JP2004100018A - Cu PRECIPITATION HARDENING TYPE HIGH STRENGTH STEEL MEMBER AND PRODUCTION METHOD THEREFOR - Google Patents

Cu PRECIPITATION HARDENING TYPE HIGH STRENGTH STEEL MEMBER AND PRODUCTION METHOD THEREFOR Download PDF

Info

Publication number
JP2004100018A
JP2004100018A JP2002266588A JP2002266588A JP2004100018A JP 2004100018 A JP2004100018 A JP 2004100018A JP 2002266588 A JP2002266588 A JP 2002266588A JP 2002266588 A JP2002266588 A JP 2002266588A JP 2004100018 A JP2004100018 A JP 2004100018A
Authority
JP
Japan
Prior art keywords
steel material
temperature range
strength steel
precipitation
precipitation hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002266588A
Other languages
Japanese (ja)
Other versions
JP3857970B2 (en
Inventor
Naoki Maruyama
丸山 直紀
Masaaki Sugiyama
杉山 昌章
Manabu Takahashi
高橋 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002266588A priority Critical patent/JP3857970B2/en
Publication of JP2004100018A publication Critical patent/JP2004100018A/en
Application granted granted Critical
Publication of JP3857970B2 publication Critical patent/JP3857970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu-containing age hardening type steel member which is subjected to precipitation hardening in a short time, and to provide a production method therefor. <P>SOLUTION: The Cu precipitation hardening type high strength steel member has a composition comprising, by mass, 0.0005 to 0.2% C, 0.001 to 2.0% Si, 0.001 to 0.2% P, ≤0.1% S, 0.002 to 0.2% Al, 0.0005 to 0.1% N and 0.7 to 2.0% Cu, further comprising one or two kinds of metals selected from 0.1 to 3.0% Mn and 0.1 to 3.0% Cr, and in which (Mn+Cr)/Cu is also ≥0.2, and the balance iron with inevitable impurities. The steel member has a structure in which the average ferrite grain size is ≥3 μm, and the ferrite area ratio is ≥60%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、短時間で析出硬化することを特徴としたCu析出硬化型鋼材およびその製造方法に関するものであり、自動車用、橋梁用、建築用、船舶等の構造部材用途、自動車および電機製品の内外板パネル用途に好適な、引張強度300MPaから800MPa程度の熱延鋼材、冷延鋼材、熱間鍛造用鋼材に適用可能である。
【0002】
【従来の技術】
Cu含有鋼は、ある温度域で一定時間の時効を行うとCuの析出物が微細に析出し、その結果鋼材の降伏強度および引張強度が上昇する典型的な時効硬化型鋼板であることがよく知られている。鋼中におけるCuの析出は、下記の非特許文献1に示されているように、ある温度と時間の組み合わせのときに最大の強化量が得られることが知られており、例えば550℃の時効温度では30分〜1時間程度の等温保持が必要であり、これ以下の温度ではさらに長時間の時効析出処理が必要である。
【0003】
【非特許文献1】
Acta Metallurgica、第20巻(1972)、971頁
【0004】
このようなCu析出硬化型鋼板の製造方法としては、熱延後に室温まで一旦冷却後再加熱を行い析出処理する方法(例えば、特許文献1参照)、Cuを添加した極低炭素Alキルド鋼またはこれにNb,Tiを添加した鋼板を連続焼鈍ラインの過時効帯で高温保持を行い析出処理する方法または加工後に再加熱を行い析出処理する方法(例えば、特許文献2参照)、熱延後にCuの析出温度域である400−600℃を徐冷して冷却中にCuを析出させる方法(例えば、特許文献3参照)などが提案されている。
【0005】
【特許文献1】
特開平5−105946公報
【0006】
【特許文献2】
特開昭64−4429号公報
【0007】
【特許文献3】
特開平5−186823公報
【0008】
しかしながら、現実的にはこれらの方法ではCuの時効析出処理に長時間を要し、そのため鋼材の生産性が低く、その結果として製造コスト的にも高いという難点があった。Cu添加鋼は大きな析出硬化能が期待できるだけでなく、疲労特性や溶接部靭性、さらに鋼材の耐食性に優れるため、その鋼材の需要が高まっており、生産性の観点からCuの析出を促進させて短時間で鋼材を製造する技術の開発が強く望まれていた。
【0009】
【発明が解決しようとする課題】
本発明は短時間で時効処理が可能なCuを含有する時効析出型鋼材およびその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記の目的を達成すべく鋭意実験と検討を重ねた結果、Cu粒子の時効析出の初期に断続的あるいは連続的に歪みを導入する、あるいはMn又はCrを適正量添加することで、従来の技術で問題となっていた時効処理時間を短縮できることを見出した。
【0011】
本発明は、前記課題を解決するために次の手段を講じた。
すなわち、本発明は短時間で析出硬化する時効硬化型Cu含有高強度鋼板であって、その要旨は以下の通りである。
第1の発明は、質量%で、
C :0.0005〜0.2%、 Si:0.001〜2.0%、
P :0.001〜0.2%、  S :0.1%以下、
Al:0.002〜0.2%、  N :0.0005〜0.1%、
Cu:0.7〜2.0%
を含み、かつ
Mn:0.1〜3.0%、    Cr:0.1〜3.0%
のうち1種または2種を含み、かつ(Mn+Cr)/Cuが0.2以上であり、残部鉄及び不可避的不純物からなり、平均フェライト結晶粒径が3μm以上であり、フェライト面積率が60%以上であることを特徴とする。
第2の発明は、前記組成に加えて、質量%で、
Ni:0.1〜2.0%、    Mo:0.1〜1.0%、
Nb:0.003〜0.1%、  Ti:0.003〜0.1%、
V :0.003〜0.1%、  B :0.0003〜0.1%
のうち、1種または2種以上を含むことを特徴とする。
第3の発明は、析出したCu粒子とFeマトリックス界面におけるMnとCrの平均濃度の和が、Feマトリックス中におけるMnとCrの平均濃度の和の2倍以上であることを特徴とする。
【0012】
さらに、本発明は短時間で析出硬化するCu析出硬化型高強度鋼材の製造方法に関するものであって、その要旨は以下の通りである。
第4の発明は、質量%で、
C :0.0005〜0.2%、 Si:0.001〜2.0%、
P :0.001〜0.2%、  S :0.1%以下、
Al:0.002〜0.2%、  N :0.0005〜0.1%、
Cu:0.7〜2.0%
を含み、残部鉄及び不可避的不純物からなり、平均フェライト結晶粒径が3μm以上でありフェライト面積率が60%以上である鋼材を、450〜700℃の温度範囲内でかつ当該温度範囲到達後2分以内に歪量0.01〜0.30の歪み付加を伴う温間加工を4回以上行い、前記温度範囲内に5秒〜60分保持することを特徴とする。
【0013】
第5の発明は、質量%で、
C :0.0005〜0.2%、 Si:0.001〜2.0%、
P :0.001〜0.2%、  S :0.1%以下、
Al:0.002〜0.2%、  N :0.0005〜0.1%、
Cu:0.7〜2.0%
を含み、残部鉄及び不可避的不純物からなり、平均フェライト結晶粒径が3μm以上でありフェライト面積率が60%以上である鋼材を、450〜700℃の温度範囲内でかつ当該温度範囲到達後2分以内に1×10−5〜5×10−2−1の歪速度で温間加工し、前記温度範囲内に5秒〜60分保持することを特徴とする。
【0014】
第6の発明は、質量%で、
C :0.0005〜0.2%、 Si:0.001〜2.0%、
P :0.001〜0.2%、  S :0.1%以下、
Al:0.002〜0.2%、  N :0.0005〜0.1%、
Cu:0.7〜2.0%
を含み、残部鉄及び不可避的不純物からなり、平均フェライト結晶粒径が3μm以上でありフェライト面積率が60%以上である鋼材を、連続焼鈍プロセスにおいて、板の温度が450〜700℃の範囲にある際に98.07〜980.7MPa(10〜100kgf/mm2 )の張力を付加しながら通板し、前記温度範囲内に5秒〜60分保持することを特徴とする。
【0015】
第7の発明は、前記組成に加えて、質量%で、
Mn:0.1〜3.0%、   Cr:0.1〜3.0%
のうち1種または2種を含み、かつ(Mn+Cr)/Cuが0.2以上であることを特徴とする。
第8の発明は、前記第4〜第7の何れか1項に記載の発明において、鋼材が質量%で、
Ni:0.1〜2.0%、   Mo:0.1〜1.0%、
