JP2004101319A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2004101319A
JP2004101319A JP2002262424A JP2002262424A JP2004101319A JP 2004101319 A JP2004101319 A JP 2004101319A JP 2002262424 A JP2002262424 A JP 2002262424A JP 2002262424 A JP2002262424 A JP 2002262424A JP 2004101319 A JP2004101319 A JP 2004101319A
Authority
JP
Japan
Prior art keywords
ultrasonic
switching valve
flow rate
ring
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002262424A
Other languages
Japanese (ja)
Inventor
Noriyuki Harao
原尾 則行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002262424A priority Critical patent/JP2004101319A/en
Publication of JP2004101319A publication Critical patent/JP2004101319A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the flow with good accuracy from a large flow region (e.g. a flow rate of 160m<SP>3</SP>/h) to a very small flow region (very small leakage flow region such as 5L.h). <P>SOLUTION: The ultrasonic flowmeter is formed by a first flow passage 1 including a pair of ultrasonic transducers 2 for detecting the flow of the large flow region, a changeover valve 5 for opening and closing the first flow passage 1, and a second flow passage 3 bypassing the upstream side and the downstream side of the changeover valve 5 and including a pair of ultrasonic transducers 4 for detecting a small flow region. In the case of measuring the large flow region, the changeover valve 5 is opened to make a measurement by a first ultrasonic flow measuring part 6, and in the case of measuring the small flow region, the switching valve 5 is closed to make a measurement by a second ultrasonic flow measuring part 7. The changeover valve 5 is driven by an ultrasonic motor having good responsiveness. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、超音波流量計に関するものである。
【0002】
【従来の技術】
ガスの使用量を測定する家庭用及び業務用のガスメータは、古来より機械的な膜式方式のガスメータが使用され、主流を占めている。この膜式方式のガスメータは、積算流量を計測するのが主な目的であり、機械式の為ガスメータとしては応答速度が遅く瞬時流量は測定はできない。一方、ガスメータとしては単一の流路に超音波計測部を備えた超音波流量計があるが、この流量計は超音波を使用しているため瞬時流量も容易に測定でき、ガス漏れ等の保安面への適用においても有利となる。そしてガスメータは機械的な膜式方式のガスメータから超音波方式のガスメータに置き換わろうとしている。
【0003】
【発明が解決しようとする課題】
しかしながら、瞬時流量が測定でき、かつ測定レンジの広い単一流路を備えたの超音波流量計は、大流量域の流量(例えば、100m3/hとか、160m3/hの流量)を測定しようとすると、大流量側に測定範囲が移動するため、小流量域(1000L/h以下)あるいは微少流量域(5L/h等の微少漏洩流量領域)では、精度良く流量測定が出来ないという課題があった。
【0004】
【課題を解決するための手段】
本発明は、大流量域の流量を検出する一対の超音波トランスデューサを備えた第1の流路と、前記第1の流路を開閉する切替弁と、前記切替弁の上流側と下流側とをバイバスすると共に、小流量域を検出する一対の超音波トランスデューサを備えた第2の流路とで形成し、大流量域を計測する場合には前記切替弁を開にして前記第1の超音波流量計測回路部で計測し、小流量域を計測する場合には前記切替弁を閉にして前記第2の超音波流量計測回路部で計測するようにし、前記切替弁の駆動に超音波モータを用いるようにしたものある。
【0005】
【発明の実施の形態】
請求項1記載の発明は、大流量域の流量を検出する一対の超音波トランスデューサを備えた第1の流路と、第1の流路の途中に設けられ第1の流路を開閉する切替弁と、切替弁が取付けられた位置の前後で第1の流路をバイパスする小流量域を検出する一対の超音波トランスデューサを備えた第2の流路とで構成される流路において、大流量域を計測する場合、構造が簡単でトルク・イナーシャ比が大きく、応答性の良い超音波モータ(弾性体に圧電セラミックを貼り電気入力を加え、加圧したロータから駆動力を得るようにしたモータ)で、切替弁を出来る限り短時間に全開状態に切り替わるようにしたものである。又小流量域を計測する場合は、切替弁をできる限り短時間に全閉状態に切り替わるようにしたものである。
【0006】
請求項2記載の発明は、切替弁の駆動にリング状の超音波モータを用い、ガス通路の中心部近傍に駆動源を置くことなくガス通路円周部で駆動するようにし、ガス流体の流れを妨げないようにし、流れの乱れを少なくして安定に流量計測が出来るようにしたものである。
【0007】
請求項3記載の発明は、リング形状の超音波モータのロータにガス通路の開閉を行なう遮蔽板を兼用させ、ロータが回転することにより切替弁の機能を持たせるようにしたものである。
【0008】
請求項4記載の発明は、リング形状の超音波モータのロータとステータの加圧機構として、リング状のボールベアリングとリング状の波スプリングを用い加圧力を与えるようにし、切替弁を駆動するトルクを得るようにしたものである。
【0009】
請求項5記載の発明は、リング形状の超音波モータのロータにリング状マグネットを貼りステータ(鉄、ステンレスなどの磁性体)との間の磁気力で加圧力を与えるようにし、複雑な加圧機構を省略し切替弁の駆動力を得るようにしたものである。
【0010】
【実施例】
以下、本発明の実施例を図面に基づいて説明する。
【0011】
(実施例1)
図1は本発明の実施例1であり、切替弁を備えた広レンジの超音波流量計の構成を示している。図において、1は大流量域のガス流体が流れる第1の流路、2は第1の流路に設けられ、一対の超音波振動子2a、2b(圧電素子で構成)で構成された超音波の送受信を行う第1の超音波トランスデューサ、3は小流量域のガス流体が流れる第2の流路、4は第2の流路に設けられ一対の超音波振動子4a、4b(圧電素子で構成)で構成された超音波の送受信を行う第2の超音波トランスデューサ、5は第1の流路の途中に設けられ第1の流路を開閉する切替弁、6は第1の超音波トランスデューサを制御し超音波の送受信を交互に行ない大流量域の流量計測を行う超音波流量計測部、7は第2の超音波トランスデューサを制御し、超音波の送受信を交互に行ない小流量域の流量計測を行う超音波流量計測部である。このような構成において、ある流量閾値を境にして切替弁5を切替えることにより小流量域から大流量域まで流量計測が出来るようにすることが出来る。
【0012】
図2は本発明の実施例1で、超音波モータ(ディスクタイプ)を駆動源に使用した切替弁の構成を示している。ディスクタイプの超音波モータを使用しているため、超音波モータは流路の中心部近傍に取付いている。応答性の良い超音波モータを使用しているため、切替弁を短時間に全開状態あるいは、全閉状態に切り替えることができる。
【0013】
図3は同実施例1で、中空構造のリング状超音波モータを駆動源にした切替弁の構成を示している。リング状の超音波モータのロータ12とステータ11との加圧機構としてリング状のベアリング14とリング状の波スプリング15を用い加圧力を得るようにしている。中空構造の為、内径部はガス通路として利用することが出来る。又、リング状の超音波モータのロータそのものを回転側遮蔽板として、切替弁の一部として利用するようにしている。
【0014】
図4は同実施例1で、超音波モータのステータ11とロータ12との加圧力をマグネット17で与え、リング状超音波モータを駆動源にした切替弁の構成を示している。リング状ロータ12にリング状のマグネット17が貼り付けられ、さらにそのマグネット17には、リング状のライニング13が貼り付けられている。このライニング13の貼り付けられた一体のロータを超音波モータのステータ11(鉄、ステンレス等の磁性体で出来ている。)と面対向させると、ライニング13を介してロータ12とステータ11との間に磁気的吸引力が働き、超音波モータに必要な加圧力を得ることが出来る。又、リング状の超音波モータのロータそのものを回転側遮蔽板として、切替弁の一部として利用するようにしている。
【0015】
また図5は同実施例1で、本発明の切替弁の動作における開閉状態の概念を示したものである。
【0016】
【発明の効果】
以上の説明から明らかなように、大流量域の流量を検出する一対の超音波トランスデューサを備えた第1の流路と、第1の流路を開閉する切替弁と、切替弁の上流側と下流側とをバイバスすると共に、小流量域を検出する一対の超音波トランスデューサを備えた第2の流路とで形成し、大流量域を計測する場合には前記切替弁を開にして第1の超音波流量計測回路部で計測し、小流量域を計測する場合には切替弁を閉にして第2の超音波流量計測回路部で計測するようにし、その切替弁の駆動に応答性のよい超音波モータを用いることにより、微小流量域(5L/h以下)から大流量域(100m3/hあるいは、160m3/h等)まで精度良く流量測定が出来るようにしたものである。
【図面の簡単な説明】
【図1】本発明の実施例1の超音波流量計の構成図
【図2】同流量計の切替弁と、超音波モータを示した部分断面図
【図3】同流量計の切替弁と、リング状超音波モータを示した部分断面図
【図4】同リング状超音波モータの加圧力をマグネットで与えた場合を示す部分断面図
【図5】(a)同流量計の切替弁が開状態を示す模式図
(b)同流量計の切替弁が閉状態を示す模式図
【符号の説明】
1 第1の流路
2 第1の超音波トランスデューサ
3 第2の流路
4 第2の超音波トランスデューサ
5 切替弁
6 第1の超音波流量計測部
7 第2の超音波流量計測部
8 ディスクタイプの超音波モータ
11 リング状超音波モータのステータ
12 リング状超音波モータのロータ
14 リング状ベアリング
15 リング状波スプリング
17 マグネット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic flowmeter.
[0002]
[Prior art]
2. Description of the Related Art As a domestic and commercial gas meter for measuring gas consumption, a mechanical film type gas meter has been used since ancient times, and has been dominant. The main purpose of this membrane type gas meter is to measure the integrated flow rate, and since it is a mechanical type gas meter, the response speed is slow and the instantaneous flow rate cannot be measured. On the other hand, as a gas meter, there is an ultrasonic flow meter having an ultrasonic measuring unit in a single flow path, but since this flow meter uses ultrasonic waves, the instantaneous flow rate can be easily measured, and a gas leak and the like can be measured. It is also advantageous in security applications. The gas meter is about to be replaced with a gas meter of an ultrasonic type from a gas meter of a mechanical film type.
[0003]
[Problems to be solved by the invention]
However, an ultrasonic flowmeter that can measure an instantaneous flow rate and has a single flow path with a wide measurement range is required to measure a flow rate in a large flow rate range (for example, a flow rate of 100 m3 / h or 160 m3 / h). However, since the measurement range moves to the large flow rate side, there is a problem that the flow rate cannot be measured accurately in a small flow rate area (1000 L / h or less) or a small flow rate area (a minute leak flow rate area such as 5 L / h). .
[0004]
[Means for Solving the Problems]
The present invention provides a first flow path including a pair of ultrasonic transducers for detecting a flow rate in a large flow rate region, a switching valve for opening and closing the first flow path, and an upstream side and a downstream side of the switching valve. And a second flow path provided with a pair of ultrasonic transducers for detecting a small flow rate range, and when measuring a large flow rate range, the switching valve is opened to open the first flow rate range. The measurement is performed by the ultrasonic flow rate measurement circuit section, and when the small flow rate range is measured, the switching valve is closed and the measurement is performed by the second ultrasonic flow rate measurement circuit section. Is used.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the first aspect of the present invention, there is provided a first flow path including a pair of ultrasonic transducers for detecting a flow rate in a large flow rate range, and a switch provided in the middle of the first flow path to open and close the first flow path. In a flow path composed of a valve and a second flow path including a pair of ultrasonic transducers for detecting a small flow rate region bypassing the first flow path before and after the position where the switching valve is attached, When measuring the flow rate range, an ultrasonic motor with a simple structure, a large torque-to-inertia ratio, and good responsiveness (a piezoelectric ceramic is applied to an elastic body, an electric input is applied, and a driving force is obtained from a pressurized rotor. Motor), the switching valve is switched to the fully open state in the shortest possible time. When a small flow rate range is measured, the switching valve is switched to the fully closed state in as short a time as possible.
[0006]
According to a second aspect of the present invention, a ring-shaped ultrasonic motor is used to drive the switching valve, and the switching valve is driven by the circumferential portion of the gas passage without placing a driving source near the center of the gas passage. The flow rate can be measured stably by preventing disturbance of the flow.
[0007]
According to a third aspect of the present invention, the rotor of the ring-shaped ultrasonic motor is also used as a shielding plate for opening and closing the gas passage, and has a function of a switching valve by rotating the rotor.
[0008]
According to a fourth aspect of the present invention, a pressure is applied by using a ring-shaped ball bearing and a ring-shaped wave spring as a pressurizing mechanism for a rotor and a stator of a ring-shaped ultrasonic motor, and a torque for driving a switching valve is provided. Is obtained.
[0009]
According to a fifth aspect of the present invention, a ring-shaped magnet is attached to a rotor of a ring-shaped ultrasonic motor, and a pressing force is applied by a magnetic force between the ring-shaped ultrasonic motor and a stator (magnetic material such as iron or stainless steel). The mechanism is omitted to obtain the driving force of the switching valve.
[0010]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
(Example 1)
FIG. 1 is a first embodiment of the present invention, and shows a configuration of a wide-range ultrasonic flowmeter provided with a switching valve. In the figure, reference numeral 1 denotes a first flow path through which a gas flow in a large flow rate region flows, and 2 denotes a super flow path provided in the first flow path and constituted by a pair of ultrasonic transducers 2a and 2b (composed of piezoelectric elements). A first ultrasonic transducer 3 for transmitting and receiving a sound wave, 3 is a second flow path through which a gas flow in a small flow rate region flows, and 4 is a second flow path provided in a second flow path. , A switching valve 5 provided in the middle of the first flow path to open and close the first flow path, and 6 a first ultrasonic wave. An ultrasonic flow rate measuring unit 7 that controls a transducer to alternately transmit and receive ultrasonic waves to measure a flow rate in a large flow rate area, and controls a second ultrasonic transducer to alternately transmit and receive ultrasonic waves to control a small flow rate area. It is an ultrasonic flow rate measurement unit that performs flow rate measurement. In such a configuration, the flow rate can be measured from a small flow rate range to a large flow rate range by switching the switching valve 5 at a certain flow rate threshold.
[0012]
FIG. 2 shows a configuration of a switching valve using an ultrasonic motor (disk type) as a drive source in a first embodiment of the present invention. Since a disk type ultrasonic motor is used, the ultrasonic motor is mounted near the center of the flow path. Since the ultrasonic motor having good responsiveness is used, the switching valve can be switched to the fully open state or the fully closed state in a short time.
[0013]
FIG. 3 shows the configuration of the switching valve in Embodiment 1 using a ring-shaped ultrasonic motor having a hollow structure as a driving source. A ring-shaped bearing 14 and a ring-shaped wave spring 15 are used as a mechanism for pressing the rotor 12 and the stator 11 of the ring-shaped ultrasonic motor so as to obtain a pressing force. Due to the hollow structure, the inner diameter can be used as a gas passage. In addition, the rotor of the ring-shaped ultrasonic motor is used as a part of the switching valve as a rotary side shield plate.
[0014]
FIG. 4 shows a configuration of the switching valve in the first embodiment, in which the pressing force of the stator 11 and the rotor 12 of the ultrasonic motor is applied by the magnet 17 and the ring-shaped ultrasonic motor is used as a driving source. A ring-shaped magnet 17 is attached to the ring-shaped rotor 12, and a ring-shaped lining 13 is attached to the magnet 17. When the integrated rotor with the lining 13 is faced to the stator 11 (made of a magnetic material such as iron or stainless steel) of the ultrasonic motor, the rotor 12 and the stator 11 are interposed via the lining 13. A magnetic attraction force acts in between, and a pressing force required for the ultrasonic motor can be obtained. In addition, the rotor of the ring-shaped ultrasonic motor is used as a part of the switching valve as a rotary side shield plate.
[0015]
FIG. 5 shows the concept of the open / close state in the operation of the switching valve of the present invention in the first embodiment.
[0016]
【The invention's effect】
As is clear from the above description, a first flow path including a pair of ultrasonic transducers for detecting a flow rate in a large flow rate range, a switching valve that opens and closes the first flow path, and an upstream side of the switching valve. A bypass is formed by a second flow path provided with a pair of ultrasonic transducers for detecting a small flow rate area while bypassing the downstream side. The measurement is performed by the ultrasonic flow rate measurement circuit section, and when the small flow rate range is measured, the switching valve is closed and the measurement is performed by the second ultrasonic flow rate measurement circuit section. By using a good ultrasonic motor, the flow rate can be accurately measured from a small flow rate range (5 L / h or less) to a large flow rate range (100 m3 / h, 160 m3 / h, etc.).
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an ultrasonic flow meter according to a first embodiment of the present invention. FIG. 2 is a partial cross-sectional view showing a switching valve of the flow meter and an ultrasonic motor. FIG. Fig. 4 is a partial cross-sectional view showing a ring-shaped ultrasonic motor. Fig. 4 is a partial cross-sectional view showing a case where a pressing force of the ring-shaped ultrasonic motor is applied by a magnet. Schematic diagram showing the open state (b) Schematic diagram showing the switching valve of the same flow meter in the closed state
DESCRIPTION OF SYMBOLS 1 1st flow path 2 1st ultrasonic transducer 3 2nd flow path 4 2nd ultrasonic transducer 5 Switching valve 6 1st ultrasonic flow rate measurement part 7 2nd ultrasonic flow rate measurement part 8 Disk type Ultrasonic motor 11 Ring-shaped ultrasonic motor stator 12 Ring-shaped ultrasonic motor rotor 14 Ring-shaped bearing 15 Ring-shaped wave spring 17 Magnet

Claims (5)

大流量域の流量を検出する一対の超音波トランスデューサを備えた第1の流路と、前記第1の流路を開閉する切替弁と、前記切替弁の上流側と下流側とをバイバスすると共に小流量域を検出する一対の超音波トランスデューサを備えた第2の流路とで形成し、大流量域を計測する場合には前記切替弁を開にして前記第1の超音波流量計測回路部で計測し、小流量域を計測する場合には前記切替弁を閉にして前記第2の超音波流量計測回路部で計測するようにし、前記切替弁の駆動に超音波モータを用いた超音波流量計。A first flow path including a pair of ultrasonic transducers for detecting a flow rate in a large flow rate region, a switching valve for opening and closing the first flow path, and bypassing an upstream side and a downstream side of the switching valve. A second flow path provided with a pair of ultrasonic transducers for detecting a small flow rate range, and when measuring a large flow rate range, the switching valve is opened to open the first ultrasonic flow rate measurement circuit section. In the case of measuring in a small flow rate region, the switching valve is closed and the measurement is performed by the second ultrasonic flow measurement circuit unit, and the ultrasonic wave using an ultrasonic motor for driving the switching valve is used. Flowmeter. 切替弁の駆動にリング状の超音波モータを用い、ガス通路の円周部で駆動力を得るようにした請求項1記載の超音波流量計。The ultrasonic flowmeter according to claim 1, wherein a ring-shaped ultrasonic motor is used for driving the switching valve, and a driving force is obtained at a circumferential portion of the gas passage. リング形状の超音波モータのロータに切替弁の遮蔽機能を持たせた請求項2記載の超音波流量計。3. The ultrasonic flowmeter according to claim 2, wherein the rotor of the ring-shaped ultrasonic motor has a function of shielding the switching valve. リング形状の超音波モータのロータとステータの加圧機構として、リング状のボールベアリングとリング状の波スプリングを用い加圧力を与えるようにして切替弁の駆動力を得るようにした請求項2記載の超音波流量計。The driving force of the switching valve is obtained by applying a pressing force by using a ring-shaped ball bearing and a ring-shaped wave spring as a pressurizing mechanism for the rotor and the stator of the ring-shaped ultrasonic motor. Ultrasonic flowmeter. リング形状の超音波モータのロータにリング状のマグネットを貼り、このマグネットの磁気力で加圧力を与えるようにして切替弁の駆動力を得るようにした請求項2記載の超音波流量計。3. The ultrasonic flowmeter according to claim 2, wherein a ring-shaped magnet is attached to a rotor of the ring-shaped ultrasonic motor, and a pressing force is applied by a magnetic force of the magnet to obtain a driving force of the switching valve.
JP2002262424A 2002-09-09 2002-09-09 Ultrasonic flowmeter Pending JP2004101319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262424A JP2004101319A (en) 2002-09-09 2002-09-09 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262424A JP2004101319A (en) 2002-09-09 2002-09-09 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2004101319A true JP2004101319A (en) 2004-04-02

Family

ID=32262474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262424A Pending JP2004101319A (en) 2002-09-09 2002-09-09 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2004101319A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013008781A1 (en) * 2013-05-23 2014-11-27 Hydrometer Gmbh Method for operating an ultrasonic flow meter and ultrasonic flow meter
US10295387B2 (en) 2017-04-25 2019-05-21 Vittorio BONOMI Integrated ball valve and ultrasonic flowmeter
EP3633326A4 (en) * 2017-05-22 2020-05-13 Panasonic Intellectual Property Management Co., Ltd. Flow rate measurement unit and gas meter using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013008781A1 (en) * 2013-05-23 2014-11-27 Hydrometer Gmbh Method for operating an ultrasonic flow meter and ultrasonic flow meter
DE102013008781B4 (en) * 2013-05-23 2015-10-08 Diehl Metering Gmbh Ultrasonic flow meter
US10295387B2 (en) 2017-04-25 2019-05-21 Vittorio BONOMI Integrated ball valve and ultrasonic flowmeter
EP3633326A4 (en) * 2017-05-22 2020-05-13 Panasonic Intellectual Property Management Co., Ltd. Flow rate measurement unit and gas meter using same

Similar Documents

Publication Publication Date Title
JP2003194601A5 (en)
JP2004101319A (en) Ultrasonic flowmeter
JP3601123B2 (en) Ultrasonic flow meter
JPS61153073A (en) Rotary valve
US5392656A (en) Nonvibrating conduit inertia force flowmeter
JPH1165673A (en) Flow rate measurement controller
Göreke et al. The development and performance characterization of turbine prototypes for a MEMS spirometer
CN206876228U (en) Liquid turbine flowmeter with ceramic spacer
JP2688063B2 (en) Automatic pressure regulating valve
JP4550965B2 (en) Gas flow meter
JPH0613458Y2 (en) Gas flow detector for gas meter
WO2015045214A1 (en) Hydraulic power generator
JP3458460B2 (en) Flow measurement device
JP2004028580A (en) Ultrasonic flowmeter and method of measuring ultrasonic flow rate
JP2002310771A (en) Stop valve and gas meter
JPH06160403A (en) Pulse generator
JPH01299379A (en) Control valve
JPH08304007A (en) Magnetic-substance detection apparatus
JPS63122924A (en) Steering torque detector
JP2004257744A (en) Flow rate measuring device
JPH04503999A (en) Method and apparatus for measuring viscosity or density of fluid
CN107024248A (en) Liquid turbine flowmeter with ceramic spacer
JPH01299377A (en) Control valve
JPH01199074A (en) Flow rate control device
JPH0325136Y2 (en)