JP2004108741A - Heat exchanger and its manufacturing method - Google Patents

Heat exchanger and its manufacturing method Download PDF

Info

Publication number
JP2004108741A
JP2004108741A JP2002275835A JP2002275835A JP2004108741A JP 2004108741 A JP2004108741 A JP 2004108741A JP 2002275835 A JP2002275835 A JP 2002275835A JP 2002275835 A JP2002275835 A JP 2002275835A JP 2004108741 A JP2004108741 A JP 2004108741A
Authority
JP
Japan
Prior art keywords
brazing
heat exchanger
heat transfer
tube
transfer tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002275835A
Other languages
Japanese (ja)
Inventor
Norie Nishiguchi
西口 憲岐
Mitsuharu Numata
沼田 光春
Sadayasu Inagaki
稲垣 定保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2002275835A priority Critical patent/JP2004108741A/en
Publication of JP2004108741A publication Critical patent/JP2004108741A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize brazing of an iron-made pipe plate and a copper-made heat transfer pipe as inexpensively as possible with excellent manufacturing efficiency. <P>SOLUTION: The iron-made pipe plates 1a, 1b in a heat exchanger such as a shell-and-tube type heat exchanger and the copper-made heat transfer pipe 2 supported on the pipe plates 1a, 1b by passing through them are constituted in such a way that they are joined and integrated by brazing filler metal made of bronze enabling brazing in a furnace. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本願発明は、熱交換器およびその製造方法に関するものである。
【0002】
【従来の技術】
例えば蓄熱剤や海水その他の腐食性流体を扱う鉄製の胴体と銅製の伝熱管よりなるシェル・アンド・チューブ型熱交換器において、それら管板と伝熱管との接合一体化は、一般に銀ろうBAg−2(Ag35%,Cu26%,Zn21%,Cd18%)よりなるろう材を用いて手ろう付けすることにより構成されていたが、次のような問題があった。
【0003】
▲1▼ 手ろう付けのために、管の本数が増加すると、ろう付け工数が増え、ろう付け作業が大変になるとともに、各ろう付け部の品質の安定性の確保が困難となる。
【0004】
▲2▼ 酸化防止剤としてフラックスを使うが、腐食防止のために、ろう付け後には当該フラックスを除去することが必要となる。したがって、その分さらに作業工数が多くなる。
【0005】
▲3▼ ろう材自体が、非常に高価(例えば10,000円/kg程度)である。
【0006】
一方、これに対して、例えばクロスフィンコイル型熱交換器等の冷凍機ユニットでは、その多数本の伝熱管端部と連絡管とのろう材による接合を、所定のカバー内に、それら接合部の数に対応した数の誘導加熱手段等の加熱手段を備えたろう付けユニットを使用して、所定の還元雰囲気中で、一度に全てのろう付け部を均一な条件でろう付けすることができるようにしたものがある。(例えば特許文献1参照)。
【0007】
このようなろう付け方法および装置によると、ろう付け工数を大幅に低減でき、品質も安定し、製造効率が大幅に向上する。
【0008】
【特許文献1】
特開平10−58130号公報。
【0009】
【発明が解決しようとする課題】
しかし、これまでのところ上述した鉄製の管板と伝熱管とのろう付けに関して、このような特許文献1のような対策は全く採用されていない。
【0010】
したがって、同ケースでは、上述の▲1▼〜▲3▼の問題が、そのまま残されている。
【0011】
本願発明は、上記のような事情に鑑み、りん青銅を用い、可及的安価に、鉄製の管板と銅製の伝熱管とのフラックスを必要としないろう付けによる接合を可能にした熱交換器およびその製造方法を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本願発明は、上記の問題を解決するために、次のような課題解決手段を備えて構成されている。
【0013】
(1) 第1の課題解決手段(請求項1の発明)
本願発明の第1の課題解決手段は、鉄製の管板1a,1bと該管板1a,1bに貫装支持される銅製の伝熱管2,2・・・とが、りん青銅ろう材によって接合一体化されている。
【0014】
りん青銅ろう材(Sn,P,Cu)は、先ず従来の銀ろう材(BAg−2:Ag,Cu,Zn,Cd)に比べて遥かに安価(1/5程度)であり、ろう付けコストを大幅に低下させることができる。
【0015】
また、炉中ろう付けが可能であり、炉中ろう付けによって、多数のろう付け部が一括してろう付けされるので、伝熱管の本数が多い場合にも、製造効率が高く、製造コストが大きく低減される。
【0016】
さらに、真ちゅうろう材などに比べて、耐食性も高い。
【0017】
(2) 第2の課題解決手段(請求項2の発明)
本願発明の第2の課題解決手段は、上記第1の課題解決手段の構成において、そのりん青銅ろう材の組成は、Snが重量比7.0〜9.0%、Pが重量比0.03〜0.35%で、Cuが重量比その残量%のものが選ばれており、同組成のりん青銅ろう材を用いると、上記第1の課題解決手段の特徴を活かした適切なろう付けが実現される。
【0018】
(3) 第3の課題解決手段(請求項3の発明)
本願発明の第3の課題解決手段は、上記第1又は第2の課題解決手段の構成を前提とし、その管板1a,1bと伝熱管2,2・・・が、腐食性流体を扱うシェル・アンド・チューブ型熱交換器の熱交換器部分を構成するものとなっている。
そして、同構成では、そのようなシェル・アンド・チューブ型熱交換器の鉄製の管板1a,1bと銅製の伝熱管2,2・・・に、上述の特徴を活かした、安価で、製造効率が高く、しかも耐食性も高い適切な接合を行うことができる。
【0019】
(4) 第4の課題解決手段(請求項4の発明)
本願発明の第4の課題解決手段は、上記第3の課題解決手段の構成を前提とし、同構成において、管板1a,1bと伝熱管2,2・・・とは、腐食性流体との接触面側の隙間に置きろうすることにより、ろう付けされている。
【0020】
このような構成によると、ろう付け終了後、腐食性流体と接触する接合部側に銅材と鉄材との隙間が生じず、有効に耐食性が向上する。
【0021】
(5) 第5の課題解決手段(請求項5の発明)
本願発明の第5の課題解決手段は、鉄製の管板1a,1bと該管板1a,1bに貫装支持される銅製の伝熱管2,2・・・との多数の貫装部の各々を、りん青銅ろう材を用いて、炉中ろう付けにより一括して接合一体化している。
【0022】
りん青銅ろう材(Sn,P,Cu)は、先ず従来の銀ろう材(BAg−2:Ag,Cu,Zn,Cd)に比べて遥かに安価(1/5程度)であり、ろう付けコストを大幅に低下させることができる。
【0023】
また、炉中ろう付けが可能であり、炉中ろう付けによって、多数のろう付け部が一括してろう付けされるので、伝熱管の本数が多い場合にも、製造効率が高く、製造コストが大きく低減される。
【0024】
さらに、真ちゅうろう材などに比べて、より耐食性も高い。
【0025】
【発明の効果】
以上の結果、本願発明の熱交換器およびその製造方法によると、
▲1▼ 多数のろう付け部について、炉中ろう付けでの一括接合が可能となり、工数を大幅に低減でき、品質も安定する。
【0026】
▲2▼ 酸化防止剤としてのフラックスを必要としないので、フラックス除去作業が不要になる。
【0027】
▲3▼ ろう材がそのもの安価(例えば2,000円/kg程度)である。
【0028】
▲4▼ 真ちゅうろう材などに比べて、より高い耐食性を確保することができる。
【0029】
【発明の実施の形態】
図1〜図5は、本願発明の実施の形態に係る熱交換器の構成および同熱交換器の製造方法を示している。
【0030】
先ず、この実施の形態における熱交換器は、例えば図1に例示するように多数本の銅製の伝熱管2,2・・・を左右に2列の状態で、上下方向に屈曲させて平行に配置した縦長のシェルチューブ型のタンク部1内に、例えば酢酸ナトリウム、塩化リチウムなどの蓄熱剤3を充填し(該蓄熱剤は、一般に腐食性を有している)、同伝熱管2,2・・・中に例えば熱媒として水(冷水又は温水)を流して上記蓄熱剤3を冷却又は加熱して蓄熱するようにした蓄熱装置の蓄熱槽として構成されている。そして、同蓄熱槽を構成する上記タンク部1は、上記複数列多数本の銅製の伝熱管2,2・・・を、その前後両側で支持する2枚の管板1a,1bと、該管板1a,1bの周囲を囲む天板部1c、底板部1d、左右両側板1e,1e(但し、1e,1eは、図面上見えないので図中での表示を省略している)よりなる鉄製の胴体部とから構成されている。
【0031】
なお、図1中における符号4a,4bは、上記各列伝熱管2,2・・・、2,2・・・への冷媒の入口および出口となる上下分配ヘッダ部である。また、符号5a,5a・・・、5b,5b・・・は各列の伝熱管2,2・・・、2,2・・・の上下管端部2a,2a・・・、2a,2a・・・、2b,2b・・・、2b,2b・・・同士を相互に連通させるU状の連絡管である。
【0032】
ところで、上記管板1a,1bは、例えば図2、図3に示すように、各列の各伝熱管2,2・・・、2,2・・・に対応した伝熱管貫装孔13,13・・・、13,13・・・を有して、それら各伝熱管2,2・・・、2,2・・・を貫装支持している管板部本体11の上下左右に各々所定の幅の接合用の縁部14,15、12,12を備え、それら接合用の縁部14,15,12,12を介して、上記胴体部側の上記天板部1c、底板部1d、左右両側側板部1e,1e(図示省略)の内側に嵌合された状態で箱形に接合一体化されるようになっている。
【0033】
そして、これらの各管板1a,1b部分も上記天板部1c、底板部1d、側板部1e,1eよりなる胴体部分と同様の鉄製材料により形成されている。
【0034】
ところで、これら各管板1a,1bの上記伝熱管貫装孔13,13・・・部分は、例えば図5のように、バーリング加工が施され、その内側から外側に所定の寸法筒状に突出し、かつ内縁側に所定幅aを有するフィレット部を形成している。
【0035】
そして、該フィレット部が形成された孔径φの伝熱管貫装孔13,13・・・に対して、その外径φが当該孔径φよりも少しだけ大きい伝熱管2,2・・・の管板端部(銅製の所定の長さの内外伝熱管との連結管部)2a,2a・・・、2b,2b・・・が同軸方向に圧入され、上記バーリング加工されたフィレット部で同軸方向に安定して支持される。次に同圧入され、安定して支持された状態において、図4のように、上記十分な幅aのフィレット部内縁側(腐食性流体である蓄熱剤との接触面側)の隙間部を利用して、ろう材が配置(置きろう)され、「ろう付け」が行われる。
【0036】
この「ろう付け」には、従来のような銀ろう(例えば、BAg−2:Ag,Cu,Zn,Cd)ではなく、特にJIS規格C5191における「りん青銅ろう材(各重量比で、Snが7.0〜9.0%、Pが0.03〜0.35%、Cuが残りの%)」を用い、しかも「手ろう付け」ではなく、「炉中ろう付け」によるろう付け作業を行う。
【0037】
これらの結果、図4の状態に示すように、最終的に、バーリング加工により形成されたフィレット部の圧入で安定して支持され、かつ十分な幅aのフィレット部で、十分な量のろう材が十分な広さの接合面積で接合されることによる、シール性、応力強度共に高い銅製伝熱管2,2・・・の鉄製管板1a,1bへのろう付け支持が可能となる。
【0038】
以上のように、本実施の形態の熱交換器の構造および製造方法では、先ずろう材として「りん青銅ろう材」が用いられている。りん青銅ろう材は、銀ろう(BAg−2:Ag,Cu,Zn,Cd・・・10,000円/kg)に比べて遥かに安価であり(2,000円/kg程度)、ろう付けコストを大幅に低下させることができる。
【0039】
また、炉中ろう付けが可能であり、炉中ろう付けによって多数の各ろう付け部が一括してろう付けされるので、製造効率が高く、製造コストが大きく低減される。
【0040】
また、上記りん青銅ろう材の組成は、Snが重量比7.0〜9.0%、Pが重量比0.03〜0.35%で、Cuが重量比その残量%のものが選ばれており、同組成のりん青銅ろう材を用いると、上記特徴を活かした一層適切なろう付けが実現される。
【0041】
また、以上の構成では、その管板1a,1bと伝熱管2,2・・・が、例えば腐食性流体を扱うシェル・アンド・チューブ型熱交換器の熱交換器部分を構成するものとなっている。
【0042】
したがって、同構成では、そのようなシェル・アンド・チューブ型熱交換器の鉄製の管板1a,1bと銅製の伝熱管2,2・・・に、上述の特徴を活かした、安価で、製造効率が高く、しかも耐食性も高い適切な接合を行うことができるようになる。
【0043】
しかも、以上の構成では、そのような腐食性流体を扱うシェル・アンド・チューブ型熱交換器の構成において、管板1a,1bと伝熱管2,2・・・とは、当該腐食性流体との接触面側のフィレット部の隙間に置きろうすることにより、ろう付けされるようになっている。
【0044】
したがって、例えば図4からも明らかなように、ろう付け終了後、腐食性流体と接触する接合部側に全く銅材と鉄材との隙間が生じず、有効に耐食性が向上する。
【0045】
以上の結果、本実施の形態の熱交換器およびその製造方法によると、
▲1▼ 多数のろう付け部について、炉中ろう付けでの一括接合が可能となり、工数を大幅に低減でき、品質も安定する。
【0046】
▲2▼ 酸化防止剤としてのフラックスを必要としないので、フラックス除去作業が不要になる。
【0047】
▲3▼ ろう材がそのもの安価(例えば2,000円/kg程度)である。
【0048】
▲4▼ 真ちゅうろう材などに比べて、より高い耐食性を確保することができる。
【0049】
(その他の実施の形態)
以上の実施の形態では、本願発明の適用例として、蓄熱装置の蓄熱槽の場合を例にとって説明したが、本願発明は、要するに腐食性流体を扱うシェル・アンド・チューブ型の鉄製管板と銅製伝熱管の接合構造を有する各種の熱交換器、例えば海水用熱交換器、空冷吸収式冷凍機の空冷吸収器などにも任意に適用することができるものである。
【図面の簡単な説明】
【図1】本願発明の実施の形態に係る熱交換器による構成を採用し、本願発明の実施の形態に係る熱交換器製造方法により製造された熱交換器の全体的な構成を示す断面図である。
【図2】同熱交換器の要部である管板部分の一部切欠正面図である。
【図3】同管板部分の上面図である。
【図4】同管板の伝熱管貫装部の貫装構造を示す要部の拡大断面図である。
【図5】同管板の伝熱管貫装孔部の構造を示す要部の拡大断面図である。
【符号の説明】
1は蓄熱槽タンク部、1a,1bは管板、2は伝熱管、3は蓄熱剤、11は管板部本体、13は伝熱管貫装孔である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger and a method for manufacturing the same.
[0002]
[Prior art]
For example, in a shell and tube type heat exchanger composed of an iron body and a copper heat transfer tube handling a heat storage agent, seawater, and other corrosive fluids, the joining of the tube plate and the heat transfer tube is generally performed by silver brazing BAg -2 (Ag 35%, Cu 26%, Zn 21%, Cd 18%) by hand brazing, but has the following problems.
[0003]
{Circle around (1)} When the number of pipes increases due to manual brazing, the number of brazing steps increases, and the brazing operation becomes difficult, and it becomes difficult to ensure the stability of the quality of each brazing portion.
[0004]
{Circle around (2)} A flux is used as an antioxidant, but it is necessary to remove the flux after brazing to prevent corrosion. Therefore, the number of work steps is further increased.
[0005]
{Circle around (3)} The brazing material itself is very expensive (for example, about 10,000 yen / kg).
[0006]
On the other hand, for example, in a refrigerator unit such as a cross-fin coil type heat exchanger, a large number of ends of the heat transfer tubes and the connecting tubes are joined by a brazing material in a predetermined cover. By using a brazing unit provided with a number of heating means such as induction heating means corresponding to the number of pieces, all brazing portions can be brazed at a time under uniform conditions in a predetermined reducing atmosphere. There is something that I did. (See, for example, Patent Document 1).
[0007]
According to such a brazing method and apparatus, the number of brazing steps can be significantly reduced, the quality is stabilized, and the manufacturing efficiency is greatly improved.
[0008]
[Patent Document 1]
JP-A-10-58130.
[0009]
[Problems to be solved by the invention]
However, so far, no measure such as that of Patent Document 1 has been adopted for brazing the above-mentioned iron tube sheet to the heat transfer tube.
[0010]
Therefore, in this case, the above-mentioned problems (1) to (3) remain.
[0011]
In view of the above-described circumstances, the present invention uses a phosphor bronze, and as low as possible, a heat exchanger that enables joining by brazing that does not require flux between an iron tube sheet and a copper heat transfer tube. And a method for producing the same.
[0012]
[Means for Solving the Problems]
The present invention is provided with the following means for solving the problems in order to solve the above problems.
[0013]
(1) First problem solving means (the invention of claim 1)
The first problem solving means of the present invention is that the iron tube sheets 1a, 1b and the copper heat transfer tubes 2, 2... Penetratingly supported by the tube sheets 1a, 1b are joined by a phosphor bronze brazing material. It is integrated.
[0014]
First, the phosphor bronze brazing material (Sn, P, Cu) is much less expensive (about 1/5) than the conventional silver brazing material (BAg-2: Ag, Cu, Zn, Cd), and the brazing cost. Can be greatly reduced.
[0015]
Also, in-furnace brazing is possible, and many brazing parts are brazed at once by in-furnace brazing, so even when the number of heat transfer tubes is large, production efficiency is high and production cost is low. It is greatly reduced.
[0016]
Furthermore, it has higher corrosion resistance than brass brazing material.
[0017]
(2) Second Problem Solving Means (Invention of Claim 2)
According to a second aspect of the present invention, in the composition of the first aspect, the composition of the phosphor bronze brazing material is such that Sn has a weight ratio of 7.0 to 9.0% and P has a weight ratio of 0. A copper bronze brazing material having the same composition as that of the above-described phosphor bronze brazing material having a weight ratio of 03 to 0.35% and Cu is selected. Is realized.
[0018]
(3) Third Problem Solving Means (Invention of Claim 3)
The third problem-solving means of the present invention is based on the configuration of the first or second problem-solving means, and the tube sheets 1a, 1b and the heat transfer tubes 2, 2,... -It constitutes the heat exchanger part of the AND tube type heat exchanger.
In the same configuration, the iron tube sheets 1a, 1b and the copper heat transfer tubes 2, 2,... Of such a shell-and-tube heat exchanger are manufactured inexpensively using the above-mentioned features. Appropriate joining with high efficiency and high corrosion resistance can be performed.
[0019]
(4) Fourth Problem Solving Means (Invention of Claim 4)
The fourth problem-solving means of the present invention is based on the configuration of the third problem-solving means. In the same structure, the tube sheets 1a, 1b and the heat transfer tubes 2, 2,. It is brazed by placing it in the gap on the contact surface side.
[0020]
According to such a configuration, after the brazing is completed, a gap between the copper material and the iron material does not occur on the joint side that comes into contact with the corrosive fluid, and the corrosion resistance is effectively improved.
[0021]
(5) Fifth problem solving means (invention of claim 5)
The fifth means for solving the problem of the present invention is that each of a number of penetrating portions of iron tube sheets 1a, 1b and copper heat transfer tubes 2, 2,. Are joined together and integrated by brazing in a furnace using a phosphor bronze brazing material.
[0022]
First, the phosphor bronze brazing material (Sn, P, Cu) is much less expensive (about 1/5) than the conventional silver brazing material (BAg-2: Ag, Cu, Zn, Cd), and the brazing cost. Can be greatly reduced.
[0023]
Also, in-furnace brazing is possible, and many brazing parts are brazed at once by in-furnace brazing, so even when the number of heat transfer tubes is large, production efficiency is high and production cost is low. It is greatly reduced.
[0024]
Further, it has higher corrosion resistance than brass brazing material.
[0025]
【The invention's effect】
As a result, according to the heat exchanger of the present invention and the method of manufacturing the same,
{Circle around (1)} A large number of brazed parts can be joined together by in-furnace brazing, so that man-hours can be greatly reduced and the quality is stable.
[0026]
{Circle around (2)} Since no flux as an antioxidant is required, a flux removing operation is not required.
[0027]
(3) The brazing material is inexpensive (for example, about 2,000 yen / kg).
[0028]
(4) Higher corrosion resistance can be secured as compared with brass brazing material and the like.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 5 show a configuration of a heat exchanger according to an embodiment of the present invention and a method for manufacturing the same.
[0030]
First, the heat exchanger in this embodiment is configured by bending a large number of copper heat transfer tubes 2, 2... A heat storage agent 3 such as sodium acetate, lithium chloride or the like is filled in the arranged vertically elongated shell tube type tank portion 1 (the heat storage agent is generally corrosive). .. Are configured as a heat storage tank of a heat storage device in which water (cold water or hot water) is supplied as a heat medium to cool or heat the heat storage agent 3 to store heat. The tank portion 1 constituting the heat storage tank includes two tube sheets 1a, 1b supporting the plurality of rows of a large number of copper heat transfer tubes 2, 2,. Iron made of a top plate 1c surrounding the plates 1a, 1b, a bottom plate 1d, left and right side plates 1e, 1e (however, 1e, 1e are not shown in the drawing because they are not visible in the drawing). And the body.
[0031]
Reference numerals 4a and 4b in FIG. 1 denote upper and lower distribution header portions that serve as inlets and outlets of the refrigerant to the row heat transfer tubes 2, 2,. .., 5b, 5b... Are upper and lower tube ends 2a, 2a..., 2a, 2a of the heat transfer tubes 2, 2,. , 2b, 2b, ..., 2b, 2b ... are U-shaped connecting pipes that communicate with each other.
[0032]
By the way, as shown in FIGS. 2 and 3, for example, the tube sheets 1a and 1b are provided with heat transfer tube through holes 13, corresponding to the heat transfer tubes 2, 2,. , 13, 13,..., And each of the heat transfer tubes 2, 2, 2, 2,. It is provided with joining edges 14, 15, 12, 12 having a predetermined width, and the top plate 1c and the bottom plate 1d on the body side through the joining edges 14, 15, 12, 12. The left and right side plate portions 1e, 1e (not shown) are joined and integrated into a box shape while being fitted inside.
[0033]
Each of the tube sheets 1a and 1b is also formed of the same iron material as the body composed of the top plate 1c, the bottom plate 1d, and the side plates 1e and 1e.
[0034]
By the way, as shown in FIG. 5, for example, the heat transfer tube penetration holes 13, 13... Of these tube sheets 1a, 1b are subjected to burring, and project from the inside to the outside in a cylindrical shape of a predetermined size. A fillet portion having a predetermined width a is formed on the inner edge side.
[0035]
Then, with respect to the fillet portion of the hole diameter phi 2 formed heat transfer tubes NukiSoana 13 ..., an outer diameter phi 1 is slightly wider than the hole diameter phi 2 larger heat transfer tubes 2, 2 · · 2a, 2a,..., 2b, 2b,... Are press-fitted in the coaxial direction, and the burring-processed fillet portion is used. And is supported stably in the coaxial direction. Next, in the state where the gasket is pressed and stably supported, as shown in FIG. Then, the brazing material is placed (placed) and "brazing" is performed.
[0036]
In this “brazing”, instead of the conventional silver brazing (for example, BAg-2: Ag, Cu, Zn, Cd), in particular, “phosphor bronze brazing material (in each weight ratio, Sn is 7.0 to 9.0%, P is 0.03 to 0.35%, and Cu is the remaining%). In addition, brazing work by "in-furnace brazing" instead of "hand brazing" Do.
[0037]
As a result, as shown in the state of FIG. 4, finally, a sufficient amount of brazing material is stably supported by the press-fitting of the fillet portion formed by the burring process and has a sufficient width a. Are joined in a sufficiently large joint area, so that the copper heat transfer tubes 2, 2,... Having high sealing performance and high stress strength can be brazed to the iron tube plates 1a, 1b.
[0038]
As described above, in the structure and manufacturing method of the heat exchanger according to the present embodiment, first, “phosphor bronze brazing material” is used as the brazing material. Phosphor bronze brazing material is far less expensive (about 2,000 yen / kg) than silver brazing (BAg-2: Ag, Cu, Zn, Cd ... 10,000 yen / kg), and is brazed. The cost can be significantly reduced.
[0039]
Further, in-furnace brazing is possible, and since a large number of brazing portions are collectively brazed by in-furnace brazing, the production efficiency is high and the production cost is greatly reduced.
[0040]
The composition of the phosphor bronze brazing material is selected such that Sn has a weight ratio of 7.0 to 9.0%, P has a weight ratio of 0.03 to 0.35%, and Cu has a weight ratio of the remaining percentage. When the phosphor bronze brazing material having the same composition is used, more appropriate brazing utilizing the above characteristics is realized.
[0041]
Further, in the above configuration, the tube sheets 1a, 1b and the heat transfer tubes 2, 2,... Constitute, for example, a heat exchanger portion of a shell-and-tube heat exchanger that handles a corrosive fluid. ing.
[0042]
Accordingly, in the same configuration, the iron tube sheets 1a, 1b and the copper heat transfer tubes 2, 2,... Of such a shell-and-tube heat exchanger are manufactured at low cost and utilizing the above-mentioned features. Appropriate joining with high efficiency and high corrosion resistance can be performed.
[0043]
Moreover, in the above configuration, in the configuration of the shell-and-tube heat exchanger that handles such a corrosive fluid, the tube sheets 1a, 1b and the heat transfer tubes 2, 2,. By placing it in the gap between the fillet portions on the contact surface side of the contact hole, the brazing is performed.
[0044]
Therefore, as is clear from FIG. 4, for example, after the brazing is completed, no gap is formed between the copper material and the iron material on the joint side in contact with the corrosive fluid, and the corrosion resistance is effectively improved.
[0045]
As a result, according to the heat exchanger and the method of manufacturing the same according to the present embodiment,
{Circle around (1)} For a large number of brazed parts, batch joining by in-furnace brazing becomes possible, so that man-hours can be significantly reduced and the quality is stable.
[0046]
{Circle around (2)} Since no flux as an antioxidant is required, a flux removing operation is not required.
[0047]
(3) The brazing material is inexpensive (for example, about 2,000 yen / kg).
[0048]
(4) Higher corrosion resistance can be secured as compared with brass brazing material and the like.
[0049]
(Other embodiments)
In the above embodiment, as an application example of the present invention, a case of a heat storage tank of a heat storage device has been described as an example. It can be arbitrarily applied to various heat exchangers having a heat transfer tube joining structure, for example, a seawater heat exchanger, an air-cooled absorber of an air-cooled absorption refrigerator, and the like.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an overall configuration of a heat exchanger manufactured by a heat exchanger manufacturing method according to an embodiment of the present invention, which adopts a configuration according to the heat exchanger according to the embodiment of the present invention. It is.
FIG. 2 is a partially cutaway front view of a tube sheet portion which is a main part of the heat exchanger.
FIG. 3 is a top view of the tube sheet part.
FIG. 4 is an enlarged cross-sectional view of a main part showing a penetration structure of a heat transfer tube penetration portion of the tube sheet.
FIG. 5 is an enlarged sectional view of a main part showing a structure of a heat transfer tube penetration hole of the tube sheet.
[Explanation of symbols]
1 is a heat storage tank part, 1a and 1b are tube sheets, 2 is a heat transfer tube, 3 is a heat storage agent, 11 is a tube plate part main body, and 13 is a heat transfer tube penetration hole.

Claims (5)

鉄製の管板(1a),(1b)と該管板(1a),(1b)に貫装支持される銅製の伝熱管(2),(2)・・・とが、りん青銅ろう材によって接合一体化されていることを特徴とする熱交換器。The iron tube sheets (1a) and (1b) and the copper heat transfer tubes (2), (2)... Penetrating and supported by the tube sheets (1a) and (1b) are made of phosphor bronze brazing material. A heat exchanger characterized by being integrally joined. りん青銅ろう材の組成は、Snが重量比7.0〜9.0%、Pが重量比0.03〜0.35%で、Cuが重量比その残量%であることを特徴とする請求項1記載の熱交換器。The composition of the phosphor bronze brazing material is characterized in that Sn has a weight ratio of 7.0 to 9.0%, P has a weight ratio of 0.03 to 0.35%, and Cu has a weight ratio of the remaining amount%. The heat exchanger according to claim 1. 管板(1a),(1b)と伝熱管(2),(2)・・・は、腐食性流体を扱うシェル・アンド・チューブ型熱交換器の熱交換器部分を構成するものであることを特徴とする請求項1又は2記載の熱交換器。The tube sheets (1a), (1b) and the heat transfer tubes (2), (2)... Constitute a heat exchanger portion of a shell and tube heat exchanger that handles corrosive fluids. The heat exchanger according to claim 1 or 2, wherein: 管板(1a),(1b)と伝熱管(2),(2)・・・とは、腐食性流体との接触面側の隙間に置きろうすることにより、ろう付けされていることを特徴とする請求項3記載の熱交換器。The tube sheets (1a), (1b) and the heat transfer tubes (2), (2)... Are brazed by placing them in gaps on the contact surface side with the corrosive fluid. The heat exchanger according to claim 3, wherein 鉄製の管板(1a),(1b)と該管板(1a),(1b)に貫装支持される銅製の伝熱管(2),(2)・・・との多数の貫装部の各々を、りん青銅よりなるろう材を用いて、炉中ろう付けにより一括して接合一体化するようにしたことを特徴とするとする熱交換器の製造方法。.. Of a plurality of penetrating portions of iron tube sheets (1a), (1b) and copper heat transfer tubes (2), (2)... Penetratingly supported by the tube sheets (1a), (1b). A method for manufacturing a heat exchanger, wherein each of them is integrally joined and integrated by brazing in a furnace using a brazing material made of phosphor bronze.
JP2002275835A 2002-09-20 2002-09-20 Heat exchanger and its manufacturing method Pending JP2004108741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275835A JP2004108741A (en) 2002-09-20 2002-09-20 Heat exchanger and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275835A JP2004108741A (en) 2002-09-20 2002-09-20 Heat exchanger and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004108741A true JP2004108741A (en) 2004-04-08

Family

ID=32271916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275835A Pending JP2004108741A (en) 2002-09-20 2002-09-20 Heat exchanger and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004108741A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170805A (en) * 2005-05-11 2007-07-05 Denso Corp Brazed structure and method of manufacturing the same
CN101905362A (en) * 2010-08-03 2010-12-08 西安昆仑汽车电子有限公司 Method for welding thin-wall steel tube and thin steel plate under constant temperature condition
CN104999172A (en) * 2015-07-22 2015-10-28 斯培淦 Pipe fitting and shell welding method and application
JP2018039020A (en) * 2016-09-05 2018-03-15 株式会社ホシモト Grounding terminal block and manufacturing method thereof
JP2018066504A (en) * 2016-10-19 2018-04-26 ダイキン工業株式会社 Heat exchanger
CN115667819A (en) * 2020-05-21 2023-01-31 大金工业株式会社 Pressure vessel and refrigeration device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170805A (en) * 2005-05-11 2007-07-05 Denso Corp Brazed structure and method of manufacturing the same
CN101905362A (en) * 2010-08-03 2010-12-08 西安昆仑汽车电子有限公司 Method for welding thin-wall steel tube and thin steel plate under constant temperature condition
CN104999172A (en) * 2015-07-22 2015-10-28 斯培淦 Pipe fitting and shell welding method and application
JP2018039020A (en) * 2016-09-05 2018-03-15 株式会社ホシモト Grounding terminal block and manufacturing method thereof
JP2018066504A (en) * 2016-10-19 2018-04-26 ダイキン工業株式会社 Heat exchanger
CN115667819A (en) * 2020-05-21 2023-01-31 大金工业株式会社 Pressure vessel and refrigeration device

Similar Documents

Publication Publication Date Title
JP2007303813A (en) Self-braking radiator side plate
JP2008238223A (en) Brazing method
JP2017075741A (en) Heat exchanger
JP2009103393A (en) Heat exchanger
JP2010249426A (en) Method of manufacturing aluminum heat exchanger for exhaust gas and heat exchanger
JP2005118826A (en) Brazing method
BR102012029867A2 (en) HEAT EXCHANGE TUBE, HEAT EXCHANGE TUBE ASSEMBLY AND MANUFACTURING METHODS
BR102012029873A2 (en) HEAT EXCHANGE TUBE, HEAT EXCHANGE TUBE ASSEMBLY AND MANUFACTURING METHODS
JP2004020174A (en) Flat radiating fin, heat exchanger using it, and its manufacturing method
JP2004108741A (en) Heat exchanger and its manufacturing method
JP2007248014A (en) Flat perforated pipe for heat exchanger
JP2003329375A5 (en)
EP0106479A1 (en) Heat exchanger
BR102012029865A2 (en) HEAT EXCHANGE TUBE, HEAT EXCHANGE TUBE ASSEMBLY AND MANUFACTURING METHODS
JP2005201625A (en) Heat exchanger and its manufacturing method
JP2005028412A (en) Brazing method
JP3438341B2 (en) Heat exchanger
JP2011099620A (en) Heat exchanger
JP2004279025A (en) Cross fin tube type heat exchanger
JP2010243078A (en) Heat exchanger and its manufacturing method
KR20060106478A (en) Pin-tube type heat exchanger for cooling shocase products
JP5729969B2 (en) Aluminum alloy brazing wax and manufacturing method thereof
JP2007275968A (en) Brazing method and heat exchange coil of air conditioner
JP2007198629A (en) Manufacturing method of tube
BR102012029871A2 (en) HEAT EXCHANGE TUBE, HEAT EXCHANGE TUBE ASSEMBLY AND MANUFACTURING METHODS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009