Nb:0.003〜0.1%、 Ti:0.003〜0.1%、
V :0.003〜0.1%、 B :0.0003〜0.1%
のうち、1種または2種以上を含むことを特徴とする。
【0016】
なお、本発明により達成されるCu粒子の時効析出処理工程の短縮は、Mn+Cr量が0.1%未満で、かつ温間加工を行わない時に比べて時間にして15%以上、またMn、Crの含有量と(Mn+Cr)/Cuが本発明の範囲内であっても、450〜700℃の温度範囲で温間加工(450〜700℃の温度範囲内でかつ当該温度範囲到達後2分以内に歪量0.01〜0.30の歪み付加を伴う温間加工を4回以上行う)を行わずに、同じ熱処理履歴を経た時に比べて最高硬さに到達する時間にして15%以上の短縮効果が得られる条件である。
【0017】
加工方法としては、板圧延あるいは伸線圧延による方法、鍛造による方法が適用可能であり、またこれらの方法の他にローラーレベラー加工、矯直加工、ショット加工などの鋼材断面積の大きな変化を伴わない加工によっても本発明の目的を達成することができる。また、本発明方法に依れば、温間加工の一回あたりの歪み付加量が大きく、また加工回数が多いほど従来技術に比べて時効処理時間を短縮させることが可能である。
【0018】
450〜700℃の温度範囲にする方法としては、700℃以上の熱間加工プロセス後に冷却する方法、450℃以下の温度の鋼材を再加熱する方法があり、いずれでも本発明の目的を達成することができる。連続焼鈍プロセス中において高い張力を付与する場所は、450〜700℃の温度範囲であれば、再結晶帯、冷却帯、過時効帯のいずれでも本発明の目的を達成することができる。
【0019】
【発明の実施の形態】
本発明者らは、従来不明であったCu粒子の時効析出速度に影響する因子を明らかにするために、基礎的観点に立ち返り数多くの実験と検討を重ねた。その結果、Cu粒子の析出が起こる温度域でかつその温度域に入ってから短時間の間に鋼材中に空孔を導入すると、Cu粒子の析出が促進されるという全く新しい事実を見出した。次いで、450〜700℃のCuの析出温度域で鋼材中に空孔を導入する方法について詳細な検討を重ねた結果、温間加工あるいは放射線照射による方法が有効であることを見出した。
【0020】
さらに、温間加工の条件について検討を重ねた結果、図1にその一例を示すように歪みをより多くの回数に分けて断続的あるいは連続的に印加するか、あるいは非常に小さな歪み速度で加工することにより、従来の温間加工無しの場合に比べてCu粒子の顕著な析出促進効果が得られるということを明らかにした。
この析出促進メカニズムに基づけば、加工により空孔をより長時間供給すればするほどCu粒子の析出はより促進される。実際に、累積加工量を一定とすれば大歪み量の加工を少数回行うよりも小歪み量の加工を多数回繰り返す方が、また加工時の歪み速度の効果に関しては、歪み速度が小さいほどより効果が高いことを知見した。
【0021】
さらに本発明者らは温間加工によるCu析出促進効果とは別に、成分系のみによるCu析出促進効果の検討を行い、Cuの析出に及ぼす第3元素の影響について調査を行い、Cuの添加量に対し適正量のMnあるいはCrを添加することがCu粒子の時効硬化促進に効果的であることを見出した。
本発明者らはその促進原因について解析を行った結果、Cu粒子の周囲にMnあるいはCrが高濃度に偏析することにより、Cu粒子成長時にCu粒子周囲に形成される歪み場が緩和される結果、Cu粒子成長の駆動力が見かけ上大きくなり、その結果、Cu粒子の析出促進が達成されるという全く新しいメカニズムに基づくことを見出した。
さらにCuの添加量に対し適正量のMnとCrを添加した鋼材を、前記したように断続的あるいは連続的な温間加工を行うことにより、その析出促進効果が相乗的に増大することを見出し、本発明に至った。
【0022】
以下に、本発明について詳細に説明する。
まず成分の限定理由について説明する。成分含有量は質量%である。
C:Cは鋼の組織制御に必須の添加元素であり、0.0005%以上含有するものとする。しかし、0.2%を超えると、組織がマルテンサイトのような高転位密度の組織になり、温間加工時に導入された空孔がこの転位に吸収されてしまい、Cu粒子の成長促進に効かなくなる。このためその上限を0.2%に限定した。
【0023】
Si:SiはCと同様に、母相組織を制御するのに必須の元素であり、また脱酸元素としても必要であるので、0.001%以上含有するものとする。しかしながら、2.0%を超えると熱延時の脱スケール性の悪化やコスト高を招く。従ってSi含有量は0.001〜2.0%の範囲に制限した。
【0024】
P:Pは鋼中の転位密度を制御するために用いられる元素であり、0.001%以上含有するものとする。一方、0.2%を超えると加工割れを起こすので、P含有量の上限を0.2%とした。
【0025】
S:Sは不純物であり、多量に含有すると熱間加工割れを起こすので、0.1%以下とした。
【0026】
Al:Alは脱酸元素として用いる元素であり、0.002%以上含有するものとする。しかしAlの添加量が0.2%を超えると、AlNの析出量が増加しCuの添加効果が失われるため、Al含有量の適正添加範囲を0.002〜0.2%とした。
【0027】
N:Nは窒化物として、主にオーステナイト域の結晶粒径制御に用いられるので、0.0005%以上含有するものとする。一方、Nが0.1%を超えると、フェライト粒内に多量の炭窒化物が析出しCuの添加効果が失われ、さらにCの場合と同様に高転位密度の組織となるため、N含有量の範囲を0.0005〜0.1%とした。
【0028】
Cu:Cuは本発明における不可欠な構成元素である。しかしながら、0.7%未満であるとCuの析出硬化が発現せず、また2.0%を超えるとCuの熱間脆性による鋼板の表面割れが顕著になるために、Cu含有量の範囲を0.7〜2.0%の範囲に制限した。ただし、添加量の下限については、Cu析出粒子の体積分率をより多くするという観点から1.0%以上の添加が望ましい。また、添加量の上限については、NiをCuと等量だけ添加するとCuの熱間脆性を軽減することができるので、CuとNiを複合添加する場合は2.0%を超えるCuの添加も可能である。Cuは炭素当量を上げない元素でもあるので、溶接性の向上にも有効である。
【0029】
Mn:MnはCu粒子の析出を促進させるために有効であり、またAr3 変態点を低下させることで母相組織を制御するのに好ましい元素である。しかしながら0.1%未満であると十分なCu粒子析出促進効果が得られず、3.0%を超えると鋼材の熱間変形抵抗が増大する傾向になり、また溶接性も悪化する。このため、Mn含有量は0.1〜3.0%の範囲に制限した。
【0030】
Cr:CrはMnと同様に、Cu粒子の析出を促進させるために有効である。しかしながら0.1%未満であると十分なCu粒子析出促進効果が得られず、3.0%を超えると鋼材の熱間変形抵抗が増大する傾向になり、また溶接性も悪化する。このため、Cr含有量は0.1〜3.0%の範囲に制限した。
【0031】
(Mn+Cr)/Cu比:CrとMnはいずれもCuと同時に添加することでCu粒子の析出を促進させる効果があるが、Cuの添加量に対して合計の添加量が0.2未満であるとCu周囲にMnあるいはCrが偏析をせず、その結果として15%以上の時効硬化時間短縮量が得られないため、その範囲を0.2以上に制限した。
【0032】
Ni:NiはCu添加に起因する熱間脆性の抑制と母相組織の制御に用いられる。一般的に、添加Cu量と等量のNiを添加するとCuによる顕著な熱間割れを抑制できる。0.1%未満であるとCu起因の熱間割れを抑制できず、また2.0%を超えるとコスト高を招く。従って、その適正添加範囲を0.1〜2.0%以下に限定した。
【0033】
Mo:Moは炭窒化物として再加熱時のオーステナイト粒径を制御する元素として必要であるので、0.1%以上添加することが好ましい。しかしながら、1.0%を超えると、多量の炭窒化物の析出によりCu析出物の効果が失われる。従って、その適正添加範囲を1.0%以下に限定した。
【0034】
Nb:Nbは炭窒化物として再加熱時のオーステナイト粒径を制御する元素として必要であるので、0.003%以上添加することが好ましい。しかしNbの添加量が0.1%を超えるとフェライト中の炭窒化物量が増え、Cuの添加効果が失われるため、Nb含有量の適正添加範囲を0.003〜0.1%とした。
【0035】
Ti:Tiは脱酸元素として、また炭窒化物として再加熱時のオーステナイト粒径を制御する元素として必要であるので、0.003%以上添加することが好ましい。しかしTiの添加量が0.1%を超えるとCuの添加効果が失われるため、Ti含有量の適正添加範囲を0.003〜0.1%とした。
【0036】
V:Vは炭窒化物として再加熱時のオーステナイト粒径を制御する元素として必要であるので、0.003%以上添加することが好ましい。しかしVの添加量が0.1%を超えるとフェライト中の炭窒化物量が増え、Cuの添加効果が失われるため、V含有量の適正添加範囲を0.003〜0.1%とした。
【0037】
B:Bは母相組織を制御するために用いられる元素であるので、0.0003%以上添加することが好ましい。一方、0.1%を超えると粒界に炭ホウ化物、ホウ窒化物が析出し延性の悪化を引き起こす。従って、その適正添加範囲を0.0003〜0.1%に限定した。
【0038】
本発明の鋼材は、時効硬化処理時において空孔・転位密度の小さいフェライト組織にすることにより顕著な時効時間短縮効果を得ることができるため、フェライトを面積率で60%以上含有するものとし、さらに80%以上含有することが好ましい。フェライト面積率の上限は特に定めることなく本発明の効果を奏することができ、100%も本発明の範囲内である。なお、フェライト組織とは、下記の非特許文献2に示すようなポリゴナルフェライト組織、擬ポリゴナルフェライト組織、あるいはM/A複合体を含むグラニュラーフェライト組織を指すものとする。残部組織はマルテンサイト、オーステナイト、パーライト、ラスベイナイトの1種又は2種以上を含有しても良い。
【0039】
【非特許文献2】
ISIJ international、35巻(2002),941〜 944頁
【0040】
本発明の組織とするためには、本発明の範囲内にあるように焼き入れ性の小さい成分系とし、熱間加工プロセスにおいてA1 温度と500℃間の平均冷却速度を0.01〜30℃/sにすることにより得ることができる。
【0041】
フェライト面積率は圧延方向に平行する断面(L断面)について、ナイタール液を用いて組織を現出し、次いで光学顕微鏡を用いてミクロ組織を観察した際の明部をフェライト組織と定義し、その部分の面積率を画像解析装置により求める。
