JP2004101861A - Wavelength tap circuit - Google Patents

Wavelength tap circuit Download PDF

Info

Publication number
JP2004101861A
JP2004101861A JP2002263536A JP2002263536A JP2004101861A JP 2004101861 A JP2004101861 A JP 2004101861A JP 2002263536 A JP2002263536 A JP 2002263536A JP 2002263536 A JP2002263536 A JP 2002263536A JP 2004101861 A JP2004101861 A JP 2004101861A
Authority
JP
Japan
Prior art keywords
optical waveguide
slab
waveguide
optical
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002263536A
Other languages
Japanese (ja)
Other versions
JP3832741B2 (en
Inventor
Takashi Saida
才田 隆志
Tsutomu Kito
鬼頭 勤
Ryoichi Kasahara
笠原 亮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002263536A priority Critical patent/JP3832741B2/en
Publication of JP2004101861A publication Critical patent/JP2004101861A/en
Application granted granted Critical
Publication of JP3832741B2 publication Critical patent/JP3832741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength tap circuit small in size and excellent in reproducibility. <P>SOLUTION: This circuit is equipped with an optical waveguide 11 for input, a first slab optical waveguide 12 optically connected to the optical waveguide 11 for input, an array optical waveguide 13 optically connected to the first slab optical waveguide and each array element having the same optical path as others, a second slab optical waveguide 13 optically connected to the array optical waveguide 13, an optical waveguide 15 for the main output optically connected to the second slab optical waveguide 14, and optical waveguide groups 16a, 16b for demultiplexing output. The clad region 17 formed near the optical connection between the array optical waveguide 13 and the second slab optical waveguide 14 is periodically modulated in the width. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光信号の一部を取り出して波長により合分波する波長タップ回路に関する。
【0002】
【従来の技術】
インターネットの爆発的進展に伴い、波長多重光通信システムの導入が世界的に進んでいる。
このような波長多重光通信システムの保守・運営では、各波長での光信号をそれぞれモニタするデバイスが必須である。
従来の波長多重された光信号をモニタするための光導波路デバイスの構成を図3に示す。
【0003】
基板100上に、入力用光導波路101と、導波路型光カプラ102と、アレイ導波路格子フィルタ103と、主出力用光導波路104と、分波出力用光導波路105が設けられており、入力された光信号を導波路型光カプラ102で分岐して、大部分は主出力用光導波路104に導き、一部はアレイ光導波路格子フィルタ103で波長毎に分けて、その出力強度を分波出力用光導波路105でモニタする構成である。
この出願の発明に関連する先行技術文献情報としては次のものがある。
【0004】
【非特許文献1】
H. Suzuki, and N. Takachio, ”Optical signal quality monitor built intoWDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes,” Electronics Letters , Volume: 35 Issue: 10 , 13 May 1999, Page(s): 836−837
【0005】
【発明が解決しようとする課題】
しかしながら、上述した従来の波長多重された光信号のモニタでは、以下に示す問題があった。
第一に、導波路型光カプラの分岐比は例えば99:1といった非対称な値にする必要があるが、このような導波路型光カプラでは、結合比が作製条件の僅かな変化などによってばらつき、また結合比の偏波依存性が大きくなる問題があった。
第二に、波長を分波するためのアレイ導波路格子フィルタで例えば100を超える波長チャネルを分波しようとすると、光回路のサイズが大きくなり、また作製条件の僅かな変化に極めて敏感となる問題があった。
【0006】
【課題を解決するための手段】
上記の課題を解決する本発明の波長タップ回路は、基板上に、入力用光導波路と、前記入力用光導波路に光学的に接続された第一のスラブ光導波路と、前記第一のスラブ光導波路に光学的に接続された互いに光路の等しいアレイ光導波路と、前記アレイ光導波路に光学的に接続された第二のスラブ光導波路と、前記第二のスラブ光導波路に光学的に接続された主出力用光導波路と分波出力用光導波路群とを備えており、前記アレイ光導波路と前記第二のスラブ光導波路の光学的接続部近傍に設けたクラッド領域の幅が周期的に変調されていることを特徴としている。
このような構成とすることで、作製誤差に不感で小型な波長タップ回路を提供することができる。
【0007】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。
ただし、説明の反復を避けるために、図中では同じ機能を有する光学回路には同じ番号を付与している。
また、以下の説明では、光導波路はシリコン基板上に形成された石英系光導波路である。
これは、安定で信頼性に優れた波長タップ回路を実現できるからである。
しかしながら、本発明はこの構成に限定されるものではなく、半導体光導波路や誘電体光導波路など、他の材料による光導波路を用いても勿論構わないし、石英基板上に形成された石英系光導波路を用いても勿論構わない。
【0008】
本発明の実施形態に係る波長タップ回路の構成を図1に示す。
図1に示すように、基板10上には、入力用光導波路11、第一のスラブ光導波路12、互いに長さの等しいアレイ光導波路13、第二のスラブ光導波路14、主出力用光導波路15、分波出力用光導波路16a及び16bがこの順に接続されており、アレイ光導波路13と第二のスラブ光導波路14の光学的接続部では幅が周期的に変調されたクラッド領域17が設けられている。
【0009】
ここで、互いに長さの等しいアレイ光導波路13は、S字型の導波路レイアウトで実現した(特願平06−27339号「光デバイス」参照)。
これは、この構成が互いに長さの等しいアレイ光導波路を小型に実現できるからである。
しかしながら、本発明はこの構成に限定されるものではなく、例えばW字型の導波路レイアウト(特願平9−211698号「アレイ導波路格子」参照)を用いても勿論構わない。
【0010】
また、本実施形態に係る波長タップ回路では、分波出力用光導波路16a,16bを2群用いるとした。
しかしながら、これはどちらか一方だけ用いるとしても、勿論構わない。
また、本実施形態に係る波長タップ回路では、第一のスラブ光導波路12と第二のスラブ光導波路14が同じ長さであるとしたが、大きさが異なっていても、本発明の請求範囲を逸脱するものではない。
【0011】
アレイ光導波路13とスラブ導波路14の接続部の拡大図を図4に示す。
図4に示すように、アレイ導波路13の端部は、光が主出力用光導波路15に集光するように傾けて配置されている。
本実施形態に係る波長タップ回路では、第二のスラブ光導波路14の形状を変化させて、クラッド領域17の幅を変調するとしたが、これは、アレイ光導波路13の長さを変調して実現しても、もちろん構わない。
次に、式及び図を用いて図1に示す本実施形態に係る導波路型光フィルタの効果を説明する。
【0012】
いま、入力用光導波路11の最低次モードの空間分布をa(x,y)とする。ここで、xは入力用光導波路11の光伝播方向に直交し、基板に平行な軸であり、yは入力用光導波路11の光伝播方向に直交し、基板に垂直な軸である。
このとき、第一のスラブ光導波路12を伝播後の光電界の空間分布A(w,y)は、位相項を無視して次式で表される。
【0013】
【数1】

Figure 2004101861
【0014】
ここで、nはスラブ導波路の群屈折率、λは光波長、Lは第一及び第二のスラブ光導波路の長さ、wは第一のスラブ光導波路出射側端部において光伝播方向に直交し基板に平行な軸である。
第一のスラブ光導波路12伝搬後の光電界A(w,y)は、互いに長さの等しいアレイ導波路13によって位相関係も含めて第二のスラブ光導波路14端部へと導かれる。
アレイ導波路13の端部は、光が主出力用光導波路15に集光するように傾けて配置されている。
幅が空間的に変調されたクラッド領域17により位相変調される。
このときの位相変調量を次式で表す。
【0015】
【数2】
Figure 2004101861
【0016】
ここで、Pは位相変調の振幅、Qは位相変調の空間周期である。
が1より十分小さいとすれば、位相変調を受けた第二のスラブ光導波路のアレイ光導波路13側でのフィールドB(w,y)は、位相項を無視して次式で表すことができる。
【0017】
【数3】
Figure 2004101861
【0018】
ここに、J(x)はベッセル関数である。
従って、第二のスラブ光導波路14を伝搬後の光電界b(x,y)は、次式で与えられる。
【0019】
【数4】
Figure 2004101861
【0020】
即ち、第二のスラブ光導波路14の主出力用光導波路15側では、入力用光導波路11と同じ位置に元のフィールドa(x,y)が得られ、そこから波長λに比例してシフトした位置±Lλ/nQに、元のフィールドと同じ形状のフィールドが得られることがわかる。
【0021】
従って、入力用光導波路11と鏡像の位置に主出力用光導波路15を配置し、±Lλ/nQの位置に各光波長に応じた分波出力用光導波路16a,16bを備えるので、入力用光導波路11に導かれた大部分の光は主出力用光導波路15より出力し、一部が波長に応じて分波出力用光導波路16a,16bから波長に応じて出力することとなり、波長タップ回路が実現できる。
【0022】
本実施形態に係る波長タップ回路は、シリコン基板上に形成した石英系光導波路により作製した。
スラブ長は30mm、光周波数間隔は100GHz、クラッド領域の変調周期は1μmとし、チャネル数は80chとした。
作製した波長タップ回路の、クラッド領域の幅の最大値と、主出力と波長分波出力の出力光強度の関係を図2に示す。
図2より判るように、本発明の波長タップ回路ではクラッド領域17の変調幅によってタップ率を変化できるので、安定にタップ係数を実現することができる。
また、クラッド領域17の屈折率は偏波依存性が極めて小さいので、偏波依存性の小さなタップを実現できる。
【0023】
このように説明したように、本発明は、平面基板上に作成された光導波同路(PLC)で回折格子による光の分波を実現したものである。
アレイ導波路格子回路(Arrayed Waveguide Grating :AWG)では長さの異なる複数のアレイ導波路が回折格子の役目を果たしていまたが、本願発明では出力側スラブ導波路14の端面に設けられた周期的な構造であるクラッド領域17が回折格子の役割を果たすものである。
【0024】
入力用光導波路11を伝搬してきた光a(x,y)は、第一のスラブ導波路12を経て式(1)で示されるA(w,y)に変換される。
wは第一のスラブ導波路12の出力側端部における、基板10と平行な方向の座標である。
A(w,y)を回折格子であるクラッド領域17に入射する際には、回折後の光の大部分が主出力用光導波路15に集光するように光を入射させる。
これは、アレイ導波路13から出射する光が主出力用光導波路15に向かって進むように、アレイ導波路13の出射端をそれぞれ傾けて配置することで実現される。
【0025】
つまり、アレイ導波路13は、光が主出力用光導波路15に集光するように、回折格子にA(w,y)を入射させるために用いられる。
回折格子の働きによって、A(w,y)の一部は主出力用光導波路15と異なる位置にある分波出力用光導波路16a,16bに集光するので、波長タップ回路が実現される。
従って、本発明の波長タップ回路によれば、図2に示す通り、出力側スラブ導波路14に設けた周期的構造であるクラッド領域17の周期によってタップ率を変えることができるので、安定なタップ係数が実現される。
【0026】
【発明の効果】
以上、図面を参照して詳細に説明したように、本発明の波長タップ回路を用いれば、小型で再現性の良好な波長タップ回路を提供できる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る波長タップ回路の構成を表す概略図である。
【図2】本発明の実施形態に係る波長タップ回路の、クラッド領域の変調幅と主出力と波長分波出力の関係を表すグラフである。
【図3】従来の波長多重された光信号をモニタするための光導波路デバイスの構成を表す図である。
【図4】アレイ光導波路とスラブ導波路の接続部の拡大図である。
【符号の説明】
10 基板
11 入力用光導波路
12 第一のスラブ光導波路
13 アレイ光導波路
14 第二のスラブ光導波路
15 主出力用光導波路
16 分波出力用光導波路
17 幅の変調されたクラッド領域
100 基板
101 入力用光導波路
102 光カプラ
103 アレイ導波路格子フィルタ
l04 主出力用光導波路
105 分波出力用光導波路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wavelength tap circuit that extracts a part of an optical signal and multiplexes / demultiplexes the signal by wavelength.
[0002]
[Prior art]
With the explosion of the Internet, the introduction of WDM optical communication systems is progressing worldwide.
In maintenance and operation of such a wavelength division multiplexing optical communication system, a device for monitoring an optical signal at each wavelength is essential.
FIG. 3 shows a configuration of a conventional optical waveguide device for monitoring a wavelength-multiplexed optical signal.
[0003]
An input optical waveguide 101, a waveguide type optical coupler 102, an arrayed waveguide grating filter 103, a main output optical waveguide 104, and a demultiplexed output optical waveguide 105 are provided on a substrate 100. The divided optical signal is branched by the waveguide type optical coupler 102, most of the branched signal is guided to the main output optical waveguide 104, and a part is divided for each wavelength by the arrayed optical waveguide grating filter 103, and the output intensity is demultiplexed. This is a configuration for monitoring by the output optical waveguide 105.
Prior art document information related to the invention of this application includes the following.
[0004]
[Non-patent document 1]
H. Suzuki, and N.M. Takachio, "Optical signal quality monitor built intoWDM linear repeaters using semiconductor arrayed waveguide grating filter monolithically integrated with eight photodiodes," Electronics Letters, Volume: 35 Issue: 10, 13 May 1999, Page (s): 836-837
[0005]
[Problems to be solved by the invention]
However, the above-described conventional monitor of wavelength-multiplexed optical signals has the following problems.
First, the branching ratio of the waveguide-type optical coupler needs to be an asymmetric value, for example, 99: 1. However, in such a waveguide-type optical coupler, the coupling ratio varies due to a slight change in manufacturing conditions or the like. In addition, there is a problem that the polarization dependence of the coupling ratio becomes large.
Second, the use of an arrayed waveguide grating filter for wavelength demultiplexing, for example, to demultiplex over 100 wavelength channels increases the size of the optical circuit and becomes extremely sensitive to slight changes in fabrication conditions. There was a problem.
[0006]
[Means for Solving the Problems]
A wavelength tap circuit according to the present invention that solves the above-mentioned problems includes, on a substrate, an input optical waveguide, a first slab optical waveguide optically connected to the input optical waveguide, and the first slab optical waveguide. An array optical waveguide having optical paths equal to each other optically connected to the waveguide, a second slab optical waveguide optically connected to the array optical waveguide, and optically connected to the second slab optical waveguide; A main output optical waveguide and a branch output optical waveguide group are provided, and the width of the cladding region provided near the optical connection between the array optical waveguide and the second slab optical waveguide is periodically modulated. It is characterized by having.
With such a configuration, a small wavelength tap circuit which is insensitive to a manufacturing error can be provided.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
However, to avoid repetition of description, the same numbers are given to optical circuits having the same functions in the drawings.
In the following description, the optical waveguide is a quartz optical waveguide formed on a silicon substrate.
This is because a stable and reliable wavelength tap circuit can be realized.
However, the present invention is not limited to this configuration, and it is a matter of course that an optical waveguide made of another material such as a semiconductor optical waveguide or a dielectric optical waveguide may be used, or a quartz optical waveguide formed on a quartz substrate. Of course, it does not matter even if it uses.
[0008]
FIG. 1 shows a configuration of a wavelength tap circuit according to an embodiment of the present invention.
As shown in FIG. 1, on a substrate 10, an input optical waveguide 11, a first slab optical waveguide 12, an array optical waveguide 13, equal in length to each other, a second slab optical waveguide 14, a main output optical waveguide. 15, the demultiplexing output optical waveguides 16a and 16b are connected in this order, and a clad region 17 whose width is periodically modulated is provided at an optical connection portion between the array optical waveguide 13 and the second slab optical waveguide 14. Have been.
[0009]
Here, the array optical waveguides 13 having the same length were realized by an S-shaped waveguide layout (see Japanese Patent Application No. 06-27339, “Optical Device”).
This is because this configuration makes it possible to miniaturize array optical waveguides having the same length.
However, the present invention is not limited to this configuration. For example, a W-shaped waveguide layout (refer to Japanese Patent Application No. 9-211698, “arrayed waveguide grating”) may be used.
[0010]
In the wavelength tap circuit according to the present embodiment, two groups of optical waveguides 16a and 16b for demultiplexing output are used.
However, it goes without saying that only one of them may be used.
Further, in the wavelength tap circuit according to the present embodiment, the first slab optical waveguide 12 and the second slab optical waveguide 14 have the same length. Does not deviate.
[0011]
FIG. 4 is an enlarged view of a connection portion between the array optical waveguide 13 and the slab waveguide 14.
As shown in FIG. 4, the end of the arrayed waveguide 13 is arranged so as to be inclined such that light is converged on the main output optical waveguide 15.
In the wavelength tap circuit according to the present embodiment, the width of the cladding region 17 is modulated by changing the shape of the second slab optical waveguide 14, but this is realized by modulating the length of the array optical waveguide 13. Of course, it doesn't matter.
Next, the effects of the waveguide type optical filter according to the present embodiment shown in FIG. 1 will be described using equations and drawings.
[0012]
Now, let the spatial distribution of the lowest mode of the input optical waveguide 11 be a (x, y). Here, x is an axis orthogonal to the light propagation direction of the input optical waveguide 11 and parallel to the substrate, and y is an axis orthogonal to the light propagation direction of the input optical waveguide 11 and perpendicular to the substrate.
At this time, the spatial distribution A (w, y) of the optical electric field after propagating through the first slab optical waveguide 12 is expressed by the following equation, ignoring the phase term.
[0013]
(Equation 1)
Figure 2004101861
[0014]
Here, n is the group refractive index of the slab waveguide, λ is the light wavelength, L is the length of the first and second slab waveguides, w is the light propagation direction at the first slab waveguide exit end. The axis is orthogonal and parallel to the substrate.
The optical electric field A (w, y) after the propagation in the first slab optical waveguide 12 is guided to the end of the second slab optical waveguide 14 including the phase relationship by the array waveguides 13 having the same length.
The end of the arrayed waveguide 13 is arranged so as to be inclined so that light is focused on the main output optical waveguide 15.
The phase is modulated by the cladding region 17 whose width is spatially modulated.
The phase modulation amount at this time is represented by the following equation.
[0015]
(Equation 2)
Figure 2004101861
[0016]
Here, P 0 is the amplitude of the phase modulation, and Q is the spatial period of the phase modulation.
Assuming that P 0 is sufficiently smaller than 1, the field B (w, y) of the phase-modulated second slab optical waveguide on the array optical waveguide 13 side can be expressed by the following equation, ignoring the phase term. Can be.
[0017]
[Equation 3]
Figure 2004101861
[0018]
Here, J k (x) is a Bessel function.
Therefore, the optical electric field b (x, y) after propagating through the second slab optical waveguide 14 is given by the following equation.
[0019]
(Equation 4)
Figure 2004101861
[0020]
That is, on the side of the main output optical waveguide 15 of the second slab optical waveguide 14, the original field a (x, y) is obtained at the same position as the input optical waveguide 11, from which the shift is made in proportion to the wavelength λ. It can be seen that a field having the same shape as the original field is obtained at the position ± Lλ / nQ.
[0021]
Accordingly, the main output optical waveguide 15 is arranged at the position of the mirror image with the input optical waveguide 11, and the split output optical waveguides 16a and 16b corresponding to the respective optical wavelengths are provided at the positions of ± Lλ / nQ. Most of the light guided to the optical waveguide 11 is output from the main output optical waveguide 15, and part of the light is output from the demultiplexing output optical waveguides 16a and 16b according to the wavelength according to the wavelength. A circuit can be realized.
[0022]
The wavelength tap circuit according to the present embodiment was manufactured using a quartz optical waveguide formed on a silicon substrate.
The slab length was 30 mm, the optical frequency interval was 100 GHz, the modulation period of the cladding region was 1 μm, and the number of channels was 80 ch.
FIG. 2 shows the relationship between the maximum value of the width of the cladding region and the output light intensity of the main output and the wavelength division output of the manufactured wavelength tap circuit.
As can be seen from FIG. 2, the tap ratio can be changed by the modulation width of the cladding region 17 in the wavelength tap circuit of the present invention, so that the tap coefficient can be stably realized.
Further, since the polarization index of the refractive index of the cladding region 17 is extremely small, a tap having small polarization dependence can be realized.
[0023]
As described above, the present invention realizes the demultiplexing of light by a diffraction grating in an optical waveguide (PLC) formed on a flat substrate.
In the arrayed waveguide grating circuit (Arrayed Waveguide Grating: AWG), a plurality of arrayed waveguides having different lengths serve as diffraction gratings. In the present invention, the periodic waveguide provided on the end face of the output side slab waveguide 14 is used. The clad region 17 having a simple structure serves as a diffraction grating.
[0024]
The light a (x, y) propagating through the input optical waveguide 11 is converted into A (w, y) represented by Expression (1) via the first slab waveguide 12.
w is the coordinates of the output side end of the first slab waveguide 12 in the direction parallel to the substrate 10.
When A (w, y) is incident on the cladding region 17 which is a diffraction grating, light is incident so that most of the diffracted light is condensed on the main output optical waveguide 15.
This is realized by arranging the emission ends of the arrayed waveguides 13 so that the light emitted from the arrayed waveguides 13 travels toward the main output optical waveguide 15.
[0025]
That is, the arrayed waveguide 13 is used to make A (w, y) incident on the diffraction grating so that light is focused on the main output optical waveguide 15.
Due to the function of the diffraction grating, a part of A (w, y) is focused on the demultiplexing output optical waveguides 16a and 16b located at positions different from the main output optical waveguide 15, so that a wavelength tap circuit is realized.
Therefore, according to the wavelength tap circuit of the present invention, as shown in FIG. 2, the tap ratio can be changed by the period of the cladding region 17 which is a periodic structure provided in the output side slab waveguide 14, so that a stable tap can be obtained. The coefficients are realized.
[0026]
【The invention's effect】
As described above in detail with reference to the drawings, the use of the wavelength tap circuit of the present invention makes it possible to provide a small-sized wavelength tap circuit having good reproducibility.
[Brief description of the drawings]
FIG. 1 is a schematic diagram illustrating a configuration of a wavelength tap circuit according to an embodiment of the present invention.
FIG. 2 is a graph showing a relationship between a modulation width of a cladding region, a main output, and a wavelength demultiplexed output of the wavelength tap circuit according to the embodiment of the present invention.
FIG. 3 is a diagram illustrating a configuration of a conventional optical waveguide device for monitoring a wavelength-multiplexed optical signal.
FIG. 4 is an enlarged view of a connection portion between an array optical waveguide and a slab waveguide.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Substrate 11 Input optical waveguide 12 First slab optical waveguide 13 Array optical waveguide 14 Second slab optical waveguide 15 Main output optical waveguide 16 Demultiplexed output optical waveguide 17 Width modulated cladding region 100 Substrate 101 Input Optical waveguide 102 optical coupler 103 arrayed waveguide grating filter 104 main output optical waveguide 105 demultiplexed output optical waveguide

Claims (2)

基板上に、入力用光導波路と、前記入力用光導波路に光学的に接続された第一のスラブ光導波路と、前記第一のスラブ光導波路に光学的に接続された互いに光路の等しいアレイ光導波路と、前記アレイ光導波路に光学的に接続された第二のスラブ光導波路と、前記第二のスラブ光導波路に光学的に接続された主出力用光導波路と分波出力用光導波路群とを備えており、前記アレイ光導波路と前記第二のスラブ光導波路の光学的接続部近傍に設けたクラッド領域の幅が周期的に変調されていることを特徴とする波長タップ回路。On a substrate, an input optical waveguide, a first slab optical waveguide optically connected to the input optical waveguide, and an array optical waveguide optically connected to the first slab optical waveguide and having the same optical path as each other. A waveguide, a second slab optical waveguide optically connected to the array optical waveguide, a main output optical waveguide and a branch output optical waveguide group optically connected to the second slab optical waveguide, A wavelength tap circuit, wherein the width of a cladding region provided near an optical connection between the array optical waveguide and the second slab optical waveguide is periodically modulated. 請求項1に記載の波長タップ回路において、前記光導波路がシリコン基板乃至は石英基板上に形成された石英系光導波路であることを特徴とする波長タップ回路。2. The wavelength tap circuit according to claim 1, wherein the optical waveguide is a silica-based optical waveguide formed on a silicon substrate or a quartz substrate.
JP2002263536A 2002-09-10 2002-09-10 Wavelength tap circuit Expired - Fee Related JP3832741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263536A JP3832741B2 (en) 2002-09-10 2002-09-10 Wavelength tap circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263536A JP3832741B2 (en) 2002-09-10 2002-09-10 Wavelength tap circuit

Publications (2)

Publication Number Publication Date
JP2004101861A true JP2004101861A (en) 2004-04-02
JP3832741B2 JP3832741B2 (en) 2006-10-11

Family

ID=32263229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263536A Expired - Fee Related JP3832741B2 (en) 2002-09-10 2002-09-10 Wavelength tap circuit

Country Status (1)

Country Link
JP (1) JP3832741B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300564A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Analyzing device and analyzer
WO2007063931A1 (en) * 2005-11-30 2007-06-07 Nippon Telegraph And Telephone Corporation Monitor circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300564A (en) * 2005-04-15 2006-11-02 Sumitomo Electric Ind Ltd Analyzing device and analyzer
WO2007063931A1 (en) * 2005-11-30 2007-06-07 Nippon Telegraph And Telephone Corporation Monitor circuit

Also Published As

Publication number Publication date
JP3832741B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP5811273B2 (en) Optical element, optical transmitter element, optical receiver element, hybrid laser, optical transmitter
US8532446B2 (en) Scalable silicon photonic multiplexers and demultiplexers
JP6089077B1 (en) Waveguide type optical diffraction grating and optical wavelength filter
Chen et al. Compact dense wavelength-division (de) multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer
Kaminow Optical integrated circuits: A personal perspective
JP4385224B2 (en) Optical waveguide device and optical waveguide module
JP2006235380A (en) Mode splitter and optical circuit
CN111226147B (en) Echelle grating multiplexer or demultiplexer
CN105655869A (en) Multi-channel tunable laser
Rabus Realization of optical filters using ring resonators with integrated semiconductor optical amplifiers in GaInAsP/InP
US7200302B2 (en) Planar lightwave Fabry-Perot filter
Bidnyk et al. Novel architecture for design of planar lightwave interleavers
JP2001221923A (en) Optical waveguide circuit
JP3832741B2 (en) Wavelength tap circuit
US7330658B2 (en) Device and method for optical add/drop multiplexing
JP2003149474A (en) Array waveguide type wavelength multiplexer -demultiplexer
US20060140541A1 (en) Integrated optical device
US20060098917A1 (en) Integrated Optical Device
JP3797483B2 (en) Arrayed waveguide grating
Boeck High performance silicon photonic filters for dense wavelength-division multiplexing applications
Biswas et al. A Review on Arrayed Waveguide Grating Multiplexer/De-multiplexer forDense Wavelength Division Multiplexing Systems
JP2019086660A (en) Optical waveguide element
Wang Grating and ring based devices on SOI platform
JP2009020415A (en) Planar waveguide element
Teng Design and characterization of optical fiber-to-chip edge couplers and on-chip mode division multiplexing devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20060713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060713

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060713

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees