHを8.1とした以外は実施例3と同様の方法によりSDI測定を行った。T 、T15の測定の結果、及びSDI15値を表1に示す。
【0035】
実施例4
測定サンプルとして、シンガポール近海の海水を用い、前記UF(RS35−S8)で前処理を行った。前処理したろ過水のpHは6.7であった。
そして、予備加圧を3MPaとし、測定温度を28℃とした以外は実施例1と同様の方法によりSDI測定を行った。T 、T15の測定の結果、及びSDI15値を表1に示す。
【0036】
比較例4
予備加圧を省略し、ろ過水のpHを6.8とした以外は実施例4と同様の方法によりSDI測定を行った。T 、T15の測定の結果、及びSDI15値を表1に示す。
【0037】
実施例5
測定サンプルとして、合成海水(インスタント・オーシャン製、シーライフ、TDS:3.34%、Na :11400mg/l、K :405mg/l、Ca2+:323mg/l、Mg2+:918mg/l、Cl :18400mg/l、SO 2−:1930mg/l、HCO  :77.8mg/l)にNaOCl(1ppm)を添加したものを用い、UF(日東電工製、NTU−3250)にて前処理した。前処理したろ過水は、pH:8.2であった。
そして、予備加圧を5.6MPaとし、測定温度を30℃とした以外は実施例1と同様の方法によりSDI測定を行った。T 、T15の測定の結果、及びSDI15値を表1に示す。
【0038】
比較例5
予備加圧を省略した以外は実施例5と同様の方法によりSDI測定を行った。T 、T15の測定の結果、及びSDI15値を表1に示す。
【0039】
比較例6
測定サンプルとして、前記合成海水にフミン酸(1ppm)を添加したものを用い、予備加圧を省略した以外は実施例5と同様の方法によりSDI測定を行った。T 、T15の測定の結果、及びSDI15値を表1に示す。
【0040】
実施例6
測定サンプルとして、前記合成海水にNaOCl(1ppm)とフミン酸(1ppm)とを添加したものを用い、前記UFで前処理を行った。前処理したろ過水のpHは8.0であった。
そして、予備加圧を6.5MPaとし、測定温度を34℃とした以外は実施例1と同様の方法によりSDI測定を行った。T 、T15の測定の結果、及びSDI15値を表1に示す。
【0041】
比較例7
予備加圧を省略した以外は実施例6と同様の方法によりSDI測定を行った。T 、T15の測定の結果、及びSDI15値を表1に示す。
【0042】
【表1】

Figure 2004108864
以上に示す結果より、前処理後のろ過水に予め3MPa以上の圧力を掛けずにSDI測定を行った場合には、SDI値が異常値を示す場合(比較例1、3、7)がある。一方、予め3MPa以上の圧力を掛けて溶存しているミクロ気泡を取り除いた後にSDI測定を行った場合(実施例1〜6)には、常に正確なSDI値を示すことがわかる。
【図面の簡単な説明】
【図1】SDI測定装置の構成例を示す図である。
【図2】SDI測定装置の他の構成例を示す図である。
【図3】逆浸透膜を用いた造水方法のフローを示す図である。
【符号の説明】
1:SDI測定装置
2:フィルターホルダー
3:ホルダー元弁
4:圧力調節弁
5:試料タンク
6:タンク元弁
7:減圧弁
8:ガスボンベ
9:メスシリンダー
10:高圧ポンプ
11:圧力計
12:逆浸透分離装置
13:原海水
14:除濁装置
15:逆浸透供給水
16:逆浸透膜モジュールユニット
17a:透過水
17b:濃縮水
18:タンク[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an SDI measurement method used as a water pollution indicator for separation membrane feed water in a membrane process, and more particularly, to an SDI measurement method capable of always calculating a highly accurate SDI value. In addition, the present invention relates to an SDI measuring device used in the method and a method for producing fresh water using a reverse osmosis membrane including a step of measuring an SDI value by the method.
[0002]
[Prior art]
Raw water such as seawater and sewage contains various suspended substances, colloidal organic and inorganic substances, viruses, and bacteria and other pollutants. Such contaminants contaminate the separation membrane and cause a decrease in performance.
[0003]
Conventionally, in seawater desalination treatment and sewage regeneration treatment using a separation membrane such as a reverse osmosis membrane, in order to prevent contamination of the separation membrane, processes such as coagulation sedimentation treatment, pressure flotation treatment, and sand filtration treatment are performed in advance. A pretreatment step has been performed to remove particulate components such as microorganisms, colloids, and silt in raw water in combination. In recent years, techniques for pretreating raw water by membrane separation such as microfiltration membrane (MF) and ultrafiltration membrane (UF) have been developed. Then, as a method of measuring the degree of contamination by trace suspended substances in water after the removal of fine particle components, a method of using a membrane filter having a uniform fine pore diameter and using the clogging rate as a pollution index is adopted. Have been. In particular, it has been confirmed that it is very effective in preventing membrane contamination as a monitoring index of water supplied to a reverse osmosis membrane method seawater desalination apparatus. Currently, ASTM (Standard Test) is used as a water pollution index of separation water supplied to a separation membrane in a membrane process. The SDI (Silt Density Index) measurement method defined by the Method for Silt Density Index of Water D4189-95 is generally used.
[0004]
The SDI value (contamination index) calculated by the SDI measurement method is calculated by the following formula.
[0005]
SDI 15 = (1−T 0 / T 15 ) × 100/15
T 0 : Time required for filtering a sample at a pressure of 206 kPa through a membrane filter having a pore size of 0.45 μm and a diameter of 47 mm and filtering an initial sample of 500 ml (seconds)
T 15 : Time required for continuing filtration for another 15 minutes and thereafter filtering 500 ml of the sample (seconds)
The value of the SDI 15 indicates a value of 0 to 6.66, and the higher the numerical value, the higher the pollution degree. Generally, the SDI value of the supply water to the reverse osmosis membrane after pretreatment of raw water such as seawater or sewage is 4 or less.
[0006]
[Problems to be solved by the invention]
However, in recent years, when the SDI value of the membrane filtered water after the pretreatment is measured using the above SDI measurement method, the SDI value does not always indicate an accurate value, and it is clear that there is a problem in the accuracy of the pollution index. Became. In particular, when a dissolved organic substance such as a humic substance is present, it has been clarified that a value significantly different from a normal SDI value is exhibited. For example, an ultrafiltration membrane (pore size: 20,000 Daltons, nominal pore size: 0.007 μm, or molecular weight cut off: 500,000 Daltons, nominal pore size: 0) having a pore size smaller than that of a membrane filter having a pore size of 0.45 μm used for SDI measurement. .029 μm) or an SDI value of membrane filtration water after pretreatment of seawater or the like using a microfiltration membrane having a pore size of about 0.1 μm often shows an abnormally large value exceeding 3. . Therefore, in order to predict the risk of contamination of the separation membrane in advance and stably operate the membrane process, it has been desired to develop an SDI measurement method that can always calculate a highly accurate SDI value.
[0007]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and an object of the present invention is to provide an SDI measurement method capable of always calculating a highly accurate SDI value. Another object of the present invention is to provide an SDI measuring device used in the method and a fresh water producing method using a reverse osmosis membrane including a step of measuring an SDI value by the method.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the above-mentioned current situation, and as a result, have found that the above-mentioned problem can be solved by the following method.
[0009]
That is, the present invention relates to an SDI measurement method characterized by applying a pressure of 3 MPa or more to a separation membrane supply solution for measurement in advance, and then performing measurement under a pressure specified by ASTM.
[0010]
The present inventors have found that the reason why the SDI value indicates an abnormal value as described above is that when the SDI measurement is performed using the membrane filtered water pretreated with MF or UF, the membrane filtered water is passed for 15 minutes. Organic and inorganic fine particles and microbubbles, which are present in membrane filtered water and are much smaller than a membrane filter with a pore size of 0.45 μm, are adsorbed on the wall surface of the cellulose nitrate ester-based polymer constituting the filter. It was speculated that the cause was that the flow channel area of the pores was narrowed or the flow channel of the pores was partially blocked. In particular, it is presumed that the microbubbles have a large effect. Usually, in order to remove such dissolved microbubbles, a method such as vacuum degassing is employed. It is not preferable to add a facility such as a gas apparatus because the size of the apparatus becomes large, which is not preferable.
[0011]
The present inventors can dissolve and eliminate microbubbles in sand filtration or membrane filtration water by performing pressure treatment of the pre-treated sand filtration or membrane filtration water at a pressure of 3 MPa or more before performing SDI measurement. It has been found that the air component can be dissolved in a solution in a metastable supersaturated state by performing this step in advance, so that the SDI value can always be measured accurately.
[0012]
In the SDI measurement method, it is preferable to apply a pressure of 3 MPa or more to the separation membrane supply liquid for the measurement test, and then reduce the pressure to a value specified by the ASTM using a pressure control valve to perform the measurement. By employing such a method, it is not necessary to separately perform pressurization for measurement, and the SDI measurement device can be simplified and the measurement can be performed efficiently.
[0013]
Further, in the SDI measurement method, a pressure of 3 MPa or more is applied to the separation membrane supply liquid for the measurement test, the pressure is returned to normal pressure, and the ASTM is again subjected to the specified pressure at the time of the SDI measurement, and then the measurement is performed. You can also. By adopting such a method, an accurate SDI value can be obtained under the conditions specified by ASTM.
[0014]
Further, the present invention also provides a pressurizing means for applying a pressure of 3 MPa or more, a pressure adjusting means for adjusting to a pressure specified by ASTM, and a membrane separating means for filtering a substance contained in a separation membrane supply liquid, which is used in the SDI measurement method. And an SDI measurement device comprising at least:
[0015]
Further, the present invention relates to a method for producing fresh water using a reverse osmosis membrane including a step of measuring an SDI value for a part of a separation membrane feed liquid pressurized by a high-pressure pump by the method described above. By using the operating pressure in the reverse osmosis membrane process, there is no need to separately provide a pressurizing means for applying a pressure of 3 MPa or more to the SDI measuring device, and the SDI measuring device can be simplified and efficiently measured.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
In the SDI measurement method of the present invention, if a pressure of 3 MPa or more is previously applied to the separation membrane supply liquid for the measurement test, and then the measurement can be performed by the method specified in ASTM, the measurement apparatus, the pressure control method, the type of separation membrane supply water , Temperature and pH are not particularly limited.
[0017]
Hereinafter, a specific example of the SDI measurement method of the present invention will be described with reference to FIGS. FIG. 1 shows an example of the configuration of an SDI measuring device 1 used in the SDI measuring method of the present invention. In FIG. 1, an SDI measuring apparatus 1 includes a filter holder 2 as a membrane separation unit, a holder base valve 3, a pressure control valve 4 as a pressure control unit, a sample tank 5, a tank base valve 6, a pressure reducing valve 7, a pressurizing unit. And a measuring cylinder 9 for measuring the amount of filtrate. The filter holder 2 is provided with a membrane filter having a pore diameter of 0.45 μm and a diameter of 47 mm specified by ASTM. The sample tank 5 stores sand filtration or membrane filtration water such as seawater or sewage pretreated by MF, UF, or DMF (two-layer filter made of sand-anthracite). The method of preprocessing by MF, UF, or the like is not particularly limited, and can be performed by a commonly used method.
[0018]
In the SDI measurement method of the present invention, first, the pressure in the sample tank 5 is increased to 3 MPa or more by adjusting the pressure reducing valve 7 provided in the gas cylinder 8. It is preferably at least 4 MPa, more preferably at least 5 MPa. If the pressure in the sample tank 3 is less than 3 MPa, the microbubbles cannot be sufficiently dissolved in the filtered water, and the accurate SDI value cannot be measured. The time for maintaining the pressure at 3 MPa or more is not particularly limited, but usually about 1 second can sufficiently dissolve the microbubbles in the filtered water, and there is no need to pressurize for a long time. In particular, it is preferable to pressurize for 2 to 5 seconds. Although the processing temperature is not particularly limited, the upper limit of the RO film is preferably up to 40 ° C.
[0019]
After pressurizing at 3 MPa or more, sand filtration or membrane filtration water is introduced into the pressure control valve 4, and the pressure control valve 4 is adjusted to reduce the pressure to the pressure (206 kPa) specified by ASTM. Then, the sand filtration or the membrane filtration water is introduced into the filter holder 2, and the SDI measurement is performed under the above-described conditions specified by ASTM. Although the ASTM does not specify the measurement temperature, it is preferable to keep the temperature constant during the measurement in order to measure an accurate SDI value. Usually, the measurement temperature is about 5 to 35 ° C. If the measured temperature is 40 ° C. or higher, the RO performance tends to be abnormal. Therefore, the present invention is not applied to the pretreated water having the temperature higher than the above temperature. Further, although the ASTM does not specify the pH of the sample used for the measurement, it is preferable to adjust the pH to about 6.5 to 7 in advance in order to prevent scale from being generated in the reverse osmosis membrane treatment.
[0020]
FIG. 2 shows another example of the SDI measuring device 1 used in the SDI measuring method of the present invention. The measurement conditions are the same as described above. In FIG. 2, the SDI measuring device 1 includes a high-pressure pump 10 instead of the gas cylinder 8. In the SDI measuring method using the SDI measuring device 1, first, the filtered water in the sample tank is sucked from the high pressure pump suction port, and the filtered water is applied with a pressure of 3 MPa or more in the high pressure pump and discharged from the high pressure pump discharge port. Then, after the pressure is reduced by the pressure reducing valve 7, the pressure is led to the pressure adjusting valve 4 provided with a pipe branched for flow rate adjustment, and the pressure adjusting valve 4 is adjusted to reduce the pressure to the pressure (206 kPa) specified by ASTM. Thereafter, filtered water is introduced into the filter holder 2, and SDI measurement is performed under the above-described conditions specified by ASTM. The branched pipe is provided for adjusting the discharge rate from the branched pipe in order to prevent an increase in the set pressure due to a decrease in the permeation flux of the membrane filter.
[0021]
Alternatively, a pressure of 3 MPa or more may be applied to the separation membrane supply liquid for the measurement test, and then the pressure may be returned to normal pressure and stored in the tank. Good. The measurement conditions are the same as described above.
[0022]
The SDI value measured by the above method can always calculate an accurate value without showing an abnormal value even when measuring seawater or sewage after pretreatment in which dissolved organic substances such as humic substances are present. Therefore, if the SDI measurement process according to the above method is incorporated into a desalination process such as seawater or sewage using a reverse osmosis membrane, it is very effective as a monitoring index for reverse osmosis membrane supply water, and stable operation of the reverse osmosis membrane process is required. Becomes possible.
[0023]
The reverse osmosis membrane process uses a reverse osmosis membrane having the property of selectively permeating water molecules, and applies a pressure higher than the osmotic pressure of the solution to the solution and water in osmotic equilibrium across the reverse osmosis membrane. This is a technique for transferring water molecules in a solution to the water side by adding water. That is, in the reverse osmosis membrane process, water can be taken out of the solution without causing a phase change unlike the evaporation method, so that it is advantageous in energy and operation management is easy.
[0024]
When the reverse osmosis membrane separation is performed on a practical scale, the following reverse osmosis separation device is usually used. First, the reverse osmosis membrane is processed into a spiral, tubular, or flat membrane laminate or hollow fiber membrane, and is housed in a case with a flow path material interposed therebetween to form a membrane element called an element. The elements are appropriately connected in series, housed in a pressure-resistant container to form a module, and further connected in parallel to form a reverse osmosis separation module unit. Then, reverse osmosis separation is performed by applying a predetermined pressure to the entire reverse osmosis separation module unit.
[0025]
Hereinafter, a specific example of a fresh water producing method using a reverse osmosis membrane will be described with reference to FIG. 3, the reverse osmosis separation device 12 includes a reverse osmosis membrane module unit 16, a high-pressure pump 10, and the like. The raw seawater 13 is pretreated by a turbidity separator 14 (a device provided with MF, UF, or DMF, etc.) to become reverse osmosis feedwater 15. Then, the pressure is increased until it is introduced into the reverse osmosis membrane module unit 16, where it is separated into permeated water 17 a from which salts and the like have been removed by reverse osmosis treatment and concentrated water 17 b in which the salts and the like have been concentrated. In addition, in the case of the reverse osmosis separation device 12, the reverse osmosis separation is performed in one stage with a single operation pressure, but may be performed in multiple stages. The permeated water 17a thus obtained is appropriately stored in a tank 18 and used as demineralized water. In the present invention, since the pressurizing means for applying a pressure of 3 MPa or more to the SDI measuring device is omitted, when the operating pressure of the high-pressure pump 10 is 3 MPa or more, the pressure is increased by the high-pressure pump 10 and then the reverse osmosis separation module is used. At any point before the supply water is introduced into the unit 16, the supply water serving as a sample is withdrawn, and the SDI measurement is performed by the method described above. In general, the operating pressure of the high-pressure pump 10 for seawater desalination is 3 MPa or more. However, when the operating pressure for applications such as diluted seawater is less than 3 MPa, the pressure is further increased to 3 MPa or more before SDI measurement. I do. Then, the contamination degree of the supply water is confirmed from the calculated SDI value, and the subsequent operation is performed while appropriately changing the operation conditions.
[0026]
(Function and effect)
By using the SDI measurement method of the present invention, a highly accurate SDI value can always be calculated. As a result, the risk of contamination of a separation membrane such as a reverse osmosis membrane can be predicted in advance and accurately, and the subsequent membrane process can be efficiently and stably operated.
[0027]
【Example】
Hereinafter, examples and the like specifically illustrating the configuration and effects of the present invention will be described. The SDI 15 value was measured under the conditions specified by ASTM, and calculated by the following formula.
[0028]
SDI 15 = (1−T 0 / T 15 ) × 100/15
T 0 : Time required for filtering a sample at a pressure of 206 kPa through a membrane filter having a pore size of 0.45 μm and a diameter of 47 mm and filtering an initial sample of 500 ml (seconds)
T 15 : Time required for continuing filtration for another 15 minutes and thereafter filtering 500 ml of the sample (seconds)
[0029]
Example 1
The SDI measurement was performed using the SDI measurement device having the configuration shown in FIG. As a measurement sample, filtered water obtained by pretreating seawater near the Sea of Japan with DMF was used. The pretreated filtered water (pH: 7.0) is stored in a sample tank, and a 5.6 MPa preliminary pressure is applied to the filtered water adjusted to 25 ° C. using a high-pressure pump (manufactured by Hydra-cell, F20-X). Then, the pressure was reduced to 206 kPa by adjusting a pressure control valve, and filtered water was introduced into a filter holder equipped with a membrane filter (manufactured by Millipore, HAWP04700, pore size: 0.45 μm, diameter: 47 mm). The SDI measurement was performed under specified conditions. The measurement temperature was 27 ° C. Table 1 shows the measurement results of T 0 and T 15 and the SDI 15 value.
[0030]
Comparative Example 1
The SDI measurement was performed in the same manner as in Example 1 except that the preliminary pressurization was omitted. Table 1 shows the measurement results of T 0 and T 15 and the SDI 15 value.
[0031]
Example 2
Pretreatment was performed with UF (RS35-S8, manufactured by Nitto Denko) using seawater from the Seto Inland Sea as a measurement sample. The pH of the pretreated filtered water was 8.2.
Then, SDI measurement was performed in the same manner as in Example 1 except that the preliminary pressurization was set to 6 MPa and the measurement temperature was set to 18 ° C. Table 1 shows the measurement results of T 0 and T 15 and the SDI 15 value.
[0032]
Comparative Example 2
The SDI measurement was performed in the same manner as in Example 2 except that the preliminary pressurization was omitted. Table 1 shows the measurement results of T 0 and T 15 and the SDI 15 value.
[0033]
Example 3
Pretreatment was performed with UF (RS50-S8, manufactured by Nitto Denko) using seawater near Baren, Gulf of Arabia as a measurement sample. The pH of the pretreated filtered water was 8.0.
Then, SDI measurement was performed in the same manner as in Example 1 except that the preliminary pressurization was set to 6 MPa and the measurement temperature was set to 31 ° C. Table 1 shows the measurement results of T 0 and T 15 and the SDI 15 value.
[0034]
Comparative Example 3
The SDI measurement was performed in the same manner as in Example 3 except that the preliminary pressurization was omitted and the pH of the filtered water was set to 8.1. Table 1 shows the measurement results of T 0 and T 15 and the SDI 15 value.
[0035]
Example 4
As a measurement sample, seawater near Singapore was used for pretreatment with the UF (RS35-S8). The pH of the pretreated filtered water was 6.7.
Then, SDI measurement was performed in the same manner as in Example 1 except that the preliminary pressurization was set to 3 MPa and the measurement temperature was set to 28 ° C. Table 1 shows the measurement results of T 0 and T 15 and the SDI 15 value.
[0036]
Comparative Example 4
The SDI measurement was performed in the same manner as in Example 4 except that the preliminary pressurization was omitted and the pH of the filtered water was changed to 6.8. Table 1 shows the measurement results of T 0 and T 15 and the SDI 15 value.
[0037]
Example 5
As a measurement sample, synthetic seawater (manufactured by Instant Ocean, Sea Life, TDS: 3.34%, Na + : 11,400 mg / l, K + : 405 mg / l, Ca 2+ : 323 mg / l, Mg 2+ : 918 mg / l, Cl : 18400 mg / l, SO 4 2− : 1930 mg / l, HCO 3 : 77.8 mg / l) and NaOCl (1 ppm) added, using UF (Nitto Denko, NTU-3250). Pre-processed. The pretreated filtered water had a pH of 8.2.
Then, SDI measurement was performed in the same manner as in Example 1 except that the preliminary pressurization was set to 5.6 MPa and the measurement temperature was set to 30 ° C. Table 1 shows the measurement results of T 0 and T 15 and the SDI 15 value.
[0038]
Comparative Example 5
The SDI measurement was performed in the same manner as in Example 5 except that the preliminary pressurization was omitted. Table 1 shows the measurement results of T 0 and T 15 and the SDI 15 value.
[0039]
Comparative Example 6
As a measurement sample, a sample obtained by adding humic acid (1 ppm) to the synthetic seawater was used, and SDI measurement was performed in the same manner as in Example 5 except that preliminary pressurization was omitted. Table 1 shows the measurement results of T 0 and T 15 and the SDI 15 value.
[0040]
Example 6
As a measurement sample, a sample obtained by adding NaOCl (1 ppm) and humic acid (1 ppm) to the synthetic seawater was used, and the pretreatment was performed with the UF. The pH of the pretreated filtered water was 8.0.
Then, SDI measurement was performed in the same manner as in Example 1 except that the preliminary pressurization was set to 6.5 MPa and the measurement temperature was set to 34 ° C. Table 1 shows the measurement results of T 0 and T 15 and the SDI 15 value.
[0041]
Comparative Example 7
The SDI measurement was performed in the same manner as in Example 6, except that the preliminary pressurization was omitted. Table 1 shows the measurement results of T 0 and T 15 and the SDI 15 value.
[0042]
[Table 1]
Figure 2004108864
From the results shown above, when the SDI measurement was performed without applying a pressure of 3 MPa or more to the filtered water after the pretreatment in advance, the SDI value sometimes showed an abnormal value (Comparative Examples 1, 3, and 7). . On the other hand, when the SDI measurement is performed after removing the dissolved microbubbles by applying a pressure of 3 MPa or more in advance (Examples 1 to 6), it can be seen that the SDI value is always accurate.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration example of an SDI measurement device.
FIG. 2 is a diagram showing another configuration example of the SDI measuring device.
FIG. 3 is a diagram showing a flow of a fresh water producing method using a reverse osmosis membrane.
[Explanation of symbols]
1: SDI measuring device 2: filter holder 3: holder base valve 4: pressure control valve 5: sample tank 6: tank base valve 7: pressure reducing valve 8: gas cylinder 9: measuring cylinder 10: high pressure pump 11: pressure gauge 12: reverse Osmosis separation device 13: raw seawater 14: clarifier 15: reverse osmosis feed water 16: reverse osmosis membrane module unit 17a: permeate 17b: concentrated water 18: tank

Claims (5)

測定用の分離膜供給液に予め3MPa以上の圧力を掛け、その後ASTMに規定の圧力下で測定を行うことを特徴とするSDI測定方法。An SDI measurement method, which comprises applying a pressure of 3 MPa or more to a separation membrane supply liquid for measurement in advance, and thereafter performing measurement under a pressure specified by ASTM. 測定用の分離膜供給液に3MPa以上の圧力を掛けた後、圧力調節弁を用いてASTMに規定の圧力に下げてから測定を行う請求項1記載のSDI測定方法。2. The SDI measurement method according to claim 1, wherein after applying a pressure of 3 MPa or more to the separation membrane supply liquid for measurement, the pressure is reduced to a pressure specified by ASTM using a pressure control valve before measurement. 測定用の分離膜供給液に3MPa以上の圧力を掛け、その後圧力を常圧に戻し、SDI測定に際してASTMに規定の圧力を再び掛けてから測定を行う請求項1記載のSDI測定方法。2. The SDI measurement method according to claim 1, wherein a pressure of 3 MPa or more is applied to the supply liquid for the separation membrane for measurement, and then the pressure is returned to normal pressure. 請求項1〜3のいずれかに記載のSDI測定方法に用いられ、3MPa以上の圧力を掛ける加圧手段と、ASTMに規定の圧力にする圧力調節手段と、分離膜供給液に含まれる物質をろ過する膜分離手段とを少なくとも備えるSDI測定装置。A pressure means for applying a pressure of 3 MPa or more for use in the SDI measurement method according to any one of claims 1 to 3, a pressure adjustment means for adjusting the pressure to a value specified by ASTM, and a substance contained in the separation membrane supply liquid. An SDI measuring device comprising at least a membrane separation means for performing filtration. 高圧ポンプで加圧された分離膜供給液の一部に対して、請求項1〜3のいずれかに記載の方法によりSDI値を測定する工程を含む逆浸透膜を用いた造水方法。A fresh water producing method using a reverse osmosis membrane, comprising a step of measuring an SDI value of a part of the separation membrane supply liquid pressurized by a high pressure pump by the method according to claim 1.
JP2002269662A 2002-09-17 2002-09-17 Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane Pending JP2004108864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269662A JP2004108864A (en) 2002-09-17 2002-09-17 Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269662A JP2004108864A (en) 2002-09-17 2002-09-17 Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane

Publications (1)

Publication Number Publication Date
JP2004108864A true JP2004108864A (en) 2004-04-08

Family

ID=32267532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269662A Pending JP2004108864A (en) 2002-09-17 2002-09-17 Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane

Country Status (1)

Country Link
JP (1) JP2004108864A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317163A (en) * 2005-05-10 2006-11-24 Japan Organo Co Ltd Water quality measuring method and apparatus thereof
CN101943652A (en) * 2010-08-16 2011-01-12 安徽省建设工程勘察设计院 Intelligent sludge detecting instrument
US8221628B2 (en) 2010-04-08 2012-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system to recover waste heat to preheat feed water for a reverse osmosis unit
US8505324B2 (en) 2010-10-25 2013-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Independent free cooling system
CN103663623A (en) * 2012-08-31 2014-03-26 中国科学院地理科学与资源研究所 Device and method for filtering high-salt water and application of device
US9314742B2 (en) 2010-03-31 2016-04-19 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for reverse osmosis predictive maintenance using normalization data
KR101652685B1 (en) * 2015-05-21 2016-09-01 한국과학기술연구원 Method for measuring a pollution level of inorganic ion

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317163A (en) * 2005-05-10 2006-11-24 Japan Organo Co Ltd Water quality measuring method and apparatus thereof
JP4666600B2 (en) * 2005-05-10 2011-04-06 オルガノ株式会社 Water evaluation method
US9314742B2 (en) 2010-03-31 2016-04-19 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system for reverse osmosis predictive maintenance using normalization data
US8221628B2 (en) 2010-04-08 2012-07-17 Toyota Motor Engineering & Manufacturing North America, Inc. Method and system to recover waste heat to preheat feed water for a reverse osmosis unit
CN101943652A (en) * 2010-08-16 2011-01-12 安徽省建设工程勘察设计院 Intelligent sludge detecting instrument
US8505324B2 (en) 2010-10-25 2013-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Independent free cooling system
CN103663623A (en) * 2012-08-31 2014-03-26 中国科学院地理科学与资源研究所 Device and method for filtering high-salt water and application of device
KR101652685B1 (en) * 2015-05-21 2016-09-01 한국과학기술연구원 Method for measuring a pollution level of inorganic ion

Similar Documents

Publication Publication Date Title
Singh et al. Introduction to membrane processes for water treatment
JP5549589B2 (en) Fresh water system
KR101193902B1 (en) Water-purifying system and method using membrane filtration for manufacturing purified water
US20170274325A1 (en) Water treatment method
JP2007289922A (en) Inhibition-ratio improver of nano filtration membrane or reverse osmosis membrane, improvement method of inhibition-ratio, nano filtration membrane or reverse osmosis membrane, water treatment method, and water treatment apparatus
WO2012098969A1 (en) Method for cleaning membrane module, method of fresh water generation, and fresh water generator
JPWO2008096585A1 (en) Filtration apparatus and water treatment method
KR101550702B1 (en) Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water
JP2004108864A (en) Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane
TWI711588B (en) Treatment method of high hardness drainage
WO2017135162A1 (en) Water treatment device, method for operating water treatment device, and water treatment method
JP7113454B2 (en) Water treatment method and equipment
KR101522254B1 (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
JP6036808B2 (en) Fresh water generation method
Gray et al. Effect of fractionated NOM on low-pressure membrane flux declines
KR20170047090A (en) Energy saving Forward Osmosis-filtration hybrid Water treatment/seawater desalination system using big size polymer draw solute and method of Water treatment/seawater desalination using the same
CN108128848A (en) A kind of novel water purification processing method
CN115417472A (en) Reverse osmosis ultrahigh-pressure reverse osmosis treatment system and treatment method thereof
JP2005195499A (en) Sdi measuring method, sdi measuring instrument, and water production method using reverse osmosis membrane
JP4033094B2 (en) Method for detecting membrane damage of membrane filtration device and apparatus therefor
JP2019076827A (en) Water treatment equipment and water treatment method
Cséfalvay et al. Applicability of nanofiltration and reverse osmosis for the treatment of wastewater of different origin
EP3056259A1 (en) Device for measuring membrane fouling index
JP4517615B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JP2006218341A (en) Method and apparatus for treating water