また主相であるフェライトの平均結晶粒径は、光学顕微鏡写真からJIS G0552に規定する方法によって求める。結晶粒が微細な場合には走査型電子顕微鏡をもちいて、同様の方法により求めることも可能である。
【0042】
また本発明の鋼材は平均フェライト粒径が3μmより小さいと、Cu粒子の大部分が粒界に析出してしまい十分な時効硬化が得られず、さらに温間加工により導入された空孔が粒界に拡散してしまい時効の促進効果も得られないので、平均フェライト粒径は3μm以上とし、好ましくは10μm以上であるものとする。平均結晶粒径の上限は特に定めることなく本発明の効果を得ることができるが、鋼材の集合組織制御の容易性の観点から100μm以下であることが好ましい。
【0043】
次にCu粒子周囲のMnおよびCrの偏析量の限定理由について説明する。
本発明者らの詳細な解析の結果、析出したCu粒子とFeマトリックス界面におけるMnとCrの偏析量の合計(平均濃度の和)がFeマトリックスにおけるMnとCrの平均濃度の和の2倍以上の時に、Cu粒子成長の顕著な促進効果が観察された。従って、界面偏析量をマトリックスの2倍以上であるとした。
【0044】
このような偏析状態は、MnあるいはCrの添加量を本発明の範囲内にし、450〜700℃の温度範囲内で時効処理を行うことにより達成でき、さらにMnあるいはCrを適正量添加した鋼について450〜700℃の温度範囲内で時効初期に歪み量0.01〜0.30の加工を4回以上行うことにより、析出したCu粒子とFeマトリックス界面におけるMnとCrの偏析量の合計(平均濃度の和)がFeマトリックスにおけるMnとCrの平均濃度の和の2.5倍以上の高濃度の偏析を得ることができる。
【0045】
尚、析出したCu粒子とFeマトリックス界面におけるMnとCrの平均濃度はアトムプローブ電界イオン顕微鏡にて測定を行い、Mn、Cr偏析量の測定を行い、FeマトリックスにおけるMnとCrの平均濃度はアトムプローブ電界イオン顕微鏡により測定した値を用いて、Feマトリックス中の(Mn+Cr)平均濃度に対するCu粒子界面の(Mn+Cr)平均濃度の比を求めた。なお、濃度測定算出に用いる検出イオンの全数は界面、マトリックスについていずれも100個以上とする。
【0046】
次に、製造方法の限定理由について説明する。
熱間加工プロセスにおいて、温間加工の温度が450℃未満であるとCuの析出に長時間を有し製造コスト面で不利であり、また700℃を超えるとフェライト中で析出するCu粒子の量が少なくなり、大きな析出硬化量を期待できない。
【0047】
また、450〜700℃の温度範囲における保持時間が5秒より少ないと十分な硬化が得られなくなり、60分を超えると過時効になり強度が減少することとなるので、5秒〜60分と規定する。なお、最大の析出強化量が得られる保持時間は、450〜700℃の保持温度範囲において高温ほど短く、低温ほど長くする必要があり、例えば0.02の歪量で5回の温間加工を行う場合には、450℃で60分、550℃で20分、650℃で100秒程度である。
【0048】
また450〜700℃の温度範囲に入ったあと2分を超えてから温間加工を行うかあるいは2分以内に加える歪量0.01〜0.30の加工量が3回未満である時には時効時間短縮効果は小さい(温間加工なしに比して15%未満)。従って、温間加工の条件を、450〜700℃の温度範囲内でありかつ当該温度範囲到達後2分以内に歪量0.01〜0.30の歪み付加を伴う温間加工回数を4回以上と制限した。
【0049】
歪量が0.01より小さくては空孔導入量が少なく、その結果時効時間短縮効果は小さくなり、一方0.30より大きい大圧下で複数回の温間加工を行うことは温度制御・板形状制御といった観点から現実プロセスへの適用が難しく、従って歪量の範囲を0.01〜0.30に限定する。
ここで、歪量eは、JIS G0202 1134番に示すように、加工前の評点間距離Lo 、加工後の評点間距離Lとしたときにe=ln(L/Lo )より求めた値とする。
なお、加工開始のタイミングについては、より効果的にCu粒子の析出を促進するためには、10秒以内に少なくとも1回目の加工を開始することが好ましい。
【0050】
次に歪み速度と張力の限定理由について説明する。歪み速度が5×10−2−1より大きいとCu粒子の顕著な析出促進効果は得られない。従って、歪み速度は5×10−2−1以下と限定した。一方、歪み速度が1×10−5−1より小さいと加工に極めて長時間を有することになるので、1×10−5−1以上と限定した。
【0051】
また連続焼鈍プロセスにおいて、450〜700℃の温度範囲にある際に板に付与される張力が98.07MPa(10kgf/mm2 )未満の時には板内部に歪みが入らずCu粒子の析出促進効果は少ない。従って、張力を98.07MPa  (10kgf/mm2 )以上に限定した。一方、張力が980.7MPa(100kgf/mm2 )より大きいと通板中に板破断を起こすので、張力を980.7MPa(100kgf/mm2 )以下とした。
【0052】
なお、本発明に係る鋼材を本発明に係る製造方法で温間加工することにより、本発明鋼の範囲外の成分を有しかつ温間加工を行わない条件に比べて、40%以上の相乗的な時効時間短縮効果が得られる。
【0053】
【実施例】
次にこの発明を実施例により詳細に説明する。
表1に示す成分に調整した鋼材A〜Jを、表2に示す種々の加工・温度条件で温間加工を施し、加工温度と同じ温度に保持し、Cu粒子析出により硬度が最大値になるまでの時間を測定した。次いで各試料について、同一加工温度であるが加工条件が異なる試料を比較材とし、比較材に比べた時効時間短縮率を算出した。
【0054】
さらに、熱処理を施した鋼材の一部分について、Cu粒子周辺の元素偏析を測定するための試験片を切り出し、アトムプローブ電界イオン顕微鏡にてMn、Cr偏析量の測定を行い、マトリックス中の濃度に対するマトリックス/Cu粒子界面の濃度の比を求めた。Cu粒子周囲の偏析は、電界放射型透過電子顕微鏡中でエネルギー分散型X線分析法を用いて定量分析を行うかアトムプローブ電界イオン顕微鏡法による分析が可能であるが、分析の空間分解能の観点から後者がより好適である。なお解析したCu粒子の直径は5〜15nmの範囲にあるものを測定した。
【0055】
試料No.1、4、9はMn,Crを含有せず、かつ温間圧延も行わない比較例のデータであり、No.16、17、18、25はMn、Crの添加量、Cuに対する比率が本発明外でありかつ温間圧延を行わない比較鋼のデータである。
試料No.3、6、8、20、28はMnあるいはCrの添加量、あるいは  (Mn+Cr)/Cuが本発明の適正範囲外であり、かつ温間加工条件が適正範囲外であったために従来発明に対し15%を超える時効時間短縮効果が得られなかったものである。
【0056】
No.11は、Mn,Crを含有し、かつ製造方法も本発明の範囲内にあるもので、請求項1および2からはずれた成分でかつ温間加工を行わなかった従来鋼No.9に比べて73%の時効時間短縮効果が得られたものである。
No.22は、同様にMn,Crを含有し、かつ製造方法も本発明の範囲内にあるもので、請求項1および2からはずれた成分でかつ温間加工を行わなかった従来鋼No.25に比べて80%の時効時間短縮効果が得られたものである。
【0057】
【表1】

Figure 2004100018
【0058】
【表2】
Figure 2004100018
【0059】
【表3】
Figure 2004100018
【0060】
【発明の効果】
本発明は、Cu添加型時効硬化鋼材の製造において最も長時間を要する時効処理時間を、適正な成分と温間加工プロセスを適用することにより、従来に比して顕著に短縮させることができる鋼材およびその製造方法を実現したものであり、製造コスト削減という観点から、産業上の効果は極めて高い。
【図面の簡単な説明】
【図1】Fe−1.5Cu合金の時効曲線であり、530℃の時効初期に0.02の歪みで5回の温間圧延をすることによってCu粒子の析出が促進されて、硬度ピークまでの時間が温間加工なしの場合に比べて約1/3になった例を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a Cu precipitation hardening type steel material characterized by precipitation hardening in a short time and a method for producing the same, and is used for structural members such as automobiles, bridges, buildings, ships, automobiles and electric products. The present invention is applicable to hot-rolled steel, cold-rolled steel, and steel for hot forging having a tensile strength of about 300 MPa to 800 MPa, which is suitable for inner and outer panel applications.
[0002]
[Prior art]
Cu-containing steel is a typical age-hardened steel sheet in which precipitates of Cu precipitate finely when aging is performed for a certain time in a certain temperature range, and as a result, the yield strength and tensile strength of the steel material increase. Are known. As shown in Non-Patent Document 1, it is known that the maximum amount of strengthening can be obtained at a certain combination of temperature and time, for example, aging at 550 ° C. At a temperature, isothermal holding for about 30 minutes to 1 hour is required, and at a temperature lower than this, an aging precipitation treatment for a longer time is required.
[0003]
[Non-patent document 1]
Acta Metallurgica, Vol. 20 (1972), p. 971.
As a method of producing such a Cu precipitation hardening steel sheet, a method of once cooling to room temperature after hot rolling and then performing recrystallization and precipitation treatment (for example, see Patent Document 1), an ultra-low carbon Al-killed steel to which Cu is added or A method in which a steel sheet to which Nb and Ti are added is subjected to a precipitation treatment by holding at a high temperature in an overaging zone of a continuous annealing line or a method of performing a precipitation treatment by reheating after working (for example, see Patent Document 2), (For example, refer to Patent Literature 3).
[0005]
[Patent Document 1]
JP-A-5-105946
[Patent Document 2]
JP-A-64-4429
[Patent Document 3]
JP-A-5-186823
However, in reality, these methods require a long time for the aging precipitation treatment of Cu, and therefore have a disadvantage that the productivity of the steel material is low, and as a result, the production cost is high. Since Cu-added steel not only can expect a large precipitation hardening ability, but also has excellent fatigue properties, weld toughness, and excellent corrosion resistance of steel materials, the demand for the steel materials is increasing, and from the viewpoint of productivity, the precipitation of Cu is promoted. There has been a strong demand for the development of a technology for manufacturing steel in a short time.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide an aging-precipitation-type steel material containing Cu that can be subjected to aging treatment in a short time and a method for producing the same.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive experiments and studies in order to achieve the above object, and as a result, introduce strain intermittently or continuously in the early stage of aging precipitation of Cu particles, or add an appropriate amount of Mn or Cr As a result, it has been found that the aging time, which has been a problem in the conventional technology, can be reduced.
[0011]
The present invention takes the following measures in order to solve the above problems.
That is, the present invention is an age hardening type Cu-containing high-strength steel sheet which precipitates and hardens in a short time, and the gist thereof is as follows.
The first invention is, in mass%,
C: 0.0005 to 0.2%, Si: 0.001 to 2.0%,
P: 0.001 to 0.2%, S: 0.1% or less,
Al: 0.002 to 0.2%, N: 0.0005 to 0.1%,
Cu: 0.7 to 2.0%
And Mn: 0.1-3.0%, Cr: 0.1-3.0%
And (Mn + Cr) / Cu is 0.2 or more, the balance is composed of iron and unavoidable impurities, the average ferrite crystal grain size is 3 μm or more, and the ferrite area ratio is 60%. It is characterized by the above.
According to a second aspect of the present invention, in addition to the above composition,
Ni: 0.1 to 2.0%, Mo: 0.1 to 1.0%,
Nb: 0.003 to 0.1%, Ti: 0.003 to 0.1%,
V: 0.003 to 0.1%, B: 0.0003 to 0.1%
Among them, one or more kinds are included.
A third invention is characterized in that the sum of the average concentrations of Mn and Cr at the interface between the precipitated Cu particles and the Fe matrix is at least twice the sum of the average concentrations of Mn and Cr in the Fe matrix.
[0012]
Further, the present invention relates to a method for producing a Cu precipitation hardening type high-strength steel material which precipitates and hardens in a short time, and its gist is as follows.
The fourth invention is based on mass%,
C: 0.0005 to 0.2%, Si: 0.001 to 2.0%,
P: 0.001 to 0.2%, S: 0.1% or less,
Al: 0.002 to 0.2%, N: 0.0005 to 0.1%,
Cu: 0.7 to 2.0%
A steel material having an average ferrite crystal grain size of 3 μm or more and a ferrite area ratio of 60% or more in a temperature range of 450 to 700 ° C. and after reaching the temperature range. It is characterized in that warm working with addition of a strain of 0.01 to 0.30 within 4 minutes is performed four times or more, and the temperature is maintained within the above temperature range for 5 seconds to 60 minutes.
[0013]
The fifth invention is based on mass%,
C: 0.0005 to 0.2%, Si: 0.001 to 2.0%,
P: 0.001 to 0.2%, S: 0.1% or less,
Al: 0.002 to 0.2%, N: 0.0005 to 0.1%,
Cu: 0.7 to 2.0%
A steel material having an average ferrite crystal grain size of 3 μm or more and a ferrite area ratio of 60% or more in a temperature range of 450 to 700 ° C. and after reaching the temperature range. It is characterized in that it is subjected to warm working at a strain rate of 1 × 10 −5 to 5 × 10 −2 s −1 within minutes, and to be kept within the above temperature range for 5 seconds to 60 minutes.
[0014]
The sixth invention is based on mass%,
C: 0.0005 to 0.2%, Si: 0.001 to 2.0%,
P: 0.001 to 0.2%, S: 0.1% or less,
Al: 0.002 to 0.2%, N: 0.0005 to 0.1%,
Cu: 0.7 to 2.0%
In the continuous annealing process, a steel material consisting of iron and inevitable impurities, having an average ferrite crystal grain size of 3 μm or more and a ferrite area ratio of 60% or more, is heated to a temperature range of 450 to 700 ° C. in a continuous annealing process. In some cases, the sheet is passed while applying a tension of 98.07 to 980.7 MPa (10 to 100 kgf / mm 2 ), and is maintained in the temperature range for 5 seconds to 60 minutes.
[0015]
According to a seventh aspect of the present invention, in addition to the above composition,
Mn: 0.1-3.0%, Cr: 0.1-3.0%
And (Mn + Cr) / Cu is 0.2 or more.
According to an eighth aspect, in the invention according to any one of the fourth to seventh aspects, the steel material is represented by mass%,
Ni: 0.1 to 2.0%, Mo: 0.1 to 1.0%,
Nb: 0.003 to 0.1%, Ti: 0.003 to 0.1%,
V: 0.003 to 0.1%, B: 0.0003 to 0.1%
Among them, one or more kinds are included.
[0016]
The shortening of the age-precipitation treatment step of Cu particles achieved by the present invention is achieved when the amount of Mn + Cr is less than 0.1% and the time is 15% or more as compared with the case where warm working is not performed. Even if the content of (Mn + Cr) / Cu is within the range of the present invention, warm working in the temperature range of 450 to 700 ° C (within the temperature range of 450 to 700 ° C and within 2 minutes after reaching the temperature range) Without performing a warming process involving adding a strain of 0.01 to 0.30 four times or more), and the time required to reach the highest hardness as compared with the same heat treatment history is 15% or more. This is a condition under which a shortening effect can be obtained.
[0017]
As a processing method, a method by sheet rolling or wire drawing rolling, a method by forging can be applied, and in addition to these methods, there is a large change in a steel material cross-sectional area such as roller leveler processing, straightening processing, and shot processing. The object of the present invention can be achieved without any processing. Further, according to the method of the present invention, the aging treatment time can be shortened as compared with the prior art as the amount of strain added per warm working is large and the number of workings is large.
[0018]
As a method of setting the temperature in a range of 450 to 700 ° C., there are a method of cooling after a hot working process at 700 ° C. or more, and a method of reheating a steel material at a temperature of 450 ° C. or less, and both achieve the object of the present invention. be able to. The object of the present invention can be achieved in any of the recrystallization zone, the cooling zone, and the overaging zone within a temperature range of 450 to 700 ° C. where high tension is applied during the continuous annealing process.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have repeated many experiments and studies, returning to the basic viewpoint, in order to clarify the factors affecting the aging precipitation rate of Cu particles, which were unknown in the past. As a result, they have found a completely new fact that the introduction of vacancies into a steel material in a temperature range in which precipitation of Cu particles occurs and within a short time after entering the temperature range promotes the precipitation of Cu particles. Next, as a result of detailed studies on a method of introducing vacancies into the steel material in a Cu precipitation temperature range of 450 to 700 ° C., it was found that a method using warm working or irradiation with radiation was effective.
[0020]
Furthermore, as a result of repeated examinations on the conditions of the warm working, as shown in FIG. 1 as an example, the strain is divided into a larger number of times and applied intermittently or continuously, or the working is performed at a very low strain rate. By doing so, it was clarified that a remarkable effect of accelerating the precipitation of Cu particles can be obtained as compared with the conventional case without warm working.
Based on this precipitation promotion mechanism, the longer the holes are supplied by processing, the more the precipitation of Cu particles is promoted. Actually, if the accumulated processing amount is constant, it is better to repeat the processing of the small distortion amount many times than to perform the processing of the large distortion amount a small number of times. It was found that the effect was higher.
[0021]
Furthermore, the present inventors studied the effect of the third element on the Cu deposition separately from the Cu precipitation accelerating effect of the warm working, and investigated the effect of the third element on the Cu deposition, It has been found that the addition of an appropriate amount of Mn or Cr is effective in promoting age hardening of Cu particles.
The present inventors have analyzed the cause of the acceleration, and found that Mn or Cr segregates at a high concentration around the Cu particles, thereby reducing the strain field formed around the Cu particles during Cu particle growth. It has been found that the driving force for the growth of Cu particles is apparently increased, and as a result, it is based on a completely new mechanism of promoting the precipitation of Cu particles.
Further, it has been found that by performing intermittent or continuous warm working on a steel material to which appropriate amounts of Mn and Cr are added with respect to the added amount of Cu as described above, the effect of promoting precipitation is synergistically increased. This has led to the present invention.
[0022]
Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the components will be described. The component content is% by mass.
C: C is an additive element indispensable for controlling the structure of steel, and is contained at 0.0005% or more. However, if it exceeds 0.2%, the structure becomes a structure having a high dislocation density such as martensite, and vacancies introduced during warm working are absorbed by the dislocations, which is not effective in promoting the growth of Cu particles. Disappears. Therefore, the upper limit is limited to 0.2%.
[0023]
Si: Like C, Si is an essential element for controlling the matrix structure, and is also required as a deoxidizing element. Therefore, Si is contained in an amount of 0.001% or more. However, when the content exceeds 2.0%, the descaling property at the time of hot rolling is deteriorated and the cost is increased. Therefore, the Si content was limited to the range of 0.001 to 2.0%.
[0024]
P: P is an element used for controlling the dislocation density in steel, and is contained at 0.001% or more. On the other hand, if it exceeds 0.2%, a work crack occurs, so the upper limit of the P content is set to 0.2%.
[0025]
S: S is an impurity, and if contained in a large amount, causes hot working cracking.
[0026]
Al: Al is an element used as a deoxidizing element, and is contained at 0.002% or more. However, when the addition amount of Al exceeds 0.2%, the precipitation amount of AlN increases and the effect of adding Cu is lost, so the appropriate addition range of the Al content is set to 0.002 to 0.2%.
[0027]
N: Since N is mainly used for controlling the crystal grain size in the austenite region as a nitride, it should be contained at 0.0005% or more. On the other hand, if N exceeds 0.1%, a large amount of carbonitride precipitates in the ferrite grains, losing the effect of adding Cu, and further has a structure with a high dislocation density as in the case of C. The range of amounts was 0.0005-0.1%.
[0028]
Cu: Cu is an essential constituent element in the present invention. However, if it is less than 0.7%, precipitation hardening of Cu does not occur, and if it exceeds 2.0%, the surface cracks of the steel sheet due to hot embrittlement of Cu become remarkable. It was limited to the range of 0.7 to 2.0%. However, the lower limit of the addition amount is desirably 1.0% or more from the viewpoint of increasing the volume fraction of Cu precipitated particles. Regarding the upper limit of the addition amount, when Ni is added in the same amount as Cu, the hot embrittlement of Cu can be reduced. It is possible. Since Cu is also an element that does not increase the carbon equivalent, it is also effective in improving weldability.
[0029]
Mn: Mn is effective for accelerating the precipitation of Cu particles, and is a preferable element for controlling the matrix structure by lowering the Ar3 transformation point. However, if it is less than 0.1%, a sufficient effect of accelerating the precipitation of Cu particles cannot be obtained, and if it exceeds 3.0%, the hot deformation resistance of the steel material tends to increase, and the weldability also deteriorates. For this reason, the Mn content was limited to the range of 0.1 to 3.0%.
[0030]
Cr: Like Cr, Cr is effective for promoting the precipitation of Cu particles. However, if it is less than 0.1%, a sufficient effect of accelerating the precipitation of Cu particles cannot be obtained, and if it exceeds 3.0%, the hot deformation resistance of the steel material tends to increase, and the weldability also deteriorates. For this reason, the Cr content was limited to the range of 0.1 to 3.0%.
[0031]
(Mn + Cr) / Cu ratio: Both Cr and Mn have the effect of promoting the precipitation of Cu particles by being added simultaneously with Cu, but the total added amount is less than 0.2 with respect to the added amount of Cu. In addition, Mn or Cr does not segregate around Cu, and as a result, an age hardening time reduction amount of 15% or more cannot be obtained. Therefore, the range is limited to 0.2 or more.
[0032]
Ni: Ni is used for suppressing hot embrittlement and controlling the matrix structure due to the addition of Cu. Generally, when Ni is added in an amount equal to the amount of added Cu, remarkable hot cracking due to Cu can be suppressed. If it is less than 0.1%, hot cracking caused by Cu cannot be suppressed, and if it exceeds 2.0%, cost increases. Therefore, the appropriate addition range is limited to 0.1 to 2.0% or less.
[0033]
Mo: Mo is required as a carbonitride as an element for controlling the austenite grain size at the time of reheating, so it is preferable to add 0.1% or more. However, if it exceeds 1.0%, the effect of the Cu precipitate is lost due to the precipitation of a large amount of carbonitride. Therefore, the appropriate addition range was limited to 1.0% or less.
[0034]
Nb: Since Nb is necessary as a carbonitride as an element for controlling the austenite grain size at the time of reheating, it is preferable to add 0.003% or more. However, if the addition amount of Nb exceeds 0.1%, the amount of carbonitride in ferrite increases, and the effect of adding Cu is lost. Therefore, the appropriate addition range of the Nb content is set to 0.003 to 0.1%.
[0035]
Ti: Since Ti is required as a deoxidizing element and as a carbonitride as an element for controlling the austenite grain size during reheating, it is preferable to add 0.003% or more. However, if the addition amount of Ti exceeds 0.1%, the effect of adding Cu is lost, so the proper addition range of the Ti content is set to 0.003 to 0.1%.
[0036]
V: Since V is necessary as a carbonitride as an element for controlling the austenite grain size at the time of reheating, it is preferable to add 0.003% or more. However, if the added amount of V exceeds 0.1%, the amount of carbonitride in the ferrite increases and the effect of adding Cu is lost. Therefore, the appropriate addition range of the V content is set to 0.003 to 0.1%.
[0037]
B: Since B is an element used for controlling the matrix structure, it is preferable to add 0.0003% or more. On the other hand, if it exceeds 0.1%, carbon borides and boron nitrides precipitate at the grain boundaries, causing deterioration of ductility. Therefore, the appropriate addition range was limited to 0.0003 to 0.1%.
[0038]
Since the steel material of the present invention can obtain a remarkable aging time shortening effect by forming a ferrite structure having a small vacancy and dislocation density during the age hardening treatment, the steel material contains at least 60% by area of ferrite, Further, the content is preferably 80% or more. The upper limit of the ferrite area ratio can be attained without particularly determining the effect of the present invention, and 100% is within the scope of the present invention. Note that the ferrite structure refers to a polygonal ferrite structure, a pseudopolygonal ferrite structure, or a granular ferrite structure including an M / A composite as shown in Non-Patent Document 2 below. The remaining structure may contain one or more of martensite, austenite, pearlite, and lath bainite.
[0039]
[Non-patent document 2]
ISIJ International, 35 (2002), pp. 941-944.
In order to obtain the structure of the present invention, a component system having a low hardenability is used as in the range of the present invention, and the average cooling rate between A1 temperature and 500 ° C in the hot working process is 0.01 to 30 ° C. / S.
[0041]
For the ferrite area ratio, a cross section parallel to the rolling direction (L cross section) reveals a microstructure using a nital solution, and then a bright portion when the microstructure is observed using an optical microscope is defined as a ferrite microstructure. Is determined by an image analyzer.
The average crystal grain size of the main phase ferrite is determined from an optical micrograph by a method specified in JIS G0552. When the crystal grains are fine, it can be determined by a similar method using a scanning electron microscope.
[0042]
If the average ferrite grain size of the steel material of the present invention is smaller than 3 μm, most of the Cu particles precipitate at the grain boundaries, so that sufficient age hardening cannot be obtained. The average ferrite grain size is 3 μm or more, and preferably 10 μm or more, because it diffuses into the field and does not have the effect of promoting aging. The effect of the present invention can be obtained without any particular upper limit of the average crystal grain size, but is preferably 100 μm or less from the viewpoint of easy control of the texture of the steel material.
[0043]
Next, the reason for limiting the segregation amounts of Mn and Cr around the Cu particles will be described.
As a result of detailed analysis by the present inventors, the sum of the segregated amounts of Mn and Cr at the interface between the precipitated Cu particles and the Fe matrix (sum of the average concentrations) is at least twice the sum of the average concentrations of Mn and Cr in the Fe matrix. At the time, a remarkable effect of promoting the growth of Cu particles was observed. Therefore, the amount of interface segregation was determined to be at least twice the matrix.
[0044]
Such a segregation state can be achieved by setting the added amount of Mn or Cr within the range of the present invention and performing aging treatment in a temperature range of 450 to 700 ° C. By performing processing at a strain amount of 0.01 to 0.30 four times or more in the initial stage of aging within a temperature range of 450 to 700 ° C., the total amount of segregation of Mn and Cr at the interface between the precipitated Cu particles and the Fe matrix (average) (The sum of the concentrations) is 2.5 times or more the sum of the average concentrations of Mn and Cr in the Fe matrix.
[0045]
The average concentration of Mn and Cr at the interface between the precipitated Cu particles and the Fe matrix was measured with an atom probe field ion microscope, and the amounts of Mn and Cr segregated were measured. Using the value measured by the probe field ion microscope, the ratio of the (Mn + Cr) average concentration at the Cu particle interface to the (Mn + Cr) average concentration in the Fe matrix was determined. The total number of detected ions used for the concentration measurement calculation is 100 or more for both the interface and the matrix.
[0046]
Next, the reasons for limiting the manufacturing method will be described.
In the hot working process, if the temperature of the hot working is less than 450 ° C., it takes a long time to precipitate Cu, which is disadvantageous in terms of manufacturing cost, and if it exceeds 700 ° C., the amount of Cu particles precipitated in ferrite. And a large amount of precipitation hardening cannot be expected.
[0047]
Further, if the holding time in the temperature range of 450 to 700 ° C. is less than 5 seconds, sufficient curing cannot be obtained, and if the holding time exceeds 60 minutes, overaging occurs and the strength is reduced. Stipulate. The holding time at which the maximum amount of precipitation strengthening is obtained must be shorter at higher temperatures and longer at lower temperatures in the holding temperature range of 450 to 700 ° C., for example, five times of warm working with a strain amount of 0.02. In this case, the temperature is set to about 450 ° C. for 60 minutes, 550 ° C. for 20 minutes, and 650 ° C. for about 100 seconds.
[0048]
In addition, warm working is performed after more than 2 minutes after entering the temperature range of 450 to 700 ° C, or aging is performed when the amount of strain of 0.01 to 0.30 applied within 2 minutes is less than 3 times. The effect of shortening the time is small (less than 15% as compared with the case without warm working). Therefore, the conditions of the warm working are within the temperature range of 450 to 700 ° C. and the number of times of the warm working accompanied by the addition of the strain of 0.01 to 0.30 within two minutes after reaching the temperature range is four times. Restricted to above.
[0049]
When the strain amount is smaller than 0.01, the amount of vacancy introduced is small, and as a result, the effect of shortening the aging time is reduced. On the other hand, performing multiple warm working under a large pressure larger than 0.30 requires temperature control From the viewpoint of shape control, it is difficult to apply the method to a real process. Therefore, the range of the strain amount is limited to 0.01 to 0.30.
Here, the strain amount e, as shown in JIS G0202 1134 No., scoring distance L o before processing, values obtained from e = ln (L / L o ) when the scoring distance L after processing And
Regarding the timing of the processing start, it is preferable to start at least the first processing within 10 seconds in order to more effectively promote the precipitation of Cu particles.
[0050]
Next, the reasons for limiting the strain rate and the tension will be described. If the strain rate is larger than 5 × 10 −2 s −1, a remarkable effect of accelerating the precipitation of Cu particles cannot be obtained. Therefore, the strain rate was limited to 5 × 10 −2 s −1 or less. On the other hand, if the strain rate is smaller than 1 × 10 −5 s −1 , the processing takes an extremely long time, so that the strain rate is limited to 1 × 10 −5 s −1 or more.
[0051]
Further, in the continuous annealing process, when the tension applied to the sheet in the temperature range of 450 to 700 ° C. is less than 98.07 MPa (10 kgf / mm 2 ), no strain enters the inside of the sheet, and the effect of accelerating the precipitation of Cu particles is reduced. Few. Therefore, the tension was limited to 98.07 MPa (10 kgf / mm 2 ) or more. On the other hand, if the tension is greater than 980.7 MPa (100 kgf / mm 2 ), the sheet will break during passing, so the tension is set to 980.7 MPa (100 kgf / mm 2 ) or less.
[0052]
The warm working of the steel material according to the present invention by the manufacturing method according to the present invention has a synergistic value of 40% or more as compared with a condition having components outside the range of the present invention steel and not performing warm working. Aging time can be effectively reduced.
[0053]
【Example】
Next, the present invention will be described in detail with reference to examples.
The steel materials A to J adjusted to the components shown in Table 1 are subjected to warm working under various working and temperature conditions shown in Table 2, and kept at the same working temperature, and the hardness becomes the maximum value due to precipitation of Cu particles. The time until was measured. Next, for each sample, a sample having the same processing temperature but different processing conditions was used as a comparative material, and the aging time shortening rate compared with the comparative material was calculated.
[0054]
Further, for a part of the heat-treated steel material, a test piece for measuring elemental segregation around the Cu particles was cut out, and Mn and Cr segregation amounts were measured with an atom probe field ion microscope. / Cu particle interface concentration ratio was determined. Segregation around Cu particles can be analyzed quantitatively using energy dispersive X-ray analysis in a field emission transmission electron microscope or by atom probe field ion microscopy. The latter is more preferred. The diameter of the analyzed Cu particles was measured in the range of 5 to 15 nm.
[0055]
Sample No. Nos. 1, 4, and 9 are data of comparative examples that do not contain Mn and Cr and that are not subjected to warm rolling. Nos. 16, 17, 18, and 25 are data of comparative steels in which the amounts of Mn and Cr added and the ratio to Cu are outside the present invention and warm rolling is not performed.
Sample No. Nos. 3, 6, 8, 20, and 28 represent the amounts of Mn or Cr added or (Mn + Cr) / Cu outside the proper range of the present invention, and the warm working conditions outside the proper range. The aging time shortening effect exceeding 15% was not obtained.
[0056]
No. No. 11 contains Mn and Cr, and the production method is also within the scope of the present invention. The conventional steel No. 11 is a component deviating from claims 1 and 2 and is not subjected to warm working. The aging time shortening effect of 73% was obtained as compared with No. 9.
No. No. 22 also contains Mn and Cr, and the manufacturing method is also within the scope of the present invention. The conventional steel No. 22 which is a component deviating from claims 1 and 2 and which is not subjected to warm working. The aging time shortening effect of 80% was obtained as compared with 25.
[0057]
[Table 1]
Figure 2004100018
[0058]
[Table 2]
Figure 2004100018
[0059]
[Table 3]
Figure 2004100018
[0060]
【The invention's effect】
The present invention provides a steel material that can significantly reduce the aging time, which requires the longest time in the production of Cu-added age-hardened steel material, by applying an appropriate component and a warm working process, as compared with the conventional steel material. And its manufacturing method is realized, and the industrial effect is extremely high from the viewpoint of reducing manufacturing costs.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an aging curve of an Fe-1.5Cu alloy. Precipitation of Cu particles is promoted by performing five times of warm rolling with a strain of 0.02 in an early stage of aging at 530 ° C. to a hardness peak. FIG. 5 is a diagram showing an example in which the time is about 1/3 as compared with the case without warm working.

Claims (8)

質量%で、
C :0.0005〜0.2%、
Si:0.001〜2.0%、
P :0.001〜0.2%、
S :0.1%以下、
Al:0.002〜0.2%、
N :0.0005〜0.1%、
Cu:0.7〜2.0%
を含み、かつ
Mn:0.1〜3.0%、
Cr:0.1〜3.0%
のうち1種または2種を含み、かつ(Mn+Cr)/Cuが0.2以上であり、残部鉄及び不可避的不純物からなり、平均フェライト結晶粒径が3μm以上であり、フェライト面積率が60%以上であることを特徴とするCu析出硬化型高強度鋼材。
In mass%,
C: 0.0005 to 0.2%,
Si: 0.001 to 2.0%,
P: 0.001 to 0.2%,
S: 0.1% or less,
Al: 0.002 to 0.2%,
N: 0.0005 to 0.1%,
Cu: 0.7 to 2.0%
And Mn: 0.1 to 3.0%;
Cr: 0.1-3.0%
And (Mn + Cr) / Cu is 0.2 or more, the balance is composed of iron and unavoidable impurities, the average ferrite crystal grain size is 3 μm or more, and the ferrite area ratio is 60%. A Cu precipitation hardening type high strength steel material characterized by the above.
前記組成に加えてさらに、質量%で、
Ni:0.1〜2.0%、
Mo:0.1〜1.0%、
Nb:0.003〜0.1%、
Ti:0.003〜0.1%、
V :0.003〜0.1%、
B :0.0003〜0.1%
のうち、1種または2種以上を含むことを特徴とする請求項1記載のCu析出硬化型高強度鋼材。
In addition to the above composition,
Ni: 0.1 to 2.0%,
Mo: 0.1-1.0%,
Nb: 0.003 to 0.1%,
Ti: 0.003 to 0.1%,
V: 0.003-0.1%,
B: 0.0003-0.1%
The Cu precipitation hardening type high-strength steel material according to claim 1, wherein one or more types are included.
析出したCu粒子とFeマトリックス界面におけるMnとCrの平均濃度の和が、Feマトリックス中におけるMnとCrの平均濃度の和の2倍以上であることを特徴とする請求項1又は2記載のCu析出硬化型高強度鋼材。3. The Cu according to claim 1, wherein the sum of the average concentrations of Mn and Cr at the interface between the precipitated Cu particles and the Fe matrix is at least twice the sum of the average concentrations of Mn and Cr in the Fe matrix. Precipitation hardening type high strength steel. 質量%で、
C :0.0005〜0.2%、
Si:0.001〜2.0%、
P :0.001〜0.2%、
S :0.1%以下、
Al:0.002〜0.2%、
N :0.0005〜0.1%、
Cu:0.7〜2.0%
を含み、残部鉄及び不可避的不純物からなり、平均フェライト結晶粒径が3μm以上でありフェライト面積率が60%以上である鋼材を、450〜700℃の温度範囲内でかつ当該温度範囲到達後2分以内に歪量0.01〜0.30の歪み付加を伴う温間加工を4回以上行い、前記温度範囲内に5秒〜60分保持することを特徴とするCu析出硬化型高強度鋼材の製造方法。
In mass%,
C: 0.0005 to 0.2%,
Si: 0.001 to 2.0%,
P: 0.001 to 0.2%,
S: 0.1% or less,
Al: 0.002 to 0.2%,
N: 0.0005 to 0.1%,
Cu: 0.7 to 2.0%
A steel material having an average ferrite crystal grain size of 3 μm or more and a ferrite area ratio of 60% or more in a temperature range of 450 to 700 ° C. and after reaching the temperature range. A copper precipitation hardening type high-strength steel material characterized by performing warm working with a strain amount of 0.01 to 0.30 four times or more within a minute and maintaining the temperature within the temperature range for 5 seconds to 60 minutes. Manufacturing method.
質量%で、
C :0.0005〜0.2%、
Si:0.001〜2.0%、
P :0.001〜0.2%、
S :0.1%以下、
Al:0.002〜0.2%、
N :0.0005〜0.1%、
Cu:0.7〜2.0%
を含み、残部鉄及び不可避的不純物からなり、平均フェライト結晶粒径が3μm以上でありフェライト面積率が60%以上である鋼材を、450〜700℃の温度範囲内でかつ当該温度範囲到達後2分以内に1×10−5〜5×10−2−1の歪速度で温間加工し、前記温度範囲内に5秒〜60分保持することを特徴とするCu析出硬化型高強度鋼材の製造方法。
In mass%,
C: 0.0005 to 0.2%,
Si: 0.001 to 2.0%,
P: 0.001 to 0.2%,
S: 0.1% or less,
Al: 0.002 to 0.2%,
N: 0.0005 to 0.1%,
Cu: 0.7 to 2.0%
A steel material having an average ferrite crystal grain size of 3 μm or more and a ferrite area ratio of 60% or more in a temperature range of 450 to 700 ° C. and after reaching the temperature range. A copper precipitation hardening type high-strength steel material, which is warm-worked within 1 minute at a strain rate of 1 × 10 −5 to 5 × 10 −2 s −1 and held within the above-mentioned temperature range for 5 seconds to 60 minutes. Manufacturing method.
質量%で、
C :0.0005〜0.2%、
Si:0.001〜2.0%、
P :0.001〜0.2%、
S :0.1%以下、
Al:0.002〜0.2%、
N :0.0005〜0.1%、
Cu:0.7〜2.0%
を含み、残部鉄及び不可避的不純物からなり、平均フェライト結晶粒径が3μm以上でありフェライト面積率が60%以上である鋼材を、連続焼鈍プロセスにおいて、鋼板の温度が450〜700℃の範囲にある際に98.07〜980.7MPa(10〜100kgf/mm2 )の張力を付加しながら通板し、前記温度範囲内に5秒〜60分保持することを特徴とするCu析出硬化型高強度鋼材の製造方法。
In mass%,
C: 0.0005 to 0.2%,
Si: 0.001 to 2.0%,
P: 0.001 to 0.2%,
S: 0.1% or less,
Al: 0.002 to 0.2%,
N: 0.0005 to 0.1%,
Cu: 0.7 to 2.0%
In the continuous annealing process, a steel material consisting of iron and unavoidable impurities, having an average ferrite crystal grain size of 3 μm or more and a ferrite area ratio of 60% or more, is heated to a temperature range of 450 to 700 ° C. in a continuous annealing process. In some cases, the sheet is passed while applying a tension of 98.07 to 980.7 MPa (10 to 100 kgf / mm 2 ), and is kept within the above temperature range for 5 seconds to 60 minutes. Manufacturing method for high strength steel.
前記組成に加えてさらに、鋼材が質量%で、
Mn:0.1〜3.0%、
Cr:0.1〜3.0%
のうち1種または2種を含み、かつ(Mn+Cr)/Cuが0.2以上であることを特徴とする請求項4〜6の何れか1項に記載のCu析出硬化型高強度鋼材の製造方法。
In addition to the above composition, steel material is mass%,
Mn: 0.1-3.0%,
Cr: 0.1-3.0%
The production of a Cu precipitation hardening type high-strength steel material according to any one of claims 4 to 6, wherein one or two of the above are included, and (Mn + Cr) / Cu is 0.2 or more. Method.
前記組成に加えてさらに、鋼材が質量%で、
Ni:0.1〜2.0%、
Mo:0.1〜1.0%、
Nb:0.003〜0.1%、
Ti:0.003〜0.1%、
V :0.003〜0.1%、
B :0.0003〜0.1%
のうち、1種または2種以上を含むことを特徴とする請求項4〜7の何れか1項に記載のCu析出硬化型高強度鋼材の製造方法。
In addition to the above composition, steel material is mass%,
Ni: 0.1 to 2.0%,
Mo: 0.1-1.0%,
Nb: 0.003 to 0.1%,
Ti: 0.003 to 0.1%,
V: 0.003-0.1%,
B: 0.0003-0.1%
The method for producing a Cu precipitation-hardening high-strength steel material according to any one of claims 4 to 7, wherein at least one of them is included.
JP2002266588A 2002-09-12 2002-09-12 Cu precipitation hardening type high strength steel material and method for producing the same Expired - Fee Related JP3857970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266588A JP3857970B2 (en) 2002-09-12 2002-09-12 Cu precipitation hardening type high strength steel material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266588A JP3857970B2 (en) 2002-09-12 2002-09-12 Cu precipitation hardening type high strength steel material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004100018A true JP2004100018A (en) 2004-04-02
JP3857970B2 JP3857970B2 (en) 2006-12-13

Family

ID=32265364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266588A Expired - Fee Related JP3857970B2 (en) 2002-09-12 2002-09-12 Cu precipitation hardening type high strength steel material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3857970B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075145A (en) * 2006-09-22 2008-04-03 Kobe Steel Ltd High-strength steel material excellent in fatigue characteristic, and producing method therefor
WO2013018723A1 (en) 2011-07-29 2013-02-07 新日鐵住金株式会社 High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability, and method for producing each

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075145A (en) * 2006-09-22 2008-04-03 Kobe Steel Ltd High-strength steel material excellent in fatigue characteristic, and producing method therefor
JP4671238B2 (en) * 2006-09-22 2011-04-13 株式会社神戸製鋼所 High-strength steel material with excellent fatigue characteristics and method for producing the same
WO2013018723A1 (en) 2011-07-29 2013-02-07 新日鐵住金株式会社 High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability, and method for producing each
KR20140026625A (en) 2011-07-29 2014-03-05 신닛테츠스미킨 카부시키카이샤 High-strength zinc-plated steel sheet and high-strength steel sheet having superior moldability and method for producing each
US20140170440A1 (en) * 2011-07-29 2014-06-19 Nippon Steel & Sumitomo Metal Corporation High strength steel sheet and high strength galvanized steel sheet excellent in shapeability and methods of production of same
US9694561B2 (en) 2011-07-29 2017-07-04 Nippon Steel & Sumitomo Metal Corporation High strength steel sheet and high strength galvanized steel sheet excellent in shapeability and methods of production of same
EP2738275B1 (en) * 2011-07-29 2020-05-27 Nippon Steel Corporation High strength steel sheet and high strength galvanized steel sheet excellent in shapeability and methods of production of the same

Also Published As

Publication number Publication date
JP3857970B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP5674620B2 (en) Steel wire for bolt and bolt, and manufacturing method thereof
EP3415656A1 (en) High-strength steel sheet and method for manufacturing same
JP5716640B2 (en) Rolled steel bar for hot forging
KR20150002848A (en) Steel wire for high-strength spring having exceptional coiling performance and hydrogen embrittlement resistance, and method for manufacturing same
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
JPWO2013102986A1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP5543814B2 (en) Steel plate for heat treatment and method for producing steel member
JP4423219B2 (en) High-strength bolts with excellent delayed fracture resistance and relaxation resistance
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4362319B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP2011231375A (en) Hot-working steel for case hardening
JPH11189842A (en) High-strength and high-workability hot rolled steel plate excellent in impact resistance, balance between strength and elongation, fatigue resistance, and bore-expandability, and its production
JPH11131176A (en) Induction hardened parts and production thereof
JP7125923B2 (en) High-carbon hot-rolled steel sheet for vacuum carburizing, its manufacturing method, and carburized steel parts
JP2006104549A (en) High strength bolt having excellent delayed fracture resistance and method for improving its delayed fracture resistance
KR101791324B1 (en) High-strength steel material having excellent fatigue properties, and method for producing same
JP4043754B2 (en) High strength PC steel bar with excellent delayed fracture characteristics
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JPH1017928A (en) Production of gear steel stock for induction hardening, excellent in machinability and fatigue strength
JP3458604B2 (en) Manufacturing method of induction hardened parts
JP2003193183A (en) High-strength steel wire with excellent delayed fracture resistance and corrosion resistance
JP3857970B2 (en) Cu precipitation hardening type high strength steel material and method for producing the same
EP3255169A1 (en) Age hardening steel for cold forging
JP3211627B2 (en) Steel for nitriding and method for producing the same
JPH11131135A (en) Induction-hardened parts and production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060915

R151 Written notification of patent or utility model registration

Ref document number: 3857970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees