JP2004103271A - Separator for fuel cell and surface treatment method of same - Google Patents

Separator for fuel cell and surface treatment method of same Download PDF

Info

Publication number
JP2004103271A
JP2004103271A JP2002259754A JP2002259754A JP2004103271A JP 2004103271 A JP2004103271 A JP 2004103271A JP 2002259754 A JP2002259754 A JP 2002259754A JP 2002259754 A JP2002259754 A JP 2002259754A JP 2004103271 A JP2004103271 A JP 2004103271A
Authority
JP
Japan
Prior art keywords
fuel cell
separator
film
hydrophilic film
cell separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002259754A
Other languages
Japanese (ja)
Other versions
JP3841732B2 (en
Inventor
Shigeki Ito
伊藤 茂樹
Haruo Yoshioka
吉岡 治夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2002259754A priority Critical patent/JP3841732B2/en
Publication of JP2004103271A publication Critical patent/JP2004103271A/en
Application granted granted Critical
Publication of JP3841732B2 publication Critical patent/JP3841732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a fuel cell, and a surface treatment method of the same, capable of quickly draining generated water, on the surface of the separator for the fuel cell. <P>SOLUTION: A hydrophilic film 2 formed on the surface of a separator body 1 for the fuel cell has silicon oxide as a main component and contains a component having a hydroxyl group such as silicon hydroxide having hydrophilic property. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用セパレータおよびその表面処理方法に関するものである。
【0002】
【従来の技術】
一般に、燃料電池には、燃料ガス(水素等)と空気(酸素等)とが混じらないようにするために、セパレータが設けられている。このセパレータは、板状であり、一方の面に燃料ガスの流路となる条溝が形成され、他方の面に空気の流路となる条溝が形成されている。また、上記セパレータの材質は、黒鉛ブロックを加工し不浸透化した不浸透化物、または膨張黒鉛シート積層成形体に液状樹脂を含浸させ硬化させた液状樹脂含浸物等である。
【0003】
そして、燃料電池の発電過程においては、燃料電池の種類によって、燃料ガスの流路側または空気の流路側に生成水が生成される。そこで、セパレータに要求される機能のひとつに、上記生成水を表面に形成された条溝から速く排出させて燃料ガスまたは空気の流路を確保するという機能がある。このように生成水を速く排出させて燃料ガスや空気の流路を確保すれば、燃料電池の性能を向上させることができるからである。
【0004】
【発明が解決しようとする課題】
しかしながら、上記材質からなるセパレータでは、生成水をはじき易くなっているため、条溝においては、生成水が水滴になって存在し、生成水の排出が速くなかった。このことが、燃料電池の性能向上の妨げとなっていた。
【0005】
そこで、親水性を備えた膜として幅広い分野で利用されている酸化珪素薄膜を、上記条溝の表面に形成することが考えられる。この従来公知の酸化珪素薄膜は、ゾルゲル法やスパッタリング法等により製膜される。しかしながら、ゾルゲル法では、高温工程があり、スパッタリング法では、真空(減圧)工程がある等するため、製膜コストが高額になる。しかも、このようにして製膜された酸化珪素薄膜の親水性は、純水との接触角が40〜50度程度のものであり、あまり高い親水性を発揮するものではない。この理由は、高温工程等により、親水性を発揮する水酸基を備えた成分が除去されたからであると思われる。したがって、ゾルゲル法等により酸化珪素薄膜を形成しても、条溝における生成水の排出は、あまり速くなるものではない。
【0006】
本発明は、このような事情に鑑みなされたもので、燃料電池用セパレータの表面において、生成水を速く排出することができる燃料電池用セパレータおよびその表面処理方法の提供をその目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、燃料電池用セパレータ本体の表面に、酸化珪素を主成分とし、水酸基を備えた成分を含有している親水膜が形成されている燃料電池用セパレータを第1の要旨とし、酸化珪素を主成分とするゾル溶液を燃料電池用セパレータ本体の表面に塗布してゲル膜を形成する工程と、このゲル膜に対して真空紫外光を照射することにより、水酸基を備えた成分が含有されている親水膜を形成する工程とを備えている燃料電池用セパレータの表面処理方法を第2の要旨とし、上記ゲル膜に対して大気圧プラズマ処理することにより、水酸基を備えた成分が含有されている親水膜を形成する工程を備えている燃料電池用セパレータの表面処理方法を第3の要旨とする。
【0008】
本発明者らは、燃料電池用セパレータの表面において生成水の排出を速めるべく、鋭意研究を重ねた。その研究の過程で、上記セパレータの表面を親水化すれば、生成水の排出が速くなることを突き止めた。また、表面の親水化は、酸化珪素を主成分とする薄膜(親水膜)を表面に形成することにより、達成できることも突き止めた。そして、さらに鋭意研究を重ねた。その結果、上記薄膜(親水膜)を形成する際に、酸化珪素を主成分とするゲル膜に対して真空紫外光の照射または大気圧プラズマ処理を行えば、形成された上記薄膜(親水膜)では、親水性を発揮する水酸基を備えた成分が除去されずに残ることを見いだした。これにより、上記薄膜(親水膜)の親水性が飛躍的に向上し、上記セパレータの表面における生成水の排出がさらに速くなった。このようにして、本発明者らは、本発明に到達した。
【0009】
【発明の実施の形態】
つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。
【0010】
図1は、本発明の燃料電池用セパレータの一実施の形態を示している。この実施の形態では、燃料電池用セパレータは、板状の燃料電池用セパレータ本体1と、このセパレータ本体1の表面に形成された親水膜2とからなっている。この親水膜2は、酸化珪素を主成分とするものであり、親水性を発揮する水酸化珪素等の水酸基を備えた成分を含有している。また、上記セパレータ本体1は、表裏面にそれぞれ複数(図1では、表面に3本、裏面に4本)の条溝1a,1bが形成されて凹凸状になっており、これに対応して、上記セパレータも、表裏面にそれぞれ複数(図1では、表面に3本、裏面に4本)の条溝2a,1bが形成されて凹凸状になっている。そして、そのセパレータにおける条溝2a,1bが燃料ガスや空気の流路となっている。
【0011】
より詳しく説明すると、上記セパレータ本体1の材質は、特に限定されるものではなく、上記従来の技術で説明したような通常のセパレータに用いられているものであるが、セパレータに要求される導電性と耐蝕性とを兼ね備えている点で、カーボンが主成分である材質が好ましい。このカーボンが主成分である材質としては、ガラス状カーボンやグラファイト等があげられる。そして、上記セパレータ本体1の製法は、特に限定されないが、通常、成形により作製される。また、セパレータ本体1の表面の条溝1a,1bの形成は、成形型の転写により形成してもよいし、平板状のセパレータ本体1の基板を成形した後に機械加工により形成してもよい。
【0012】
上記親水膜2は、ゾルゲル法により製膜された酸化珪素薄膜と異なり、水酸化珪素等の水酸基を備えた成分を含有しており、この成分が親水性を発揮する成分であるため、上記ゾルゲル法により製膜された酸化珪素薄膜と比較して、飛躍的に高い親水性を発揮する。すなわち、ゾルゲル法による酸化珪素薄膜と純水との接触角は、上述したように40〜50度程度であるが、これに対して、上記親水膜2と純水との接触角は、10度以下にすることができ、親水膜2の形成条件によっては、限りなく0度に近くすることができる。さらに、上記親水膜2は、その親水性を長期間持続させることができる。そして、上記親水膜2の厚みは、特に限定されないが、10nm以上であることが好ましい。10nm未満であると、親水性を充分に発揮しないおそれがあるからである。また、上記親水膜2が水酸化珪素等の水酸基を備えた成分を含有していることから、その親水膜2に対して赤外線吸収スペクトルを測定すると、各成分に帰属する波数に吸収帯が現れる。例えば、水酸化珪素であれば、波数940cm−1に吸収帯が現れる。
【0013】
また、上記親水膜2の形成(セパレータの表面処理)は、例えば、つぎのようにして行うことができる。すなわち、まず、酸化珪素薄膜をゾルゲル法により製膜する際に用いるゾル溶液(酸化珪素を主成分とするゾル溶液)をセパレータ本体1の表面に塗布してゲル膜を形成する。ついで、このゲル膜にエキシマランプ等を用いて真空紫外光を照射することにより、上記親水膜2を形成する。
【0014】
上記親水膜2の形成において、ゾル溶液は、ゾルゲル法により酸化珪素薄膜を製膜することができるゾル溶液であれば、特に限定されるものではなく、テトラエトキシシラン等を酸性触媒下で加水分解し、縮重合させて得られるようなゾル溶液等があげられる。また、ゾル溶液を塗布する方法は、特に限定されるものではなく、ディップ法,スピンコート法,スプレー法等の通常のゾルゲル法で用いられる方法を採用することができる。
【0015】
また、真空紫外光の照射は、通常、室温(25℃)下で行なうことができるが、燃料電池用セパレータ本体1が変質せず、ゲル膜が熱で反応を起こさない程度であれば、加熱してもよい。このように、ゲル膜に真空紫外光を照射して上記親水膜2を形成する工程では、ゾルゲル法と異なり、ゲル膜が反応を起こすような熱が加わらないため、ゲル膜に含有される水酸化珪素等の水酸基を備えた成分の少なくとも一部が反応せずに、上記親水膜2に残る。したがって、このようなセパレータの表面処理方法により形成された上記親水膜2は、ゾルゲル法により作製された酸化珪素薄膜の親水性と比較して、飛躍的に高い親水性を発揮する。その結果、上記セパレータの表面に形成された条溝2aにおいて、生成水の排出が速くなる。また、真空紫外光を照射する時間は、特に限定されないが、親水性を飛躍的に高くするためには、15秒以上であることが好ましい。
【0016】
このように、上記実施の形態のセパレータによれば、セパレータの表面に形成された親水膜2が水酸化珪素等の水酸基を備えた成分を含有していることにより、その親水膜2が飛躍的に高い親水性を示し、セパレータの表面に形成された条溝2aにおける生成水の排出を速くすることができるため、燃料ガスまたは空気の流路を大きく確保することができ、燃料電池の性能を向上させることができる。
【0017】
また、上記実施の形態のセパレータの表面処理方法によれば、上記親水膜2の形成がゲル膜に真空紫外光を照射することにより可能となるため、従来のゾルゲル法やスパッタリング法と異なり、高温工程や真空(減圧)工程がなく、上記親水膜2の形成が簡単かつ安価にできる。特に、真空紫外光の照射をエキシマランプを用いて行えば、その照射作業が簡単かつ安価にできるため、上記親水膜2の形成がより簡単かつ安価にできる。
【0018】
つぎに、本発明の燃料電池用セパレータの他の実施の形態について説明する。この実施の形態は、上記親水膜2の形成(セパレータの表面処理)として、上記実施の形態において真空紫外光の照射に代えて大気圧プラズマ処理を行ったものである。すなわち、上記と同様にして形成されたゲル膜に大気圧プラズマ処理することにより、上記親水膜2を形成したものである。
【0019】
上記大気圧プラズマ処理は、特に限定されるものではなく、例えば、大気圧プラズマ処理装置として、チャンバー内に相対向する電極を設けたものを用いて行うことができる。すなわち、上記電極の間に、上記ゲル膜が形成されたセパレータ本体1を配置するとともに、上記チャンバー内に大気圧プラズマに用いるガスを供給した後、上記電極の間に電圧を印加して大気圧プラズマを発生させる。これにより、プラズマ中の活性種が上記ゲル膜に直接作用し、短時間で上記親水膜2を形成する。
【0020】
そして、上記大気圧プラズマ処理も、上記真空紫外光の照射と同様に、室温(25℃)下で行なうことができ、上記親水膜2については、上記実施の形態と同様の作用・効果を奏する。また、上記大気圧プラズマ処理でも、上記真空紫外光の照射と同様に、高温工程や真空(減圧)工程がなく、上記親水膜2の形成が簡単かつ安価にできる。
【0021】
また、上記大気圧プラズマ処理において、電極の間に印加する電圧は、大気圧プラズマが発生すれば、特に限定されるものではないが、通常、1〜10kVの範囲である。また、その電源の周波数も、大気圧プラズマが発生すれば、特に限定されるものではないが、通常、1〜20kHzの範囲である。また、大気圧プラズマ処理を行なう時間は、特に限定されないが、親水性を飛躍的に高くするためには、5秒以上であることが好ましい。また、上記大気圧プラズマに用いるガスとしては、大気圧プラズマが発生すれば、特に限定されるものではないが、通常、ヘリウム,ネオン,アルゴン,クリプトン,キセノン,ラドンおよび窒素からなる不活性ガス群から選ばれる少なくとも一つが用いられる。
【0022】
なお、上記各実施の形態では、図1に示すように、親水膜2をセパレータ本体1の表面全体に形成しているが、セパレータ本体1の表面に形成された条溝1aの表面(条溝1aの底面および両側面)にのみ親水膜2を形成してもよい。また、親水膜2をセパレータ本体1の表面にのみ形成したが、セパレータ本体1の裏面にも同様にして親水膜2を形成してもよい。
【0023】
つぎに、実施例について比較例と併せて説明する。
【0024】
【実施例1】
上記一実施の形態と同様にして、酸化珪素を主成分とし、親水性を発揮する水酸化珪素等の水酸基を備えた成分を含有している親水膜2を形成した。すなわち、まず、ガラス状カーボン基板(東海カーボン社製、GL100)からなる燃料電池用セパレータ本体1の表面に、酸化珪素薄膜をゾルゲル法により製膜する際に用いるゾル溶液(高純度化学研究所製、MODコード剤Si−05S)をスピンコート法により塗布してゲル膜を形成した。ついで、このゲル膜にArエキシマ光(波長:126nm)を10分間照射することにより、厚み130nmの親水膜2を形成し、燃料電池用セパレータを得た。
【0025】
【実施例2】
ゲル膜に照射する真空紫外光をXeエキシマ光(波長:172nm)とした。それ以外は、上記実施例1と同様にして、厚み130nmの親水膜2を形成し、燃料電池用セパレータを得た。
【0026】
【実施例3】
上記他の実施の形態と同様にして、酸化珪素を主成分とし、親水性を発揮する水酸化珪素等の水酸基を備えた成分を含有している親水膜2を形成した。すなわち、上記実施例1において、ゲル膜にArエキシマ光を照射するのに代えて、大気圧プラズマ処理を1分間行なった。大気圧プラズマに用いるガスとして、アルゴンを用いた。そして、電源として、周波数が5kHzの交流電源を用い、電極の間に3kVの電圧を印加した。これにより、上記実施例1と同様の厚み130nmの親水膜2を形成し、燃料電池用セパレータを得た。
【0027】
【比較例1】
上記実施例1〜3と同様のガラス状カーボン基板からなる燃料電池用セパレータを準備した。その表面に親水膜2は形成しなかった。
【0028】
そして、上記各燃料電池用セパレータの表面に、スポイトで純水を1滴垂らし、接触角測定機(エルマ社製、G−1−1000型)を用いて純水との接触角を測定した。上記実施例1〜3の燃料電池用セパレータに対する測定は、親水膜2の形成直後およびその形成から室温(25℃)下で30日間保管した後の2回行なった。
【0029】
その結果、実施例1〜3については、どちらも、親水膜2の形成直後の接触角が0度(濡れ広がり状態)、30日後の接触角も0度(濡れ広がり状態)であったのに対し、比較例1については、110度であった。
【0030】
上記結果から、実施例1,2のように、ゲル膜にエキシマ光を照射して親水膜2を形成したり、実施例3のように、ゲル膜に大気圧プラズマ処理して親水膜2を形成したりすれば、純水との接触角が飛躍的に小さくなって親水性が飛躍的に向上するとともに、その親水性が長期間持続することがわかる。
【0031】
【実施例4】
親水膜2の赤外線吸収スペクトルを測定し易くするために、ステンレス板の表面に金をスパッタリングした基板に、上記実施例1と同様にして、親水膜2を形成した。ガラス状カーボン基板では、良好な赤外線吸収スペクトルの測定を行なうことができないからである。そして、その親水膜2の赤外線吸収スペクトルを測定した結果を図2に示した。
【0032】
図2では、ゾルゲル法により製膜した通常の酸化珪素薄膜には見られない水酸化珪素に帰属する波数940cm−1に吸収帯が現れている。この結果から、実施例4のように、ゲル膜にエキシマ光を照射して形成した親水膜2には、親水性を発揮する水酸化珪素が残っていることがわかる。
【0033】
【発明の効果】
以上のように、本発明の燃料電池用セパレータによれば、燃料電池用セパレータ本体の表面に、酸化珪素を主成分とし、水酸基を備えた成分を含有している親水膜が形成されているため、その親水膜が飛躍的に高い親水性を示し、上記燃料電池用セパレータの表面において、生成水の排出を速くすることができる。その結果、燃料ガスや空気の流路を大きく確保することができ、燃料電池の性能を向上させることができる。
【0034】
また、本発明の燃料電池用セパレータの表面処理方法によれば、酸化珪素を主成分とするゾル溶液を燃料電池用セパレータ本体の表面に塗布してゲル膜を形成する工程と、このゲル膜に対して真空紫外光の照射または大気圧プラズマ処理を行なうことにより、水酸基を備えた成分が含有されている親水膜を形成する工程とを備えているため、燃料電池用セパレータを、表面における生成水の排出が速いものとすることができる。その結果、燃料ガスや空気の流路を大きく確保することができるようになり、燃料電池の性能を向上させることができる。さらに、ゲル膜に真空紫外光を照射するという簡単な工程により親水膜を形成することができるため、安価に親水膜を形成することができる。
【0035】
そして、本発明の燃料電池用セパレータの表面処理方法において、真空紫外光の照射がエキシマランプを用いて行なわれる場合には、その照射作業が簡単かつ安価に行なうことができるため、より簡単かつ安価に上記親水膜を形成することができる。
【図面の簡単な説明】
【図1】本発明の燃料電池用セパレータの一実施の形態を示す斜視図である。
【図2】本発明の燃料電池用セパレータの表面処理法により形成した親水膜の赤外線吸収スペクトルを示すグラフ図である。
【符号の説明】
1 セパレータ本体
2 親水膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell separator and a surface treatment method thereof.
[0002]
[Prior art]
Generally, a fuel cell is provided with a separator in order to prevent fuel gas (eg, hydrogen) from mixing with air (eg, oxygen). The separator has a plate shape, and has grooves formed on one surface to be flow paths for fuel gas, and grooves formed to be flow paths for air on the other surface. Further, the material of the separator is an impregnated material obtained by processing a graphite block to make it impervious, or a liquid resin impregnated material obtained by impregnating a liquid resin into an expanded graphite sheet laminate and curing the same.
[0003]
In the power generation process of the fuel cell, generated water is generated on the fuel gas flow path side or the air flow path side depending on the type of the fuel cell. Therefore, one of the functions required of the separator is a function of quickly discharging the generated water from the grooves formed on the surface to secure a flow path for the fuel gas or air. This is because the performance of the fuel cell can be improved if the generated water is discharged quickly to secure the flow path of the fuel gas and the air.
[0004]
[Problems to be solved by the invention]
However, in the separator made of the above-mentioned material, the generated water is easily repelled. Therefore, the generated water is present as water droplets in the groove, and the generated water is not discharged quickly. This has hindered the performance improvement of the fuel cell.
[0005]
Therefore, it is conceivable to form a silicon oxide thin film, which is used in a wide range of fields as a film having hydrophilicity, on the surface of the groove. This conventionally known silicon oxide thin film is formed by a sol-gel method or a sputtering method. However, the sol-gel method involves a high-temperature step, and the sputtering method involves a vacuum (decompression) step. In addition, the silicon oxide thin film thus formed has a hydrophilic property in which the contact angle with pure water is about 40 to 50 degrees, and does not exhibit a very high hydrophilic property. This is presumably because a component having a hydroxyl group exhibiting hydrophilicity was removed by a high-temperature process or the like. Therefore, even if a silicon oxide thin film is formed by a sol-gel method or the like, discharge of generated water in the grooves is not so fast.
[0006]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a fuel cell separator capable of rapidly discharging generated water on the surface of the fuel cell separator, and a method of treating the surface thereof.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a fuel cell separator in which a hydrophilic film containing silicon oxide as a main component and a component having a hydroxyl group is formed on the surface of the fuel cell separator body. As a first gist, a step of applying a sol solution containing silicon oxide as a main component to the surface of a fuel cell separator body to form a gel film, and irradiating the gel film with vacuum ultraviolet light, Forming a surface treatment method for a fuel cell separator comprising a step of forming a hydrophilic film containing a component having a hydroxyl group as a second gist, and performing atmospheric pressure plasma treatment on the gel film, A third gist of the present invention is a method for treating a surface of a fuel cell separator, which comprises a step of forming a hydrophilic film containing a component having a hydroxyl group.
[0008]
Means for Solving the Problems The present inventors have intensively studied to speed up the discharge of generated water on the surface of a fuel cell separator. In the course of the study, it was found that if the surface of the separator was made hydrophilic, the generated water was discharged more quickly. It has also been found that the surface can be made hydrophilic by forming a thin film (hydrophilic film) containing silicon oxide as a main component on the surface. And I did further research. As a result, when the thin film (hydrophilic film) is formed by irradiating vacuum ultraviolet light or atmospheric pressure plasma treatment to the gel film containing silicon oxide as a main component, the formed thin film (hydrophilic film) Has found that a component having a hydroxyl group exhibiting hydrophilicity remains without being removed. Thereby, the hydrophilicity of the thin film (hydrophilic film) was remarkably improved, and discharge of generated water on the surface of the separator was further accelerated. Thus, the present inventors have reached the present invention.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
FIG. 1 shows an embodiment of the fuel cell separator of the present invention. In this embodiment, the fuel cell separator includes a plate-shaped fuel cell separator main body 1 and a hydrophilic film 2 formed on the surface of the separator main body 1. The hydrophilic film 2 is mainly composed of silicon oxide, and contains a component having a hydroxyl group such as silicon hydroxide exhibiting hydrophilicity. Further, the separator body 1 has a plurality of grooves (3 in FIG. 1, three on the front surface, four on the back surface) formed on each of the front and back surfaces, and has an uneven shape. The above-mentioned separator is also formed with a plurality of grooves (three on the front surface and four on the back surface in FIG. 1) on the front and back surfaces, respectively, and has an uneven shape. The grooves 2a and 1b in the separator serve as flow paths for fuel gas and air.
[0011]
More specifically, the material of the separator main body 1 is not particularly limited, and is a material used for a normal separator as described in the above-described conventional technique. A material having carbon as a main component is preferable because it has both corrosion resistance and corrosion resistance. Examples of the material containing carbon as a main component include glassy carbon and graphite. The method for producing the separator body 1 is not particularly limited, but is usually produced by molding. The grooves 1a and 1b on the surface of the separator main body 1 may be formed by transfer of a molding die, or may be formed by forming a substrate of the plate-like separator main body 1 and thereafter by machining.
[0012]
Unlike the silicon oxide thin film formed by the sol-gel method, the hydrophilic film 2 contains a component having a hydroxyl group such as silicon hydroxide, and since this component is a component exhibiting hydrophilicity, Compared to a silicon oxide thin film formed by the method, it exhibits dramatically higher hydrophilicity. That is, the contact angle between the silicon oxide thin film and pure water by the sol-gel method is about 40 to 50 degrees as described above, whereas the contact angle between the hydrophilic film 2 and pure water is 10 degrees. The temperature can be set as low as possible, and can be as close as possible to 0 degrees depending on the conditions for forming the hydrophilic film 2. Further, the hydrophilic film 2 can maintain its hydrophilicity for a long time. The thickness of the hydrophilic film 2 is not particularly limited, but is preferably 10 nm or more. If the thickness is less than 10 nm, the hydrophilicity may not be sufficiently exhibited. Further, since the hydrophilic film 2 contains a component having a hydroxyl group such as silicon hydroxide, when an infrared absorption spectrum is measured for the hydrophilic film 2, an absorption band appears at a wave number attributed to each component. . For example, in the case of silicon hydroxide, an absorption band appears at a wave number of 940 cm −1 .
[0013]
The formation of the hydrophilic film 2 (surface treatment of the separator) can be performed, for example, as follows. That is, first, a sol solution (a sol solution containing silicon oxide as a main component) used when forming a silicon oxide thin film by a sol-gel method is applied to the surface of the separator body 1 to form a gel film. Then, the hydrophilic film 2 is formed by irradiating the gel film with vacuum ultraviolet light using an excimer lamp or the like.
[0014]
In the formation of the hydrophilic film 2, the sol solution is not particularly limited as long as the sol solution can form a silicon oxide thin film by a sol-gel method, and hydrolyzes tetraethoxysilane or the like under an acidic catalyst. And a sol solution obtained by condensation polymerization. The method of applying the sol solution is not particularly limited, and a method used in a normal sol-gel method such as a dipping method, a spin coating method, and a spraying method can be employed.
[0015]
Irradiation with vacuum ultraviolet light can usually be performed at room temperature (25 ° C.). However, if the fuel cell separator main body 1 does not deteriorate and the gel film does not react with heat, heating is performed. May be. As described above, in the step of forming the hydrophilic film 2 by irradiating the gel film with the vacuum ultraviolet light, unlike the sol-gel method, since heat for causing the gel film to react is not applied, water contained in the gel film is not applied. At least a part of a component having a hydroxyl group such as silicon oxide remains on the hydrophilic film 2 without reacting. Therefore, the hydrophilic film 2 formed by such a method for treating the surface of the separator exhibits a remarkably high hydrophilicity as compared with the hydrophilicity of the silicon oxide thin film formed by the sol-gel method. As a result, in the grooves 2a formed on the surface of the separator, the generated water is discharged more quickly. The time for irradiating the vacuum ultraviolet light is not particularly limited, but is preferably 15 seconds or more in order to dramatically increase the hydrophilicity.
[0016]
As described above, according to the separator of the above embodiment, the hydrophilic film 2 formed on the surface of the separator contains a component having a hydroxyl group such as silicon hydroxide. , The generated water in the grooves 2a formed on the surface of the separator can be discharged quickly, so that a large flow path for fuel gas or air can be secured, and the performance of the fuel cell can be improved. Can be improved.
[0017]
Further, according to the method for treating the surface of the separator of the above-described embodiment, the hydrophilic film 2 can be formed by irradiating the gel film with vacuum ultraviolet light. There is no step or vacuum (decompression) step, and the formation of the hydrophilic film 2 can be simple and inexpensive. In particular, when irradiation with vacuum ultraviolet light is performed using an excimer lamp, the irradiation operation can be performed easily and inexpensively, so that the formation of the hydrophilic film 2 can be performed more simply and inexpensively.
[0018]
Next, another embodiment of the fuel cell separator of the present invention will be described. In this embodiment, as the formation of the hydrophilic film 2 (surface treatment of the separator), atmospheric pressure plasma processing is performed instead of irradiation with vacuum ultraviolet light in the above embodiment. That is, the hydrophilic film 2 is formed by subjecting a gel film formed in the same manner as described above to an atmospheric pressure plasma treatment.
[0019]
The above-mentioned atmospheric pressure plasma treatment is not particularly limited. For example, the atmospheric pressure plasma treatment can be performed using an atmospheric pressure plasma treatment apparatus provided with opposing electrodes in a chamber. That is, the separator body 1 on which the gel film is formed is arranged between the electrodes, and a gas used for atmospheric pressure plasma is supplied into the chamber. Generate plasma. Thereby, the active species in the plasma directly act on the gel film, and form the hydrophilic film 2 in a short time.
[0020]
The atmospheric pressure plasma treatment can also be performed at room temperature (25 ° C.) as in the case of the irradiation of the vacuum ultraviolet light, and the hydrophilic film 2 has the same operation and effect as those of the above embodiment. . Also, in the above-mentioned atmospheric pressure plasma treatment, similarly to the above-mentioned vacuum ultraviolet light irradiation, there is no high-temperature step or vacuum (decompression) step, and the formation of the hydrophilic film 2 can be performed simply and at low cost.
[0021]
In the atmospheric pressure plasma treatment, the voltage applied between the electrodes is not particularly limited as long as the atmospheric pressure plasma is generated, but is usually in the range of 1 to 10 kV. The frequency of the power supply is not particularly limited as long as atmospheric pressure plasma is generated, but is usually in the range of 1 to 20 kHz. The time for performing the atmospheric pressure plasma treatment is not particularly limited, but is preferably 5 seconds or more in order to dramatically increase the hydrophilicity. The gas used for the atmospheric pressure plasma is not particularly limited as long as the atmospheric pressure plasma is generated, but is usually an inert gas group consisting of helium, neon, argon, krypton, xenon, radon and nitrogen. At least one selected from the following is used.
[0022]
In each of the above embodiments, as shown in FIG. 1, the hydrophilic film 2 is formed on the entire surface of the separator main body 1. However, the surface (the groove) of the groove 1a formed on the surface of the separator main body 1 is formed. The hydrophilic film 2 may be formed only on the bottom surface and both side surfaces 1a. Although the hydrophilic film 2 is formed only on the front surface of the separator main body 1, the hydrophilic film 2 may be formed on the back surface of the separator main body 1 in the same manner.
[0023]
Next, examples will be described together with comparative examples.
[0024]
Embodiment 1
In the same manner as in the first embodiment, a hydrophilic film 2 containing silicon oxide as a main component and containing a component having a hydroxyl group such as silicon hydroxide exhibiting hydrophilicity was formed. That is, first, a sol solution (manufactured by Kojundo Chemical Laboratory) used when a silicon oxide thin film is formed by a sol-gel method on the surface of a fuel cell separator main body 1 made of a glassy carbon substrate (GL100 manufactured by Tokai Carbon Co., Ltd.). MOD code agent Si-05S) was applied by spin coating to form a gel film. Next, the gel film was irradiated with Ar excimer light (wavelength: 126 nm) for 10 minutes to form a hydrophilic film 2 having a thickness of 130 nm, thereby obtaining a fuel cell separator.
[0025]
Embodiment 2
The vacuum ultraviolet light applied to the gel film was Xe excimer light (wavelength: 172 nm). Otherwise, in the same manner as in Example 1 above, a hydrophilic film 2 having a thickness of 130 nm was formed to obtain a fuel cell separator.
[0026]
Embodiment 3
In the same manner as in the other embodiments, a hydrophilic film 2 containing silicon oxide as a main component and containing a component having a hydroxyl group such as silicon hydroxide exhibiting hydrophilicity was formed. That is, in the first embodiment, atmospheric pressure plasma treatment was performed for 1 minute instead of irradiating the gel film with Ar excimer light. Argon was used as a gas for atmospheric pressure plasma. Then, an AC power supply having a frequency of 5 kHz was used as a power supply, and a voltage of 3 kV was applied between the electrodes. As a result, a hydrophilic film 2 having a thickness of 130 nm was formed in the same manner as in Example 1 to obtain a fuel cell separator.
[0027]
[Comparative Example 1]
A fuel cell separator made of the same glassy carbon substrate as in Examples 1 to 3 was prepared. No hydrophilic film 2 was formed on the surface.
[0028]
Then, one drop of pure water was dropped on the surface of each of the fuel cell separators with a dropper, and the contact angle with pure water was measured using a contact angle measuring device (manufactured by Elma, G-1-1000 type). The measurements for the fuel cell separators of Examples 1 to 3 were performed twice immediately after the formation of the hydrophilic film 2 and after storage for 30 days at room temperature (25 ° C.) after the formation.
[0029]
As a result, in Examples 1 to 3, the contact angle immediately after the formation of the hydrophilic film 2 was 0 degree (wet and spread state) and the contact angle after 30 days was 0 degree (wet and spread state). On the other hand, in Comparative Example 1, it was 110 degrees.
[0030]
From the above results, as in Examples 1 and 2, the gel film was irradiated with excimer light to form the hydrophilic film 2, or as in Example 3, the gel film was subjected to atmospheric pressure plasma treatment to form the hydrophilic film 2. If it is formed, it can be seen that the contact angle with pure water is dramatically reduced, the hydrophilicity is dramatically improved, and the hydrophilicity is maintained for a long time.
[0031]
Embodiment 4
In order to make it easier to measure the infrared absorption spectrum of the hydrophilic film 2, a hydrophilic film 2 was formed on a substrate obtained by sputtering gold on the surface of a stainless steel plate in the same manner as in Example 1 above. This is because good infrared absorption spectrum cannot be measured with a glassy carbon substrate. And the result of having measured the infrared absorption spectrum of the hydrophilic film 2 was shown in FIG.
[0032]
In FIG. 2, an absorption band appears at a wave number of 940 cm −1 belonging to silicon hydroxide, which is not found in a normal silicon oxide thin film formed by a sol-gel method. From this result, it is understood that silicon hydroxide exhibiting hydrophilicity remains in the hydrophilic film 2 formed by irradiating the gel film with excimer light as in Example 4.
[0033]
【The invention's effect】
As described above, according to the fuel cell separator of the present invention, the surface of the fuel cell separator body is formed with a hydrophilic film containing silicon oxide as a main component and a component having a hydroxyl group. In addition, the hydrophilic film shows a remarkably high hydrophilicity, and the discharge of generated water can be made faster on the surface of the fuel cell separator. As a result, a large flow path for fuel gas and air can be secured, and the performance of the fuel cell can be improved.
[0034]
Further, according to the method for treating the surface of a fuel cell separator of the present invention, a step of applying a sol solution containing silicon oxide as a main component to the surface of the fuel cell separator body to form a gel film; Forming a hydrophilic film containing a component having a hydroxyl group by irradiating vacuum ultraviolet light or atmospheric pressure plasma treatment on the surface of the fuel cell separator. Can be discharged quickly. As a result, a large flow path for the fuel gas and air can be secured, and the performance of the fuel cell can be improved. Furthermore, since the hydrophilic film can be formed by a simple process of irradiating the gel film with vacuum ultraviolet light, the hydrophilic film can be formed at low cost.
[0035]
In the method for treating the surface of a fuel cell separator according to the present invention, when the irradiation of vacuum ultraviolet light is performed using an excimer lamp, the irradiation operation can be performed easily and inexpensively. The above-mentioned hydrophilic film can be formed.
[Brief description of the drawings]
FIG. 1 is a perspective view showing one embodiment of a fuel cell separator of the present invention.
FIG. 2 is a graph showing an infrared absorption spectrum of a hydrophilic film formed by a surface treatment method for a fuel cell separator of the present invention.
[Explanation of symbols]
1 Separator body 2 Hydrophilic film

Claims (4)

燃料電池用セパレータ本体の表面に、酸化珪素を主成分とし、水酸基を備えた成分を含有している親水膜が形成されていることを特徴とする燃料電池用セパレータ。A fuel cell separator, wherein a hydrophilic film containing silicon oxide as a main component and a component having a hydroxyl group is formed on a surface of the fuel cell separator body. 酸化珪素を主成分とするゾル溶液を燃料電池用セパレータ本体の表面に塗布してゲル膜を形成する工程と、このゲル膜に対して真空紫外光を照射することにより、水酸基を備えた成分が含有されている親水膜を形成する工程とを備えていることを特徴とする燃料電池用セパレータの表面処理方法。A step of applying a sol solution containing silicon oxide as a main component to the surface of the fuel cell separator body to form a gel film, and irradiating the gel film with vacuum ultraviolet light, whereby a component having a hydroxyl group is formed. Forming a hydrophilic film contained therein. A method for treating the surface of a fuel cell separator, comprising: 真空紫外光の照射がエキシマランプを用いて行なわれる請求項2記載の燃料電池用セパレータの表面処理方法。3. The method for treating a surface of a fuel cell separator according to claim 2, wherein the irradiation with vacuum ultraviolet light is performed using an excimer lamp. 酸化珪素を主成分とするゾル溶液を燃料電池用セパレータ本体の表面に塗布してゲル膜を形成する工程と、このゲル膜に対して大気圧プラズマ処理することにより、水酸基を備えた成分が含有されている親水膜を形成する工程とを備えていることを特徴とする燃料電池用セパレータの表面処理方法。A step of applying a sol solution containing silicon oxide as a main component to the surface of the fuel cell separator body to form a gel film, and subjecting the gel film to an atmospheric pressure plasma treatment to contain a component having a hydroxyl group. Forming a hydrophilic film as described above.
JP2002259754A 2002-09-05 2002-09-05 Surface treatment method for fuel cell separator Expired - Fee Related JP3841732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259754A JP3841732B2 (en) 2002-09-05 2002-09-05 Surface treatment method for fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259754A JP3841732B2 (en) 2002-09-05 2002-09-05 Surface treatment method for fuel cell separator

Publications (2)

Publication Number Publication Date
JP2004103271A true JP2004103271A (en) 2004-04-02
JP3841732B2 JP3841732B2 (en) 2006-11-01

Family

ID=32260657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259754A Expired - Fee Related JP3841732B2 (en) 2002-09-05 2002-09-05 Surface treatment method for fuel cell separator

Country Status (1)

Country Link
JP (1) JP3841732B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185729A (en) * 2004-12-27 2006-07-13 Fj Composite:Kk Surface treatment method of fuel cell separator and fuel cell separator
JP2007066901A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Bipolar plate, unit cell, and fuel cell system equipped with it
JP2007095432A (en) * 2005-09-28 2007-04-12 Toshiba Corp Fuel cell and fuel cell system
WO2007055236A1 (en) 2005-11-09 2007-05-18 Dic Corporation Process for production of fuel cell separators and fuel cells
JP2007199313A (en) * 2006-01-25 2007-08-09 Univ Nagoya Electrochromic mirror and method of manufacturing same
EP1850413A1 (en) * 2006-04-28 2007-10-31 Samsung SDI Co., Ltd. Separator for Fuel Cell, Method of Preparing Same, and Fuell Cell System Including Same
JP2008108526A (en) * 2006-10-25 2008-05-08 Hitachi Ltd Fuel cell module structure
JP2008135299A (en) * 2006-11-28 2008-06-12 Toyota Motor Corp Fuel cell separator, method of manufacturing fuel cell separator and fuel cell
JP2009505354A (en) * 2005-08-12 2009-02-05 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Method for applying a hydrophilic coating to a fuel cell bipolar plate
JP2009505352A (en) * 2005-08-12 2009-02-05 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Hydrophilic coating for fuel cell bipolar plates and method of making the same
JP2009099556A (en) * 2007-09-26 2009-05-07 Nitto Shoji Kk Fuel cell separator using hydrophilic treatment composition, and manufacturing method thereof
US7534510B2 (en) 2004-09-03 2009-05-19 The Gillette Company Fuel compositions
JP2010238645A (en) * 2009-03-31 2010-10-21 Mizuho Information & Research Institute Inc Fuel cell and separator used in fuel cell
DE102008055808B4 (en) * 2007-11-07 2021-04-29 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Fuel cell with hydrophilic bipolar plates and method for producing a flow field plate for such a fuel cell

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989117B2 (en) 2004-09-03 2011-08-02 The Gillette Company Fuel compositions
US7534510B2 (en) 2004-09-03 2009-05-19 The Gillette Company Fuel compositions
JP2006185729A (en) * 2004-12-27 2006-07-13 Fj Composite:Kk Surface treatment method of fuel cell separator and fuel cell separator
JP2009505352A (en) * 2005-08-12 2009-02-05 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Hydrophilic coating for fuel cell bipolar plates and method of making the same
JP2009505354A (en) * 2005-08-12 2009-02-05 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Method for applying a hydrophilic coating to a fuel cell bipolar plate
JP2007066901A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Bipolar plate, unit cell, and fuel cell system equipped with it
JP4723437B2 (en) * 2005-08-31 2011-07-13 三星エスディアイ株式会社 Bipolar plate, unit cell and fuel cell system provided with the same
JP2007095432A (en) * 2005-09-28 2007-04-12 Toshiba Corp Fuel cell and fuel cell system
WO2007055236A1 (en) 2005-11-09 2007-05-18 Dic Corporation Process for production of fuel cell separators and fuel cells
EP1947722A4 (en) * 2005-11-09 2011-02-02 Dainippon Ink & Chemicals Process for production of fuel cell separators and fuel cells
EP1947722A1 (en) * 2005-11-09 2008-07-23 DIC Corporation Process for production of fuel cell separators and fuel cells
JP2007199313A (en) * 2006-01-25 2007-08-09 Univ Nagoya Electrochromic mirror and method of manufacturing same
EP1850413A1 (en) * 2006-04-28 2007-10-31 Samsung SDI Co., Ltd. Separator for Fuel Cell, Method of Preparing Same, and Fuell Cell System Including Same
JP2007299754A (en) * 2006-04-28 2007-11-15 Samsung Sdi Co Ltd Fuel cell separator, manufacturing method of fuel cell separator and fuel cell system equipped with fuel cell separator
US20070254204A1 (en) * 2006-04-28 2007-11-01 Samsung Sdi Co., Ltd. Separator for fuel cell, method of preparing same, and fuel cell system including same
KR101181836B1 (en) * 2006-04-28 2012-09-11 삼성에스디아이 주식회사 Seperater for fuel cell, method of preparing same, and fuel cell system comprising same
JP2008108526A (en) * 2006-10-25 2008-05-08 Hitachi Ltd Fuel cell module structure
JP2008135299A (en) * 2006-11-28 2008-06-12 Toyota Motor Corp Fuel cell separator, method of manufacturing fuel cell separator and fuel cell
JP2009099556A (en) * 2007-09-26 2009-05-07 Nitto Shoji Kk Fuel cell separator using hydrophilic treatment composition, and manufacturing method thereof
DE102008055808B4 (en) * 2007-11-07 2021-04-29 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Fuel cell with hydrophilic bipolar plates and method for producing a flow field plate for such a fuel cell
JP2010238645A (en) * 2009-03-31 2010-10-21 Mizuho Information & Research Institute Inc Fuel cell and separator used in fuel cell

Also Published As

Publication number Publication date
JP3841732B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP2004103271A (en) Separator for fuel cell and surface treatment method of same
JP3274669B2 (en) Fluorine resin with excellent wettability surface
US20050008919A1 (en) Lyophilic fuel cell component
TW200401043A (en) Dielectric-coated electrode, plasma discharge treatment and method for forming thin film
CN109234673A (en) A kind of high damage threshold anti-reflection film method prepared containing passivation layer
US6841082B2 (en) Method of manufacturing Er-doped silicon nano-dot array and laser ablation appparatus used therein
US5688410A (en) Method of ashing resist and apparatus therefor
EP0673751A2 (en) Process for modifying surface of fluororesin product
JP2002324591A (en) Optical active electrode for dye sensitized solar cell and manufacturing method therefor
US20040258975A1 (en) Fuel cell component with lyophilic surface
JP5042618B2 (en) Manufacturing method of metal separator for fuel cell
JP3014111B2 (en) Atmospheric pressure glow plasma etching method
JP2000026632A (en) Thin film formation on film substrate using normal pressure plasma
JP3551319B2 (en) Dry surface treatment method for making porous material surface hydrophilic
JP2002025570A (en) Processing method of separator for fuel cell and fuel cell
KR19980702598A (en) Improved material removable by laser
KR100740581B1 (en) Method for surface treatment of electrolyte membrane, surface-treated electrolyte membrane and polymer electrolyte membrane fuel cell including the electrolyte membrane
JPH08188663A (en) Process for treating surface of substrate
JPH10265596A (en) Composite porous film
JPS5852827A (en) Dry etching and device thereof
JP2003142116A (en) Surface treatment method of separator for fuel cell
Jardine et al. Plasma surface modification of ePTFE vascular grafts
JPH11241165A (en) Production of surface-treated article
JPH01211921A (en) Dry etching apparatus
KR20230154807A (en) Method for forming a hydrophilic surface on a graphite-containing material and method for manufacturing a bipolar plate, bipolar plate, and fuel cell or flow battery comprising the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Ref document number: 3841732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees