JP2004107297A - N-(4-pyridyl) proline derivative - Google Patents

N-(4-pyridyl) proline derivative Download PDF

Info

Publication number
JP2004107297A
JP2004107297A JP2002275487A JP2002275487A JP2004107297A JP 2004107297 A JP2004107297 A JP 2004107297A JP 2002275487 A JP2002275487 A JP 2002275487A JP 2002275487 A JP2002275487 A JP 2002275487A JP 2004107297 A JP2004107297 A JP 2004107297A
Authority
JP
Japan
Prior art keywords
group
pyridyl
proline
carbon atoms
less carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002275487A
Other languages
Japanese (ja)
Inventor
Takeo Kawabata
川端 猛夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2002275487A priority Critical patent/JP2004107297A/en
Publication of JP2004107297A publication Critical patent/JP2004107297A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an asymmetric acylation catalyst usable for producing optically active alcohol compounds, amine compounds, ester compounds or amide compounds and produceable by a readily available raw material and a simple production method with good yield. <P>SOLUTION: The asymmetric catalyst uses a new optically active N-(4-pyridyl)proline ethylamide represented by formula (1) such as N-(4-pyridyl)-L-proline (S)-1'-(1-naphthyl)ethylamide which can readily be obtained by amidating proline and then reacting the product with 4-bromopyridine as the asymmetric catalyst. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、不斉アシル化触媒として好適に使用できる新規なN−(4−ピリジル)プロリン誘導体、及び該N−(4−ピリジル)プロリン誘導体を用いた光学活性物質の製造方法に関する。
【0002】
【従来の技術】
従来、ラセミ体を酵素により光学分割する方法は1970年代以前から既に研究されてきた(例えば、非特許文献1参照)。特に、リパーゼを用いるアルコールの分割は1980年代より有機合成で盛んに用いられ、光学活性な生理活性物質の合成に広く利用されてきている(非特許文献2および3参照)。一方、人工の分子触媒を用いるエナンチオ区別アシル化はきわめて困難とされてきた。例えば、E.Vedejsらは光学活性なジメチルアミノピリジン誘導体を用いて不斉アシル化反応を行なっているが(非特許文献4参照)、化学量論量以上のジメチルアミノピリジン誘導体が必要であり触媒反応には成功していない。それに対して本発明者は4−[8−(2−ナフチルメチル)−8−ヒドロキシ−2−アザビシクロ[3.3.0]オクタン−2−イル]ピリジンにおいて、触媒的に不斉アシル化が進行することを見出している(非特許文献5参照)。
【0003】
なお、特定の新規な4−ピリジニルプロリン誘導体につて立体特異的触媒としてのポテンシャルが有することが示唆されているものの、実証はされていない(非特許文献6参照)。
【0004】
【非特許文献1】
R.Bentley, Molecular Asymmetry in Biology, Vol.1, Chapter6, Academic Press, New York, 1969
【非特許文献2】
大石武、秋田弘幸、 有機合成化学協会誌49巻657ページ1991年、中村薫、広瀬芳彦、有機合成化学協会誌53巻668ページ1995年
【非特許文献3】
C.−H. Wong, Chemtracts−Organic Chemistry,第3巻、91ページ、1990年
【非特許文献4】
E.Vedejsら、アメリカ化学会誌、第118巻、第1809ページ、1996年
【非特許文献5】
川端ら、アメリカ化学会誌、第119巻、3169ページ、1997年
【非特許文献6】
Ghislaine Priemら、テトラヘドロンレターズ、第43巻、6001−6003ページ、2002年
【0005】
【発明が解決しようとする課題】
しかしながら、この触媒は触媒活性も立体選択性も高いが、構造が複雑で触媒の製造コストも高いという問題点があった。
【0006】
【課題を解決するための手段】
本発明者らは、上記問題を解決するために、触媒活性と立体選択性を犠牲にせずに、容易に入手可能な原料と簡単で収率の良い製造方法で不斉アシル化触媒を構築する分子設計を行い、その触媒能について種々検討を行った。その結果、光学活性なN−(4−ピリジル)プロリン誘導体の全てが必ずしも不斉アシル化触媒として機能するわけでないこと及び特定の構造を有するN−(4−ピリジル)プロリン誘導体は良好な不斉アシル化触媒となることを見出し、本発明を完成するに至った。
【0007】
即ち、第一の本発明は、下記式(1)
【0008】
【化2】

Figure 2004107297
【0009】
(式中、
は、水素原子、炭素数14以下の芳香族炭化水素基、炭素数6以下のアルコキシカルボニル基または炭素数6以下のアルキルアミノカルボニル基であり、Rは、Rが水素原子である場合は炭素数13以下の芳香族複素環基であり、Rが炭素数14以下の芳香族炭化水素基である場合は水素原子であり、Rが炭素数6以下のアルコキシカルボニル基または炭素数6以下のアルキルアミノカルボニル基である場合は炭素数14以下の芳香族炭化水素基または炭素数13以下の芳香族複素環基であり、
2および1’は炭素の番号を示す。)
で示されるN−(4−ピリジル)プロリン誘導体である。
【0010】
また、第二の本発明は、光学純度50%以上の前記式(1)で示されるN−(4−ピリジル)プロリン誘導体からなることを特徴とする不斉アシル化触媒である。
【0011】
さらに、第三の本発明は、それぞれ異なる型の光学異性体(又は鏡像異性体)の混合物からなるアルコール化合物又はアミン化合物を、上記不斉アシル化触媒を用いてアシル化することによって一方の光学異性体を選択的にアシル化し、光学純度の向上したアルコール化合物及びエステル化合物又はアミン化合物及びアミド化合物を得ることを特徴とする光学活性物質の製造方法である。
【0012】
【発明の実施の形態】
本発明のN−(4−ピリジル)プロリン誘導体は前記式(1)で示され、不斉識別能が高く、各種光学活性化合物を合成する際の不斉触媒として機能するという特徴を有する。
なお、前記式(1)において、Rで示される基は、水素原子、炭素数14以下の芳香族炭化水素基、炭素数6以下の低級アルコキシカルボニル基または炭素数6以下の低級アルキルアミノカルボニル基である。また、Rで示される基は、(i)Rが水素原子である場合には炭素数13以下の芳香族複素環基であり、(ii)Rが炭素数14以下の芳香族炭化水素基である場合には水素原子であり、(iii)Rが炭素数6以下のアルコキシカルボニル基または炭素数6以下のアルキルアミノカルボニル基である場合には炭素数14以下の芳香族炭化水素基または炭素数13以下の芳香族複素環基である。
【0013】
ここで、上記R及びRが夫々水素原子以外の基であるとき、これら基は上記条件を満足するものであれば、その種類、置換位置等特に限定されないが、好適な基を具体的に例示すれば次のとおりである。即ち、▲1▼炭素数14以下の芳香族炭化水素基としては、フェニル基、1−1H−インデニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、9−アントラセニル基、1−フェナントレニル基、9−フェナントレニル基等を挙げることができ、▲2▼炭素数13以下の芳香族複素環基としては2−フリル基、3−チエニル基、1−ピロリル基、2−ピリジル基、2−ピリミジニル基、2−(1,3−オキサゾリル)基、2−(1,3−チアゾリル)基、1−イミダゾリル基、1−(1,2,4−トリアゾリル)基、2−ベンゾフラニル基、2−ベンゾチオフェニル基、3−インドリル基、2−(1,3−ベンゾオキサゾリル)基、2−(1,3−ベンゾチアゾリル)基、1−ベンゾイミダゾリル基、1−(1,2,3−ベンゾトリアゾリル)基、7−プリニル基、2−キノリル基、9−カルバゾリル基、9−9H−キサンテニル基、9−アクリジニル基、10−フェノチアジニル基等を挙げることができ、▲3▼炭素数6以下の低級アルコキシカルボニル基としてはメトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、t−ブトキシカルボニル基、シクロヘキシルオキシカルボニル基等を挙げることができ、▲4▼炭素数6以下の低級アルキルアミノカルボニル基としてはメチルアミノカルボニル基、ジメチルアミノカルボニル基、イソプロピルアミノカルボニル基、t−ブチルメチルアミノカルボニル基、シクロヘキシルアミノカルボニル基等を挙げることができる。
上記の炭素数14以下の芳香族炭化水素基の内でも、フェニル基、1−ナフチル基、2−ナフチル基等は原料入手の面からより好適であり、炭素数13以下の芳香族複素環基の内でも、2−ベンゾフラニル基、2−ベンゾチオフェニル基、3−インドリル基、2−(1,3−ベンゾオキサゾリル)基、2−(1,3−ベンゾチアゾリル)基、1−ベンゾイミダゾリル基等は原料入手の面からより好適である。
【0014】
さらに、本発明の前記式(1)で示されるN−(4−ピリジル)プロリン誘導体のRで示される置換基が水素原子ではない場合、1’位の炭素が不斉を持つことになるが、不斉識別能がより高いと言う理由により、N−(4−ピリジル)プロリンの2位の炭素がS配置である場合には当該1’位の炭素はS配置であり、更に2位の炭素がR配置である場合には1’位の炭素はR配置であること(即ち、2位の不斉炭素と1’位の不斉炭素が同じ立体配置を示すこと)が好ましい。前記式(1)で示される本発明のN−(4−ピリジル)プロリン誘導体のうち、好適なものを具体的に例示すれば、N−(4−ピリジル)−L−プロリン (S)−1’−(1−ナフチル)エチルアミド、N−(4−ピリジル)プロリン (R)−1’−(1−ナフチル)エチルアミド、N−(4−ピリジル)プロリニル L−トリプトファンメチルエステル、N−(4−ピリジル)プロリニル L−トリプトファンメチルエステル、N−(4−ピリジル)プロリン トリプタミド、N−(4−ピリジル)プロリニル L−トリプトファンt−ブチルエステル、N−(4−ピリジル)プロリニル L−トリプトファンイソプロピルアミド、N−(4−ピリジル)プロリン 1’−メトキシカルボニル−2−(2−ナフチル)エチルアミド等を挙げることができる。
本発明のN−(4−ピリジル)プロリン誘導体の製造方法は特に限定されないが、入手の容易な光学活性なプロリンを出発原料に選び、プロリンのアミドを製造してから4−ブロモピリジンと反応させる方法(方法1)又はプロリンと4−ブロモピリジンから初めにN−(4−ピリジル)プロリンを製造してからアミド化する方法(方法2)が好適に採用できる。なお、N−(4−ピリジル)プロリン誘導体の製法に関しては、前記非特許文献6にも開示されているが、これら方法1及び2の方が該非特許文献に開示されている方法と比べて反応条件が穏和で収率も高い。
【0015】
上記方法1においては、まず初めにプロリンのアミドを製造する。この製造方法は特に限定されないが、一般的にアミノ酸の縮合反応で用いられる反応、例えば窒素を保護したプロリンと、所望のアミンを縮合剤、例えばジシクロヘキシルカルボジイミド、エチルジメチルアミノプロピルカルボジイミド等と、適当な活性化剤、例えば1−ヒドロキシベンゾトリアゾール、ジメチルアミノピリジン等を加えて縮合させる方法や、窒素を保護したプロリンを一旦イソプロペニルエステルやニトロフェニルエステル等の活性エステルやベンゼンスルホン酸やジフェニルリン酸との混合酸無水物、あるいは酸クロライド等に誘導し、これと所望のアミンと反応させる方法等を用いることができる。
【0016】
該方法1では、次にプロリンのアミドと(必要であれば保護基を除去した後に)4−ブロモピリジン等のピリジン誘導体とを反応させる。この時の反応はE.Vedejsらが1999年にアメリカ化学会誌121巻5813ページに報告している反応条件や、S.L.Buchwaldらが1996年にJ.Org.Chem.61巻7240ページに報告している反応条件などを用いることができる。
【0017】
また、前記方法2では、まず初めにN−(4−ピリジル)プロリンを製造する。この製造方法は、まずプロリンのカルボン酸基をt−ブチルエステル等で保護した後、前述のE.Vedjsら、あるいはS.L.Buchwaldらの方法、またはP.Ghislaineらの方法が採用できる。次に所望のアミンと反応させるが、これも(プロリンのカルボン酸の保護基を除去した後)前述の縮合反応、活性化カルボン酸誘導体との反応等を採用することができる。
【0018】
このようにして得られた本発明のN−(4−ピリジル)プロリン誘導体、特に光学純度が50%以上、より好ましくは90%以上のものは、不斉触媒として機能するため、該性質を利用して不斉分割を行なうことができる。すなわち、それぞれ異なる型の光学異性体(鏡像異性体)の混合物からなるアルコール化合物又はアミン化合物を、本発明のN−(4−ピリジル)プロリン誘導体からなる不斉アシル化触媒を用いてアシル化することによって一方の光学異性体(鏡像異性体)を選択的にアシル化し、得られたアシル化物と未反応原料とを分離することにより、未反応原料としての光学純度の向上したアルコール化合物又はアミン化合物を、また、選択的にアシル化されたアシル化物としてエステル化合物またはアミド化合物を得ることができる。
【0019】
この場合、分割されるべき基質は水酸基やアミノ基、メルカプト基等のアシル化を受ける基を持っているラセミ体若しくは光学純度の低い光学異性体(鏡像異性体)の混合物であれば、特に限定されず、公知のアルコール化合物およびアミン化合物が使用できる。好適に使用できるこれら化合物を具体的に例示すれば、フェネチルアルコールやフェネチルアミンのような単純な化合物の他、4’−ジメチルアミノ安息香酸=2−ヒドロキシシクロヘキシルのような片方が保護されたジオール類やアミノ基が保護されたアミノアルコール、例えば4’−ジメチルアミノ安息香酸=2−ヒドロキシシクロヘキシルアミド、4’−ジメチルアミノ安息香酸=2−ヒドロキシシクロペンチルアミド、4’−ジメチルアミノ安息香酸=2−ヒドロキシシクロヘプチルアミド、1−(4’−ジメチルアミノベンゾイルアミノ)−2−ヒドロキシアセナフテン、1−(4’−ジメチルアミノベンゾイルアミノ)−2−ヒドロキシインダン等を挙げることができる。特に最後に示した1−(4’−ジメチルアミノベンゾイルアミノ)−2−ヒドロキシインダンはHIVプロテアーゼ阻害剤インジナビルの合成中間体としての利用も可能である。
【0020】
上記アシル化反応の方法は特に限定されないが、分割されるべき基質に対して本発明の不斉触媒であるN−(4−ピリジル)プロリン誘導体を0.1mol%から50mol%用い、アシル化剤を40mol%から70mol%用いて部分アシル化を行なうことにより、一方の鏡像異性体(エナンチオマー)を優先的に反応させればよい。この際、アシル化剤としては特に限定されないが、無水酢酸、イソ酪酸無水物、メタクリル酸無水物等の酸無水物、アセチルクロライド、ベンゾイルクロライド等の酸クロライド、酢酸ビニル、酢酸イソプロペニル等のα,β−不飽和アルコールのエステル等が用いられる。また、酸無水物や酸クロライドのように、アシル化の際に酸が発生する場合には、これを中和する試薬を用いることが好適である。ここで用いられる中和試薬は、特に限定されないが、炭酸ナトリウム、水酸化カリウム等のアルカリ金属の塩基性塩、トリエチルアミン、ピリジン、コリジン等の3級アミン等が好適に用いられる。特に、アシル化剤と反応しにくく、酸を中和する能力の高い立体障害の大きい3級アミン、例えば2,6−ジメチルピリジンやコリジン等が好適に用いられる。
【0021】
反応は、溶媒中で行うのが好適であり、このとき溶媒は、トルエン、キシレン等の芳香族炭化水素類;塩化メチレン、クロロホルム等の塩素化炭化水素類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;アセトニトリル、ブチロニトリル等のニトリル類;ジメチルホルムアミド、N−メチルピロリドン等のアミド類;ジメチルスルホキシド、スルホラン等のスルホキシド類やスルホン類等の公知の有機溶媒から反応系に応じて好適なものを適宜選択して使用すればよい。
【0022】
反応終了後、触媒を塩酸等で抽出、除去し、生成物を一般の精製方法、例えば晶析、蒸留、昇華、あるいはクロマトグラフィー(カラムクロマト、薄層クロマト、逆層または順層液体クロマト、GPC、吸着クロマト等)を用いて精製することにより光学活性物質として光学純度の向上した未反応原料化合物を回収し、あるいは光学純度の向上したアシル化生成物を取得することができる。
【0023】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明は実施例に限定されるわけではない。
【0024】
実施例1
L−プロリンt−ブチルエステル1.10g(6.43mmol)、4−ブロモピリジン塩酸塩2.50g(12.9mmol)、炭酸セシウム8.40g(25.7mmol)、トリス(ジベンジリデンアセトン)ジパラジウム295mg(0.31mmol)、2,2’−ビス(ジフェニルホスフィノ)ビナフチルのラセミ体800mg(1.29mmol)にアルゴン雰囲気下、50mLのトルエンを加えた。5分間アルゴンをバブリングした後、80℃で3時間加熱した。その後、室温まで冷却し、酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。カラムクロマトグラフィー(シリカゲル、酢酸エチル:メタノール:28%アンモニア水=10:88:2)で精製してN−(4−ピリジル)プロリンt−ブチルエステルを1.40g(収率88%)で得た。スケールを倍にして同様に、N−(4−ピリジル)プロリンt−ブチルエステルを2.88g(収率91%)で得た。これらのN−(4−ピリジル)プロリンt−ブチルエステルの4.00g(16.1mmol)を酢酸エチルに溶解し、塩化水素の酢酸エチル溶液20mL(4M,80mmol)を加え、室温で14時間攪拌した。溶媒を減圧留去した後、エタノールから晶析してN−(4−ピリジル)プロリン塩酸塩2.51g(収率68%)を得た。このN−(4−ピリジル)プロリン塩酸塩400mg(1.75mmol)と(S)−1−(1−ナフチル)エチルアミン450mg(2.63mmol)、N−メチルモルホリン0.48mL(4.38mmol)を塩化メチレン20mLに溶解し、0℃で1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩500mg(2.63mmol)と1−ヒドロキシベンゾトリアゾール355mg(2.63mmol)を加え、室温で12時間攪拌した。その後、溶液に酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。カラムクロマトグラフィー(シリカゲル、酢酸エチル:メタノール:28%アンモニア水=88:10:2)で精製して4:1のジアステレオマー混合物を得た。この混合物を塩化水素の酢酸エチル溶液に加えて塩酸塩とし、エタノール・ジエチルエーテルから晶析して単一のジアステレオマーを得た。これを水酸化ナトリウム水溶液に溶解し、塩化メチレンで抽出してN−(4−ピリジル)−L−プロリン(S)−1’−(1−ナフチル)エチルアミドを得た。本化合物の物性は以下のとおりであった。
【0025】
無色透明結晶、融点195−196℃
旋光度[α] 20=−29°(c=1.0,CHCl
H−NMR(400MHz,CDCl)δ=8.06(d,1H,J=8.2Hz),7.89(d,2H,J=6.1Hz),7.82(dd,1H,J=8.2,1.9Hz),7.74−7.68(m,1H),7.55−7.41(m,2H),7.40(d,2H,J=5.3Hz),6.57(brd,1H,J=8.7Hz),6.34(d,2H,J=6.1Hz),5.96(dq,1H,J=8.7,7.0Hz),4.11(dd,1H,J=8.7,2.7Hz),3.64(ddd,1H,J=9.7,7.3,2.4Hz),3.26(td,1H,J=9.7,6.8Hz),2.39−2.23(m,2H),2.13−1.97(m,2H),1.64(d,3H,J=7.0Hz)
IR(CHCl):3405,3010,2980,1664,1596,1512,1373,1225,1177,996,807cm−1
質量スペクトル(M/Z)=345(10,M),147(100),155(10),105(10),78(10)
ミリマス M/Z=345.1860(C2223Oの計算値345.1841)。
【0026】
参考例1
N−(9−フルオレニルメトキシカルボニル)−L−プロリン735mg(2.18mmol)と(S)−1−(1−ナフチル)エタノール250mg(1.45mmol)と1−ヒドロキシベンゾトリアゾール290mg(2.18mmol)をジクロロメタン15mLに溶解し、0℃で1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩415mg(2.18mmol)とジメチルアミノピリジン18mg(0.15mmol)を加え、室温で20時間攪拌した。一旦溶媒を減圧留去して酢酸エチルに溶解し、飽和炭酸水素ナトリウム水溶液で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。短いカラムクロマトグラフィー(シリカゲル、酢酸エチル)を通して精製し、これを塩化メチレンに溶解してピペリジンと室温で4時間反応させて保護基を外した。溶媒を減圧留去して残渣をカラムクロマトグラフィー(シリカゲル、ジエチルエーテル:メタノール:トリエチルアミン=95:3:2)で精製してL−プロリン(S)−1’−(1−ナフチル)エチルエステル186mg(収率48%)を得た。これの170mg(0.63mmol)と4−ブロモピリジン塩酸塩246mg(1.26mmol)、炭酸セシウム824mg(2.53mmol)、トリス(ジベンジリデンアセトン)ジパラジウム15mg(0.016mmol)、2,2’−ビス(ジフェニルホスフィノ)ビナフチルのラセミ体40mg(0.064mmol)をアルゴン雰囲気下、10mLのトルエンを加えた。5分間アルゴンをバブリングした後、80℃で1時間加熱攪拌した。その後、室温まで冷却し、酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。カラムクロマトグラフィー(シリカゲル、酢酸エチル:メタノール:28%アンモニア水=10:88:2)で精製してN−(4−ピリジル)−L−プロリン1’−(1−ナフチル)エチルエステルを186mg(収率85%)得た。本化合物はC(2)での20:1のジアステレオマーの混合物であった。本化合物の物性は以下のとおりであった。
【0027】
無色液体
旋光度[a] 20=−124°(c=1.1,CHCl
H−NMR(400MHz,CDCl)δ=8.16(brd,2H,J=5.8Hz),8.01−7.95(m,1H),7.88−7.83(m,1H),7.78(d,1H,J=8.0Hz),7.51−7.34(m,4H),6.66(q,1H,J=6.5Hz),6.38(d,2H,J=5.8Hz),4.35(dd,1H,J=8.2,1.9Hz),3.59(td,1H,J=8.2,3.6Hz),3.39(q,1H,J=8.2Hz),2.33−2.00(m,4H),1.74(d,3H,J=6.5Hz)
IR(CHCl):2954,1742,1597,1503,1391,1180,998,807cm−1
質量スペクトル(M/Z)=346(30,M),155(90),147(100),105(20),78(30)
ミリマス M/Z=346.1689(C2222の計算値346.1681)。
【0028】
実施例2
実施例1と同様にN−(4−ピリジル)プロリンt−ブチルエステルを得た後、(R)−1−(1−ナフチル)エチルアミンと縮合させ、収率44%でN−(4−ピリジル)プロリン (R)−1’−(1−ナフチル)エチルアミドを得た。本化合物の物性は以下の通りであった。
【0029】
無色結晶 融点203−205℃
旋光度[a] 20=−266°(c=1.0, CHCl
H−NMR(400MHz,CDCl)δ=8.26(d,2H,J=6.3Hz),8.02−7.96(m,1H),7.89−7.83(m,1H),7.79(dd,1H,J=9.2,1.7Hz),7.53−7.47(m,2H),7.45−7.37(m,2H),6.44(d,2H,J=6.3Hz),6.34(d,1H,J=9.0Hz),5.92(dq,1H,J=9.0,6.8Hz),4.13(t,1H,J=6.3Hz),3.42(ddd,1H,J=9.7,7.8,2.2Hz),3.18(td,1H,J=9.7,6.8Hz),2.31−2.24(m,2H),1.95−1.85(m,1H),1.75−1.65(m,1H),1.59(d,3H,J=6.8Hz)
IR(CHCl):3386,3010,2980,1664,1596,1512,1500,1375,995,807cm
質量スペクトル(M/Z)=345(10,M),155(10),147(100)
ミリマス M/Z=345.1830(C2223Oの計算値345.1841)。
【0030】
参考例2
実施例1と同様にN−(4−ピリジル)プロリンt−ブチルエステルを得た後、(S)−N−メチル−1−(1−ナフチル)エチルアミンと縮合させ、収率35%でN−(4−ピリジル)プロリン (S)−N−メチル−N−1’−(1−ナフチル)エチルアミドを得た。本化合物の物性は以下の通りであった。
【0031】
無色結晶 融点243246℃
旋光度[a] 20=−145(c1.0,CHCl
H−NMR(400MHz,CDCl)δ=8.22(d,2H,J=6.3Hz),7.97−7.83(m,3H),7.56(d,1H,J=7.1Hz),7.53−7.46(m,3H),6.61(q,1H,J=6.8Hz),6.30(d,2H,J=6.3Hz),4.52(dd,1H,J=8.6,2.4Hz),3.74(td,1H,J=8.9,3.7Hz),3.48(q,1H,J=8.9Hz),2.62(s,3H),2.02−2.37(m,3H),1.87−1.80(m,1H),1.67(s,3H,J=6.8Hz)
IR(KBr)2968,1643,1601,1513,1397,995,795,783cm
質量スペクトル(M/Z)=359(M,10),170(30),155(30),147(100),127(15),105(15)
ミリマスM/Z=359.1985(C2325Oの計算値359.1998)。
【0032】
実施例3
実施例1と同様にN−(4−ピリジル)プロリンt−ブチルエステルを得た後、L−トリプトファンメチルエステル(S配置)と縮合させ、収率52%でN−(4−ピリジル)プロリニル L−トリプトファンメチルエステルを得た。本化合物の物性は以下の通りであった。
【0033】
無色結晶 融点195−196℃
旋光度[a] 20=−126°(c=1.0,CHCl
H−NMR(400MHz,CDCl)δ=8.77(brs,1H),8.13(d,2H,J=6.5,1.0Hz),7.45(d,1H,J=8.0Hz),7.33(d,1H,J=8.2Hz),7.18(t,1H,J=8.2Hz),7.11(t,1H,J=8.0Hz),6.83(d,1H,J=2.4Hz),6.46(d,1H,J=7.8Hz),6.24(d,2H,J=6.5Hz),4.78(dt,1H,J=8.0,5.8Hz),4.00(dd,1H,J=7.8,2.7Hz),3.71(s,3H),3.29(ABX,2H,JAB=15.0Hz,DnAB=22.7Hz,JAX=5.8Hz,JBX=5.8Hz),3.14−2.99(m,2H),2.20−2.08(m,2H),1.89−1.81(m,1H),1.63−1.50(m,1H)
IR(CHCl):3019,1743,1672,1597,1516,1502,1374,1219,1211,782cm
質量スペクトル(M/Z)=392(20,M),263(30),147(100),130(30),120(20)
ミリマスM/Z=392.1839(C2224の計算値392.1849)。
【0034】
実施例4
実施例1と同様にN−(4−ピリジル)プロリンt−ブチルエステルを得た後、D−トリプトファンメチルエステル(R配置)と縮合させ、収率23%でN−(4−ピリジル)プロリニル L−トリプトファンメチルエステルを得た。本化合物の物性は以下の通りであった。
【0035】
無色結晶 融点95−98℃
旋光度[a] 20= −139°(c=1.0,CHCl
H−NMR(400MHz,CDCl)δ=9.11(brs,1H),8.16(d,2H,J=6.3Hz),7.38(d,1H,J=8.0Hz),7.30(d,1H,J=8.0Hz),7.14(td,1H,J=8.0,1.0Hz),7.02(td,1H,J=8.0,0.7Hz),6.54(d,1H,J=7.8Hz),6.45(d,1H,J=2.4Hz),6.26(d,2H,J=6.3Hz),4.88−4.80(m,1H),4.04(dd,1H,J=8.7,2.4Hz),3.73(s,3H),3.46−3.37(m,1H),3.28−3.14(m,3H),2.32−2.17(m,2H),2.03−1.90(m,2H)
IR(CHCl):3475,3019,1742,1671,1596,1516,1503,1375,1221,1209,787cm
質量スペクトル(M/Z)=392(25,M),263(30),147(100),130(30),120(10)
ミリマスM/Z=392.1845(C2224の計算値392.1849)。
【0036】
実施例5
実施例1と同様にN−(4−ピリジル)プロリンt−ブチルエステルを得た後、トリプタミンと縮合させ、収率91%でN−(4−ピリジル)プロリン トリプタミドを得た。本化合物の物性は以下の通りであった。
【0037】
無色結晶 融点9496℃
旋光度[a] 20= −139°(c=1.1,CHCl
H−NMR(400MHz,CDCl)δ=8.66(s,1H),8.16(d,2H,J=6.5Hz),7.51(d,1H,J=7.6Hz),7.33(d,1H,J=8.3Hz),7.18(td,1H,J=8.3,1.2Hz),7.08(td,1H,J=7.6,1.0Hz),6.63(d,1H,J=2.2Hz),6.31(d,2H,J=6.5Hz),6.23(brt,1H,J=6.1Hz),4.05(dd,1H,J=8.2,3.4Hz),3.69(sex,1H,J=6.1Hz[dddd,J=12.2,6.1,6.1,6.1Hz]),3.51−3.41(m,1H),3.34(ddd,1H,J=9.8,1.9,1.9Hz),3.15(td,1H,J=9.8,6.6Hz),3.03−2.82(m,2H),2.27−2.14(m,2H),1.99−1.92(m,1H),1.85−1.71(m,1H)
IR(KBr):3400,3254,2975,1653,1600,1517,1392,1225,999,806,743cm
質量スペクトル(M/Z)=334(M,15),147(100),130(20),78(10)
ミリマスM/Z=334.1792(C2022Oの計算値334,1793)。
【0038】
実施例6
実施例1と同様にN−(4−ピリジル)プロリンt−ブチルエステルを得た後、L−トリプトファンt−ブチルエステル(S配置)と縮合させ、収率50%でN−(4−ピリジル)プロリニル L−トリプトファンt−ブチルエステルを得た。本化合物の物性は以下の通りであった。
【0039】
無色結晶 融点209210℃
旋光度[a] 20=−124°(c=1.0,CHCl
H−NMR(400MHz,CDCl)δ=8.47(brs,1H),8.15(d,2H,J=6.5Hz),7.48(d,1H,J=7.3Hz),7.33(d,1H,J=8.0Hz),7.18(t,1H,J=6.5Hz),7.10(td,1H,J=8.0,1.0Hz),6.88(d,1H,J=2.4Hz),6.42(d,1H,J=7.5Hz),6.28(d,2H,J=6.5Hz),4.67(dt,1H,J=7.5,6.3Hz),3.98(dd,1H,J=8.2,2.7Hz),3.24(ABX,2H,JAB=15.0Hz,DnAB=42.5Hz,JAx=6.1Hz,JBX=6.3Hz),3.15−3.00(m,2H),2.18−2.05(m,2H),1.84−1.75(m,1H),1.55−1.35(m,1H),1.39(s,9H)
IR(CHCl):3477,3019,1726,1673,1597,1515,1502,1370,1221,1209,1155cm
質量スペクトル(M/Z)=434(15,M),305(20),147(100),130(25)
ミリマスM/Z=434.2297(C2530の計算値434.2318)。
【0040】
実施例7
実施例1と同様にN−(4−ピリジル)プロリンt−ブチルエステルを得た後、L−トリプトファンイソプロピルアミド(S配置)と縮合させ、収率86%でN−(4−ピリジル)プロリニル L−トリプトファンイソプロピルアミドを得た。本化合物の物性は以下の通りであった。
【0041】
無色結晶 融点124−127℃
旋光度[a] 20=−66°(c=1.0,CHCl
H−NMR(400MHz,CDCl/CDOD)δ=7.98(d,2H,J=6.3Hz),7.60(d,1H,J=8.0Hz),7.40(d,1H,J=8.0Hz),7.18(t,1H,J=7.0Hz),7.10(t,1H,J=7.0Hz),7.02(s,1H),6.18(d,2H,J=6.3Hz),4.60(t,1H,J=7.0Hz),4.05(dd,1H,J=8.9Hz,2.4Hz),3.92(sep,1H,J=6.5Hz),3.37−3.30(m,1H),3.21−3.14(m,3H),2.28−2.15(m,1H),2,08−2.00(m,1H),1.98−1.87(m,1H),1.80−1.68(m,1H),1.05(d,3H,J=6.5Hz),1.00(d,3H,J=6.5Hz)
IR(CHCl):3623,3014,2975,1662,1597,1514,1388,1238,1046,877cm
質量スペクトル(M/Z)=419(15,M),290(20),147(100),130(40)
ミリマスM/Z=419.2322(C2229の計算値419.2321)。
【0042】
実施例8
実施例1と同様にN−(4−ピリジル)プロリンt−ブチルエステルを得た後、L−3−(2−ナフチル)アラニンメチルエステル(S配置)と縮合させ、収率81%でN−(4−ピリジル)プロリン 1’−メトキシカルボニル−2−(2−ナフチル)エチルアミドを得た。本化合物の物性は以下の通りであった。
【0043】
無色結晶 融点95−97℃
旋光度[a] 20=−126°(c=1.0,CHCl
H−NMR(400MHz,CDCl/CDOD)δ=8.11(d,2H,J=6.1Hz),7.84−7.70(m,3H),7.56−7.45(m,3H),7.19(dd,1H,J=8.5Hz,1.7Hz),6.67(d,1H,J=7.0Hz),6.32(d,2H,J=6.1Hz),4.90(dt,1H,J=7.8,5.6Hz),4.02(dd,1H,J=9.2,2.2Hz),3.70(s,3H),3.45−3.35(m,2H),3.21(dd,1H,J=14.0,7.8Hz),3.12(td,1H,J=9.7,6.5Hz),2.18−2.00(m,2H),1.86−1.75(m,1H),1.59−1.47(m,1H)
IR(CHCl):3401,3011,2954,1742,1673,1596,1503,1371,1225,996,807cm
質量スペクトル(M/Z)=403(50,M),346(10),303(20),155(40),147(100),105(10)
ミリマスM/Z=403.1894(C2425の計算値403.1896)。
【0044】
参考例3
実施例1と同様にN−(4−ピリジル)プロリンt−ブチルエステルを得た後、L−バリンメチルエステル(S配置)と縮合させ、定量的にでN−(4−ピリジル)プロリニル L−バリンメチルエステルを得た。本化合物の物性は以下の通りであった。
【0045】
無色結晶 融点134−136℃
旋光度[a] 20=−107°(c=1.1,CHCl
H−NMR(400MHz,CDCl/CDOD)δ=8.29(d,2H,J=6.3Hz),6.64(d,1H,J=8.7Hz),6.49(d,2H,J=6.3Hz),4.52(dd,1H,J=9.1,5.1Hz),4.14(dd,1H,J=8.7,3.9Hz),3.69(ddd,1H,J=9.5,7.8,2.2Hz),3.63(s,3H),3.34(td,1H,J=9.8,6.6Hz),2.37−2.02(m,5H),0.91(d,3H,J=6.9Hz),0.84(d,3H,J=7.1Hz)
IR(CHCl):3180,2959,2873,1741,1686,1601,1520,1399,1227,1190,1003,988,807cm−1
質量スペクトル(M/Z)=305(M,25),147(100),105(30),78(30)
ミリマスM/Z=305.1724(C1623の計算値305.1739)。
【0046】
実施例9〜16及び比較例1〜4
実施例1〜8および参考例1〜3および実施例1の途中で製造したN−(4−ピリジル)プロリンt−ブチルエステルについて、これらを触媒として不斉分割を行なった。基質として、2−(4−ジメチルアミノベンゾイルアミノ)シクロヘキサノールのラセミ体131mg(0.50mmol),酸補足剤としてコリジン66μL(0.50mmol)と表1に示した触媒0.025mmol(5mol%)をクロロホルム5mLに溶解し、20℃でイソ酪酸無水物58μL(0.35mmol)を加え、12時間攪拌した。次に酢酸エチルを加え、0.1M塩酸で有機層を洗浄し、飽和炭酸水素ナトリウム水溶液、食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。生成物はプレパラデイブ薄層クロマトグラフィー(シリカゲル、酢酸エチル:ヘキサン=1:1)で分離し、(1S,2R)2−(4−ジメチルアミノベンゾイルアミノ)シクロヘキサノールと(1R,2S)2−(4−ジメチルアミノベンゾイルアミノ)−1−イソブチロイルオキシシクロヘキサンを得た。それぞれの光学純度はダイセルChiralpakADを用いてHPLC(ヘキサン:イソプロパノール=9:1、流量1.0mL/分)で測定した。結果を表1に示す。ここで、選択率比(S)は、速く反応する光学異性体の反応速度定数/遅く反応する光学異性体の反応速度定数であり、Sano,T.らが1999年にChemistryLettersの265ページに報告している方法によって計算した。この値が大きいほうが光学分割の能力が高く、1.0であれば、分割能はないといえる。
【0047】
【表1】
Figure 2004107297
【0048】
表1に示されるように、本発明の一般式1で示されるN−(4−ピリジル)プロリンのエチルアミドは5mol%といった触媒量で選択率比4以上の高いエナンチオマー選択率比を持つことがわかる。それに対して、参考例1、2、3で合成した化合物は構造が似ているにも関わらず選択率比は2以下の低い値に留まっている。また、詳しく見ると、1’炭素のコンフィグレーションがSの場合、即ち、請求項2で示される化合物がより高い選択率比を与えることがわかる。
【0049】
【発明の効果】
前記式1で示される本発明のN−(4−ピリジル)プロリン誘導体は、不斉アシル化触媒として機能し、触媒量の該誘導体を用いることによって高いエナンチオマー選択比でアルコール化合物やアミン化合物の光学分割を行うことが可能である。また、本発明のN−(4−ピリジル)プロリン誘導体は、容易に入手可能な原料を用いて簡便且つ効率的に製造することが可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel N- (4-pyridyl) proline derivative that can be suitably used as an asymmetric acylation catalyst, and a method for producing an optically active substance using the N- (4-pyridyl) proline derivative.
[0002]
[Prior art]
Hitherto, a method of optically resolving a racemate with an enzyme has been already studied since the 1970s (for example, see Non-Patent Document 1). In particular, the resolution of alcohol using lipase has been actively used in organic synthesis since the 1980s, and has been widely used for the synthesis of optically active bioactive substances (see Non-Patent Documents 2 and 3). On the other hand, enantioselective acylation using artificial molecular catalysts has been extremely difficult. For example, E. Vedejs et al. Performed an asymmetric acylation reaction using an optically active dimethylaminopyridine derivative (see Non-Patent Document 4), but a stoichiometric amount or more of the dimethylaminopyridine derivative was required, and the catalytic reaction was successful. I haven't. In contrast, the present inventor has proposed that asymmetric acylation in 4- [8- (2-naphthylmethyl) -8-hydroxy-2-azabicyclo [3.3.0] octan-2-yl] pyridine is catalyzed. (See Non-Patent Document 5).
[0003]
In addition, although it is suggested that a specific novel 4-pyridinylproline derivative has a potential as a stereospecific catalyst, it has not been demonstrated (see Non-Patent Document 6).
[0004]
[Non-patent document 1]
R. Bentley, Molecular Asymmetry in Biology, Vol. 1, Chapter 6, Academic Press, New York, 1969
[Non-patent document 2]
Takeshi Oishi, Hiroyuki Akita, 合成 Society of Synthetic Organic Chemistry, 49, 657, 1991; Kaoru Nakamura and Yoshihiko Hirose, 53 668 pages of Synthetic Organic Chemistry, 1995
[Non-Patent Document 3]
C. -H. Wong, Chemtracts-Organic Chemistry, Vol. 3, p. 91, 1990
[Non-patent document 4]
E. FIG. Vedejs et al., Journal of the American Chemical Society, Vol. 118, p. 1809, 1996.
[Non-Patent Document 5]
Kawabata et al., Journal of the American Chemical Society, Vol. 119, p. 3169, 1997
[Non-Patent Document 6]
Ghislain @ Priem et al., Tetrahedron Letters, Vol. 43, pp. 6001-6003, 2002.
[0005]
[Problems to be solved by the invention]
However, this catalyst has high catalytic activity and stereoselectivity, but has a problem that the structure is complicated and the production cost of the catalyst is high.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have constructed an asymmetric acylation catalyst using easily available raw materials and a simple and high-yield production method without sacrificing catalytic activity and stereoselectivity. We designed the molecule and examined its catalytic ability. As a result, not all optically active N- (4-pyridyl) proline derivatives necessarily function as asymmetric acylation catalysts, and N- (4-pyridyl) proline derivatives having a specific structure have good asymmetric properties. They have found that they can be used as acylation catalysts, and have completed the present invention.
[0007]
That is, the first present invention provides the following formula (1)
[0008]
Embedded image
Figure 2004107297
[0009]
(Where
R1Is a hydrogen atom, an aromatic hydrocarbon group having 14 or less carbon atoms, an alkoxycarbonyl group having 6 or less carbon atoms, or an alkylaminocarbonyl group having 6 or less carbon atoms;2Is R1Is a hydrogen atom, is an aromatic heterocyclic group having 13 or less carbon atoms,1Is a hydrogen atom when R is an aromatic hydrocarbon group having 14 or less carbon atoms;1Is an alkoxycarbonyl group having 6 or less carbon atoms or an alkylaminocarbonyl group having 6 or less carbon atoms, is an aromatic hydrocarbon group having 14 or less carbon atoms or an aromatic heterocyclic group having 13 or less carbon atoms,
2 and 1 'indicate the number of carbon. )
N- (4-pyridyl) proline derivative represented by
[0010]
A second aspect of the present invention is an asymmetric acylation catalyst comprising an N- (4-pyridyl) proline derivative represented by the formula (1) having an optical purity of 50% or more.
[0011]
Furthermore, the third present invention provides one optically active compound by acylating an alcohol compound or an amine compound composed of a mixture of different types of optical isomers (or enantiomers) using the asymmetric acylation catalyst. A process for producing an optically active substance, characterized in that an isomer is selectively acylated to obtain an alcohol compound and an ester compound or an amine compound and an amide compound with improved optical purity.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The N- (4-pyridyl) proline derivative of the present invention is represented by the above formula (1), has a high asymmetric discrimination ability, and has a feature that it functions as an asymmetric catalyst when synthesizing various optically active compounds.
In the above formula (1), R1Is a hydrogen atom, an aromatic hydrocarbon group having 14 or less carbon atoms, a lower alkoxycarbonyl group having 6 or less carbon atoms, or a lower alkylaminocarbonyl group having 6 or less carbon atoms. Also, R2Is a group represented by (i) R1Is a hydrogen atom, is an aromatic heterocyclic group having 13 or less carbon atoms, and (ii) R1Is a hydrogen atom when is an aromatic hydrocarbon group having 14 or less carbon atoms, and (iii) R1Is an alkoxycarbonyl group having 6 or less carbon atoms or an alkylaminocarbonyl group having 6 or less carbon atoms, an aromatic hydrocarbon group having 14 or less carbon atoms or an aromatic heterocyclic group having 13 or less carbon atoms.
[0013]
Where R1And R2When each is a group other than a hydrogen atom, these groups are not particularly limited as long as they satisfy the above conditions, such as the type and substitution position, but specific examples of suitable groups are as follows. . That is, (1) Examples of the aromatic hydrocarbon group having 14 or less carbon atoms include phenyl group, 1-1H-indenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 9-anthracenyl group, 1- And phenanthrenyl group and 9-phenanthrenyl group. (2) Examples of the aromatic heterocyclic group having 13 or less carbon atoms include 2-furyl group, 3-thienyl group, 1-pyrrolyl group, 2-pyridyl group, -Pyrimidinyl group, 2- (1,3-oxazolyl) group, 2- (1,3-thiazolyl) group, 1-imidazolyl group, 1- (1,2,4-triazolyl) group, 2-benzofuranyl group, 2 -Benzothiophenyl group, 3-indolyl group, 2- (1,3-benzoxazolyl) group, 2- (1,3-benzothiazolyl) group, 1-benzimidazolyl group, 1- (1,2,3- Ben Triazolyl) group, 7-purinyl group, 2-quinolyl group, 9-carbazolyl group, 9-9H-xanthenyl group, 9-acridinyl group, 10-phenothiazinyl group and the like. Examples of the lower alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, an isopropoxycarbonyl group, a t-butoxycarbonyl group, a cyclohexyloxycarbonyl group and the like, and (4) a lower alkylaminocarbonyl group having 6 or less carbon atoms. Examples thereof include a methylaminocarbonyl group, a dimethylaminocarbonyl group, an isopropylaminocarbonyl group, a t-butylmethylaminocarbonyl group, a cyclohexylaminocarbonyl group and the like.
Among the above aromatic hydrocarbon groups having 14 or less carbon atoms, phenyl group, 1-naphthyl group, 2-naphthyl group and the like are more preferable from the viewpoint of obtaining raw materials, and aromatic heterocyclic groups having 13 or less carbon atoms. Among them, 2-benzofuranyl group, 2-benzothiophenyl group, 3-indolyl group, 2- (1,3-benzoxazolyl) group, 2- (1,3-benzothiazolyl) group, 1-benzimidazolyl group And the like are more preferable from the viewpoint of obtaining raw materials.
[0014]
Further, R of the N- (4-pyridyl) proline derivative of the present invention represented by the formula (1)1When the substituent represented by is not a hydrogen atom, the carbon at the 1′-position has asymmetry, but the 2-position of N- (4-pyridyl) proline has a higher asymmetric discrimination ability. When the carbon at position 1 is in the S configuration, the carbon at position 1 ′ is in the S configuration, and when the carbon at position 2 is in the R configuration, the carbon at position 1 ′ is in the R configuration (ie, 2 That the asymmetric carbon at the 1-position and the asymmetric carbon at the 1′-position show the same configuration. Of the N- (4-pyridyl) proline derivatives of the present invention represented by the above formula (1), preferred ones are specifically exemplified by N- (4-pyridyl) -L-proline {(S) -1 '-(1-naphthyl) ethylamide, N- (4-pyridyl) proline {(R) -1'-(1-naphthyl) ethylamide, N- (4-pyridyl) prolinyl} L-tryptophan methyl ester, N- (4- Pyridyl) prolinyl {L-tryptophan methyl ester, N- (4-pyridyl) proline} tryptamide, N- (4-pyridyl) prolinyl {L-tryptophan t-butyl ester, N- (4-pyridyl) prolinyl} L-tryptophan isopropylamide, N -(4-pyridyl) proline {1'-methoxycarbonyl-2- (2-naphthyl) ethylamide and the like It can gel.
Although the method for producing the N- (4-pyridyl) proline derivative of the present invention is not particularly limited, an easily available optically active proline is selected as a starting material, an amide of proline is produced, and then reacted with 4-bromopyridine. A method (method 1) or a method of first producing N- (4-pyridyl) proline from proline and 4-bromopyridine and then amidating (method 2) can be suitably employed. The method for producing the N- (4-pyridyl) proline derivative is also disclosed in Non-Patent Document 6, but these methods 1 and 2 are more reactive than those disclosed in the Non-Patent Document. Moderate conditions and high yield.
[0015]
In the above method 1, first, an amide of proline is produced. The production method is not particularly limited, but a reaction generally used in the condensation reaction of amino acids, for example, nitrogen-protected proline, and a desired amine are condensed with a condensing agent such as dicyclohexylcarbodiimide, ethyldimethylaminopropylcarbodiimide and the like. An activator, for example, a method of adding and condensing 1-hydroxybenzotriazole, dimethylaminopyridine or the like, or a method in which nitrogen-protected proline is once reacted with an active ester such as isopropenyl ester or nitrophenyl ester, benzenesulfonic acid or diphenylphosphoric acid A method of deriving a mixed acid anhydride or acid chloride of the above and reacting it with a desired amine can be used.
[0016]
In the method 1, the amide of proline is then reacted with a pyridine derivative such as 4-bromopyridine (after removing the protecting group if necessary). The reaction at this time is described in E.I. The reaction conditions reported by Vedejs et al. In the Journal of the American Chemical Society, Vol. 121, p. L. Buchwald et al. Org. Chem. The reaction conditions reported in Vol. 61, p. 7240 can be used.
[0017]
In the method 2, N- (4-pyridyl) proline is first produced. In this production method, first, the carboxylic acid group of proline is protected with t-butyl ester or the like, and then the above-described E. coli is protected. Vedjs et al. L. The method of Buchwald et al. The method of Ghislain et al. Can be adopted. Next, the reaction with the desired amine is carried out, and the condensation reaction, the reaction with the activated carboxylic acid derivative and the like described above (after removing the protecting group of the carboxylic acid of proline) can also be employed.
[0018]
The thus obtained N- (4-pyridyl) proline derivative of the present invention, particularly one having an optical purity of 50% or more, more preferably 90% or more, functions as an asymmetric catalyst. To perform asymmetric splitting. That is, an alcohol compound or an amine compound composed of a mixture of different types of optical isomers (enantiomers) is acylated using the asymmetric acylation catalyst composed of the N- (4-pyridyl) proline derivative of the present invention. By selectively acylating one of the optical isomers (enantiomers), and separating the obtained acylated product from the unreacted raw material, an alcohol compound or an amine compound having improved optical purity as an unreacted raw material And an ester compound or an amide compound as an acylated product which is selectively acylated.
[0019]
In this case, the substrate to be resolved is particularly limited as long as it is a racemic compound having a group that undergoes acylation such as a hydroxyl group, an amino group, or a mercapto group, or a mixture of optical isomers having low optical purity (enantiomers). Instead, known alcohol compounds and amine compounds can be used. Specific examples of these compounds that can be preferably used include simple compounds such as phenethyl alcohol and phenethylamine, and diols having one of them protected such as 4′-dimethylaminobenzoic acid = 2-hydroxycyclohexyl, An amino alcohol having an amino group protected, for example, 4'-dimethylaminobenzoic acid = 2-hydroxycyclohexylamide, 4'-dimethylaminobenzoic acid = 2-hydroxycyclopentylamide, 4'-dimethylaminobenzoic acid = 2-hydroxycyclo Examples include heptylamide, 1- (4′-dimethylaminobenzoylamino) -2-hydroxyacenaphthene, 1- (4′-dimethylaminobenzoylamino) -2-hydroxyindane, and the like. In particular, 1- (4'-dimethylaminobenzoylamino) -2-hydroxyindane shown last can also be used as a synthetic intermediate of the HIV protease inhibitor indinavir.
[0020]
The method of the above-mentioned acylation reaction is not particularly limited, but the N- (4-pyridyl) proline derivative, which is the asymmetric catalyst of the present invention, is used in an amount of 0.1 mol% to 50 mol% with respect to the substrate to be cleaved. By performing partial acylation using 40 mol% to 70 mol%, one enantiomer (enantiomer) may be preferentially reacted. At this time, the acylating agent is not particularly limited, but acid anhydrides such as acetic anhydride, isobutyric anhydride, methacrylic anhydride, acetyl chloride, acid chlorides such as benzoyl chloride, vinyl acetate, α such as isopropenyl acetate, etc. , Β-unsaturated alcohol esters and the like. When an acid is generated during acylation, such as an acid anhydride or an acid chloride, it is preferable to use a reagent for neutralizing the acid. The neutralizing reagent used here is not particularly limited, but a basic salt of an alkali metal such as sodium carbonate and potassium hydroxide, and a tertiary amine such as triethylamine, pyridine and collidine are preferably used. In particular, tertiary amines which hardly react with an acylating agent and have a high ability to neutralize an acid and have a large steric hindrance, such as 2,6-dimethylpyridine and collidine, are preferably used.
[0021]
The reaction is preferably performed in a solvent, in which case the solvent is aromatic hydrocarbons such as toluene and xylene; chlorinated hydrocarbons such as methylene chloride and chloroform; ethers such as diethyl ether and tetrahydrofuran; Esters such as ethyl acetate and butyl acetate; nitriles such as acetonitrile and butyronitrile; amides such as dimethylformamide and N-methylpyrrolidone; and reaction systems from known organic solvents such as sulfoxides such as dimethyl sulfoxide and sulfolane and sulfones. What is necessary is just to select suitably a suitable thing according to and use it.
[0022]
After completion of the reaction, the catalyst is extracted and removed with hydrochloric acid or the like, and the product is purified by a general purification method such as crystallization, distillation, sublimation, or chromatography (column chromatography, thin-layer chromatography, reverse-phase or normal-phase liquid chromatography, GPC). , Adsorption chromatography, etc.), an unreacted raw material compound having improved optical purity as an optically active substance can be recovered, or an acylated product having improved optical purity can be obtained.
[0023]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples.
[0024]
Example 1
L-proline t-butyl ester 1.10 g (6.43 mmol), 4-bromopyridine hydrochloride 2.50 g (12.9 mmol), cesium carbonate 8.40 g (25.7 mmol), tris (dibenzylideneacetone) dipalladium Under an argon atmosphere, 50 mL of toluene was added to 295 mg (0.31 mmol) and 800 mg (1.29 mmol) of a racemate of 2,2'-bis (diphenylphosphino) binaphthyl. After bubbling argon for 5 minutes, the mixture was heated at 80 ° C. for 3 hours. Thereafter, the mixture was cooled to room temperature, ethyl acetate was added, and the mixture was washed with a saturated aqueous solution of sodium hydrogen carbonate. The organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Purification by column chromatography (silica gel, ethyl acetate: methanol: 28% aqueous ammonia = 10: 88: 2) yielded 1.40 g (88% yield) of N- (4-pyridyl) proline t-butyl ester. Was. Similarly, the scale was doubled to obtain 2.88 g (yield: 91%) of N- (4-pyridyl) proline t-butyl ester. 4.00 g (16.1 mmol) of these N- (4-pyridyl) proline t-butyl esters are dissolved in ethyl acetate, 20 mL of a hydrogen chloride solution in ethyl acetate (4M, 80 mmol) is added, and the mixture is stirred at room temperature for 14 hours. did. After evaporating the solvent under reduced pressure, the residue was crystallized from ethanol to obtain 2.51 g (yield 68%) of N- (4-pyridyl) proline hydrochloride. 400 mg (1.75 mmol) of this N- (4-pyridyl) proline hydrochloride, 450 mg (2.63 mmol) of (S) -1- (1-naphthyl) ethylamine, and 0.48 mL (4.38 mmol) of N-methylmorpholine Dissolve in 20 mL of methylene chloride, add 500 mg (2.63 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and 355 mg (2.63 mmol) of 1-hydroxybenzotriazole at 0 ° C., and add Stirred for hours. Thereafter, ethyl acetate was added to the solution, and the solution was washed with a saturated aqueous solution of sodium hydrogen carbonate. The organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Purification by column chromatography (silica gel, ethyl acetate: methanol: 28% aqueous ammonia = 88: 10: 2) gave a 4: 1 diastereomer mixture. This mixture was added to a solution of hydrogen chloride in ethyl acetate to form a hydrochloride, which was crystallized from ethanol / diethyl ether to obtain a single diastereomer. This was dissolved in an aqueous sodium hydroxide solution and extracted with methylene chloride to obtain N- (4-pyridyl) -L-proline (S) -1 '-(1-naphthyl) ethylamide. Physical properties of this compound were as follows.
[0025]
Colorless transparent crystal, melting point 195-196 ° C
Optical rotation [α]D 20= -29 ° (c = 1.0, CHCl3)
1H-NMR (400 MHz, CDCl3) Δ = 8.06 (d, 1H, J = 8.2 Hz), 7.89 (d, 2H, J = 6.1 Hz), 7.82 (dd, 1H, J = 8.2, 1.9 Hz) ), 7.74-7.68 (m, 1H), 7.55-7.41 (m, 2H), 7.40 (d, 2H, J = 5.3 Hz), 6.57 (brd, 1H). , J = 8.7 Hz), 6.34 (d, 2H, J = 6.1 Hz), 5.96 (dq, 1H, J = 8.7, 7.0 Hz), 4.11 (dd, 1H, J = 8.7, 2.7 Hz), 3.64 (ddd, 1H, J = 9.7, 7.3, 2.4 Hz), 3.26 (td, 1H, J = 9.7, 6. 8Hz), 2.39-2.23 (m, 2H), 2.13-1.97 (m, 2H), 1.64 (d, 3H, J = 7.0 Hz)
IR (CHCl3): 3405, 3010, 2980, 1664, 1596, 1512, 1373, 1225, 1177, 996, 807 cm-1
Mass spectrum (M / Z) = 345 (10, M+), 147 (100), 155 (10), 105 (10), 78 (10)
Millimeter M / Z = 345.1860 (C22H23N3Calculated O for 345.11841).
[0026]
Reference Example 1
735 mg (2.18 mmol) of N- (9-fluorenylmethoxycarbonyl) -L-proline, 250 mg (1.45 mmol) of (S) -1- (1-naphthyl) ethanol and 290 mg of 1-hydroxybenzotriazole (2. 18 mmol) was dissolved in 15 mL of dichloromethane, 415 mg (2.18 mmol) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and 18 mg (0.15 mmol) of dimethylaminopyridine were added at 0 ° C., and the solution was added at room temperature. Stirred for hours. The solvent was once distilled off under reduced pressure, dissolved in ethyl acetate, and washed with a saturated aqueous sodium hydrogen carbonate solution. The organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Purification was performed through short column chromatography (silica gel, ethyl acetate), which was dissolved in methylene chloride and reacted with piperidine at room temperature for 4 hours to remove the protecting group. The solvent was distilled off under reduced pressure, and the residue was purified by column chromatography (silica gel, diethyl ether: methanol: triethylamine = 95: 3: 2), and 186 mg of L-proline (S) -1 ′-(1-naphthyl) ethyl ester was obtained. (48% yield). 170 mg (0.63 mmol) of this, 246 mg (1.26 mmol) of 4-bromopyridine hydrochloride, 824 mg (2.53 mmol) of cesium carbonate, 15 mg (0.016 mmol) of tris (dibenzylideneacetone) dipalladium, 2,2 ′ 10 mL of toluene was added to 40 mg (0.064 mmol) of a racemic body of -bis (diphenylphosphino) binaphthyl under an argon atmosphere. After bubbling argon for 5 minutes, the mixture was heated and stirred at 80 ° C. for 1 hour. Thereafter, the mixture was cooled to room temperature, ethyl acetate was added, and the mixture was washed with a saturated aqueous solution of sodium hydrogen carbonate. The organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. Purification by column chromatography (silica gel, ethyl acetate: methanol: 28% aqueous ammonia = 10: 88: 2) to give 186 mg of N- (4-pyridyl) -L-proline 1 ′-(1-naphthyl) ethyl ester ( (Yield 85%). The compound was a mixture of 20: 1 diastereomers at C (2). Physical properties of this compound were as follows.
[0027]
Colorless liquid
Optical rotation [a]D 20= -124 ° (c = 1.1, CHCl3)
1H-NMR (400 MHz, CDCl3) Δ = 8.16 (brd, 2H, J = 5.8 Hz), 8.01-7.95 (m, 1H), 7.88-7.83 (m, 1H), 7.78 (d, 1H, J = 8.0 Hz), 7.51-7.34 (m, 4H), 6.66 (q, 1H, J = 6.5 Hz), 6.38 (d, 2H, J = 5.8 Hz) ), 4.35 (dd, 1H, J = 8.2, 1.9 Hz), 3.59 (td, 1H, J = 8.2, 3.6 Hz), 3.39 (q, 1H, J = 8.2 Hz), 2.33-2.00 (m, 4H), 1.74 (d, 3H, J = 6.5 Hz)
IR (CHCl3): 2954,1742,1597,1503,1391,1180,998,807cm-1
Mass spectrum (M / Z) = 346 (30, M+), 155 (90), 147 (100), 105 (20), 78 (30)
Millimeter M / Z = 346.1689 (C22H22N2O2346.1681).
[0028]
Example 2
After N- (4-pyridyl) proline t-butyl ester was obtained in the same manner as in Example 1, it was condensed with (R) -1- (1-naphthyl) ethylamine to give N- (4-pyridyl) with a yield of 44%. ) Proline {(R) -1 '-(1-naphthyl) ethylamide was obtained. Physical properties of the compound were as follows.
[0029]
Colorless crystal 203-205 ° C
Optical rotation [a]D 20= -266 ° (c = 1.0, CHCl3)
1H-NMR (400 MHz, CDCl3) Δ = 8.26 (d, 2H, J = 6.3 Hz), 8.02-7.96 (m, 1H), 7.89-7.83 (m, 1H), 7.79 (dd, 1H, J = 9.2, 1.7 Hz), 7.53-7.47 (m, 2H), 7.45-7.37 (m, 2H), 6.44 (d, 2H, J = 6) .3 Hz), 6.34 (d, 1H, J = 9.0 Hz), 5.92 (dq, 1H, J = 9.0, 6.8 Hz), 4.13 (t, 1H, J = 6.3 Hz). 3 Hz), 3.42 (ddd, 1H, J = 9.7, 7.8, 2.2 Hz), 3.18 (td, 1H, J = 9.7, 6.8 Hz), 2.31-2 .24 (m, 2H), 1.95-1.85 (m, 1H), 1.75-1.65 (m, 1H), 1.59 (d, 3H, J = 6.8 Hz)
IR (CHCl3): 3386, 3010, 2980, 1664, 1596, 1512, 1500, 1375, 995, 807 cm 1
Mass spectrum (M / Z) = 345 (10, M+), 155 (10), 147 (100)
Millimeter M / Z = 345.1830 (C22H23N3Calculated O for 345.11841).
[0030]
Reference Example 2
After N- (4-pyridyl) proline t-butyl ester was obtained in the same manner as in Example 1, it was condensed with (S) -N-methyl-1- (1-naphthyl) ethylamine to give N- (35%) in a yield of 35%. (4-Pyridyl) proline {(S) -N-methyl-N-1 ′-(1-naphthyl) ethylamide was obtained. Physical properties of the compound were as follows.
[0031]
Colorless crystal mp 243246 ° C
Optical rotation [a]D 20= -145 (c1.0, CHCl3)
1H-NMR (400 MHz, CDCl3) Δ = 8.22 (d, 2H, J = 6.3 Hz), 7.97-7.83 (m, 3H), 7.56 (d, 1H, J = 7.1 Hz), 7.53- 7.46 (m, 3H), 6.61 (q, 1H, J = 6.8 Hz), 6.30 (d, 2H, J = 6.3 Hz), 4.52 (dd, 1H, J = 8) 0.6, 2.4 Hz), 3.74 (td, 1H, J = 8.9, 3.7 Hz), 3.48 (q, 1H, J = 8.9 Hz), 2.62 (s, 3H) , 2.02-2.37 (m, 3H), 1.87-1.80 (m, 1H), 1.67 (s, 3H, J = 6.8 Hz).
IR (KBr) 2968,1643,1601,1513,1397,995,795,783cm 1
Mass spectrum (M / Z) = 359 (M+, 10), 170 (30), 155 (30), 147 (100), 127 (15), 105 (15)
Millimeter M / Z = 359.1985 (C23H25N3O calculated 359.1998).
[0032]
Example 3
After N- (4-pyridyl) proline t-butyl ester was obtained in the same manner as in Example 1, it was condensed with L-tryptophan methyl ester (S configuration) to give N- (4-pyridyl) prolinyl {L in a yield of 52%. -Tryptophan methyl ester was obtained. Physical properties of the compound were as follows.
[0033]
Colorless crystal mp 195-196 ° C
Optical rotation [a]D 20= -126 ° (c = 1.0, CHCl3)
1H-NMR (400 MHz, CDCl3) Δ = 8.77 (brs, 1H), 8.13 (d, 2H, J = 6.5, 1.0 Hz), 7.45 (d, 1H, J = 8.0 Hz), 7.33 ( d, 1H, J = 8.2 Hz), 7.18 (t, 1H, J = 8.2 Hz), 7.11 (t, 1H, J = 8.0 Hz), 6.83 (d, 1H, J = 2.4 Hz), 6.46 (d, 1H, J = 7.8 Hz), 6.24 (d, 2H, J = 6.5 Hz), 4.78 (dt, 1H, J = 8.0, 5.8 Hz), 4.00 (dd, 1H, J = 7.8, 2.7 Hz), 3.71 (s, 3H), 3.29 (ABX, 2H, JAB= 15.0 Hz, DnAB= 22.7 Hz, JAX= 5.8 Hz, JBX= 5.8 Hz), 3.14-2.99 (m, 2H), 2.20-2.08 (m, 2H), 1.89-1.81 (m, 1H), 1.63-1. .50 (m, 1H)
IR (CHCl3): 3019, 1743, 1672, 1597, 1516, 1502, 1374, 1219, 1211, 782 cm 1
Mass spectrum (M / Z) = 392 (20, M+), 263 (30), 147 (100), 130 (30), 120 (20)
Millimeter M / Z = 392.1839 (C22H24N3O4392.1849).
[0034]
Example 4
After N- (4-pyridyl) proline t-butyl ester was obtained in the same manner as in Example 1, it was condensed with D-tryptophan methyl ester (R configuration) to give N- (4-pyridyl) prolinyl {L in a yield of 23%. -Tryptophan methyl ester was obtained. Physical properties of the compound were as follows.
[0035]
Colorless crystals 95-98 ° C
Optical rotation [a]D 20= -139 ° (c = 1.0, CHCl3)
1H-NMR (400 MHz, CDCl3) Δ = 9.11 (brs, 1H), 8.16 (d, 2H, J = 6.3 Hz), 7.38 (d, 1H, J = 8.0 Hz), 7.30 (d, 1H, J = 8.0 Hz), 7.14 (td, 1H, J = 8.0, 1.0 Hz), 7.02 (td, 1H, J = 8.0, 0.7 Hz), 6.54 (d , 1H, J = 7.8 Hz), 6.45 (d, 1H, J = 2.4 Hz), 6.26 (d, 2H, J = 6.3 Hz), 4.88-4.80 (m, 1H), 4.04 (dd, 1H, J = 8.7, 2.4 Hz), 3.73 (s, 3H), 3.46-3.37 (m, 1H), 3.28-3. 14 (m, 3H), 2.32-2.17 (m, 2H), 2.03-1.90 (m, 2H)
IR (CHCl3): 3475, 3019, 1742, 1671, 1596, 1516, 1503, 1375, 1221, 1209, 787 cm 1
Mass spectrum (M / Z) = 392 (25, M+), 263 (30), 147 (100), 130 (30), 120 (10)
Millimeter M / Z = 392.845 (C22H24N3O4392.1849).
[0036]
Example 5
After N- (4-pyridyl) proline t-butyl ester was obtained in the same manner as in Example 1, it was condensed with tryptamine to obtain N- (4-pyridyl) proline @ tryptamide at a yield of 91%. Physical properties of the compound were as follows.
[0037]
Colorless crystal melting point 9496 ° C
Optical rotation [a]D 20= -139 ° (c = 1.1, CHCl3)
1H-NMR (400 MHz, CDCl3) Δ = 8.66 (s, 1H), 8.16 (d, 2H, J = 6.5 Hz), 7.51 (d, 1H, J = 7.6 Hz), 7.33 (d, 1H, J = 8.3 Hz), 7.18 (td, 1H, J = 8.3, 1.2 Hz), 7.08 (td, 1H, J = 7.6, 1.0 Hz), 6.63 (d , 1H, J = 2.2 Hz), 6.31 (d, 2H, J = 6.5 Hz), 6.23 (brt, 1H, J = 6.1 Hz), 4.05 (dd, 1H, J = 8.2, 3.4 Hz), 3.69 (sex, 1H, J = 6.1 Hz [dddd, J = 12.2, 6.1, 6.1, 6.1 Hz]), 3.51-3 .41 (m, 1H), 3.34 (ddd, 1H, J = 9.8, 1.9, 1.9 Hz), 3.15 (td, 1H, J = 9.8, 6.6 Hz), 3.03-2.82 (m, 2H , 2.27-2.14 (m, 2H), 1.99-1.92 (m, 1H), 1.85-1.71 (m, 1H)
IR (KBr): 3400, 3254, 2975, 1653, 1600, 1517, 1392, 1225, 999, 806, 743 cm 1
Mass spectrum (M / Z) = 334 (M+, 15), 147 (100), 130 (20), 78 (10).
Millimeter M / Z = 334.1792 (C20H22N4O calculated 334, 1793).
[0038]
Example 6
After N- (4-pyridyl) proline t-butyl ester was obtained in the same manner as in Example 1, it was condensed with L-tryptophan t-butyl ester (S configuration) to give N- (4-pyridyl) with a yield of 50%. Prolinyl @ L-tryptophan t-butyl ester was obtained. Physical properties of the compound were as follows.
[0039]
Colorless crystal mp 209210 ° C
Optical rotation [a]D 20= -124 ° (c = 1.0, CHCl3)
1H-NMR (400 MHz, CDCl3) Δ = 8.47 (brs, 1H), 8.15 (d, 2H, J = 6.5 Hz), 7.48 (d, 1H, J = 7.3 Hz), 7.33 (d, 1H, J = 8.0 Hz), 7.18 (t, 1H, J = 6.5 Hz), 7.10 (td, 1H, J = 8.0, 1.0 Hz), 6.88 (d, 1H, J = 2.4 Hz), 6.42 (d, 1H, J = 7.5 Hz), 6.28 (d, 2H, J = 6.5 Hz), 4.67 (dt, 1H, J = 7.5, 6.3 Hz), 3.98 (dd, 1H, J = 8.2, 2.7 Hz), 3.24 (ABX, 2H, JAB= 15.0 Hz, DnAB= 42.5Hz, JAx= 6.1 Hz, JBX= 6.3 Hz), 3.15-3.00 (m, 2H), 2.18-2.05 (m, 2H), 1.84-1.75 (m, 1H), 1.55-1 .35 (m, 1H), 1.39 (s, 9H)
IR (CHCl3): 3377,3019,1726,1673,1597,1515,1502,1370,1221,1209,1155cm 1
Mass spectrum (M / Z) = 434 (15, M+), 305 (20), 147 (100), 130 (25)
Millimeter M / Z = 434.2297 (C25H30N4O3434.2318).
[0040]
Example 7
After N- (4-pyridyl) proline t-butyl ester was obtained in the same manner as in Example 1, it was condensed with L-tryptophan isopropylamide (S configuration) to give 86% yield of N- (4-pyridyl) prolinyl {L -Tryptophan isopropylamide was obtained. Physical properties of the compound were as follows.
[0041]
Colorless crystal 124-127 ° C
Optical rotation [a]D 20= −66 ° (c = 1.0, CHCl3)
1H-NMR (400 MHz, CDCl3/ CD3OD) δ = 7.98 (d, 2H, J = 6.3 Hz), 7.60 (d, 1H, J = 8.0 Hz), 7.40 (d, 1H, J = 8.0 Hz), 7 .18 (t, 1H, J = 7.0 Hz), 7.10 (t, 1H, J = 7.0 Hz), 7.02 (s, 1H), 6.18 (d, 2H, J = 6.0 Hz). 3Hz), 4.60 (t, 1H, J = 7.0 Hz), 4.05 (dd, 1H, J = 8.9 Hz, 2.4 Hz), 3.92 (sep, 1H, J = 6.5 Hz) ), 3.37-3.30 (m, 1H), 3.21-3.14 (m, 3H), 2.28-2.15 (m, 1H), 2,08-2.00 (m , 1H), 1.98-1.87 (m, 1H), 1.80-1.68 (m, 1H), 1.05 (d, 3H, J = 6.5 Hz), 1.00 (d , 3H, J = 6.5Hz)
IR (CHCl3): 3623,3014,2975,1662,1597,1514,1388,1238,1046,877cm 1
Mass spectrum (M / Z) = 419 (15, M+), 290 (20), 147 (100), 130 (40)
Millimeter M / Z = 419.2322 (C22H29N5O2419.2321).
[0042]
Example 8
After obtaining N- (4-pyridyl) proline t-butyl ester in the same manner as in Example 1, it was condensed with L-3- (2-naphthyl) alanine methyl ester (S configuration) to give N- (81-yield) 81%. (4-Pyridyl) proline 1′-methoxycarbonyl-2- (2-naphthyl) ethylamide was obtained. Physical properties of the compound were as follows.
[0043]
Colorless crystals 95-97 ° C
Optical rotation [a]D 20= -126 ° (c = 1.0, CHCl3)
1H-NMR (400 MHz, CDCl3/ CD3OD) δ = 8.11 (d, 2H, J = 6.1 Hz), 7.84-7.70 (m, 3H), 7.56-7.45 (m, 3H), 7.19 (dd) , 1H, J = 8.5 Hz, 1.7 Hz), 6.67 (d, 1H, J = 7.0 Hz), 6.32 (d, 2H, J = 6.1 Hz), 4.90 (dt, 1H, J = 7.8, 5.6 Hz), 4.02 (dd, 1H, J = 9.2, 2.2 Hz), 3.70 (s, 3H), 3.45-3.35 (m , 2H), 3.21 (dd, 1H, J = 14.0, 7.8 Hz), 3.12 (td, 1H, J = 9.7, 6.5 Hz), 2.18-2.00 ( m, 2H), 1.86-1.75 (m, 1H), 1.59-1.47 (m, 1H)
IR (CHCl3): 3401,3011,2954,1742,1673,1596,1503,1371,1225,996,807cm 1
Mass spectrum (M / Z) = 403 (50, M+), 346 (10), 303 (20), 155 (40), 147 (100), 105 (10).
Millimeter M / Z = 4033.1894 (C24H25N3O3403.1896).
[0044]
Reference Example 3
After N- (4-pyridyl) proline t-butyl ester was obtained in the same manner as in Example 1, it was condensed with L-valine methyl ester (S configuration) and quantitatively N- (4-pyridyl) prolinyl {L- Valine methyl ester was obtained. Physical properties of the compound were as follows.
[0045]
Colorless crystal 134-136 ° C
Optical rotation [a]D 20= -107 ° (c = 1.1, CHCl3)
1H-NMR (400 MHz, CDCl3/ CD3OD) δ = 8.29 (d, 2H, J = 6.3 Hz), 6.64 (d, 1H, J = 8.7 Hz), 6.49 (d, 2H, J = 6.3 Hz), 4 0.52 (dd, 1H, J = 9.1, 5.1 Hz), 4.14 (dd, 1H, J = 8.7, 3.9 Hz), 3.69 (ddd, 1H, J = 9.5) , 7.8, 2.2 Hz), 3.63 (s, 3H), 3.34 (td, 1H, J = 9.8, 6.6 Hz), 2.37-1.02 (m, 5H). , 0.91 (d, 3H, J = 6.9 Hz), 0.84 (d, 3H, J = 7.1 Hz)
IR (CHCl3): 3180, 2959, 2873, 1741, 1686, 1601, 1520, 1399, 1227, 1190, 1003, 988, 807 cm-1
Mass spectrum (M / Z) = 305 (M+, 25), 147 (100), 105 (30), 78 (30).
Millimeter M / Z = 305.1724 (C16H23N3O3305.1739).
[0046]
Examples 9 to 16 and Comparative Examples 1 to 4
Asymmetric resolution was performed on N- (4-pyridyl) proline t-butyl ester produced in the course of Examples 1 to 8, Reference Examples 1 to 3, and Example 1 using these as a catalyst. 131 mg (0.50 mmol) of racemic 2- (4-dimethylaminobenzoylamino) cyclohexanol as a substrate, 66 μL (0.50 mmol) of collidine as an acid scavenger, and 0.025 mmol (5 mol%) of a catalyst shown in Table 1. Was dissolved in 5 mL of chloroform, 58 μL (0.35 mmol) of isobutyric anhydride was added at 20 ° C., and the mixture was stirred for 12 hours. Next, ethyl acetate was added, the organic layer was washed with 0.1 M hydrochloric acid, and washed with a saturated aqueous solution of sodium hydrogen carbonate and brine. The organic layer was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The product was separated by prepara-dave thin layer chromatography (silica gel, ethyl acetate: hexane = 1: 1), and (1S, 2R) 2- (4-dimethylaminobenzoylamino) cyclohexanol and (1R, 2S) 2- (4-Dimethylaminobenzoylamino) -1-isobutyroyloxycyclohexane was obtained. Each optical purity was measured by HPLC (hexane: isopropanol = 9: 1, flow rate 1.0 mL / min) using Daicel ChiralpakAD. Table 1 shows the results. Here, the selectivity ratio (S) is the reaction rate constant of the fast reacting optical isomer / the reaction rate constant of the slow reacting optical isomer. Et al., 1999, Chemistry Letters, p. 265. The larger this value is, the higher the capability of optical division is, and if it is 1.0, it can be said that there is no division capability.
[0047]
[Table 1]
Figure 2004107297
[0048]
As shown in Table 1, it is found that the ethylamide of N- (4-pyridyl) proline represented by the general formula 1 of the present invention has a high enantiomeric selectivity ratio of 4 or more with a catalytic amount such as 5 mol%. . On the other hand, although the compounds synthesized in Reference Examples 1, 2, and 3 have similar structures, the selectivity ratio remains at a low value of 2 or less. In addition, when the 1 'carbon configuration is S, that is, the compound shown in claim 2 gives a higher selectivity ratio when viewed in detail.
[0049]
【The invention's effect】
The N- (4-pyridyl) proline derivative of the present invention represented by the above-mentioned formula 1 functions as an asymmetric acylation catalyst, and the use of a catalytic amount of the derivative enables the optical conversion of alcohol compounds and amine compounds with a high enantioselectivity. Division is possible. Further, the N- (4-pyridyl) proline derivative of the present invention can be easily and efficiently produced using easily available raw materials.

Claims (5)

下記式(1)
Figure 2004107297
(式中、
は、水素原子、炭素数14以下の芳香族炭化水素基、炭素数6以下のアルコキシカルボニル基または炭素数6以下のアルキルアミノカルボニル基であり、Rは、Rが水素原子である場合は炭素数13以下の芳香族複素環基であり、Rが炭素数14以下の芳香族炭化水素基である場合は水素原子であり、Rが炭素数6以下のアルコキシカルボニル基または炭素数6以下のアルキルアミノカルボニル基である場合は炭素数14以下の芳香族炭化水素基または炭素数13以下の芳香族複素環基であり、
2および1’は炭素の番号を示す。)
で示されるN−(4−ピリジル)プロリン誘導体。
The following equation (1)
Figure 2004107297
(Where
R 1 is a hydrogen atom, an aromatic hydrocarbon group having 14 or less carbon atoms, an alkoxycarbonyl group having 6 or less carbon atoms, or an alkylaminocarbonyl group having 6 or less carbon atoms, and R 2 is a group in which R 1 is a hydrogen atom. Is an aromatic heterocyclic group having 13 or less carbon atoms, R 1 is a hydrogen atom when it is an aromatic hydrocarbon group having 14 or less carbon atoms, and R 1 is an alkoxycarbonyl group or a carbon atom having 6 or less carbon atoms. When it is an alkylaminocarbonyl group having a number of 6 or less, it is an aromatic hydrocarbon group having 14 or less carbon atoms or an aromatic heterocyclic group having 13 or less carbon atoms,
2 and 1 ′ indicate the number of carbon. )
An N- (4-pyridyl) proline derivative represented by the formula:
前記式(1)において、Rは水素原子でなく、2位の不斉炭素のキラリティーがS配置(またはR配置)であり、1’位の不斉炭素に結合する置換基の優先順位をNH>R>CHとしたときの当該1’位の不斉炭素のキラリティーがS配置(またはR配置)である請求項1に記載のN−(4−ピリジル)プロリン誘導体。In the formula (1), R 1 is not a hydrogen atom, but the chirality of the asymmetric carbon at the 2-position is S-configuration (or R-configuration), and the priority of the substituent bonded to the asymmetric carbon at the 1′-position The N- (4-pyridyl) proline derivative according to claim 1, wherein, when NH> R 1 > CH 2 R 2 , the chirality of the asymmetric carbon at the 1′-position is S configuration (or R configuration). . 光学純度50%以上の請求項1または請求項2に記載のN−(4−ピリジル)プロリン誘導体からなることを特徴とする不斉アシル化触媒。An asymmetric acylation catalyst comprising the N- (4-pyridyl) proline derivative according to claim 1 or 2 having an optical purity of 50% or more. それぞれ異なる型の光学異性体の混合物からなるアルコール化合物またはアミン化合物を、請求項3記載の不斉アシル化触媒を用いてアシル化することによって一方の光学異性体を選択的にアシル化し、光学純度の向上したアルコール化合物およびエステル化合物又はアミン化合物およびアミド化合物を得ることを特徴とする光学活性物質の製造方法。An alcohol compound or an amine compound comprising a mixture of optical isomers of different types is acylated using the asymmetric acylation catalyst according to claim 3, whereby one of the optical isomers is selectively acylated, thereby obtaining optical purity. A method for producing an optically active substance, characterized by obtaining an alcohol compound and an ester compound or an amine compound and an amide compound, which have improved properties. 得られる光学活性物質が芳香族炭化水素基または芳香族複素環基を有するアルコール化合物、アミン化合物、エステル化合物またはアミド化合物である請求項4に記載の製造方法。The method according to claim 4, wherein the obtained optically active substance is an alcohol compound, an amine compound, an ester compound or an amide compound having an aromatic hydrocarbon group or an aromatic heterocyclic group.
JP2002275487A 2002-09-20 2002-09-20 N-(4-pyridyl) proline derivative Pending JP2004107297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275487A JP2004107297A (en) 2002-09-20 2002-09-20 N-(4-pyridyl) proline derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275487A JP2004107297A (en) 2002-09-20 2002-09-20 N-(4-pyridyl) proline derivative

Publications (1)

Publication Number Publication Date
JP2004107297A true JP2004107297A (en) 2004-04-08

Family

ID=32271674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275487A Pending JP2004107297A (en) 2002-09-20 2002-09-20 N-(4-pyridyl) proline derivative

Country Status (1)

Country Link
JP (1) JP2004107297A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248089A (en) * 2009-04-10 2010-11-04 Kyoto Univ Compound comprising heterocyclic skeleton, and method of producing optically active compound using the same as asymmetric catalyst
US8486487B2 (en) 2005-02-17 2013-07-16 Konica Minolta Holdings, Inc. Gas barrier film, gas barrier film manufacturing method, resin substrate for organic electroluminescent device using the aforesaid gas barrier film, and organic electroluminescent device using the aforementioned gas barrier film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8486487B2 (en) 2005-02-17 2013-07-16 Konica Minolta Holdings, Inc. Gas barrier film, gas barrier film manufacturing method, resin substrate for organic electroluminescent device using the aforesaid gas barrier film, and organic electroluminescent device using the aforementioned gas barrier film
JP2010248089A (en) * 2009-04-10 2010-11-04 Kyoto Univ Compound comprising heterocyclic skeleton, and method of producing optically active compound using the same as asymmetric catalyst

Similar Documents

Publication Publication Date Title
JP5186722B2 (en) Fluorination reaction using sulfuryl fluoride
KR20050113292A (en) Process for the preparation of optically pure 4-hydroxy-2-oxo-1-pyrrolidineacetamide
AU2015414743B2 (en) Process for the preparation of kinase inhibitors and intermediates thereof
WO2004067494A1 (en) Processes for producing glutamic acid derivative and pyroglutamic acid derivative and novel intermediate for production
Kubota et al. Stereospecific amination by dynamic kinetic resolution utilizing 2-oxoimidazolidine-4-carboxylate as a novel chiral auxiliary
JP2003171365A (en) Method for producing monatin compound, its production intermediate, and new intermediate
Kawabata et al. Remote chirality transfer in nucleophilic catalysis with N‐(4‐pyridinyl)‐l‐proline derivatives
Caddick et al. Synthesis of α-amino esters by dynamic kinetic resolution of α-haloacyl imidazolidinones
Yamaguchi et al. Preparation of optically active succinic acid derivatives. I. Optical resolution of 2-Benzyl-3-(cis-hexahydroisoindolin-2-ylcarbonyl)-propionic acid
JPS6335571A (en) Intermediate of antibiotic
JP2004107297A (en) N-(4-pyridyl) proline derivative
KR100373375B1 (en) INHIBITORS OF INTERLEUKIN-1β CONVERTING ENZYME(ICE OR CASPASE 1) AND APOPAIN/CPP-32(CASPASE-3)
JP4450987B2 (en) Process for producing alkoxyfuranoneamine derivatives, compounds obtained by this process and uses of these compounds
WO2003051852A1 (en) Intermediate and process for producing optically active compound from the intermediate
JPH0421662B2 (en)
JP2009507783A (en) Process for producing chiral 3-hydroxypyrrolidine compound having high optical purity and derivative thereof
US6610855B2 (en) Synthesis of 3-amino-3-aryl propanoates
TW200403222A (en) Process for the preparation of amino-pyrrolidine derivatives
JP3159800B2 (en) Optical isomer separation method
NZ529169A (en) Processes and intermediates for preparing benzyl substituted epoxides
JP6906227B2 (en) Halogen bond donor / organic base complex compound and acid base complex catalyst
US6531594B2 (en) Process for producing 1H-3-aminopyrrolidine and derivatives thereof
WO2002002538A1 (en) Amino acid-n-carboxy anhydrides hvaing substituent at nitrogen
JP2009539939A (en) Stereoselective synthesis of (S) -1-methyl-phenylpiperazine
JP3808931B2 (en) Optically active 4,5-diphenyl-1,3-dialkyl-2-halogenoimidazolinium halogenide