JP2004103463A - Organic electroluminescent element and display device using the same - Google Patents

Organic electroluminescent element and display device using the same Download PDF

Info

Publication number
JP2004103463A
JP2004103463A JP2002265416A JP2002265416A JP2004103463A JP 2004103463 A JP2004103463 A JP 2004103463A JP 2002265416 A JP2002265416 A JP 2002265416A JP 2002265416 A JP2002265416 A JP 2002265416A JP 2004103463 A JP2004103463 A JP 2004103463A
Authority
JP
Japan
Prior art keywords
compound
organic
organic electroluminescent
group
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002265416A
Other languages
Japanese (ja)
Inventor
Hiroshi Kita
北 弘志
Yoshiyuki Suzurisato
硯里 善幸
Taketoshi Yamada
山田 岳俊
Takashi Karatsu
唐津 孝
Akihide Kitamura
北村 彰英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2002265416A priority Critical patent/JP2004103463A/en
Publication of JP2004103463A publication Critical patent/JP2004103463A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/348Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising osmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic electroluminescent element which makes an enhanced luminous brightness and good durability compatible and a display device having a long lifetime and a high luminous brightness by using a silicon compound of a specific structure as a host compound for phosphorescence or using the silicon compound as an electron transport material (hole blocker). <P>SOLUTION: The organic electroluminescent element contains at least one of the compounds expressed by Formula (1) given in Synopsis 1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機エレクトロルミネッセンス(以下、有機ELとも略記する)素子及びそれを用いた表示装置に関するものである。詳しくいえば、本発明は発光輝度に優れた有機エレクトロルミネッセンス素子及び本発明の有機エレクトロルミネッセンス素子を有する表示装置である。
【0002】
【従来の技術】
発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。有機エレクトロルミネッセンス素子は、発光する化合物を含有する発光層を、陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、さらに、自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
【0003】
しかしながら、今後の実用化に向けた有機EL素子には、更なる低消費電力で効率よく高輝度に発光する有機EL素子の開発が望まれている。
【0004】
これまで、様々な有機EL素子が報告されている。たとえば、Appl.Phys.Lett.,Vol.51、913頁、あるいは特開昭59−194393号に記載の正孔注入層と有機発光体層とを組み合わせたもの、特開昭63−295695号に記載の正孔注入層と電子注入輸送層とを組み合わせたもの、Jpn.Journal of Applied Phisycs,vol.127,No.2第269〜271頁に記載の正孔移動層と発光層と電子移動層とを組み合わせたものがそれぞれ開示されている。しかしながら、より高輝度な素子が求められており、エネルギー変換効率、発光量子効率の更なる向上が期待されている。
【0005】
また、発光寿命が短いという問題点も指摘されている。こうした経時での輝度劣化の要因は完全には解明されていないが、発光中のエレクトロルミネッセンス素子は自ら発する光及びその時に発生する熱などによって薄膜を構成する有機化合物自体の分解、薄膜中での有機化合物の結晶化等、有機EL素子材料である有機化合物に由来する要因も指摘されている。
【0006】
また、電子輸送材料は、現在のところ知見が少なく、反結合軌道を利用することも相俟って、実用に耐える有用なる高性能電子輸送材料は見いだされていない。例えば、九州大学の研究グループは、オキサジアゾール系誘導体である2−(4−ビフェニル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジゾール(t−BuPBD)をはじめ、薄膜安定性を向上させたオキサジアゾール二量体系誘導体の1,3−ビス(4−t−ブチルフェニル−1,3,4−オキサジゾジル)ビフェニレン(OXD−1)、1,3−ビス(4−t−ブチルフェニル−1,3,4−オキサジゾリル)フェニレン(OXD−7)(Jpn.J.Appl.Phys.vol.31(1992),p.1812)を提案している。また、山形大学の研究グループは、電子ブロック性に優れたトリアゾール系電子輸送材料を用いることにより白色発光の素子を作製している(Science,3 March 1995,Vol.267,p.1332)。さらに、特開平5−331459号には、フェナントロリン誘導体が電子輸送材料として有用であることが記載されている。
【0007】
しかし、従来の電子輸送材料では、薄膜形成能が低く、容易に結晶化が起こるため、発光素子が破壊されてしまう問題があり、実用に耐える素子性能を発現できなかった。
【0008】
これらの問題を解決する有機エレクトロルミネッセンス材料として、分子内にケイ素原子を含む化合物を発光材料、または電子輸送材料として用いる例が開示されているが、発光効率及び発光寿命の両立については十分ではなかった(例えば、特許文献1、2及び3参照。)。
【0009】
この他にもケイ素系の化合物を有機EL素子に適用する例としては、例えば特開2000−351966号、特開平11−3781号には、正孔輸送材料、発光材料、電子輸送材料として適用できることが示されているが、何れの場合も発光特性や寿命の点で問題があった。
【0010】
また、発光層をホスト化合物及び微量の蛍光体で構成することにより、発光効率の向上を達成するという手法が報告されている。例えば、米国特許第3,093,796号では、スチルベン誘導体、ジスチリルアリーレン誘導体、またはトリススチリルアリーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成している。
【0011】
また、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(例えば、特許文献4参照。)、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子(例えば、特許文献5参照。)が知られている。以上のように、蛍光量子収率の高い蛍光体をドープすることによって、従来の素子に比べて発光輝度を向上させている。
【0012】
しかし、上記のドープされる微量の蛍光体からの発光は、励起一重項からの発光であり、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため、発光性励起種の生成確率が25%であることと、光の取り出し効率が約20%であるため、外部取り出し量子効率(ηext)の限界は5%とされている。ところが、プリンストン大から励起三重項からの燐光発光を用いる有機EL素子が報告がされて以来(M.A.Baldo et al.,nature、395巻、151〜154ページ(1998年))、室温で燐光を示す材料の研究が活発になってきている(例えば、M.A.Baldo et al.,nature、403巻、17号、750〜753ページ(2000年)、米国特許6,097,147号など)。励起三重項を使用すると、内部量子効率の上限が100%となるため、励起一重項の場合に比べて原理的に発光効率が最大4倍となり、冷陰極管とほぼ同等の性能が得られ、照明用にも応用可能であり注目されている。
【0013】
燐光性化合物をドーパントとして用いるときのホストは、燐光性化合物の発光極大波長よりも短波な領域に発光極大波長を有することが必要であることはもちろんであるが、その他にも満たすべき条件があることが分かってきた。
【0014】
The 10th International Workshop on Inorganic and Organic Electroluminescence(EL ’00、浜松)では、燐光性化合物についていくつかの報告がなされている。例えば、Ikaiらはホール輸送性の化合物を、燐光性化合物のホストとして用いている。また、M.E.Tompsonらは、各種電子輸送性材料を燐光性化合物のホストとして、これらに新規なイリジウム錯体をドープして用いている。さらに、Tsutsuiらは、ホールブロック層の導入により高い発光効率を得ている。
【0015】
なお、ホールブロック層とは、通常の有機EL素子で使われている電子輸送層と構成的には同じものであるが、その機能が電子輸送機能よりも発光層から陰極側に漏れ出すホールの移動を阻止する機能が有力であるために、ホールブロック層と名付けられているものであり、一種の電子輸送層と解釈することもできる。
【0016】
従って本願においてはホールブロック層も電子輸送層と称すこととし、その層で用いられる材料(ホールブロッカー)も電子輸送材料と称す。
【0017】
燐光性化合物のホスト化合物については、例えば、C.Adachi et al.,Appl.Phys.Lett.,77巻、904ページ(2000年)等に詳しく記載されているが、高輝度の有機エレクトロルミネッセンス素子を得るためにホスト化合物に必要とされる性質について、より新しい観点からのアプローチが必要である。
【0018】
しかし、いずれの報告も、素子の発光輝度の向上及び耐久性を両立しうる構成は得られていない。
【0019】
【特許文献1】
特開平9−87616号公報
【0020】
【特許文献2】
特開平9−194487号公報
【0021】
【特許文献3】
特開2000−186094号公報
【0022】
【特許文献4】
特開昭63−264692号公報
【0023】
【特許文献5】
特開平3−255190号公報
【0024】
【発明が解決しようとする課題】
従って、本発明は、特定構造のケイ素化合物を用いて、素子の発光輝度の向上及び耐久性の両立を目的になされたものであり、また、本発明は、ケイ素化合物を燐光発光用のホスト化合物として用いること、またはケイ素化合物を電子輸送材料(ホールブロッカー)として用いることにより、発光輝度の向上及び耐久性の両立を達成した有機エレクトロルミネッセンス素子及び本発明の有機エレクトロルミネッセンス素子を用いた発光輝度の高い、長寿命な表示装置を提供するものである。
【0025】
【課題を解決するための手段】
本発明の目的は、以下に示す特許請求の範囲の各請求項に記載の発明より達成される。
【0026】
1.前記一般式(1)で表される化合物の少なくとも1種を含有することを特徴とする有機エレクトロルミネッセンス素子。
【0027】
2.前記一般式(1)で表される化合物を、発光層に含有することを特徴とする前記1項に記載の有機エレクトロルミネッセンス素子。
【0028】
3.前記一般式(1)で表される化合物を、電子輸送層に含有することを特徴とする前記1項に記載の有機エレクトロルミネッセンス素子。
【0029】
4.ホスト化合物及び燐光性化合物を含有する発光層を有する有機エレクトロルミネッセンス素子であって、該素子を構成する何れかの層に前記一般式(1)で表される化合物を含有することを特徴とする前記1項に記載の有機エレクトロルミネッセンス素子。
【0030】
5.前記燐光性化合物が、イリジウム化合物、オスミウム化合物、または白金化合物であることを特徴とする前記4項に記載の有機エレクトロルミネッセンス素子。
【0031】
6.前記燐光性化合物が、イリジウム化合物であることを特徴とする前記4項に記載の有機エレクトロルミネッセンス素子。
【0032】
7.前記1〜6項の何れか1項に記載の有機エレクトロルミネッセンス素子を有する表示装置。
【0033】
以下に本発明を詳細に説明する。
まず、一般式(1)で表される化合物について説明する。
【0034】
一般式(1)において、R〜Rで表される置換基としては、各々、アルキル基(メチル基、エチル基、i−プロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t−ブチル基、シクロペンチル基、シクロヘキシル基、ベンジル基等)、アルキルオキシ基(メトキシ基、エトキシ基、i−プロポキシ基、ブトキシ基等)、アリールオキシ基(フェノキシ基等)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)を示し、また、隣接する置換基同士は互いに縮合し環を形成しても良い。
【0035】
一般式(1)においてArは縮合芳香族基を表わすが、この場合の縮合芳香族基としては、炭化水素環系芳香族基でも複素環系芳香族基でもよく、例えば、ナフチル基、フェナンスリル基、アントリル基、ピレニル基、キノリル基、カルバゾリル基、ベンズイミダゾリル基、ピロロピラゾリル基、イミダゾピリジル基、ピラゾロトリアゾリル基等がその代表例として挙げられる。
【0036】
本発明の化合物は、固体状態において強い蛍光を持つ化合物であり、電場発光性にも優れており、発光材料として有効に使用できる。また、金属電極からの優れた電子注入性及び電子輸送性に非常に優れているため、他の発光材料、または本発明の化合物を発光材料として用いた素子において、本発明の化合物を電子輸送材料(またはホールブロッカー)として使用した場合、優れた発光効率を示す。
【0037】
以下に具体的な化合物の例を挙げるが、本発明は、これらに限定されるものではない。
【0038】
【化2】

Figure 2004103463
【0039】
【化3】
Figure 2004103463
【0040】
【化4】
Figure 2004103463
【0041】
合成例 化合物1(9,10−ジ(トリフェニルシリル)アントラセン)の合成
以下の反応は乾燥窒素ガス雰囲気下で行った。
【0042】
三口フラスコに9,10−ジブロモアントラセン3.36g(10mmol)、テトラメチルエチレンジアミン4.52ml(30mmol)、脱水エーテル32ml、脱水テトラヒドロフラン100mlを入れ、撹拌しながら−55〜−50℃に保った。N−ブチルリチウムヘキサン溶液(1.6M)15.5ml(25mmol)をシリンジで加えた。濃赤色の反応溶液を同温度で1時間撹拌の後、10mlの脱水テトラヒドロフランに溶かしたトリフェニルクロロシラン8.82g(30mmol)を滴下した。徐々に昇温し、室温でさらに12時間撹拌した。蒸留水を加えて反応を止めた後、蒸留水で洗浄、有機層を無水炭酸カリウムで乾燥し、濾液をロータリーエバポレーターで濃縮、減圧乾燥した。
【0043】
シリカゲルカラムクロマトグラフィー(ヘキサン:クロロホルム=1:2)でRf値約0.25の成分を分離し、ヘキサンで繰り返し再結晶した。
【0044】
収量1.74g(約25%)
H−NMR(CDCl,TMS)δ6.78(d,J=7.01,2H,ArH),6.79(d,J=6.77,2H,ArH),7.24〜7.41(m,12H,PhH),7.63〜7.66(m,18H,PhH),8.04(d,J=7.01,2H,ArH),8.05(d,J=6.77,2H,ArH)
また、本発明者等は、燐光性化合物のホスト化合物について鋭意検討を重ねた結果、本発明のケイ素化合物をホスト化合物として用いて、有機エレクトロルミネッセンス素子を作製した場合に、素子の発光輝度及び寿命が改善されることを見出した。
【0045】
本発明でいうホスト化合物とは、2種以上の化合物で構成される発光層中において、混合比(質量)の最も多い化合物であり、それ以外の化合物はドーパント化合物という。例えば、発光層を化合物A、化合物Bという2種で構成しその混合比がA:B=10:90であれば化合物Aがドーパント化合物であり、化合物Bがホスト化合物である。更に、発光層を化合物A、化合物B、化合物Cの3種から構成し、その混合比がA:B:C=5:10:85であれば、化合物A、化合物Bがドーパント化合物であり、化合物Cがホスト化合物である。本発明における燐光性化合物は、ドーパント化合物の一種である。
【0046】
本発明に係わる燐光性化合物とは励起三重項からの発光が観測される化合物であり、燐光量子収率が、25℃において0.001以上の化合物である。好ましくは0.01以上である。更に好ましくは0.1以上である。
【0047】
上記燐光量子収率は、第4版実験化学講座7の分光IIの398ページ(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられる燐光性化合物とは、任意の溶媒のいずれかにおいて上記燐光量子収率が達成されれば良い。
【0048】
好ましくは、元素の周期律表でVIII属の金属を含有する錯体系化合物であり、さらに好ましくは、イリジウム、オウミウム、または白金錯体系化合物である。より好ましくはイリジウム錯体系化合物である。
【0049】
以下に、本発明で用いられる燐光性化合物の具体例を示すが、これらに限定されるものではない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。
【0050】
【化5】
Figure 2004103463
【0051】
【化6】
Figure 2004103463
【0052】
【化7】
Figure 2004103463
【0053】
また、別の形態では、ホスト化合物と燐光性化合物の他に、燐光性化合物からの発光の極大波長よりも長波な領域に、蛍光極大波長を有する蛍光性化合物を少なくとも1種含有する場合もある。この場合、ホスト化合物と燐光性化合物からのエネルギー移動で、有機EL素子としての電界発光は蛍光性化合物からの発光が得られる。蛍光性化合物として好ましいのは、溶液状態で蛍光量子収率が高いものである。ここで、蛍光量子収率は0.1以上、特に0.3以上が好ましい。具体的には、クマリン系色素,ピラン系色素,シアニン系色素,クロコニウム系色素,スクアリウム系色素,オキソベンツアントラセン系色素,フルオレセイン系色素,ローダミン系色素,ピリリウム系色素,ペリレン系色素,スチルベン系色素,ポリチオフェン系色素、または、希土類錯体系蛍光体などが挙げられる。
【0054】
ここでの蛍光量子収率も、前記第4版実験化学講座7の分光IIの362ページ(1992年版、丸善)に記載の方法により測定することが出来る。
【0055】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。
【0056】
実施例1
〈有機EL素子の作製〉
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を150nm成膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行なった。
【0057】
この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに、m−MTDATXAを200mg入れ、別のモリブデン製抵抗加熱ボートにDMPhenを200mg入れ、別のモリブデン製抵抗加熱ボートにバソキュプロイン(BCP)を200mg入れ、別のモリブデン製抵抗加熱ボートに比較化合物1を100mg入れ、さらに別のモリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取付けた。次いで、真空槽を4×10−4Paまで減圧した後、m−MTDATXAの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで透明支持基板に蒸着し、膜厚45nmの正孔輸送層を設けた。さらに、DMPhenと比較化合物1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/sec、0.01nm/secで前記正孔輸送層上に共蒸着して膜厚20nmの発光層を設けた。なお、蒸着時の基板温度は室温であった。さらに、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記発光層の上に蒸着して膜厚10nmの正孔阻止の役割も兼ねた電子輸送層を設けた。その上に、さらに、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記電子輸送層の上に蒸着して更に膜厚40nmの電子注入層を設けた。なお、蒸着時の基板温度は室温であった。
【0058】
次に、LiFを0.5nm及びAlを110nm蒸着して陰極を形成し、有機EL素子OLED1−1を作製した。
【0059】
上記において、発光層の比較化合物1を表1に示す化合物に置き換えた以外は全く同じ方法で、有機EL素子OLED1−2〜1−8を作製した。
【0060】
上記で使用した化合物の構造を以下に示す。
【0061】
【化8】
Figure 2004103463
【0062】
【化9】
Figure 2004103463
【0063】
〈有機EL素子の評価〉
以下のようにして得られた有機EL素子の評価を行い、結果を表1に示す。
【0064】
(発光輝度)
有機EL素子OLED1−1では、初期駆動電圧3Vで電流が流れ始め、青色の発光を示した。有機EL素子OLED1−1の温度23℃、乾燥窒素ガス雰囲気下で10V直流電圧を印加した時の発光輝度(cd/m)、発光効率(lm/W)を測定した。
【0065】
発光輝度、発光効率は有機エレクトロルミネッセンス素子OLED1−1を100とした時の相対値で表した。発光輝度については、CS−1000(ミノルタ製)を用いて測定した。
【0066】
(耐久性)
10mA/cmの一定電流で駆動したときに初期輝度が元の半分に低下するのに要した時間である半減寿命時間を指標として表した。半減寿命時間は有機EL素子OLED1−1を100とした時の相対値で表した。
【0067】
【表1】
Figure 2004103463
【0068】
表1から明らかなように、本発明の化合物をドーパントに用いた有機EL素子は、発光輝度が高く、発光寿命が長いことから、有機EL素子として非常に有用であることがわかった。
【0069】
実施例2
陽極としてガラス上にITOを150nm成膜した基板(NHテクノグラス社製:NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をi−プロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに、m−MTDATAを200mg入れ、別のモリブデン製抵抗加熱ボートにDPVBiを200mg入れ、また別のモリブデン製抵抗加熱ボートにBCP200mgを入れ真空蒸着装置に取付けた。
【0070】
次いで、真空槽を4×10−4Paまで減圧した後、m−MTDATAの入った前記加熱ボートに通電して加熱し、蒸着速度0.1〜0.3nm/secで透明支持基板に膜厚25nmで蒸着し、さらに、DPVBiの入った前記加熱ボートに通電して加熱し、蒸着速度0.1〜0.3nm/secで膜厚20nmで蒸着し、発光層を設けた。蒸着時の基板温度は室温であった。
【0071】
ついで、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1〜0.3nm/secで30nmの電子輸送層を設けた。
【0072】
次に、LiFを0.5nm及びAlを110nm蒸着して陰極を形成し、有機EL素子OLED2−1を作製した。
【0073】
上記で使用した化合物の構造を以下に示す。
【0074】
【化10】
Figure 2004103463
【0075】
上記有機EL素子OLED2−1のBCPを表2に記載の化合物に替えた以外は有機EL素子OLED2−1と同様にして、有機EL素子OLED2−2〜2−5を作製した。
【0076】
得られた有機EL素子の発光輝度及び半減寿命時間の評価は実施例1と同様の方法を用い、発光輝度は有機EL素子OLED2−1の100とした時の相対値で表し、半減寿命時間は有機EL素子OLED2−1の半減寿命時間を100とした時の相対値で表した。結果を表2に示す。なお全ての素子において発光色は青色だった。
【0077】
【表2】
Figure 2004103463
【0078】
表2より、本発明の化合物を用いた有機EL素子は、点灯開始時の発光輝度及び輝度の半減する時間が改善されているのが分かる。特に、輝度の半減する時間が改善されているのが分かる。
【0079】
実施例3
〈有機EL素子の作製〉
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を150nm成膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行なった。
【0080】
この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートに、α−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにCBPを200mg入れ、別のモリブデン製抵抗加熱ボートにバソキュプロイン(BCP)を200mg入れ、別のモリブデン製抵抗加熱ボートにIr−12(燐光性化合物)を100mg入れ、さらに別のモリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取付けた。次いで、真空槽を4×10−4Paまで減圧した後、α−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで透明支持基板に蒸着し、膜厚45nmの正孔輸送層を設けた。さらに、CBPとIr−12の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/sec、0.01nm/secで前記正孔輸送層上に共蒸着して膜厚20nmの発光層を設けた。なお、蒸着時の基板温度は室温であった。さらに、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記発光層の上に蒸着して膜厚10nmの正孔阻止の役割も兼ねた電子輸送層を設けた。その上に、さらに、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記電子輸送層の上に蒸着して更に膜厚40nmの電子注入層を設けた。なお、蒸着時の基板温度は室温であった。
【0081】
次に、LiFを0.5nm及びAlを110nm蒸着して陰極を形成し、有機EL素子OLED3−1を作製した。
【0082】
上記において、発光層のCBPを表3に示す化合物に置き換えた以外は全く同じ方法で、有機EL素子OLED3−2〜3−5を作製した。
【0083】
上記で使用した化合物の構造を以下に示す。
【0084】
【化11】
Figure 2004103463
【0085】
得られた有機EL素子の発光輝度及び半減寿命時間の評価は、実施例1と同様の方法を用い、発光輝度は有機EL素子OLED3−1を100とした時の相対値で表し、半減寿命時間は有機EL素子OLED3−1の半減寿命時間を100とした時の相対値で表した。結果を表3に示す。なお全ての素子において発光色は青色だった。
【0086】
【表3】
Figure 2004103463
【0087】
表3から明らかなように、本発明の化合物をホストに用いた有機EL素子は、発光輝度が高く、半減寿命時間が長いことから、有機EL素子として非常に有用であることがわかった。
【0088】
燐光化合物をIr−1またはIr−9に変更した以外は、有機EL素子OLED3−1〜3−5と同様にして作製した有機EL素子においても同様の効果が得られた。なお、Ir−1を用いた素子からは緑色の発光が、Ir−9を用いた素子からは赤色の発光が得られた。
【0089】
実施例4
上記実施例3で作製した有機EL素子OLED3−1の電子輸送層BCPを表4に示す化合物に置き換えた以外は全く同じ方法で、有機EL素子OLED4−1〜4−5を作製した。
【0090】
得られた有機EL素子の発光輝度及び半減寿命時間の評価は実施例1と同様の方法を用い、発光輝度は有機EL素子OLED4−1を100とした時の相対値で表し、半減寿命時間は有機EL素子OLED4−1の半減寿命時間を100とした時の相対値で表した。結果を表4に示す。なお全ての素子において発光色は青色だった。
【0091】
【表4】
Figure 2004103463
【0092】
表4から明らかなように、本発明の化合物を電子輸送層(正孔阻止層)に用いた有機EL素子は、発光輝度が高く、半減寿命時間が長いことから、有機EL素子として非常に有用であることがわかった。
【0093】
燐光化合物をIr−1またはIr−9に変更した以外は、有機EL素子OLED4−1〜4−5と同様にして作製した有機EL素子においても、同様の効果が得られた。なお、Ir−1を用いた素子からは緑色の発光が、Ir−9を用いた素子からは赤色の発光が得られた。
【0094】
実施例5
実施例3で作製したそれぞれ赤色、緑色、青色発光有機エレクトロルミネッセンス素子を同一基板上に並置し、図1に示すアクティブマトリクス方式フルカラー表示装置を作製した。
【0095】
図1には、作製したフルカラー表示装置の表示部の模式図のみを示した。即ち同一基板上に、複数の走査線5及びデータ線6を含む配線部と、並置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線5及び複数のデータ線6は、それぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している。前記複数画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。この様に各赤、緑、青の画素を適宜、並置することによって、フルカラー表示が可能となる。図2は、1画素当たりの回路図である。
【0096】
該フルカラー表示装置を駆動することにより、輝度の高い鮮明なフルカラー動画表示が得られた。
【0097】
【発明の効果】
本発明の化合物を含有させた有機EL素子は、発光輝度が高く、半減寿命時間が長いことにより、有機EL素子として非常に優れていることがわかった。また、青色、緑色、赤色の画素を併置することで、アクティブマトリクス方式フルカラー表示装置として、輝度の高い鮮明な画像が得られることがわかった。
【図面の簡単な説明】
【図1】本発明の有機EL素子から構成される表示装置の一例を示した模式図である。
【図2】本発明の有機EL素子の1画像当たりの回路の一例を示した回路図である。
【符号の説明】
1 ガラス基板
2 配線部
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機エレクトロルミネッセンス素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサ
101 表示部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an organic electroluminescence (hereinafter abbreviated as organic EL) element and a display device using the same. More specifically, the present invention relates to an organic electroluminescent element having excellent emission luminance and a display device having the organic electroluminescent element of the present invention.
[0002]
[Prior art]
As a light emitting type electronic display device, there is an electroluminescence display (ELD). ELD components include an inorganic electroluminescent element and an organic electroluminescent element. Inorganic electroluminescent devices have been used as flat light sources, but require a high AC voltage to drive the light emitting devices. An organic electroluminescence element has a configuration in which a light-emitting layer containing a compound that emits light is sandwiched between a cathode and an anode. Electrons and holes are injected into the light-emitting layer and recombined to generate excitons (excitons). An element that emits light by utilizing the light emission (fluorescence / phosphorescence) when the exciton is generated and deactivated, and can emit light at a voltage of about several V to several tens of volts. Because of this, it is rich in viewing angle, has high visibility, and is a thin-film type completely solid-state device, which has attracted attention from the viewpoint of space saving and portability.
[0003]
However, development of an organic EL element that emits light with high efficiency and low power consumption is desired for an organic EL element for practical use in the future.
[0004]
Until now, various organic EL devices have been reported. For example, Appl. Phys. Lett. , Vol. 51, 913, or a combination of a hole injection layer and an organic luminescent layer described in JP-A-59-194393, and a hole injection layer and an electron injection-transport layer described in JP-A-63-295695. , Jpn. Journal of Applied Physics, vol. 127, no. 2, pages 269-271, each of which discloses a combination of a hole transport layer, a light emitting layer, and an electron transport layer. However, devices with higher luminance are required, and further improvements in energy conversion efficiency and emission quantum efficiency are expected.
[0005]
In addition, it has been pointed out that the light emission lifetime is short. Although the cause of such luminance deterioration over time has not been completely elucidated, the electroluminescent element that emits light decomposes the organic compound itself that constitutes the thin film due to the light emitted by itself and the heat generated at that time. Factors derived from organic compounds, which are organic EL device materials, such as crystallization of organic compounds, have also been pointed out.
[0006]
At present, electron transport materials are scarcely known, and there is no useful high-performance electron transport material that can withstand practical use due to the use of antibonding orbitals. For example, a research group at Kyushu University has begun studying 2- (4-biphenyl) -5- (4-t-butylphenyl) -1,3,4-oxadizole (t-BuPBD), which is an oxadiazole derivative. Oxadiazole dimer derivatives 1,3-bis (4-t-butylphenyl-1,3,4-oxadizodyl) biphenylene (OXD-1) and 1,3-bis (4 -T-butylphenyl-1,3,4-oxadizolyl) phenylene (OXD-7) (Jpn. J. Appl. Phys. Vol. 31 (1992), p. 1812). In addition, a research group at Yamagata University has manufactured a white light-emitting device by using a triazole-based electron transporting material having excellent electron blocking properties (Science, 3 March 1995, Vol. 267, p. 1332). Further, Japanese Patent Application Laid-Open No. 5-331559 describes that a phenanthroline derivative is useful as an electron transport material.
[0007]
However, the conventional electron transport material has a low ability to form a thin film and is easily crystallized, so that there is a problem that the light emitting element is destroyed, and the element performance that can withstand practical use cannot be exhibited.
[0008]
As an organic electroluminescent material that solves these problems, an example is disclosed in which a compound containing a silicon atom in a molecule is used as a light emitting material or an electron transporting material, but it is not enough to achieve both luminous efficiency and luminescent lifetime. (See, for example, Patent Documents 1, 2, and 3).
[0009]
In addition, examples of applying a silicon-based compound to an organic EL device include, for example, JP-A-2000-351966 and JP-A-11-3781 that a silicon-based compound can be applied as a hole transporting material, a light emitting material, and an electron transporting material. However, in each case, there were problems in light emission characteristics and life.
[0010]
In addition, a method has been reported in which the light-emitting layer is composed of a host compound and a small amount of a phosphor to achieve an improvement in luminous efficiency. For example, in US Pat. No. 3,093,796, a stilbene derivative, a distyrylarylene derivative, or a tristyrylarylene derivative is doped with a small amount of a phosphor to achieve an improvement in light emission luminance and a longer device life. I have.
[0011]
Further, an element having an organic light-emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of a phosphor is added thereto (see Patent Document 4, for example), and an 8-hydroxyquinoline aluminum complex as a host compound is used. (See, for example, Patent Document 5) having an organic light emitting layer doped with a quinacridone dye. As described above, by doping the phosphor having a high fluorescence quantum yield, the emission luminance is improved as compared with the conventional device.
[0012]
However, the light emission from the doped small amount of phosphor is light emission from an excited singlet. When light emission from an excited singlet is used, the generation ratio between a singlet exciton and a triplet exciton is 1: 1. 3, the generation probability of the luminescent excited species is 25%, and the light extraction efficiency is about 20%. Therefore, the limit of the external extraction quantum efficiency (ηext) is 5%. However, since Princeton University reported an organic EL device using phosphorescence emission from an excited triplet (MA Baldo et al., Nature, 395, 151-154 (1998)), the temperature was kept at room temperature. Research into phosphorescent materials has become active (e.g., MA Baldo et al., Nature, 403, 17, 750-753 (2000); U.S. Patent 6,097,147). Such). When the excited triplet is used, the upper limit of the internal quantum efficiency is 100%. Therefore, the luminous efficiency is up to four times in principle compared to the case of the excited singlet, and the performance almost equal to that of the cold cathode tube is obtained. It can also be used for lighting and is attracting attention.
[0013]
When the phosphorescent compound is used as a dopant, the host needs to have a light emission maximum wavelength in a shorter wavelength region than the light emission maximum wavelength of the phosphorescent compound, but there are other conditions to be satisfied. I understand that.
[0014]
In The 10th International Works on Inorganic and Organic Electroluminescence (EL '00, Hamamatsu), several reports have been made on phosphorescent compounds. For example, Ikai et al. Use a hole transporting compound as a host for a phosphorescent compound. Further, M. E. FIG. Tompson et al. Use various electron transporting materials as a host of a phosphorescent compound and dope them with a novel iridium complex. Further, Tsutsui et al. Obtain high luminous efficiency by introducing a hole blocking layer.
[0015]
The hole blocking layer is structurally the same as the electron transporting layer used in a normal organic EL device, but has a function of a hole leaking from the light emitting layer to the cathode side more than the electron transporting function. Since the function of preventing movement is influential, it is called a hole block layer, and can be interpreted as a kind of electron transport layer.
[0016]
Therefore, in the present application, the hole block layer is also referred to as an electron transport layer, and the material (hole blocker) used in the layer is also referred to as an electron transport material.
[0017]
As for the host compound of the phosphorescent compound, for example, C.I. Adachi et al. , Appl. Phys. Lett. 77, p. 904 (2000), etc., but it is necessary to take a newer approach to the properties required for the host compound in order to obtain a high-brightness organic electroluminescent device. .
[0018]
However, none of the reports has obtained a configuration capable of achieving both improvement in light emission luminance and durability of the device.
[0019]
[Patent Document 1]
JP-A-9-87616
[Patent Document 2]
JP-A-9-194487
[Patent Document 3]
JP 2000-186094 A
[Patent Document 4]
JP-A-63-264692
[Patent Document 5]
JP-A-3-255190
[Problems to be solved by the invention]
Therefore, the present invention has been made for the purpose of improving the light emission luminance of the device and achieving the durability at the same time by using a silicon compound having a specific structure, and the present invention also provides a host compound for phosphorescence emission using a silicon compound. Or the use of a silicon compound as an electron transporting material (hole blocker) to improve the emission luminance and the durability of the organic electroluminescent element, and the emission luminance using the organic electroluminescent element of the present invention. An object of the present invention is to provide a display device having a high and long life.
[0025]
[Means for Solving the Problems]
The object of the present invention is achieved by the invention described in each of the claims set forth below.
[0026]
1. An organic electroluminescence device comprising at least one compound represented by the general formula (1).
[0027]
2. 2. The organic electroluminescence device according to item 1, wherein the compound represented by the general formula (1) is contained in a light emitting layer.
[0028]
3. 2. The organic electroluminescent device according to item 1, wherein the compound represented by the general formula (1) is contained in an electron transport layer.
[0029]
4. An organic electroluminescent device having a light emitting layer containing a host compound and a phosphorescent compound, wherein any one of the layers constituting the device contains the compound represented by the general formula (1). 2. The organic electroluminescence device according to claim 1.
[0030]
5. 5. The organic electroluminescent device according to the item 4, wherein the phosphorescent compound is an iridium compound, an osmium compound, or a platinum compound.
[0031]
6. 5. The organic electroluminescence device according to the item 4, wherein the phosphorescent compound is an iridium compound.
[0032]
7. A display device comprising the organic electroluminescence element according to any one of the above items 1 to 6.
[0033]
Hereinafter, the present invention will be described in detail.
First, the compound represented by the general formula (1) will be described.
[0034]
In the general formula (1), each of the substituents represented by R 1 to R 3 is an alkyl group (methyl group, ethyl group, i-propyl group, hydroxyethyl group, methoxymethyl group, trifluoromethyl group, t-butyl group, cyclopentyl group, cyclohexyl group, benzyl group, etc., alkyloxy group (methoxy group, ethoxy group, i-propoxy group, butoxy group, etc.), aryloxy group (phenoxy group, etc.), halogen atom (fluorine atom, etc.) , A chlorine atom, a bromine atom, an iodine atom, etc.), and adjacent substituents may be condensed with each other to form a ring.
[0035]
In the general formula (1), Ar represents a condensed aromatic group. In this case, the condensed aromatic group may be a hydrocarbon ring aromatic group or a heterocyclic aromatic group, for example, a naphthyl group, a phenanthryl group , Anthryl group, pyrenyl group, quinolyl group, carbazolyl group, benzimidazolyl group, pyrrolopyrazolyl group, imidazopyridyl group, pyrazolotriazolyl group and the like.
[0036]
The compound of the present invention is a compound having strong fluorescence in a solid state, has excellent electroluminescence, and can be effectively used as a luminescent material. In addition, the compound of the present invention is used as an electron-transporting material in another light-emitting material or a device using the compound of the present invention as a light-emitting material because of its excellent electron-injecting property and electron-transporting property from a metal electrode. (Or a hole blocker), it shows excellent luminous efficiency.
[0037]
Hereinafter, specific examples of the compound will be described, but the present invention is not limited thereto.
[0038]
Embedded image
Figure 2004103463
[0039]
Embedded image
Figure 2004103463
[0040]
Embedded image
Figure 2004103463
[0041]
Synthesis Example Synthesis of Compound 1 (9,10-di (triphenylsilyl) anthracene) The following reactions were performed in a dry nitrogen gas atmosphere.
[0042]
In a three-necked flask, 3.36 g (10 mmol) of 9,10-dibromoanthracene, 4.52 ml (30 mmol) of tetramethylethylenediamine, 32 ml of dehydrated ether, and 100 ml of dehydrated tetrahydrofuran were put, and kept at −55 to −50 ° C. with stirring. 15.5 ml (25 mmol) of an N-butyllithium hexane solution (1.6 M) was added with a syringe. After stirring the dark red reaction solution at the same temperature for 1 hour, 8.82 g (30 mmol) of triphenylchlorosilane dissolved in 10 ml of dehydrated tetrahydrofuran was added dropwise. The temperature was gradually raised, and the mixture was further stirred at room temperature for 12 hours. After stopping the reaction by adding distilled water, the reaction was washed with distilled water, the organic layer was dried over anhydrous potassium carbonate, and the filtrate was concentrated with a rotary evaporator and dried under reduced pressure.
[0043]
A component having an Rf value of about 0.25 was separated by silica gel column chromatography (hexane: chloroform = 1: 2), and recrystallized repeatedly from hexane.
[0044]
Yield 1.74 g (about 25%)
1 H-NMR (CDCl 3, TMS) δ6.78 (d, J = 7.01,2H, ArH), 6.79 (d, J = 6.77,2H, ArH), 7.24~7. 41 (m, 12H, PhH), 7.63 to 7.66 (m, 18H, PhH), 8.04 (d, J = 7.01, 2H, ArH), 8.05 (d, J = 6) .77, 2H, ArH)
Further, the present inventors have conducted intensive studies on a host compound of a phosphorescent compound, and as a result, when an organic electroluminescent device was produced using the silicon compound of the present invention as a host compound, the emission luminance and lifetime of the device were reduced. Was found to be improved.
[0045]
The host compound in the present invention is a compound having the largest mixing ratio (mass) in a light emitting layer composed of two or more compounds, and the other compounds are called dopant compounds. For example, if the light-emitting layer is composed of two kinds of compound A and compound B and the mixing ratio is A: B = 10: 90, compound A is a dopant compound and compound B is a host compound. Further, the light emitting layer is composed of three kinds of compound A, compound B and compound C, and if the mixing ratio is A: B: C = 5: 10: 85, compound A and compound B are dopant compounds, Compound C is the host compound. The phosphorescent compound in the present invention is a kind of a dopant compound.
[0046]
The phosphorescent compound according to the present invention is a compound that emits light from an excited triplet, and has a phosphorescence quantum yield of 0.001 or more at 25 ° C. Preferably it is 0.01 or more. More preferably, it is 0.1 or more.
[0047]
The above-mentioned phosphorescence quantum yield can be measured by the method described in Spectroscopy II, page 398 (1992 edition, Maruzen) of the fourth edition of Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescent compound used in the present invention only needs to achieve the above-mentioned phosphorescence quantum yield in any arbitrary solvent.
[0048]
Preferably, it is a complex compound containing a metal belonging to Group VIII in the periodic table of elements, and more preferably, an iridium, ohmium, or platinum complex compound. More preferred are iridium complex compounds.
[0049]
Hereinafter, specific examples of the phosphorescent compound used in the present invention are shown, but the invention is not limited thereto. These compounds are described, for example, in Inorg. Chem. 40, 1704-1711.
[0050]
Embedded image
Figure 2004103463
[0051]
Embedded image
Figure 2004103463
[0052]
Embedded image
Figure 2004103463
[0053]
In another embodiment, in addition to the host compound and the phosphorescent compound, at least one fluorescent compound having a fluorescence maximum wavelength may be contained in a region longer than the maximum wavelength of light emission from the phosphorescent compound. . In this case, by the energy transfer from the host compound and the phosphorescent compound, electroluminescence as the organic EL element can be obtained from the fluorescent compound. Preferred as the fluorescent compound is a compound having a high fluorescence quantum yield in a solution state. Here, the fluorescence quantum yield is preferably 0.1 or more, particularly preferably 0.3 or more. Specifically, coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squarium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes , Polythiophene dyes, or rare earth complex phosphors.
[0054]
The fluorescence quantum yield here can also be measured by the method described in Spectroscopy II, page 362 (1992 edition, Maruzen) of the fourth edition of Experimental Chemistry Lecture 7.
[0055]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but embodiments of the present invention are not limited thereto.
[0056]
Example 1
<Preparation of organic EL element>
After patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which 150 nm of ITO (indium tin oxide) was formed on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode, the ITO transparent electrode was provided. The transparent support substrate was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0057]
This transparent support substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of m-MTDATXA was put in a molybdenum resistance heating boat, 200 mg of DMPhen was put in another molybdenum resistance heating boat, and another molybdenum was added. 200 mg of bathocuproine (BCP) was placed in a resistance heating boat made of aluminum, 100 mg of Comparative Compound 1 was placed in another resistance heating boat made of molybdenum, and 200 mg of Alq 3 was placed in another resistance heating boat made of molybdenum and attached to a vacuum evaporation apparatus. Next, after the pressure in the vacuum chamber was reduced to 4 × 10 −4 Pa, the heating boat containing m-MTDATXA was energized and heated, and was vapor-deposited on a transparent support substrate at a vapor deposition rate of 0.1 nm / sec. Was provided. Further, the heating boat containing DMPhen and Comparative Compound 1 was energized and heated, and was co-deposited on the hole transport layer at a deposition rate of 0.1 nm / sec and 0.01 nm / sec to form a 20 nm-thick film. A light emitting layer was provided. In addition, the substrate temperature at the time of vapor deposition was room temperature. Further, an electric current is applied to the heating boat containing the BCP to heat it, and the electron boat is vapor-deposited on the light-emitting layer at a vapor deposition rate of 0.1 nm / sec. Was. On top of that, the heating boat containing Alq 3 was further energized and heated, and was vapor-deposited on the electron transport layer at a vapor deposition rate of 0.1 nm / sec to further provide an electron injection layer having a thickness of 40 nm. . In addition, the substrate temperature at the time of vapor deposition was room temperature.
[0058]
Next, 0.5 nm of LiF and 110 nm of Al were deposited to form a cathode, thereby producing an organic EL device OLED1-1.
[0059]
In the above, organic EL elements OLED1-2 to 1-8 were produced in exactly the same manner except that Comparative Compound 1 in the light-emitting layer was replaced with the compound shown in Table 1.
[0060]
The structure of the compound used above is shown below.
[0061]
Embedded image
Figure 2004103463
[0062]
Embedded image
Figure 2004103463
[0063]
<Evaluation of organic EL element>
The organic EL device obtained as described below was evaluated, and the results are shown in Table 1.
[0064]
(Emission brightness)
In the organic EL element OLED1-1, current began to flow at an initial drive voltage of 3 V, and emitted blue light. The light emission luminance (cd / m 2 ) and the light emission efficiency (lm / W) of the organic EL element OLED1-1 at a temperature of 23 ° C. and in a dry nitrogen gas atmosphere when a DC voltage of 10 V was applied were measured.
[0065]
The luminous brightness and luminous efficiency were represented by relative values when the organic electroluminescent element OLED1-1 was set to 100. The emission luminance was measured using CS-1000 (manufactured by Minolta).
[0066]
(durability)
The half-life time, which is the time required for the initial luminance to drop to half of the original value when driven at a constant current of 10 mA / cm 2 , is represented as an index. The half life time was represented by a relative value when the organic EL element OLED1-1 was set to 100.
[0067]
[Table 1]
Figure 2004103463
[0068]
As is clear from Table 1, the organic EL device using the compound of the present invention as a dopant has high emission luminance and a long emission life, and thus is very useful as an organic EL device.
[0069]
Example 2
After patterning a substrate (made by NH Techno Glass Co., Ltd .: NA-45) on which 150 nm of ITO was formed on glass as an anode, the transparent support substrate provided with the ITO transparent electrode was subjected to ultrasonic cleaning with i-propyl alcohol. After drying with dry nitrogen gas, UV ozone cleaning was performed for 5 minutes. This transparent support substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of m-MTDATA was put in a molybdenum resistance heating boat, 200 mg of DPVBi was put in another molybdenum resistance heating boat, and another. A molybdenum resistance heating boat was charged with 200 mg of BCP and attached to a vacuum evaporation apparatus.
[0070]
Next, after the pressure in the vacuum chamber was reduced to 4 × 10 −4 Pa, the heating boat containing m-MTDATA was energized and heated, and the film was deposited on the transparent support substrate at a deposition rate of 0.1 to 0.3 nm / sec. Evaporation was performed at 25 nm, and the heating boat containing DPVBi was energized and heated, and evaporated at an evaporation rate of 0.1 to 0.3 nm / sec to a thickness of 20 nm to provide a light emitting layer. The substrate temperature during vapor deposition was room temperature.
[0071]
Next, the heating boat containing the BCP was energized and heated to provide a 30 nm electron transport layer at a deposition rate of 0.1 to 0.3 nm / sec.
[0072]
Next, 0.5 nm of LiF and 110 nm of Al were deposited to form a cathode, thereby producing an organic EL device OLED2-1.
[0073]
The structure of the compound used above is shown below.
[0074]
Embedded image
Figure 2004103463
[0075]
Organic EL elements OLED2-2 to 2-5 were produced in the same manner as in the organic EL element OLED2-1, except that the BCP of the organic EL element OLED2-1 was changed to the compound shown in Table 2.
[0076]
The emission luminance and the half-life time of the obtained organic EL element were evaluated in the same manner as in Example 1, and the emission luminance was expressed as a relative value when the organic EL element OLED2-1 was set to 100. The half life time of the organic EL element OLED2-1 was expressed as a relative value with respect to 100. Table 2 shows the results. The light emission color was blue in all the devices.
[0077]
[Table 2]
Figure 2004103463
[0078]
Table 2 shows that the organic EL device using the compound of the present invention has improved emission luminance at the start of lighting and the time required to reduce the luminance by half. In particular, it can be seen that the time for halving the luminance is improved.
[0079]
Example 3
<Preparation of organic EL element>
After patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) on which 150 nm of ITO (indium tin oxide) was formed on a glass substrate of 100 mm × 100 mm × 1.1 mm as an anode, the ITO transparent electrode was provided. The transparent support substrate was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
[0080]
This transparent support substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of α-NPD was put into a molybdenum resistance heating boat, 200 mg of CBP was put into another molybdenum resistance heating boat, and another molybdenum was heated. 200 mg of bathocuproine (BCP) was placed in a resistance heating boat made of aluminum, 100 mg of Ir-12 (phosphorescent compound) was placed in another resistance heating boat made of molybdenum, and 200 mg of Alq 3 was placed in another resistance heating boat made of molybdenum, and vacuum evaporation was performed. Attached to the device. Next, after reducing the pressure of the vacuum chamber to 4 × 10 −4 Pa, the heating boat containing α-NPD was energized and heated, and was vapor-deposited on the transparent support substrate at a vapor deposition rate of 0.1 nm / sec. A hole transport layer was provided. Further, the heating boat containing CBP and Ir-12 was energized and heated, and co-deposited on the hole transport layer at a deposition rate of 0.1 nm / sec and 0.01 nm / sec, respectively, to form a 20 nm-thick film. A light emitting layer was provided. In addition, the substrate temperature at the time of vapor deposition was room temperature. Further, an electric current is applied to the heating boat containing the BCP to heat it, and the electron boat is vapor-deposited on the light-emitting layer at a vapor deposition rate of 0.1 nm / sec. Was. On top of that, the heating boat containing Alq 3 was further energized and heated, and was vapor-deposited on the electron transport layer at a vapor deposition rate of 0.1 nm / sec to further provide an electron injection layer having a thickness of 40 nm. . In addition, the substrate temperature at the time of vapor deposition was room temperature.
[0081]
Next, 0.5 nm of LiF and 110 nm of Al were deposited to form a cathode, thereby producing an organic EL device OLED3-1.
[0082]
In the above, organic EL elements OLEDs 3-2 to 3-5 were produced in exactly the same manner except that CBP of the light emitting layer was replaced with the compound shown in Table 3.
[0083]
The structure of the compound used above is shown below.
[0084]
Embedded image
Figure 2004103463
[0085]
The light emission luminance and the half life time of the obtained organic EL element were evaluated by the same method as in Example 1. The light emission luminance was expressed as a relative value when the organic EL element OLED3-1 was set to 100, and the half life time was calculated. Is a relative value when the half-life time of the organic EL element OLED3-1 is 100. Table 3 shows the results. The light emission color was blue in all the devices.
[0086]
[Table 3]
Figure 2004103463
[0087]
As is clear from Table 3, the organic EL device using the compound of the present invention as a host has high emission luminance and a long half-life time, and thus is very useful as an organic EL device.
[0088]
Except that the phosphorescent compound was changed to Ir-1 or Ir-9, the same effect was obtained in an organic EL device manufactured in the same manner as the organic EL devices OLED3-1 to 3-5. Note that green light emission was obtained from the element using Ir-1, and red light emission was obtained from the element using Ir-9.
[0089]
Example 4
Organic EL elements OLED 4-1 to 4-5 were produced in exactly the same manner except that the electron transport layer BCP of the organic EL element OLED 3-1 produced in Example 3 was replaced with a compound shown in Table 4.
[0090]
The emission luminance and the half-life time of the obtained organic EL element were evaluated in the same manner as in Example 1, and the emission luminance was expressed as a relative value when the organic EL element OLED4-1 was set to 100. The half life time of the organic EL element OLED4-1 was expressed as a relative value with respect to 100. Table 4 shows the results. The light emission color was blue in all the devices.
[0091]
[Table 4]
Figure 2004103463
[0092]
As is clear from Table 4, the organic EL device using the compound of the present invention for the electron transport layer (hole blocking layer) has a high emission luminance and a long half-life time, and is therefore very useful as an organic EL device. It turned out to be.
[0093]
Except that the phosphorescent compound was changed to Ir-1 or Ir-9, the same effect was obtained in an organic EL device manufactured in the same manner as the organic EL devices OLED4-1 to 4-5. Note that green light emission was obtained from the element using Ir-1, and red light emission was obtained from the element using Ir-9.
[0094]
Example 5
The red, green, and blue light-emitting organic electroluminescent elements produced in Example 3 were juxtaposed on the same substrate to produce an active matrix full-color display device shown in FIG.
[0095]
FIG. 1 shows only a schematic view of the display unit of the manufactured full-color display device. That is, on the same substrate, a wiring portion including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 arranged side by side (pixels in a red region, pixels in a green region, pixels in a blue region, etc.) are arranged. The scanning lines 5 and the plurality of data lines 6 of the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid and are connected to the pixels 3 at orthogonal positions. The plurality of pixels 3 are driven by an active matrix method provided with an organic EL element corresponding to each emission color, a switching transistor and an driving element as active elements, and a scanning signal is applied from a scanning line 5. Receives an image data signal from the data line 6 and emits light in accordance with the received image data. By arranging the red, green, and blue pixels appropriately as described above, a full-color display can be realized. FIG. 2 is a circuit diagram for one pixel.
[0096]
By driving the full-color display device, clear full-color moving image display with high luminance was obtained.
[0097]
【The invention's effect】
The organic EL device containing the compound of the present invention was found to be very excellent as an organic EL device because of its high emission luminance and long half-life. In addition, it was found that by arranging blue, green, and red pixels side by side, a clear image with high luminance can be obtained as an active matrix type full-color display device.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating an example of a display device including an organic EL element of the present invention.
FIG. 2 is a circuit diagram showing an example of a circuit per image of the organic EL element of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Wiring part 3 Pixel 5 Scan line 6 Data line 7 Power supply line 10 Organic electroluminescence element 11 Switching transistor 12 Drive transistor 13 Capacitor 101 Display part

Claims (7)

下記一般式(1)で表される化合物の少なくとも1種を含有することを特徴とする有機エレクトロルミネッセンス素子。
Figure 2004103463
(式中、R〜Rはそれぞれ独立にアルキル基、アルコキシ基、アリールオキシ基、またはハロゲン原子を表し、nは0〜5の整数を表し、mは0〜5の整数を表し、pは0〜5の整数を表し、Arは縮合芳香族基を表す。
nが複数でかつ複数のRが隣接する場合は、互いに縮合して環を形成してもよく、mが複数でかつ複数のRが隣接する場合は、互いに縮合して環を形成してもよく、pが複数でかつ複数のRが隣接する場合は、互いに縮合して環を形成してもよい。)
An organic electroluminescence device comprising at least one compound represented by the following general formula (1).
Figure 2004103463
(Wherein, R 1 to R 3 each independently represent an alkyl group, an alkoxy group, an aryloxy group, or a halogen atom, n represents an integer of 0 to 5, m represents an integer of 0 to 5, p represents Represents an integer of 0 to 5, and Ar represents a condensed aromatic group.
When n is plural and a plurality of R 1 are adjacent to each other, they may be fused to each other to form a ring. When m is plural and a plurality of R 2 are adjacent to each other, they may be fused to each other to form a ring. And when p is plural and plural R 3 are adjacent, they may be condensed with each other to form a ring. )
前記一般式(1)で表される化合物を、発光層に含有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。The organic electroluminescent device according to claim 1, wherein the compound represented by the general formula (1) is contained in a light emitting layer. 前記一般式(1)で表される化合物を、電子輸送層に含有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。The organic electroluminescent device according to claim 1, wherein the compound represented by the general formula (1) is contained in an electron transport layer. ホスト化合物及び燐光性化合物を含有する発光層を有する有機エレクトロルミネッセンス素子であって、該素子を構成する何れかの層に前記一般式(1)で表される化合物を含有することを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。An organic electroluminescent device having a light emitting layer containing a host compound and a phosphorescent compound, wherein any one of the layers constituting the device contains the compound represented by the general formula (1). The organic electroluminescence device according to claim 1. 前記燐光性化合物が、イリジウム化合物、オスミウム化合物、または白金化合物であることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子。The organic electroluminescent device according to claim 4, wherein the phosphorescent compound is an iridium compound, an osmium compound, or a platinum compound. 前記燐光性化合物が、イリジウム化合物であることを特徴とする請求項4に記載の有機エレクトロルミネッセンス素子。The organic electroluminescence device according to claim 4, wherein the phosphorescent compound is an iridium compound. 請求項1〜6の何れか1項に記載の有機エレクトロルミネッセンス素子を有する表示装置。A display device comprising the organic electroluminescence element according to claim 1.
JP2002265416A 2002-09-11 2002-09-11 Organic electroluminescent element and display device using the same Pending JP2004103463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265416A JP2004103463A (en) 2002-09-11 2002-09-11 Organic electroluminescent element and display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265416A JP2004103463A (en) 2002-09-11 2002-09-11 Organic electroluminescent element and display device using the same

Publications (1)

Publication Number Publication Date
JP2004103463A true JP2004103463A (en) 2004-04-02

Family

ID=32264565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265416A Pending JP2004103463A (en) 2002-09-11 2002-09-11 Organic electroluminescent element and display device using the same

Country Status (1)

Country Link
JP (1) JP2004103463A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095598A2 (en) * 2003-04-21 2004-11-04 The Trustees Of Princeton University Organic light emitting devices with wide gap host materials
JP2005310672A (en) * 2004-04-23 2005-11-04 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2006032638A (en) * 2004-07-15 2006-02-02 Fuji Photo Film Co Ltd Light emitting element
WO2006038709A1 (en) * 2004-10-05 2006-04-13 National University Corporation Gunma University Triphenylene compounds, process for production thereof, and organic electroluminescent devices made by using the same
JP2006140219A (en) * 2004-11-10 2006-06-01 Fuji Photo Film Co Ltd Organic electroluminescent element
WO2007065550A1 (en) * 2005-12-08 2007-06-14 Merck Patent Gmbh Novel materials for organic electroluminescent devices
WO2007129702A1 (en) * 2006-05-09 2007-11-15 Idemitsu Kosan Co., Ltd. Silicon-containing compound and organic electroluminescent device utilizing the same
WO2007142083A1 (en) 2006-06-02 2007-12-13 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence element, and organic electroluminescence element using the material
KR100822212B1 (en) 2007-01-15 2008-04-16 삼성에스디아이 주식회사 An silanylamine-based compound and an organic light emitting diode comprising an organic layer comprising the same
US7365198B2 (en) * 2006-03-02 2008-04-29 Canon Kabushiki Kaisha Silyl compound, light emitting material, and organic light emitting device using the same
CN100414712C (en) * 2004-12-09 2008-08-27 友达光电股份有限公司 Organic electric exciting luminous device
WO2008143416A1 (en) * 2007-05-21 2008-11-27 Gracel Display Inc. Organic electroluminescent compounds and organic light emitting diode using the same
JP2009179627A (en) * 2007-12-31 2009-08-13 Gracel Display Inc Organic electroluminescent compound and light emitting diode using the same
JP2010021561A (en) * 2004-02-09 2010-01-28 Lg Display Co Ltd New blue illuminator used for organic electroluminescent element
WO2010052932A1 (en) * 2008-11-07 2010-05-14 保土谷化学工業株式会社 Compound having triphenylsilyl group and triarylamine structure and organic electroluminescent element
US8334059B2 (en) 2007-11-27 2012-12-18 Udc Ireland Limited Organic electroluminescence device
EP2082447B1 (en) * 2006-09-21 2018-10-24 UDC Ireland Limited Oled display with extended lifetime

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004095598A3 (en) * 2003-04-21 2005-05-19 Univ Princeton Organic light emitting devices with wide gap host materials
WO2004095598A2 (en) * 2003-04-21 2004-11-04 The Trustees Of Princeton University Organic light emitting devices with wide gap host materials
JP2010021561A (en) * 2004-02-09 2010-01-28 Lg Display Co Ltd New blue illuminator used for organic electroluminescent element
US9085729B2 (en) 2004-02-09 2015-07-21 Lg Display Co., Ltd. Blue emitters for use in organic electroluminescence devices
JP2005310672A (en) * 2004-04-23 2005-11-04 Fuji Photo Film Co Ltd Organic electroluminescent element
JP2006032638A (en) * 2004-07-15 2006-02-02 Fuji Photo Film Co Ltd Light emitting element
WO2006038709A1 (en) * 2004-10-05 2006-04-13 National University Corporation Gunma University Triphenylene compounds, process for production thereof, and organic electroluminescent devices made by using the same
US8026663B2 (en) 2004-10-05 2011-09-27 National University Corporation Gunma University Triphenylene compounds, method of manufacturing the same and organic electroluminescent devices employing the same
JP2006140219A (en) * 2004-11-10 2006-06-01 Fuji Photo Film Co Ltd Organic electroluminescent element
US10069091B2 (en) 2004-11-10 2018-09-04 Udc Ireland Limited Organic electroluminescent device
US8815409B2 (en) 2004-11-10 2014-08-26 Udc Ireland Limited Organic electroluminescent device
CN100414712C (en) * 2004-12-09 2008-08-27 友达光电股份有限公司 Organic electric exciting luminous device
US8795847B2 (en) 2005-12-08 2014-08-05 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2007065550A1 (en) * 2005-12-08 2007-06-14 Merck Patent Gmbh Novel materials for organic electroluminescent devices
US7365198B2 (en) * 2006-03-02 2008-04-29 Canon Kabushiki Kaisha Silyl compound, light emitting material, and organic light emitting device using the same
WO2007129702A1 (en) * 2006-05-09 2007-11-15 Idemitsu Kosan Co., Ltd. Silicon-containing compound and organic electroluminescent device utilizing the same
WO2007142083A1 (en) 2006-06-02 2007-12-13 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence element, and organic electroluminescence element using the material
US8563145B2 (en) 2006-06-02 2013-10-22 Idemitsu Kosan Co., Ltd. Material containing two or three dibenzofuran groups, dibenzothiophene groups, or a combination thereof, which is operable for organic electroluminescence elements, and organic electroluminescence elements using the material
EP2082447B1 (en) * 2006-09-21 2018-10-24 UDC Ireland Limited Oled display with extended lifetime
EP3457452A3 (en) * 2006-09-21 2019-03-27 UDC Ireland Limited Oled display with extended lifetime
KR100822212B1 (en) 2007-01-15 2008-04-16 삼성에스디아이 주식회사 An silanylamine-based compound and an organic light emitting diode comprising an organic layer comprising the same
WO2008143416A1 (en) * 2007-05-21 2008-11-27 Gracel Display Inc. Organic electroluminescent compounds and organic light emitting diode using the same
US8334059B2 (en) 2007-11-27 2012-12-18 Udc Ireland Limited Organic electroluminescence device
JP2014112717A (en) * 2007-12-31 2014-06-19 Gracel Display Inc Organic electroluminescent compound and light-emitting diode using the same
JP2014131064A (en) * 2007-12-31 2014-07-10 Gracel Display Inc Organic electroluminescent compound and light emitting diode using the same
JP2009179627A (en) * 2007-12-31 2009-08-13 Gracel Display Inc Organic electroluminescent compound and light emitting diode using the same
WO2010052932A1 (en) * 2008-11-07 2010-05-14 保土谷化学工業株式会社 Compound having triphenylsilyl group and triarylamine structure and organic electroluminescent element
US10059725B2 (en) 2008-11-07 2018-08-28 Hodogaya Chemical Co., Ltd. Compound having triphenylsilyl group and triarylamine structure, and organic electroluminescent device

Similar Documents

Publication Publication Date Title
JP3925265B2 (en) Organic electroluminescence element and display device using the same
JP4810687B2 (en) Organic electroluminescence element and display device
JP4106974B2 (en) Organic electroluminescence element and display device
JP4036041B2 (en) Organic electroluminescence element and display device
JP4103492B2 (en) Organic electroluminescence element and display device
JP2004103463A (en) Organic electroluminescent element and display device using the same
JP4052024B2 (en) Organic electroluminescence element and display device
JP4048792B2 (en) Organic electroluminescence element and display device
JP4631259B2 (en) Organic electroluminescence element and display device
JP4300788B2 (en) Organic electroluminescence element and display device
JP2004047443A (en) Organic electroluminescent element and color display device
JP3994799B2 (en) Organic electroluminescence element and display device
JP4103442B2 (en) Organic electroluminescence element and display device
JP4265216B2 (en) Organic electroluminescence element and display device
JP4228573B2 (en) Organic electroluminescence element and display device
JP2004152527A (en) Organic electroluminescent element and display device
JP4726384B2 (en) Organic electroluminescence element and display device
JP4798128B2 (en) Organic electroluminescence element and display device
JP4265215B2 (en) Organic electroluminescence element and display device
JP2004047329A (en) Organic electroluminescent element and display device
JP4656111B2 (en) Organic electroluminescence device
JP4078960B2 (en) Organic electroluminescence device and display device thereof
JP3997937B2 (en) Organic electroluminescence element, display device and lighting device
JP4183016B2 (en) Organic electroluminescence element and display device
JP4129599B2 (en) Organic electroluminescence element and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925