JP2004108796A - Radiation measurement device - Google Patents

Radiation measurement device Download PDF

Info

Publication number
JP2004108796A
JP2004108796A JP2002268252A JP2002268252A JP2004108796A JP 2004108796 A JP2004108796 A JP 2004108796A JP 2002268252 A JP2002268252 A JP 2002268252A JP 2002268252 A JP2002268252 A JP 2002268252A JP 2004108796 A JP2004108796 A JP 2004108796A
Authority
JP
Japan
Prior art keywords
radiation
energy
count rate
pulse signal
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002268252A
Other languages
Japanese (ja)
Inventor
Takeshi Uchibori
内堀 武司
Shohei Matsubara
松原 昌平
Kenichi Yano
矢野 賢一
Shigeru Moriuchi
森内 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP2002268252A priority Critical patent/JP2004108796A/en
Publication of JP2004108796A publication Critical patent/JP2004108796A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve measurement accuracy over a wide range, from a condition in which the radiation is little to a condition in which it is ample, in the device for obtaining a dose rate or the like, on the basis of the pulse height of a detection pulse. <P>SOLUTION: A G(E) function is stored in a G(E) function storage part 28, for each count rate range. A G(E) function selection part 26 selects, from them, the G(E) function corresponding to the current count rate obtained by a counter 24. A dose rate calculation part 20 calculates the dose rate by multiplying the count value of each channel of the energy spectrum obtained at a multi-channel analyzer (MCA) 18 by the selected G(E) function, and by totalizing them. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、入射放射線のエネルギーに対応した波高の検出パルス信号を出力する検出器を用いた放射線測定装置に関する。
【0002】
【従来の技術】
シンチレーション検出器や半導体検出器は、入射放射線が検出器内で失ったエネルギーに対応した波高の検出パルス信号を出力する。例えば環境放射線測定装置などでは、このような検出器を用いることにより、各検出パルスの波高から検出放射線のエネルギースペクトルを求めたり、あるいは検出パルスをその波高に応じた重み付けで計数することにより線量率や線量当量率を求めたりしている。
【0003】
線量等の算出には、G(E)関数法やDBM(ディスクリミネーション・バイアスド・モジュレーション)法などが用いられる。G(E)関数法では、非特許文献1に示すように、各エネルギー値範囲ごとにその計数を線量等に換算する換算係数を実験等で決定し、マルチチャネルアナライザで求めた各チャネル(エネルギー値)の計数に、対応する換算係数を乗じて加算することにより、線量等を計算する。DBM法では、波高弁別器の弁別閾値を所定パターンに従って時間的に変化させることにより、検出パルス信号が後段の計数器に入力される確率をその波高に応じて調整する。これによりエネルギーに応じた重み付けがなされ、その計数結果から線量等の所望単位の測定値が得られる。
【0004】
【非特許文献1】
森内 茂、“スペクトル−線量変換演算子による線量評価法とその演算子の決定”JAERI 1209, 日本原子力研究所 1971年
【0005】
【発明が解決しようとする課題】
このような放射線測定装置では、放射線の入射が増えると、エネルギー分布のパターンが同じままであるとしても(すなわち、それぞれのエネルギーの放射線の入射量が同じ比率で増えたとしても)、求められるエネルギースペクトルの形状が変わってくる。これは、一つには検出系におけるパルスのパイルアップが原因と考えられる。すなわち、周知のように放射線検出器や計数回路等の信号処理回路系にはパルスの分解時間があり、入射放射線の頻度が高まるとパルス同士が分解しきれずに重なる。これがパイルアップであり、パイルアップが生じると複数の入射放射線に対応する検出パルスが1つになって計数が減ったり、重なりによりパルス波高が大きくなったりする。これがエネルギースペクトルの形状に変化をもたらしている。また、検出器の種類によってエネルギー感度分布が異なることも、このようなスペクトル形状の変化の一因となっている。このようにエネルギースペクトル形状が変化すると、装置に組み込まれたG(E)関数やDBMの弁別閾値変化パターンで想定している換算係数では正しい線量に換算できなくなり、線量率等を精度良く判定することができなかった。
【0006】
例えば、NaIシンチレーション検出器を用いた環境放射線測定装置では、低エネルギーのγ(X)線に対する感度が(高エネルギーに比べて)高いため、線量率が数μGy/h程度に達すると低エネルギーγ線のパイルアップが顕著になり、低エネルギーγ線の数え落としが増える。このため、NaIシンチレーション検出器を用いた放射線測定装置では、数μGy/hから線量率特性が落ち込み、装置が出力する指示値が実際の照射線量率より低くなっていた。なお、この問題を解決するには、例えばNaI検出器の周りを鉛などのフィルタで覆うことで、低エネルギーγ線に対する検出器感度を下げる方式が考えられる。しかし線量率が高くなるほどパイルアップの確率も大きくなり、フィルタで覆っての解決には限度があった。
【0007】
本発明はこのような問題に鑑みなされたものであり、放射線の量が少ない状況から多い状況まで広い範囲にわたって検出パルス信号の波高に基づき線量率等を求めることができる装置を実現することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る放射線測定装置は、放射線の検出に応じてそのエネルギーに応じた波高の検出パルス信号を出力する放射線検出器と、前記検出パルス信号を計数して計数率を求める計数率測定手段と、前記検出パルス信号のエネルギースペクトルを求め、このエネルギースペクトルに対してエネルギー換算関数を適用することにより放射線測定値を求める測定値算出手段であって、各計数率範囲ごとに前記エネルギー換算関数を有し、その中から前記計数率測定手段で求められた計数率に応じた前記エネルギー換算関数を用いて放射線測定値を求める測定値算出手段と、を備える。
【0009】
この構成では、各計数率範囲ごとに、それぞれ適切なエネルギー換算関数を用意し、実測した計数率に応じたエネルギー換算関数を検出パルス信号のエネルギースペクトルに適用することで放射線測定値を算出する。算出する放射線測定値は、例えば線量率や線量当量率などである。この構成によれば、広い計数率範囲にわたって精度のよい測定データが得られる。
【0010】
また本発明に係る放射線測定装置は、放射線の検出に応じてそのエネルギーに応じた波高の検出パルス信号を出力する放射線検出器と、前記検出パルス信号を計数して計数率を求める計数率測定手段と、前記検出パルス信号のうち弁別閾値以上の波高の信号のみを抽出して出力する波高弁別器であって、前記弁別閾値が可変の波高弁別器と、前記波高弁別器の弁別閾値を変化パターンに従って時間的に変化させていき、その間の前記波高弁別器の出力から放射線測定値を求める測定値算出手段であって、各計数率範囲ごとに前記変化パターンを有し、その中から前記計数率測定手段で求められた計数率に対応する前記変化パターンを用いて前記弁別閾値を変化させる測定値算出手段と、を備える。
【0011】
この構成では、DBM法の弁別閾値の時間的な変化パターンを各計数率範囲ごとに用意し、実測した計数率に応じた変化パターンを用いてDBM法による測定を行う。この構成でも、広い計数率範囲にわたって精度のよい測定データが得られる。
【0012】
また、本発明の好適な態様によれば、前記放射線検出器は、NaIシンチレータを用いた検出器であり、低エネルギー放射線に対する感度を制限するための低エネルギー制限フィルタを備える。
【0013】
この態様によれば、各エネルギーの放射線に対する検出器の感度を均一に近づけることができる上に、広い計数率範囲にわたって精度のよい測定データが得られる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。
【0015】
図1は、本発明の一実施形態の放射線測定装置の構成を示すブロック図である。
【0016】
この装置は、例えば環境のγ(及びX)線の測定に用いる装置であり、放射線検出器としてNaIシンチレータ10と光電子増倍管(PMT)12を用いている。NaIシンチレータ10は、入射した放射線がシンチレータ10内で失ったエネルギーに応じた光量で発光する。この発光が、光電子増倍管12により、光量に応じた波高を持つ電気的な検出パルス信号に変換される。フィルタ14は、NaIシンチレータ10の感度特性を低エネルギーから高エネルギーにわたってできるだけ平坦化するという目的で設けた、鉛等の材質からなるフィルタである。このフィルタ14は、NaIシンチレータ10を覆うように設けられている。NaIシンチレータ10は、低エネルギー側の感度が高エネルギー側よりも高いという特性を持っているが、このフィルタ14により低エネルギーのγ(X)線ほど大きく減弱されるので、検出器の感度が均一化の方向に調整される。フィルタ14の厚さを調整したり、あるいはフィルタ14各部に貫通孔や凹凸を設けたりすることで、放射線エネルギーに対する感度分布の均一性を高めることができる。
【0017】
さて、光電子増倍管12から出力された検出パルス信号は、プリアンプ16で比例増幅されたのち、マルチチャネルアナライザ(MCA)18に入力される。MCA18は、各波高レベルに対応した複数のチャネルを有し、検出パルス信号を各々の波高に応じたチャネルごとに計数する。これにより、入射放射線のエネルギースペクトルが形成される。
【0018】
本実施形態では、このMCA18で形成されたエネルギースペクトルに対し、G(E)関数法を適用して線量率を測定する場合に、そのときの放射線の入射状況に適したG(E)関数を用いることで、測定結果の精度を向上させる。
【0019】
このため本実施形態では、計数率の大きさに応じて複数のG(E)関数を用意する。すなわち、各計数率範囲ごとに、本放射線測定装置での測定結果に応じてG(E)関数を作成する。個々の計数率範囲に対応するG(E)関数の作成は、例えば、上述の非特許文献1などに説明されている従来公知の方法に従って行えばよい。簡単に説明すると、各エネルギーのγ(X)線を、この放射線測定装置で測定してエネルギースペクトルを求め、これらエネルギースペクトルから各チャネル(あるいは各エネルギー範囲)に対する換算係数を求めればよい。本実施形態では、フィルタ14を装着した状態での測定結果からG(E)関数を作成して利用することで、検出器のエネルギー感度を平坦化するとともに全体的なエネルギー特性の劣化を防止している。このようにして求めた各計数率範囲ごとのG(E)関数が、G(E)関数記憶部28に格納されている。
【0020】
図2は、G(E)関数記憶部28に記憶されているG(E)関数群を模式的に示した図である。1つのG(E)関数は、MCA18で求められたエネルギースペクトルの各チャネル(エネルギー値E)に対応する換算係数G(E)の集まりである。複数チャネルにわたるエネルギー範囲ごとに換算係数を記憶するようにしてももちろんよい。この例では、計数率の範囲を3つに分けた場合の、各々の範囲に適用するG(E)関数を図示している。各計数率範囲に対応するG(E)関数は、それぞれの計数率状況におけるパイルアップなどの影響を織り込んだものとなっているので、これを用いることで従来よりも正確に線量率を求めることができる。
【0021】
本実施形態では、MCA18から計数器24に検出パルス信号を供給し、計数器24でそれら検出パルス信号を計数して計数率を求める。すなわち、計数器24では、エネルギーを考慮せずに各パルスをカウントすることで、トータルの計数率を求める。この計数率は、検出系のパイルアップ等の度合いの指標となる。求められた計数率は、G(E)関数選択部26に渡される。
【0022】
G(E)関数選択部26は、G(E)関数記憶部28に格納されているG(E)関数の中から、その計数率に対応するものを選択し、その関数のデータを線量率演算部20に供給する。線量率演算部20は、検出放射線の単位時間のエネルギースペクトルをMCA18から取得し、このエネルギースペクトルの各チャネルと、G(E)関数選択部26から取得したG(E)関数とを用いて、線量率を算出する。エネルギースペクトルは、図3に示すように、各チャネル(エネルギー値E)ごとの単位時間当たりの計数値(すなわち計数率)n(E)を示しているので、線量率Rは、
【数1】
R=kΣ{G(E)・n(E)}
(kは比例定数。Σは全チャネル(エネルギー値E)にわたっての総和)
により計算できる。このようにして求められた線量率Rは、出力部22により表示されたり、記録されたりする。
【0023】
このように、本実施形態では、現在の計数率に対応するG(E)関数を選んで用いるので、その時々の放射線の入射状況によるパイルアップなどの影響をある程度補正し、より正確な線量率を得ることができる。したがって、この装置によれば、放射線の量が少ない状況から多い状況まで広い範囲にわたって、より正確な線量率を求めることができる。
【0024】
以上、本発明の好適な実施形態を説明した。以上では、G(E)関数法を用いた場合を例示したが、本実施形態の考え方はDBM法にも適用可能である。DBM法の場合、波高弁別閾値の時間変化パターンを、計数率範囲ごとに切り換えて使用するようにすればよい。この場合この閾値の時間変化パターンが、エネルギー換算関数の役割を果たす。
【0025】
また、以上では線量率を求める場合を例にとったが、線量率以外にも、検出パルス信号の波高から入射放射線のエネルギーを考慮した測定結果(例えば線量当量率など)を求める場合一般に本実施形態の手法は適用可能である。
【0026】
【発明の効果】
以上説明したように、本発明によれば、パイルアップなどの影響によるエネルギースペクトル形状の変化に対応することができ、広い範囲にわたって精度のよい測定結果を得ることができる。
【図面の簡単な説明】
【図1】実施形態の放射線測定装置の概略構成を示すブロック図である。
【図2】G(E)関数記憶部に記憶される各計数率範囲に対応するG(E)関数群を模式的に示した図である。
【図3】エネルギースペクトルを説明するための図である。
【符号の説明】
10 NaIシンチレータ、12 光電子増倍管(PMT)、14 フィルタ、16 プリアンプ、18 マルチチャネルアナライザ(MCA)、20 線量率演算部、22 出力部、24 計数器、26 G(E)関数選択部、28 G(E)関数記憶部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a radiation measuring apparatus using a detector that outputs a detection pulse signal having a wave height corresponding to the energy of incident radiation.
[0002]
[Prior art]
The scintillation detector and the semiconductor detector output a detection pulse signal having a wave height corresponding to the energy that the incident radiation has lost in the detector. For example, in an environmental radiation measurement device, etc., using such a detector, the dose rate can be obtained by obtaining the energy spectrum of the detected radiation from the wave height of each detected pulse, or by counting the detected pulses by weighting according to the wave height. And dose equivalent rates.
[0003]
The G (E) function method, the DBM (discrimination biased modulation) method, or the like is used for calculating the dose and the like. In the G (E) function method, as shown in Non-Patent Document 1, a conversion coefficient for converting the count into a dose or the like for each energy value range is determined by experiment or the like, and each channel (energy Value) is multiplied by the corresponding conversion coefficient and added to calculate the dose or the like. In the DBM method, the probability that a detection pulse signal is input to a counter at the subsequent stage is adjusted according to the pulse height by changing the discrimination threshold of the pulse height discriminator with time according to a predetermined pattern. Thereby, weighting is performed according to the energy, and a measurement value of a desired unit such as a dose is obtained from the counting result.
[0004]
[Non-patent document 1]
Shigeru Moriuchi, "Dose evaluation method by spectrum-dose conversion operator and determination of the operator" JAERI 1209, Japan Atomic Energy Research Institute 1971 [0005]
[Problems to be solved by the invention]
In such a radiation measuring apparatus, as the incident radiation increases, the required energy is obtained even if the energy distribution pattern remains the same (that is, even if the incident radiation amount of each energy increases in the same ratio). The shape of the spectrum changes. This may be due in part to pulse pile-up in the detection system. That is, as is well known, a signal processing circuit system such as a radiation detector or a counting circuit has a pulse decomposition time, and when the frequency of incident radiation increases, the pulses overlap each other without being completely decomposed. This is pile-up. When pile-up occurs, the number of detection pulses corresponding to a plurality of incident radiations becomes one and the count decreases, or the pulse height increases due to overlap. This causes a change in the shape of the energy spectrum. Further, the fact that the energy sensitivity distribution differs depending on the type of the detector also contributes to such a change in the spectrum shape. When the energy spectrum shape changes in this way, it becomes impossible to convert the dose into a correct dose with the conversion coefficient assumed in the G (E) function incorporated in the apparatus or the DBM discrimination threshold change pattern, and the dose rate and the like are accurately determined. I couldn't do that.
[0006]
For example, in an environmental radiation measuring apparatus using a NaI scintillation detector, sensitivity to low energy γ (X) rays is high (compared to high energy), so when the dose rate reaches about several μGy / h, low energy γ The pile-up of the lines becomes remarkable, and the count-down of low-energy γ-rays increases. For this reason, in the radiation measuring apparatus using the NaI scintillation detector, the dose rate characteristic has fallen from several μGy / h, and the indicated value output by the apparatus has become lower than the actual irradiation dose rate. In order to solve this problem, a method is considered in which the detector sensitivity to low energy γ-rays is reduced by, for example, covering the NaI detector with a filter such as lead. However, the higher the dose rate, the greater the probability of pile-up, limiting the solution covered by the filter.
[0007]
The present invention has been made in view of such a problem, and an object of the present invention is to realize an apparatus that can obtain a dose rate and the like based on the wave height of a detection pulse signal over a wide range from a situation where the amount of radiation is small to a situation where it is large. And
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a radiation measuring apparatus according to the present invention includes a radiation detector that outputs a detection pulse signal having a wave height corresponding to the energy of radiation in response to detection of radiation, and counts and counts the detection pulse signal. Counting rate measuring means for determining a rate; and measuring value calculating means for determining an energy spectrum of the detection pulse signal and applying an energy conversion function to the energy spectrum to obtain a radiation measurement value. And a measurement value calculation means for obtaining a radiation measurement value using the energy conversion function corresponding to the count rate obtained by the count rate measurement means from among the energy conversion functions.
[0009]
In this configuration, an appropriate energy conversion function is prepared for each count rate range, and a radiation measurement value is calculated by applying an energy conversion function corresponding to the actually measured count rate to the energy spectrum of the detected pulse signal. The calculated radiation measurement value is, for example, a dose rate or a dose equivalent rate. According to this configuration, accurate measurement data can be obtained over a wide count rate range.
[0010]
In addition, the radiation measuring apparatus according to the present invention includes a radiation detector that outputs a detection pulse signal having a wave height corresponding to the energy in response to detection of radiation, and a counting rate measuring unit that counts the detection pulse signal to obtain a counting rate. A pulse height discriminator that extracts and outputs only a signal having a pulse height equal to or higher than the discrimination threshold value among the detection pulse signals, wherein the discrimination threshold value is variable, and the discrimination threshold value of the pulse height discriminator is changed. It is a measurement value calculating means for obtaining a radiation measurement value from the output of the wave height discriminator during the time, and has the change pattern for each count rate range, from which the count rate Measurement value calculation means for changing the discrimination threshold using the change pattern corresponding to the count rate obtained by the measurement means.
[0011]
In this configuration, a temporal change pattern of the discrimination threshold of the DBM method is prepared for each count rate range, and measurement by the DBM method is performed using a change pattern corresponding to the actually measured count rate. Even with this configuration, accurate measurement data can be obtained over a wide count rate range.
[0012]
According to a preferred aspect of the present invention, the radiation detector is a detector using a NaI scintillator, and includes a low-energy limiting filter for limiting sensitivity to low-energy radiation.
[0013]
According to this aspect, the sensitivity of the detector to radiation of each energy can be made nearly uniform, and accurate measurement data can be obtained over a wide count rate range.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter, referred to as embodiments) will be described with reference to the drawings.
[0015]
FIG. 1 is a block diagram illustrating a configuration of a radiation measuring apparatus according to an embodiment of the present invention.
[0016]
This device is used for measuring, for example, γ (and X) rays in the environment, and uses a NaI scintillator 10 and a photomultiplier tube (PMT) 12 as radiation detectors. The NaI scintillator 10 emits light with an amount of light corresponding to the energy that the incident radiation has lost in the scintillator 10. This light emission is converted by the photomultiplier tube 12 into an electrical detection pulse signal having a wave height corresponding to the light amount. The filter 14 is a filter made of a material such as lead provided for the purpose of flattening the sensitivity characteristic of the NaI scintillator 10 from low energy to high energy as much as possible. The filter 14 is provided so as to cover the NaI scintillator 10. The NaI scintillator 10 has a characteristic that the sensitivity on the low energy side is higher than the sensitivity on the high energy side. However, since the filter 14 attenuates the lower energy γ (X) rays more greatly, the sensitivity of the detector is uniform. Is adjusted in the direction of By adjusting the thickness of the filter 14 or providing a through hole or unevenness in each part of the filter 14, the uniformity of the sensitivity distribution to radiation energy can be improved.
[0017]
The detection pulse signal output from the photomultiplier tube 12 is proportionally amplified by a preamplifier 16 and then input to a multi-channel analyzer (MCA) 18. The MCA 18 has a plurality of channels corresponding to each crest level, and counts the detection pulse signal for each channel corresponding to each crest level. This forms an energy spectrum of the incident radiation.
[0018]
In this embodiment, when the dose rate is measured by applying the G (E) function method to the energy spectrum formed by the MCA 18, a G (E) function suitable for the radiation incident state at that time is obtained. The use improves the accuracy of the measurement result.
[0019]
For this reason, in this embodiment, a plurality of G (E) functions are prepared according to the magnitude of the count rate. That is, a G (E) function is created for each count rate range in accordance with the measurement result of the radiation measuring apparatus. The G (E) function corresponding to each count rate range may be created according to, for example, a conventionally known method described in Non-Patent Document 1 described above. In brief, the γ (X) ray of each energy may be measured by this radiation measuring apparatus to obtain an energy spectrum, and a conversion coefficient for each channel (or each energy range) may be obtained from the energy spectrum. In the present embodiment, the G (E) function is created and used from the measurement results with the filter 14 attached, thereby flattening the energy sensitivity of the detector and preventing the overall energy characteristics from deteriorating. ing. The G (E) function for each count rate range thus determined is stored in the G (E) function storage unit 28.
[0020]
FIG. 2 is a diagram schematically showing a G (E) function group stored in the G (E) function storage unit 28. One G (E) function is a set of conversion coefficients G (E) corresponding to each channel (energy value E) of the energy spectrum obtained by the MCA 18. Of course, the conversion coefficient may be stored for each energy range over a plurality of channels. In this example, the G (E) function applied to each range when the count rate range is divided into three ranges is illustrated. The G (E) function corresponding to each count rate range incorporates the effects of pile-up, etc. in each count rate situation, so using this to determine the dose rate more accurately than before. Can be.
[0021]
In the present embodiment, a detection pulse signal is supplied from the MCA 18 to the counter 24, and the counter 24 counts the detection pulse signals to obtain a counting rate. That is, the counter 24 counts each pulse without considering the energy to obtain the total count rate. This counting rate is an index of the degree of pile-up of the detection system. The obtained counting rate is passed to the G (E) function selecting unit 26.
[0022]
The G (E) function selection unit 26 selects a G (E) function corresponding to the count rate from the G (E) functions stored in the G (E) function storage unit 28, and converts the data of the function into a dose rate. It is supplied to the arithmetic unit 20. The dose rate calculation unit 20 acquires the energy spectrum of the detected radiation per unit time from the MCA 18 and uses each channel of the energy spectrum and the G (E) function acquired from the G (E) function selection unit 26, Calculate the dose rate. As shown in FIG. 3, the energy spectrum shows a count value (ie, a count rate) n (E) per unit time for each channel (energy value E).
(Equation 1)
R = k {G (E) .n (E)}
(K is a proportionality constant; Σ is the sum over all channels (energy value E))
Can be calculated by The dose rate R thus determined is displayed or recorded by the output unit 22.
[0023]
As described above, in the present embodiment, the G (E) function corresponding to the current count rate is selected and used, so that the influence of the pile-up due to the current radiation incident state is corrected to some extent, and the more accurate dose rate is obtained. Can be obtained. Therefore, according to this device, a more accurate dose rate can be obtained over a wide range from a situation where the amount of radiation is small to a situation where the dose is large.
[0024]
The preferred embodiment of the present invention has been described above. The case where the G (E) function method is used has been described above, but the concept of the present embodiment is also applicable to the DBM method. In the case of the DBM method, the time change pattern of the pulse height discrimination threshold may be switched and used for each count rate range. In this case, the time-varying pattern of the threshold serves as an energy conversion function.
[0025]
In the above description, the case where the dose rate is obtained is taken as an example. However, in addition to the dose rate, a measurement result (for example, a dose equivalent rate) in which the energy of the incident radiation is considered from the pulse height of the detection pulse signal is generally performed. The form approach is applicable.
[0026]
【The invention's effect】
As described above, according to the present invention, it is possible to cope with a change in the energy spectrum shape due to the influence of pile-up or the like, and it is possible to obtain accurate measurement results over a wide range.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a schematic configuration of a radiation measuring apparatus according to an embodiment.
FIG. 2 is a diagram schematically showing a G (E) function group corresponding to each count rate range stored in a G (E) function storage unit.
FIG. 3 is a diagram for explaining an energy spectrum.
[Explanation of symbols]
10 NaI scintillator, 12 photomultiplier tube (PMT), 14 filter, 16 preamplifier, 18 multi-channel analyzer (MCA), 20 dose rate calculator, 22 output unit, 24 counter, 26 G (E) function selector, 28 G (E) function storage unit.

Claims (3)

放射線の検出に応じてそのエネルギーに応じた波高の検出パルス信号を出力する放射線検出器と、
前記検出パルス信号を計数して計数率を求める計数率測定手段と、
前記検出パルス信号のエネルギースペクトルを求め、このエネルギースペクトルに対してエネルギー換算関数を適用することにより放射線測定値を求める測定値算出手段であって、各計数率範囲ごとに前記エネルギー換算関数を有し、その中から前記計数率測定手段で求められた計数率に応じた前記エネルギー換算関数を用いて放射線測定値を求める測定値算出手段と、
を備える放射線測定装置。
A radiation detector that outputs a detection pulse signal having a wave height corresponding to the energy in response to detection of the radiation,
Count rate measuring means for counting the detection pulse signal to obtain a count rate,
The energy spectrum of the detection pulse signal is obtained, a measurement value calculation unit that obtains a radiation measurement value by applying an energy conversion function to the energy spectrum, and has the energy conversion function for each count rate range. Measurement value calculation means for obtaining a radiation measurement value from the energy conversion function according to the count rate determined by the count rate measurement means,
A radiation measurement device comprising:
放射線の検出に応じてそのエネルギーに応じた波高の検出パルス信号を出力する放射線検出器と、
前記検出パルス信号を計数して計数率を求める計数率測定手段と、
前記検出パルス信号のうち弁別閾値以上の波高の信号のみを抽出して出力する波高弁別器であって、前記弁別閾値が可変の波高弁別器と、
前記波高弁別器の弁別閾値を変化パターンに従って時間的に変化させていき、その間の前記波高弁別器の出力から放射線測定値を求める測定値算出手段であって、各計数率範囲ごとに前記変化パターンを有し、その中から前記計数率測定手段で求められた計数率に対応する前記変化パターンを用いて前記弁別閾値を変化させる測定値算出手段と、
を備える放射線測定装置。
A radiation detector that outputs a detection pulse signal having a wave height corresponding to the energy in response to detection of the radiation,
Count rate measuring means for counting the detection pulse signal to obtain a count rate,
A wave height discriminator that extracts and outputs only a signal having a wave height equal to or greater than the discrimination threshold value of the detection pulse signal, and the discrimination threshold value is a variable wave height discriminator,
A time-dependent change of the discrimination threshold value of the pulse height discriminator according to the change pattern, and a measurement value calculating means for obtaining a radiation measurement value from an output of the pulse height discriminator during the change, wherein the change pattern for each count rate range Having, a measurement value calculation means for changing the discrimination threshold using the change pattern corresponding to the count rate determined by the count rate measurement means from among them,
A radiation measurement device comprising:
前記放射線検出器は、NaIシンチレータを用いた検出器であり、低エネルギー放射線に対する感度を制限するための低エネルギー制限フィルタを備えることを特徴とする請求項1又は2記載の放射線測定装置。3. The radiation measuring apparatus according to claim 1, wherein the radiation detector is a detector using a NaI scintillator and includes a low energy limiting filter for limiting sensitivity to low energy radiation. 4.
JP2002268252A 2002-09-13 2002-09-13 Radiation measurement device Pending JP2004108796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002268252A JP2004108796A (en) 2002-09-13 2002-09-13 Radiation measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002268252A JP2004108796A (en) 2002-09-13 2002-09-13 Radiation measurement device

Publications (1)

Publication Number Publication Date
JP2004108796A true JP2004108796A (en) 2004-04-08

Family

ID=32266520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002268252A Pending JP2004108796A (en) 2002-09-13 2002-09-13 Radiation measurement device

Country Status (1)

Country Link
JP (1) JP2004108796A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248319A (en) * 2006-03-17 2007-09-27 Fuji Electric Systems Co Ltd Scintillation detector and scintillation-type low-power photon 1-cm dose equivalent meter
JP2009526213A (en) * 2006-02-09 2009-07-16 フリードリヒ−アレクサンダー−ウニベルジテート・エアランゲン−ニュルンベルク Method and apparatus for determining one or more characteristics of radiation
KR100919000B1 (en) * 2006-07-18 2009-09-25 에이에스엠엘 네델란즈 비.브이. Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
JP2012007899A (en) * 2010-06-22 2012-01-12 Mitsubishi Electric Corp Radiation measurement apparatus
JP2012013563A (en) * 2010-07-01 2012-01-19 Mitsubishi Electric Corp Radiation measuring apparatus
JP2013007585A (en) * 2011-06-22 2013-01-10 Toshiba Corp Positron emission computer tomographic imaging apparatus and x-ray ct (computed tomography) device
JP2013208439A (en) * 2006-08-09 2013-10-10 Koninkl Philips Nv Apparatus and method for spectral computed tomography
WO2013157448A1 (en) 2012-04-20 2013-10-24 ソニー株式会社 Semiconductor photodetection device and radiation detection apparatus
WO2014084227A1 (en) * 2012-11-30 2014-06-05 株式会社 東芝 Radiation detection device, radiation detector, and radiation detection method
JP2014109573A (en) * 2012-11-30 2014-06-12 Toshiba Corp Radiation detection apparatus, radiation detector, and radiation detection method
WO2015052864A1 (en) 2013-10-10 2015-04-16 Sony Corporation Image-capturing device, radiation detection apparatus, and control method for image-capturing device
CN106529087A (en) * 2016-12-07 2017-03-22 中国海洋石油总公司 Prediction method for shaking degree of liquid in liquid carrying ship cabin
JP2018036236A (en) * 2016-09-02 2018-03-08 株式会社日本遮蔽技研 Radiation detector, and detection method, and browsing program for the same
US10004132B2 (en) 2014-10-23 2018-06-19 Mitsubishi Electric Corporation Dose rate monitoring device
CN108196293A (en) * 2018-03-14 2018-06-22 中广核贝谷科技股份有限公司 One kind is based on scintillator detector dosage rate detection method
JP2019158728A (en) * 2018-03-15 2019-09-19 富士電機株式会社 Radiation measuring device
US10509133B2 (en) 2014-12-01 2019-12-17 Sony Semiconductor Solutions Corporation Radiation counting device and method of controlling radiation counting device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009526213A (en) * 2006-02-09 2009-07-16 フリードリヒ−アレクサンダー−ウニベルジテート・エアランゲン−ニュルンベルク Method and apparatus for determining one or more characteristics of radiation
JP2007248319A (en) * 2006-03-17 2007-09-27 Fuji Electric Systems Co Ltd Scintillation detector and scintillation-type low-power photon 1-cm dose equivalent meter
KR100919000B1 (en) * 2006-07-18 2009-09-25 에이에스엠엘 네델란즈 비.브이. Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
JP2013208439A (en) * 2006-08-09 2013-10-10 Koninkl Philips Nv Apparatus and method for spectral computed tomography
JP2012007899A (en) * 2010-06-22 2012-01-12 Mitsubishi Electric Corp Radiation measurement apparatus
JP2012013563A (en) * 2010-07-01 2012-01-19 Mitsubishi Electric Corp Radiation measuring apparatus
JP2013007585A (en) * 2011-06-22 2013-01-10 Toshiba Corp Positron emission computer tomographic imaging apparatus and x-ray ct (computed tomography) device
WO2013157448A1 (en) 2012-04-20 2013-10-24 ソニー株式会社 Semiconductor photodetection device and radiation detection apparatus
WO2014084227A1 (en) * 2012-11-30 2014-06-05 株式会社 東芝 Radiation detection device, radiation detector, and radiation detection method
JP2014109573A (en) * 2012-11-30 2014-06-12 Toshiba Corp Radiation detection apparatus, radiation detector, and radiation detection method
CN104755958B (en) * 2012-11-30 2017-05-31 东芝医疗***株式会社 Radiation detecting apparatus, radiation detector and radiation detecting method
US9035261B2 (en) 2012-11-30 2015-05-19 Kabushiki Kaisha Toshiba Reflector having adaptive reflectivity for radiation detection
CN104755958A (en) * 2012-11-30 2015-07-01 株式会社东芝 Radiation detection device, radiation detector, and radiation detection method
WO2015052864A1 (en) 2013-10-10 2015-04-16 Sony Corporation Image-capturing device, radiation detection apparatus, and control method for image-capturing device
US10004132B2 (en) 2014-10-23 2018-06-19 Mitsubishi Electric Corporation Dose rate monitoring device
US10509133B2 (en) 2014-12-01 2019-12-17 Sony Semiconductor Solutions Corporation Radiation counting device and method of controlling radiation counting device
JP2018036236A (en) * 2016-09-02 2018-03-08 株式会社日本遮蔽技研 Radiation detector, and detection method, and browsing program for the same
CN106529087A (en) * 2016-12-07 2017-03-22 中国海洋石油总公司 Prediction method for shaking degree of liquid in liquid carrying ship cabin
CN106529087B (en) * 2016-12-07 2019-05-14 中国海洋石油集团有限公司 The prediction technique of liquid sloshing degree in a kind of carrier fluid hull cabin
CN108196293A (en) * 2018-03-14 2018-06-22 中广核贝谷科技股份有限公司 One kind is based on scintillator detector dosage rate detection method
JP2019158728A (en) * 2018-03-15 2019-09-19 富士電機株式会社 Radiation measuring device
JP7095328B2 (en) 2018-03-15 2022-07-05 富士電機株式会社 Radiation measuring device

Similar Documents

Publication Publication Date Title
US7983397B2 (en) Method and apparatus for determining one or more characteristics of radiation
JP2004108796A (en) Radiation measurement device
JP3958069B2 (en) Radiation measurement equipment
RU2414724C2 (en) Method and apparatus for spectral computer tomography
JP4160275B2 (en) Energy measuring method and measuring device
JP5039033B2 (en) Method for X-ray and gamma-ray spectrophoton dosimetry
KR101051126B1 (en) Plastic Scintillator-based Radiation Detector and Radionuclide Detection Method Using the Same
US7592587B2 (en) Stabilization of a scintillation detector
US9029769B2 (en) Dose rate measuring apparatus
CN116381772A (en) Real-time energy response correction method, system and terminal for dose rate meter
RU2657296C2 (en) Method for measuring the dose by means of radiation detector, in particular, x-ray or gamma-ray radiation detector used in spectroscopic mode, and dose measuring system using the said method
JP2003194953A (en) Radiation measurement program and radiation-measuring apparatus
JP3824211B2 (en) Radiation monitor device
JP4417972B2 (en) Radiation measurement equipment
JP6091622B2 (en) Radiation measurement equipment
US20040200968A1 (en) Apparatus and method for detecting alpha-ray
KR100661862B1 (en) Realtime measuring method and equipment of wide range radiation using single semiconductor device
JP2699474B2 (en) PMT gain adjustment method
KR101192175B1 (en) Energy Calibration Method of Gamma Ray Scintillation Counter
USRE28738E (en) Quench correction in liquid scintillation counting
RU97541U1 (en) HETEROGENEOUS SCINTILLATION GAMMA RADIATION DETECTOR WITH REGULATED SPECTRAL SENSITIVITY
KR102062450B1 (en) A radiation detecting device usnig multi-photo-diode and a radiation detecting method usnig multi-photo-diode
JP2005049144A (en) Radiation measuring method
JPH07306267A (en) Radiation measuring equipment
KR20230041175A (en) Method for temperature compensation of radiation spectrum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421