JP2004099955A - Abrasion resistant coating and application method therefor - Google Patents

Abrasion resistant coating and application method therefor Download PDF

Info

Publication number
JP2004099955A
JP2004099955A JP2002261388A JP2002261388A JP2004099955A JP 2004099955 A JP2004099955 A JP 2004099955A JP 2002261388 A JP2002261388 A JP 2002261388A JP 2002261388 A JP2002261388 A JP 2002261388A JP 2004099955 A JP2004099955 A JP 2004099955A
Authority
JP
Japan
Prior art keywords
resistant coating
matrix
abrasive grains
base material
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002261388A
Other languages
Japanese (ja)
Other versions
JP3930403B2 (en
Inventor
Minoru Ohara
大原 稔
Koji Tsukimoto
月元 晃司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002261388A priority Critical patent/JP3930403B2/en
Publication of JP2004099955A publication Critical patent/JP2004099955A/en
Application granted granted Critical
Publication of JP3930403B2 publication Critical patent/JP3930403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasion resistant coating which is superior in oxidation resistance and durability and can be easily and inexpensively applied, and to provide an application method therefor. <P>SOLUTION: The application method comprises sintering a member containing a mixture of a matrix and hard abrasive grains coated on the surface of a metallic base material with discharge plasma while pressurizing it; metallurgically joining the coated member with the above metallic base material simultaneously when sintering the coated member; and removing a part of the above metallic base material from the surface of the above joined coating member by blasting, to make the above hard abrasive grains project. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービンやジェットエンジンの動翼先端部の金属母材に施される耐摩耗性コーティング及びその施工方法に関するものである。
【0002】
【従来の技術】
従来より、例えばガスタービンにおいては、その動翼先端とこれに対向するシュラウドとの間には、運転中に両者が接触しないように、所定寸法のクリアランスが設けられている。このクリアランスが大きすぎると、動翼の圧力面側から負圧面側へと燃焼ガスが漏れ出し、圧力損失が大きくなって運転効率が低下してしまう。そこで、このような燃焼ガスの漏れ出しを抑制してガスタービンの性能を向上させるために、極限までクリアランスを小さく設定する試みがなされている。
【0003】
ところが、クリアランスが小さすぎると、ガスタービンの運転開始初期段階において、動翼の熱膨張やタービンロータの偏心、ガスタービン全体に生じる振動等に起因して、動翼の先端とシュラウドとが摺動してしまういわゆる初期摺動が生じることがある。また、ガスタービンが長期間運転されると、高温ガスに曝されたシュラウドが徐々に熱変形を起こし、やはり動翼の先端とシュラウドとが摺動してしまういわゆる二次的摺動が生じることがある。
【0004】
一般的にシュラウドは、遮熱又は酸化防止の目的で形成された皮膜を、その内周面に備えている。例えば、遮熱の目的でTBC(Thermal Barrier Coating)が設けられたり、いわゆるMCrAlYからなる耐酸化性皮膜が設けられることがある。ここで、Mは鉄,ニッケル,コバルトの内の1種又は2種以上のメタルであって、研磨材料の接着性コーティングの粗粒子に接合されるものである。即ち、MCrAlYは、このようなメタルと、クロム(Cr),アルミニウム(Al),イットリウム(Y)を主成分とする合金である。これらの皮膜は高硬度であることが多く、このため、動翼先端とシュラウド内周面とが摺動すると、動翼が大きく損傷を受けてしまうことがある。
【0005】
そこで、酸化防止性材料であるMCrAlYからなるマトリクス中に研磨粒子が分散した研磨性皮膜を備えた動翼が開示されている(例えば、特許文献1〜3参照)。この動翼では、研磨粒子として、例えば、立方晶窒化硼素(CBN:Cubic Boron Nitride)やSiC等が用いられている。
【0006】
立方晶窒化硼素は高硬度な材料であるので、動翼とシュラウド内周面とが摺動すると、この立方晶窒化硼素からなる研磨粒子がシュラウドの内周面を研磨する。これにより、動翼とシュラウドとの間に適度なクリアランスが維持される。このような研磨性皮膜は、まず動翼本体に研磨粒子が仮固着され、次にこの研磨粒子の周りに電着メッキ法によってマトリクスが形成されることにより得られる。即ち、マトリクスはメッキ層の成長によって形成される。
【0007】
一方、電着メッキ法によって研磨粒子を仮固着した後、溶射法によってマトリクスを形成する研磨性皮膜形成方法が開示されている(例えば、特許文献4参照)。溶射法は、溶融金属を噴射することによって金属層を成長させる手法である。その他、TiコーティングのCBNがロウ付けにされた耐摩耗性コーティングがある(例えば、非特許文献1参照)。
【0008】
【特許文献1】
特開平4−218698号公報
【特許文献2】
特表平9−504340号公報
【特許文献3】
米国特許第5702574号明細書
【特許文献4】
特開平10−30403号公報
【非特許文献1】
INDUSTRIAL DIAMOND REVIEW (4/99)
【0009】
【発明が解決しようとする課題】
しかしながら、上述した施工方法の内、電着メッキ法は、メッキ層の成長に長時間を要するので効率が悪い。しかも、この方法によるマトリクスの形成は、概して高価なものとなる。また、溶射法は電着メッキ法と比較して高効率であるが、電着メッキ法によって研磨粒子を仮固着するプロセスがある上、マトリクスの厚みの正確な制御が困難であり、しかも複数の大掛かりな設備が必要である。
【0010】
また、ロウ付けは操作が簡単であって、安価であるという長所はあるが、それによって形成されるボンドコーティングの耐酸化性や、その劣化に伴う研磨砥粒の脱落等、長期にわたる耐摩耗性(耐久性)に難点がある。加えて、研磨砥粒が溶融金属に反応してしまう恐れがある。
【0011】
本発明は、このような問題点に鑑み、耐酸化性,耐久性に優れ、簡単に低コストで施工可能な、耐摩耗性コーティング及びその施工方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明では、金属母材の表面に、マトリクス及び硬質砥粒を混合した焼結材からなるコーティング部材が冶金的に接合されてなることを特徴とする。そして、前記接合は放電プラズマ焼結によるものであることを特徴とする。
【0013】
また、前記硬質砥粒が前記マトリクスから突出していることを特徴とする。また、前記金属母材の材質は析出強化型Ni基耐熱合金であり、前記マトリクスの材質はMCrAlYであり、前記硬質砥粒の材質はCBN,Al,SiC等であることを特徴とする。また、前記金属母材の表面とは、タービン動翼の基体先端であることを特徴とする。
【0014】
また、金属母材の表面にマトリクス及び硬質砥粒を混合したコーティング部材を加圧しながら放電プラズマ焼結して、そのコーティング部材を焼結すると同時に前記金属母材と該コーティング部材とを冶金的に接合する施工方法を行う。そして、前記接合されたコーティング部材の表面から前記マトリクスの一部をブラスト処理により除去して前記硬質砥粒を突出させる施工方法を行う。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。本発明では、耐摩耗性コーティングの施工に放電プラズマ焼結(SPS:Spark Plasma Sintering)法を用いる。この焼結法は、パルス通電時に生じる火花放電により、粒子表面を溶融,結合させるため、短時間で緻密な焼結が可能である。また、従来の焼結法であるホットプレス(HP:Hot Press)焼結や熱間等方圧(HIP:Hot Isostatic Press)焼結と比較して、焼結温度の低減が可能であり、また緻密化速度が速い等の特長がある。
【0016】
図1は、本発明の一実施形態に係る耐摩耗性コーティングを施したガスタービン動翼を模式的に示す斜視図である。同図では、動翼先端に耐摩耗性コーティングを施工した場合を示している。同図において、ガスタービン動翼1の基体2である母材としては、高温強度の高い溶解鋳造材である析出強化型Ni基耐熱合金が好ましい。基体2の先端にはマトリクス材粉末及び硬質砥粒(研磨粒子)を混合したコーティング部材3を配置する。
【0017】
このコーティング部材3を動翼と相対する形状の電極(不図示)により基体2の先端に加圧しながら押し付け、この電極から放電電流を印加して放電プラズマ焼結を行う。このとき、コーティング部材3は焼結すると同時に基体2先端と接合される。これにより、溶解鋳造材からなるガスタービン動翼基体と焼結材からなるコーティング部材とが冶金的に接合された、耐摩耗性コーティングを施したNi基耐熱合金製ガスタービン動翼が得られる。コーティング部材は大電流パルス通電時の放電による高熱とジュール熱により、極めて熱効率良く緻密化焼結されている。
【0018】
図2は、本実施形態に係る耐摩耗性コーティングの施工装置の一例を示す縦断面図であり、同図(a)は正面図、同図(b)は側面図である。本例におけるガスタービン動翼1は、基体2の先端に、翼プロファイルに沿って半径方向外向きに突出する突条部2aを備えている。一方、基体2に相対して、その突条部2aに対応した凸部4aを有する電極4が配置されており、突条部2aと凸部4aとの間に、コーティング部材3が挟持されている。そして、基体2と電極4の外側周囲には、これらと嵌合する焼結ダイ5が設けられている。
【0019】
基体2の材質としては、例えばNi基耐熱合金である析出強化型のIN−738LC(スペシャルメタル社の商標)が用いられる。また、コーティング部材3としては、例えば、マトリクス材粉末に粒径10〜50μm程度のMCrAlY、硬質砥粒に粒径150〜200μm程度のCBNが用いられる。ちなみに、電極4及び焼結ダイ5には加工性を考えてカーボングラファイトが用いられる場合がある。その場合は、電極損傷防止のため、焼結エリアを真空中に保持する必要がある。以下に、焼結条件の具体例を示す。
【0020】
加圧力(MPa)  : 25
保持温度(℃)   :800
加熱時間(min.): 20
保持時間(min.):  5
【0021】
ここで、加圧力とは、コーティング部材3を電極4により基体2の先端に押し付けるときの力である。また、保持温度とは、本施工装置を加熱する炉で最終的に保持される温度である。また、加熱時間とは、前記炉の温度が常温から保持温度となるまで加熱される時間である。但しこの時間は、ガスタービン動翼1の大きさ(熱容量)等により調整される。また、保持時間とは、保持温度を保持する時間である。
【0022】
以上のような焼結条件で、加熱開始から温度保持終了までの25分間、パルス通電を行うことにより、焼結が成功した。また、試験温度850℃の高温引張試験により、接合部の高温強度がIN−738LC母材の80%以上を有することが確認された。但し、以上のような具体例により本発明が限定されるものではない。
【0023】
図3は、耐摩耗性コーティングが施されたガスタービン動翼先端の一部を示す拡大断面図である。コーティング施工後は同図に示すように、マトリクス6から硬質砥粒7が突出した状態となるように、いわゆる目出しが行われる。目出しの方法としては、例えばブラスト処理が挙げられる。ブラスト処理では、ブラスト粒子8をマトリクス6の表面に、矢印のように吹き付ける。このブラスト処理により、同図に示されるようにマトリクス6の表面寄り部分が除去される。
【0024】
硬質砥粒7はブラスト処理によっても殆ど除去されないので、この硬質砥粒7がマトリクス6から突出する。このようにして、コーティング部材3が耐摩耗性コーティング(研磨性皮膜)となる。なお、同図ではコーティング部材3と基体2との境界が明確に描かれているが、実際の動翼では加熱時の拡散によって両者の境界が曖昧となっている。
【0025】
ブラスト処理によって硬質砥粒7に優先してマトリクス6の表面寄り部分を除去するには、硬質砥粒7よりも低硬度であり、且つマトリクス6よりも高硬度であるブラスト粒子8を用いるのが好ましい。そこで、例えば硬質砥粒7の材質がCBNであり、マトリクス6の材質がMCrAlYである場合は、ブラスト粒子8の材質としては、一例としてアルミナが用いられる。また、作業性を考え、CBN粒子とMCrAlY粒子をバインダでシート状にしたり、若しくは仮焼結によりシート状に加工して用いることも可能である。
【0026】
【発明の効果】
以上説明したように、本発明によれば、耐酸化性,耐久性に優れ、簡単に低コストで施工可能な、耐摩耗性コーティング及びその施工方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る耐摩耗性コーティングを施したガスタービン動翼を模式的に示す斜視図。
【図2】本実施形態に係る耐摩耗性コーティングの施工装置の一例を示す縦断面図。
【図3】耐摩耗性コーティングが施されたガスタービン動翼先端の一部を示す拡大断面図。
【符号の説明】
1  ガスタービン動翼
2  基体
3  コーティング部材
4  電極
5  焼結ダイ
6  マトリクス
7  硬質砥粒
8  ブラスト粒子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wear-resistant coating applied to a metal base material at the tip of a rotor blade of a gas turbine or a jet engine, and a method of applying the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for example, in a gas turbine, a clearance having a predetermined size is provided between a tip of a moving blade and a shroud facing the same so that the two do not contact during operation. If the clearance is too large, the combustion gas leaks from the pressure surface side of the moving blade to the negative pressure surface side, resulting in a large pressure loss and a reduction in operating efficiency. In order to improve the performance of the gas turbine by suppressing such leakage of the combustion gas, attempts have been made to set the clearance as small as possible.
[0003]
However, if the clearance is too small, the tip of the moving blade slides with the shroud due to thermal expansion of the moving blade, eccentricity of the turbine rotor, vibration generated in the entire gas turbine, and the like in the initial stage of gas turbine operation. The so-called initial sliding may occur. In addition, when the gas turbine is operated for a long time, the shroud exposed to the high-temperature gas gradually undergoes thermal deformation, so that the so-called secondary sliding in which the tip of the blade and the shroud slide also occurs. There is.
[0004]
Generally, the shroud has a coating formed on the inner peripheral surface thereof for the purpose of heat shielding or oxidation prevention. For example, TBC (Thermal Barrier Coating) may be provided for the purpose of heat insulation, or an oxidation-resistant film made of so-called MCrAlY may be provided. Here, M is one or more metals of iron, nickel, and cobalt, which are bonded to the coarse particles of the adhesive coating of the abrasive material. That is, MCrAlY is an alloy containing such a metal and chromium (Cr), aluminum (Al), and yttrium (Y) as main components. These coatings often have high hardness, so that when the blade tip slides on the inner peripheral surface of the shroud, the blade may be greatly damaged.
[0005]
Then, a moving blade provided with an abrasive film in which abrasive particles are dispersed in a matrix made of MCrAlY which is an antioxidant material is disclosed (for example, see Patent Documents 1 to 3). In this rotor blade, for example, cubic boron nitride (CBN: Cubic Boron Nitride), SiC, or the like is used as abrasive particles.
[0006]
Since cubic boron nitride is a high-hardness material, when the rotor blade slides on the inner peripheral surface of the shroud, the abrasive particles made of cubic boron nitride polish the inner peripheral surface of the shroud. Thereby, an appropriate clearance is maintained between the bucket and the shroud. Such an abrasive film is obtained by first temporarily attaching abrasive particles to the blade body, and then forming a matrix around the abrasive particles by an electrodeposition plating method. That is, the matrix is formed by growing the plating layer.
[0007]
On the other hand, there is disclosed a method for forming an abrasive film in which a matrix is formed by a thermal spraying method after temporarily fixing abrasive particles by an electrodeposition plating method (for example, see Patent Document 4). The thermal spraying method is a method of growing a metal layer by spraying a molten metal. In addition, there is a wear-resistant coating in which a CBN of Ti coating is brazed (for example, see Non-Patent Document 1).
[0008]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H4-221898 [Patent Document 2]
Japanese Patent Publication No. 9-504340 (Patent Document 3)
US Pat. No. 5,702,574 [Patent Document 4]
JP-A-10-30403 [Non-Patent Document 1]
INDUSTRIAL DIAMOND REVIEW (4/99)
[0009]
[Problems to be solved by the invention]
However, of the above-mentioned construction methods, the electrodeposition plating method is inefficient because it takes a long time to grow a plating layer. Moreover, formation of a matrix by this method is generally expensive. Although the thermal spraying method is more efficient than the electrodeposition plating method, there is a process for temporarily fixing the abrasive particles by the electrodeposition plating method, and it is difficult to accurately control the thickness of the matrix. Extensive equipment is required.
[0010]
In addition, brazing has the advantage of being simple and inexpensive, but has the advantage of long-term wear resistance, such as the oxidation resistance of the bond coating formed thereby and the removal of abrasive grains due to its deterioration. (Durability) has difficulty. In addition, the abrasive grains may react with the molten metal.
[0011]
In view of such problems, an object of the present invention is to provide an abrasion-resistant coating excellent in oxidation resistance and durability, which can be easily applied at low cost, and a method for applying the wear-resistant coating.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is characterized in that a coating member made of a sintered material obtained by mixing a matrix and hard abrasive grains is metallurgically joined to a surface of a metal base material. The bonding is performed by spark plasma sintering.
[0013]
Further, the hard abrasive grains protrude from the matrix. Further, the material of the metal base material is a precipitation strengthened Ni-base heat-resistant alloy, the material of the matrix is MCrAlY, and the material of the hard abrasive grains is CBN, Al 2 O 3 , SiC, or the like. I do. Further, the surface of the metal base material is a tip of a base of a turbine rotor blade.
[0014]
In addition, a coating member obtained by mixing a matrix and hard abrasive grains on the surface of a metal base material is subjected to discharge plasma sintering while applying pressure, and the metal base material and the coating member are simultaneously metallurgically sintered. Perform the joining method. Then, a construction method is performed in which a part of the matrix is removed by blasting from the surface of the joined coating member to project the hard abrasive grains.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. In the present invention, a spark plasma sintering (SPS) method is used for applying the wear-resistant coating. In this sintering method, the surface of the particles is melted and bonded by spark discharge generated at the time of pulsed current, so that dense sintering is possible in a short time. In addition, the sintering temperature can be reduced as compared with conventional sintering methods such as hot press (HP) sintering and hot isostatic press (HIP) sintering. Features such as high densification speed.
[0016]
FIG. 1 is a perspective view schematically showing a gas turbine blade provided with a wear-resistant coating according to an embodiment of the present invention. FIG. 1 shows a case where a wear-resistant coating is applied to the tip of the moving blade. In the figure, as a base material which is a base 2 of the gas turbine rotor blade 1, a precipitation-strengthened Ni-based heat-resistant alloy which is a molten cast material having high high-temperature strength is preferable. A coating member 3 in which a matrix material powder and hard abrasive grains (abrasive particles) are mixed is disposed at the tip of the base 2.
[0017]
The coating member 3 is pressed against the tip of the base 2 while being pressed by an electrode (not shown) having a shape opposed to the blade, and discharge plasma is applied from this electrode to perform discharge plasma sintering. At this time, the coating member 3 is sintered and simultaneously joined to the tip of the base 2. As a result, a gas turbine blade made of a Ni-base heat-resistant alloy and provided with a wear-resistant coating, in which the gas turbine blade base made of a molten cast material and the coating member made of a sintered material are metallurgically bonded, is obtained. The coating member is densified and sintered with extremely high thermal efficiency due to the high heat and Joule heat generated by the discharge when a large current pulse is applied.
[0018]
FIG. 2 is a longitudinal sectional view showing an example of a wear-resistant coating application apparatus according to the present embodiment, wherein FIG. 2 (a) is a front view and FIG. 2 (b) is a side view. The gas turbine rotor blade 1 in this example is provided at the tip of the base 2 with a ridge 2a projecting radially outward along the blade profile. On the other hand, an electrode 4 having a protrusion 4a corresponding to the protrusion 2a is disposed opposite to the base 2, and the coating member 3 is sandwiched between the protrusion 2a and the protrusion 4a. I have. A sintering die 5 is provided around the outside of the base 2 and the electrode 4 to fit them.
[0019]
As the material of the base 2, for example, a precipitation-hardened IN-738LC (trademark of Special Metal Co.), which is a Ni-based heat-resistant alloy, is used. As the coating member 3, for example, MCrAlY having a particle size of about 10 to 50 μm is used for matrix material powder, and CBN having a particle size of about 150 to 200 μm is used for hard abrasive grains. Incidentally, carbon graphite may be used for the electrode 4 and the sintered die 5 in consideration of workability. In this case, the sintering area needs to be kept in a vacuum in order to prevent electrode damage. Hereinafter, specific examples of the sintering conditions will be described.
[0020]
Pressure (MPa): 25
Holding temperature (° C): 800
Heating time (min.): 20
Retention time (min.): 5
[0021]
Here, the pressing force is a force when the coating member 3 is pressed against the tip of the base 2 by the electrode 4. Further, the holding temperature is a temperature that is finally held in a furnace that heats the construction apparatus. The heating time is a time during which the furnace is heated from normal temperature to a holding temperature. However, this time is adjusted depending on the size (heat capacity) of the gas turbine rotor blade 1 and the like. Further, the holding time is a time for holding the holding temperature.
[0022]
Under the sintering conditions as described above, pulse sintering was performed for 25 minutes from the start of heating to the end of temperature holding, whereby sintering was successful. In addition, a high-temperature tensile test at a test temperature of 850 ° C. confirmed that the high-temperature strength of the joint portion was 80% or more of the IN-738LC base material. However, the present invention is not limited by the above specific examples.
[0023]
FIG. 3 is an enlarged cross-sectional view showing a part of the tip of a gas turbine blade provided with a wear-resistant coating. After the coating is applied, so-called indexing is performed so that the hard abrasive grains 7 project from the matrix 6 as shown in FIG. As a method of arranging, for example, a blasting process is exemplified. In the blasting process, blast particles 8 are sprayed on the surface of the matrix 6 as shown by arrows. By this blasting process, a portion of the matrix 6 near the surface is removed as shown in FIG.
[0024]
Since the hard abrasive grains 7 are hardly removed even by the blast treatment, the hard abrasive grains 7 protrude from the matrix 6. Thus, the coating member 3 becomes a wear-resistant coating (abrasive film). Although the boundary between the coating member 3 and the base 2 is clearly illustrated in the drawing, the boundary between the two in the actual moving blade is ambiguous due to diffusion at the time of heating.
[0025]
In order to remove the portion near the surface of the matrix 6 in preference to the hard abrasive grains 7 by blasting, it is preferable to use blast particles 8 having a lower hardness than the hard abrasive grains 7 and a higher hardness than the matrix 6. preferable. Thus, for example, when the material of the hard abrasive grains 7 is CBN and the material of the matrix 6 is MCrAlY, alumina is used as an example of the material of the blast particles 8. In consideration of workability, it is also possible to use CBN particles and MCrAlY particles in a sheet shape with a binder, or to process them into a sheet shape by temporary sintering.
[0026]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an abrasion-resistant coating excellent in oxidation resistance and durability, which can be easily applied at low cost, and a method for applying the wear-resistant coating.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a gas turbine bucket provided with a wear-resistant coating according to an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing an example of an apparatus for applying a wear-resistant coating according to the embodiment.
FIG. 3 is an enlarged cross-sectional view showing a part of a tip of a gas turbine blade provided with a wear-resistant coating.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas turbine rotor blade 2 Substrate 3 Coating member 4 Electrode 5 Sintering die 6 Matrix 7 Hard abrasive 8 Blast particles

Claims (7)

金属母材の表面に、マトリクス及び硬質砥粒を混合した焼結材からなるコーティング部材が冶金的に接合されてなることを特徴とする耐摩耗性コーティング。A wear-resistant coating comprising a metal base material and a coating member made of a sintered material in which a matrix and hard abrasive grains are mixed, which are metallurgically bonded to the surface of the metal base material. 前記接合は放電プラズマ焼結によるものであることを特徴とする請求項1に記載の耐摩耗性コーティング。The abrasion resistant coating of claim 1, wherein the joining is by spark plasma sintering. 前記硬質砥粒が前記マトリクスから突出していることを特徴とする請求項1又は請求項2に記載の耐摩耗性コーティング。The abrasion resistant coating according to claim 1 or 2, wherein the hard abrasive grains protrude from the matrix. 前記金属母材の材質は析出強化型Ni基耐熱合金であり、前記マトリクスの材質はMCrAlYであり、前記硬質砥粒の材質はCBN或いはAl或いはSiCであることを特徴とする請求項1〜請求項3のいずれかに記載の耐摩耗性コーティング。The material of the metal base material is a precipitation-strengthened Ni-based heat-resistant alloy, the material of the matrix is MCrAlY, and the material of the hard abrasive grains is CBN, Al 2 O 3 or SiC. A wear-resistant coating according to any of claims 1 to 3. 前記金属母材の表面とは、タービン動翼の基体先端であることを特徴とする請求項1〜請求項4のいずれかに記載の耐摩耗性コーティング。The wear-resistant coating according to any one of claims 1 to 4, wherein the surface of the metal base material is a tip of a base of a turbine rotor blade. 金属母材の表面にマトリクス及び硬質砥粒を混合したコーティング部材を加圧しながら放電プラズマ焼結して、該コーティング部材を焼結すると同時に前記金属母材と該コーティング部材とを冶金的に接合することを特徴とする耐摩耗性コーティングの施工方法。Discharge plasma sintering is applied to a coating member in which a matrix and hard abrasive grains are mixed on the surface of a metal base material while applying pressure. A method for applying a wear-resistant coating, characterized in that: 前記接合されたコーティング部材の表面から前記マトリクスの一部をブラスト処理により除去して前記硬質砥粒を突出させることを特徴とする請求項6に記載の耐摩耗性コーティングの施工方法。The method for applying a wear-resistant coating according to claim 6, wherein a part of the matrix is removed from a surface of the joined coating member by blasting to protrude the hard abrasive grains.
JP2002261388A 2002-09-06 2002-09-06 Turbine blade and method for manufacturing turbine blade Expired - Fee Related JP3930403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261388A JP3930403B2 (en) 2002-09-06 2002-09-06 Turbine blade and method for manufacturing turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261388A JP3930403B2 (en) 2002-09-06 2002-09-06 Turbine blade and method for manufacturing turbine blade

Publications (2)

Publication Number Publication Date
JP2004099955A true JP2004099955A (en) 2004-04-02
JP3930403B2 JP3930403B2 (en) 2007-06-13

Family

ID=32261779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261388A Expired - Fee Related JP3930403B2 (en) 2002-09-06 2002-09-06 Turbine blade and method for manufacturing turbine blade

Country Status (1)

Country Link
JP (1) JP3930403B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024042A (en) * 2005-07-14 2007-02-01 Sulzer Metco (Us) Inc Method of treating tip of turbine blade and turbine blade treated by the method
CN109280955A (en) * 2018-11-20 2019-01-29 沈阳工学院 A kind of heat resistant and wear resistant MCrAlSiC composite coating
US20210008669A1 (en) * 2014-07-02 2021-01-14 Raytheon Technologies Corporation Abrasive Preforms and Manufacture and Use Methods
US11673194B2 (en) 2016-11-09 2023-06-13 Ihi Corporation Slidable component including wear-resistant coating and method of forming wear-resistant coating
US11686208B2 (en) 2020-02-06 2023-06-27 Rolls-Royce Corporation Abrasive coating for high-temperature mechanical systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024042A (en) * 2005-07-14 2007-02-01 Sulzer Metco (Us) Inc Method of treating tip of turbine blade and turbine blade treated by the method
US20210008669A1 (en) * 2014-07-02 2021-01-14 Raytheon Technologies Corporation Abrasive Preforms and Manufacture and Use Methods
US11752578B2 (en) * 2014-07-02 2023-09-12 Rtx Corporation Abrasive preforms and manufacture and use methods
US11673194B2 (en) 2016-11-09 2023-06-13 Ihi Corporation Slidable component including wear-resistant coating and method of forming wear-resistant coating
CN109280955A (en) * 2018-11-20 2019-01-29 沈阳工学院 A kind of heat resistant and wear resistant MCrAlSiC composite coating
US11686208B2 (en) 2020-02-06 2023-06-27 Rolls-Royce Corporation Abrasive coating for high-temperature mechanical systems

Also Published As

Publication number Publication date
JP3930403B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
CA2581908C (en) Repair of hpt shrouds with sintered preforms
CA2445237C (en) Method of repairing a stationary shroud of a gas turbine engine using plasma transferred arc welding
JP3801452B2 (en) Abrasion resistant coating and its construction method
US20070205189A1 (en) Method of repairing a stationary shroud of a gas turbine engine using laser cladding
EP1391537B1 (en) Coating forming method and coating forming material, and abrasive coating forming sheet
US5822852A (en) Method for replacing blade tips of directionally solidified and single crystal turbine blades
JP4910096B2 (en) Method for applying abrasive coatings to gas turbine components
US9511436B2 (en) Composite composition for turbine blade tips, related articles, and methods
US9434017B2 (en) Braze methods and components with heat resistant materials
EP2687685B1 (en) Seal of a turbine
JP2005133715A (en) Method for coating substrate
EP2939783B1 (en) Abrasive sheathing
US20150377037A1 (en) Braze methods and components for turbine buckets
JP2003148103A (en) Turbine and its manufacturing method
US20160199930A1 (en) Combined braze and coating method for fabrication and repair of mechanical components
US20150118060A1 (en) Turbine engine blades, related articles, and methods
US20070107216A1 (en) Mim method for coating turbine shroud
JP3930403B2 (en) Turbine blade and method for manufacturing turbine blade
JP2005002880A (en) Stationary blade segment of gas turbine engine, and gas turbine engine
US20240068371A1 (en) Pre-sintered preform with high temperature capability, in particular as abrasive coating for gas turbine blades
US11788422B2 (en) Two-layer abrasive coating for rotor-blade tips, method, component, and turbine assembly
CN108290253B (en) Method for producing a sealing component having a body made of a boron-containing superalloy and coated
JP2002349290A (en) Method of manufacturing combustion engine moving blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070308

R151 Written notification of patent or utility model registration

Ref document number: 3930403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees