JP2004099745A - Insulating resin composition and printed circuit board therewith - Google Patents

Insulating resin composition and printed circuit board therewith Download PDF

Info

Publication number
JP2004099745A
JP2004099745A JP2002263530A JP2002263530A JP2004099745A JP 2004099745 A JP2004099745 A JP 2004099745A JP 2002263530 A JP2002263530 A JP 2002263530A JP 2002263530 A JP2002263530 A JP 2002263530A JP 2004099745 A JP2004099745 A JP 2004099745A
Authority
JP
Japan
Prior art keywords
resin composition
insulating resin
resin
inorganic filler
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002263530A
Other languages
Japanese (ja)
Other versions
JP3848229B2 (en
Inventor
Yukitomo Nichima
日馬 征智
Masao Arima
有馬 聖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Holdings Co Ltd
Original Assignee
Taiyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Ink Mfg Co Ltd filed Critical Taiyo Ink Mfg Co Ltd
Priority to JP2002263530A priority Critical patent/JP3848229B2/en
Publication of JP2004099745A publication Critical patent/JP2004099745A/en
Application granted granted Critical
Publication of JP3848229B2 publication Critical patent/JP3848229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulating resin composition for a coating film having excellent laser processabilities without degrading various coating film properties, and a printed circuit board having an insulating resin layer having via holes with a sharp cross-sectional shape efficiently formed from the resin composition. <P>SOLUTION: This insulating resin composition comprises (A) a thermoplastic resin and (B) an inorganic filler having an absorption peak within the wavelength range of 900-1,300 cm<SP>-1</SP>in the IR spectra by FT-IR (Fourier transformation infrared spectrophotometer). In a preferred embodiment, the thermoplastic resin is an olefin resin and the inorganic filler is barium sulfate. In a printed circuit board having conductive circuits and an insulating resin layer on the board, via holes with a sharp cross-sectional shape are efficiently formed by forming the insulating resin layer with the insulating resin composition, and irradiating the board with a carbon dioxide laser. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、レーザー加工性に優れた絶縁性樹脂組成物及びそれを用いて樹脂絶縁層を形成したプリント配線板に関する。
【0002】
【従来の技術】
従来から電子機器用のプリント配線板においては、耐熱性や電気絶縁性の観点から層間樹脂絶縁層としてエポキシ樹脂を主成分とする絶縁性樹脂組成物が幅広く用いられている。
しかしながら、層間樹脂絶縁層としてのエポキシ樹脂は、導体回路との密着性を確保するために、層間樹脂絶縁層及び導体回路の表面を粗化しなければならない。そのため、高周波数の信号を伝搬させると、表皮効果により、信号が粗化された導体回路の表面部分のみを伝搬し、その表面の凹凸に起因して信号伝搬のノイズが生じてしまう。また、エポキシ樹脂は破壊靱性が低いため、かかる樹脂を層間樹脂絶縁層として用いた配線板では、ヒートサイクルにより導体回路と樹脂絶縁層との境界部でクラックが発生し易いという問題がある。さらに、エポキシ樹脂は誘電率が4.0と高いため、かかる樹脂を層間樹脂絶縁層として用いた配線板では、信号伝搬の遅延が避けられない。
【0003】
これに対し、最近では、多層プリント配線板に高周波数信号を用いたLSIチップを搭載したときの信号伝搬の遅延や信号エラーの発生等を回避するため、誘電率や誘電正接が小さい(例えば、1GHzの誘電率が3.0以下、誘電正接が0.01以下)オレフィン系樹脂を主成分とした層間樹脂絶縁層が注目を浴びている(特許文献1等参照)。
【0004】
【特許文献1】
特開2000−114726号公報(特許請求の範囲)
【0005】
【発明が解決しようとする課題】
確かに、このオレフィン系樹脂を主成分とした層間樹脂絶縁層によれば、破壊靱性、誘電率、密着性、加工性などに優れたプリント配線板を提供することができる。
しかしながら、かかる樹脂を主成分とする層間樹脂絶縁層では、炭酸ガスレーザーによる穴あけ加工が困難であるという問題があった。
【0006】
そこで本発明は、前記のような従来技術の問題を解決するためになされたものであり、その主たる目的は、塗膜の諸特性を劣化させることなく、レーザー加工性に優れた絶縁性樹脂組成物を提供することにある。
また本発明の他の目的は、樹脂絶縁層が上記のような絶縁性樹脂組成物から形成され、かつ炭酸ガスレーザーの照射により効率的にシャープな断面形状のビアホールが形成されたプリント配線板を提供することにある。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本発明によれば、(A)熱可塑性樹脂と、(B)FT−IR(フーリエ変換赤外分光光度計)による赤外線吸収スペクトルにおいて波数900〜1300cm−1の範囲内に吸収ピークを持つ無機充填剤を含有することを特徴とする絶縁性樹脂組成物が提供される。
本発明の絶縁性樹脂組成物の好適な態様によれば、前記熱可塑性樹脂(A)はオレフィン系樹脂を主成分とする化合物であり、前記無機充填剤(B)は硫酸バリウムであることが好ましい。
さらに本発明によれば、基板上に導体回路と樹脂絶縁層が形成されてなるプリント配線板において、樹脂絶縁層は前記絶縁性樹脂組成物から形成され、かつ炭酸ガスレーザーの照射によりビアホールが形成されていることを特徴とするプリント配線板が提供される。
【0008】
【発明の実施の形態】
本発明者らは、前記した従来技術の問題を解決するために鋭意研究した結果、前記絶縁性樹脂組成物が極めて優れたレーザー加工性を有することを見出し、本発明を完成させるに至ったものである。
すなわち、本発明者らの研究によれば、絶縁性樹脂組成物において、その主成分である熱可塑性樹脂が炭酸ガスレーザーの吸収を持たないか、あるいは持っていてもその吸収が少ない場合であっても、その組成物に配合された無機充填剤がFT−IRによる赤外線吸収スペクトルにおいて波数900〜1300cm−1の範囲内に吸収ピークを持つ場合は、その組成物の塗膜に、炭酸ガスレーザー光による加工にて、小径でシャープな断面形状のビアホール用穴を効率よく形成できることを見出した。なお、ここでいう「吸収ピーク」は、吸収極大或いは単一ピークを意味するものではなく、波数900〜1300cm−1の範囲内に一つでも吸収ピークを持つ場合を含む。また、炭酸ガスレーザーのみでなく他のレーザー光による加工も可能であり、この場合には波数950〜1150cm−1の範囲内に吸収ピークを持つことが好ましいが、炭酸ガスレーザーを用いる場合には波数1000〜1200cm−1の範囲内に吸収ピークを持つことが好ましく、特に無機充填剤が用いるレーザー光の吸収ピークを包含する(覆う)ような強い吸収ピークを持つ場合には、小径でシャープな断面形状のビアホール用穴を極めて効率よく形成できるので好ましい。
【0009】
本発明は前記のような知見に基づきなされたものであり、本発明の絶縁性樹脂組成物は、熱可塑性樹脂(A)と共に、FT−IRによる赤外線吸収スペクトルにおいて波数900〜1300cm−1の範囲内に吸収ピークを持つ無機充填剤(B)を配合した点に特徴を有する。これにより、塗膜の強靱性や耐クラック性などの諸特性を損なうことなく、レーザー加工性に優れた樹脂絶縁層を得ることができる。しかも、無機充填剤未添加の組成物に比べ、形成されるビアホールの断面形状がシャープであり、絶縁信頼性に優れ、特に無機充填剤として硫酸バリウムを用いた場合にはレーザー加工残渣を生じることもないので好ましい。
【0010】
このような本発明の絶縁性樹脂組成物においては、無機充填剤(B)としては、前記したようにFT−IRによる赤外線吸収スペクトルにおいて波数900〜1300cm−1の範囲内に吸収ピークを持つものであれば制限無く用いることができる。その具体例としては、例えば、硫酸バリウム、硫酸カルシウム、シリカ、クレー、タルク、水酸化アルミニウムなどが適宜用いられる。図1〜図6に上記6種の無機充填剤の赤外線吸収スペクトルをそれぞれ示す。
【0011】
これらの無機充填剤うち、炭酸ガスレーザーの波長帯に強い吸収ピークを持ち、かつビアホール形成の際に無機充填剤の残渣が残り難いものとして、硫酸バリウムや硫酸カルシウム等がより好ましく、また、より残渣が残らないものとしては硫酸バリウムがさらに好ましい。
この硫酸バリウムは、レーザー加工時に昇華又は分解するのでレーザー加工後に残渣が残らない。しかも、この硫酸バリウムを用いた場合、レーザー加工によってきれいなビアホールを形成できるので、その後のデスミア処理を省略することも可能である。一方、FT−IRによる赤外線吸収スペクトルにおいて波数900〜1300cm−1の範囲内に吸収ピークを持っていてもレーザー加工時に昇華又は分解しない無機充填剤では、レーザー加工により無機充填剤が昇華又は分解せずに残存し易くなるので、レーザー加工後のデスミア処理が必要となる。
【0012】
上記無機充填剤(B)は、単独で若しくは2種類以上を組み合わせて用いてもよいが、無機充填剤(B)の平均粒子径は5μm以下であることが好ましく、その配合量は、組成物の固形分に対して20〜100質量%の範囲、さらに好ましくは30〜50質量%の範囲であることが望ましい。無機充填剤(B)の配合量が20質量%未満であると、レーザー加工性が劣り、一方、100質量%を越えると、樹脂との間で界面剥離が生じ、クラックを招く原因となる恐れがある。
【0013】
本発明の絶縁性樹脂組成物は、このような所定の無機充填剤の配合により炭酸ガスレーザーの吸収をより大きくし、優れたレーザー加工性を得るものであるため、使用する熱可塑性樹脂(A)としては、無機充填剤の配合にも拘らず電気特性や耐熱性等の諸特性に優れるものであれば何ら限定されるものではない。
このような熱可塑性樹脂(A)としては、例えば、オレフィン系樹脂、ポリイミド樹脂、ポリフェニレンエーテル樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂や、ブタジエン、アクリロニトリル、スチレン、(メタ)アクリル酸エステルなどの二重結合を有する化合物を単独で若しくは2種類以上を共重合させた化合物などが挙げられる。これらは単独で又は2種類以上の混合物で用いることができる。これらの中でも、特にプリント配線板における層間樹脂絶縁層に用いる熱可塑性樹脂としては、誘電率や誘電正接が小さい点からオレフィン系樹脂が好ましい。オレフィン系樹脂の具体例としては、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン、ポリイソプロピレン、ポリメチルペンテンなどが挙げられる。
【0014】
本発明の絶縁性樹脂組成物は、粘度調整等を目的として必要に応じて有機溶剤を添加することができる。その代表的な例としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等の他、シクロヘキサノン、シクロペンタノン、イソホロン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等のエステル類;メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素;リモネン等のテルペン類などが挙げられる。これらの有機溶剤は、単独で又は2種類以上を組み合わせて用いることができる。
【0015】
さらに、本発明の絶縁性樹脂組成物は、レーザー加工性やその他の諸特性を損なわない範囲内で、エポキシ樹脂などの熱硬化性樹脂、他の無機充填剤、シリコンパウダー、ナイロンパウダー、ウレタンビーズ、フッ素樹脂粉末等の有機充填剤、また場合によっては難燃剤のごとき添加助剤も混合することができる。
【0016】
なお、本発明の絶縁性樹脂組成物は、既に樹脂シート(フィルム)として成形されたものを使用してもよく、あるいは単量体若しくは一定の分子量を有する低分子量の重合体が有機溶剤に分散した未硬化状態であってもよい。また樹脂シートの場合には、樹脂付き銅箔の形態であってもよい。
【0017】
次に、本発明の絶縁性樹脂組成物を多層プリント配線板の層間樹脂絶縁層として用いた場合について、その製造工程例を以下に説明する。
(1)まず、ガラスエポキシ樹脂などからなる絶縁性のコア材の表面に銅箔等により所定の配線パターンが形成されたものを用い、このコア材の表面全体に本発明の絶縁性樹脂組成物よりなる樹脂絶縁層を任意の方法を用いて形成する。
【0018】
(2)次いで、所定の電気的接続部に、炭酸ガスレーザーを用いて上記樹脂絶縁層を貫通するように接続用穴を選択的に形成し、内層の配線パターンを露出させる。
ここで、前記(1)の工程において、硫酸バリウム以外の無機充填剤を配合した絶縁性樹脂組成物を用いた場合には、レーザー加工後にデスミア処理を行なうことが望ましい。このデスミア処理は、クロム酸、過マンガン酸塩等の水溶液からなる酸化剤を使用して行なうことができる。また、酸素プラズマ、CFと酸素の混合プラズマやコロナ放電等で処理してもよい。あるいはまた、紫外線照射による方法でも上記処理を行なうことができる。
【0019】
(3)次に、層間絶縁樹脂層の表面に無電解銅めっき等の無電解めっき膜を形成し、さらにこの上にめっきレジストを介して電解めっきを行ない、導体層を形成する。その後、前記めっきレジストを強アリカリ水溶液で剥離した後にエッチングにて不要な無電解めっき部を除去することにより、ビアホールを含む導体回路パターンを形成する。
(4)さらに必要に応じて前記工程を繰り返し行ない、最終的にソルダーレジスト層を形成して所望の多層プリント配線板を製造する。
【0020】
【実施例】
以下、実施例及び比較例を示して本発明についてさらに具体的に説明するが、本発明が以下の実施例に限定されるものでないことはもとよりである。
【0021】
実施例1、2及び比較例1、2
まず、表1に示す成分組成(質量部)にて各成分と溶剤等をディゾルバーにて混合し、三本ロールミルにて均一分散させた後、希釈溶剤にて粘度調整を行ない、各実施例及び比較例の絶縁性樹脂組成物を調製した。
次に、こうして調製した絶縁性樹脂組成物を、導体回路が形成されたFR−4内層(コア厚さ1.0mm、銅箔厚さ18μm)基板上に、スクリーン印刷にて塗布し、80℃×20分で乾燥した後、150℃×60分で硬化させ、樹脂絶縁層を形成した。
次に、形成した樹脂絶縁層の所定位置に、波数1080cm−1の炭酸ガスレーザーにて、パルス幅10〜30μ秒、マスク集光径φ100μm、1ショットの条件で穴あけを行なった。
【0022】
レーザー加工性:
上記のようにして形成したビアホール用穴をSEM(走査型電子顕微鏡)にて観察し、レーザー加工性を評価した。その結果を表2に示す。なお、その評価基準は以下のとおりである。
○:ビアホール底まで抜け、かつ、フィラー残渣のないもの
△:僅かにフィラー残渣あり
×:全面にフィラー残渣あり
【0023】
デスミア処理後の加工残渣の有無:
また、実施例2及び比較例1,2については、さらに九州松下電器(株)製のPD10P−Lを用いたプラズマ処理(CF/Oの混合ガス、RFパワー3kWの条件下)によるデスミアを実施し、こうしてデスミア処理したビアホール用穴を、さらにSEMにて観察し、加工残渣の有無を評価した。その結果を表2に併せて示す。
【0024】
次に、ビアホール用穴を形成した層間絶縁樹脂層の表面に、無電解銅めっきによる無電解めっき膜を形成し、さらにこの上にめっきレジストを介して電解めっきを行ない、導体層を形成した。その後、前記めっきレジストを強アリカリ水溶液で剥離した後にエッチングにて不要な無電解めっき部を除去することにより、ビアホールを含む導体回路パターンを形成した。
【0025】
このようにして製造した多層プリント配線板について、各種特性を評価した。その結果を表2に併せて示す。なお、その評価項目及び評価方法は以下のとおりである。
【0026】
電気絶縁性:
L(ライン)/S(スペース)=100/100における85℃、85%RHの雰囲気下、印加電圧DC5Vを500時間印加後の試験基板について、絶縁抵抗値(Ω)を測定し、以下の基準で判定した。
○:1.0×1014Ω以上
△:1.0×1013〜1.0×1011Ω
×:1.0×1010Ω以下
【0027】
密着性:
260℃のはんだ漕に60秒フロート後、粘着テープによるピーリング試験を行ない、以下の基準で判定した。
○:硬化塗膜の剥れがない。
△:硬化塗膜の剥れが僅かに有る。
×:硬化塗膜の全面が剥れた。
【0028】
誘電率:
○:1GHz値の誘電率が3.5未満のもの
×:1GHz値の誘電率が3.5以上のもの
【0029】
【表1】

Figure 2004099745
【0030】
【表2】
Figure 2004099745
上記表2に示される結果から明らかなように、無機充填剤を配合しなかった比較例1及び2では、レーザー加工によってビアホール用穴を形成した際、全面にフィラー残渣があったが、無機充填剤として硫酸バリウムを配合した実施例1では、極めてシャープな断面形状のビアホール用穴を形成でき、フィラー残渣は全くなかった。一方、無機充填剤としてシリカを配合した実施例2では、フィラー残渣は僅かにあったが、その後のデスミア処理によって完全に除去できた。これに対して、比較例1及び2ではデスミア処理によっても加工残渣を生じた。さらに、実施例1及び2ではこのようにレーザー加工性に優れていると共に、無機充填剤を配合したにも拘らず、無機充填剤を配合しなかった比較例1と同様に電気絶縁性、密着性、誘電率等の諸特性にも優れていた。
【0031】
【発明の効果】
以上説明したように、本発明の絶縁性樹脂組成物は、熱可塑性樹脂と共に、FT−IRによる赤外線吸収スペクトルにおいて波数900〜1300cm−1の範囲内に吸収ピークを持つ無機充填剤(B)を配合したものであるため、塗膜の強靱性、耐クラック性を損なうことなく、レーザー加工性に優れた樹脂絶縁層を得ることができる。しかも、無機充填剤未添加の組成物に比べ、形成されるビアホールの断面形状がシャープであり、絶縁信頼性に優れ、かつ、無機充填剤の残渣を生じることもない。
従って、上記のような絶縁性樹脂組成物から形成された樹脂絶縁層に炭酸ガスレーザーを照射することにより、効率的にシャープな断面形状のビアホールホールを形成することができ、信頼性の高い多層プリント配線板を提供することができる。さらに、本発明の絶縁性樹脂組成物は、レーザー加工性に優れるため、レーザー加工が要求される各種成形体に適用することもできる。
【図面の簡単な説明】
【図1】硫酸バリウムの赤外線吸収スペクトルを示すグラフである。
【図2】硫酸カルシウムの赤外線吸収スペクトルを示すグラフである。
【図3】シリカの赤外線吸収スペクトルを示すグラフである。
【図4】クレーの赤外線吸収スペクトルを示すグラフである。
【図5】タルクの赤外線吸収スペクトルを示すグラフである。
【図6】水酸化アルミニウムの赤外線吸収スペクトルを示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insulating resin composition excellent in laser workability and a printed wiring board using the same to form a resin insulating layer.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a printed wiring board for electronic equipment, an insulating resin composition containing an epoxy resin as a main component has been widely used as an interlayer resin insulating layer from the viewpoint of heat resistance and electrical insulation.
However, the epoxy resin as the interlayer resin insulating layer has to roughen the surfaces of the interlayer resin insulating layer and the conductive circuit in order to secure adhesion to the conductive circuit. Therefore, when a high-frequency signal is propagated, the signal propagates only through the surface portion of the roughened conductor circuit due to a skin effect, and signal propagation noise occurs due to unevenness of the surface. Further, since epoxy resin has low fracture toughness, there is a problem in that a wiring board using such a resin as an interlayer resin insulating layer is liable to crack at a boundary portion between the conductor circuit and the resin insulating layer due to a heat cycle. Further, since the epoxy resin has a high dielectric constant of 4.0, a delay in signal propagation cannot be avoided in a wiring board using such a resin as an interlayer resin insulating layer.
[0003]
On the other hand, recently, in order to avoid a delay in signal propagation and occurrence of a signal error when an LSI chip using a high frequency signal is mounted on a multilayer printed wiring board, a dielectric constant and a dielectric loss tangent are small (for example, An interlayer resin insulating layer containing an olefin-based resin as a main component has attracted attention (a dielectric constant at 1 GHz is 3.0 or less and a dielectric loss tangent is 0.01 or less) (see Patent Document 1 and the like).
[0004]
[Patent Document 1]
JP 2000-114726 A (Claims)
[0005]
[Problems to be solved by the invention]
Certainly, according to the interlayer resin insulating layer containing the olefin-based resin as a main component, it is possible to provide a printed wiring board excellent in fracture toughness, dielectric constant, adhesion, workability, and the like.
However, the interlayer resin insulating layer containing such a resin as a main component has a problem that it is difficult to perform a drilling process using a carbon dioxide gas laser.
[0006]
Therefore, the present invention has been made to solve the problems of the prior art as described above, and a main object of the present invention is to provide an insulating resin composition excellent in laser processability without deteriorating various properties of a coating film. To provide things.
Another object of the present invention is to provide a printed wiring board in which a resin insulating layer is formed from the insulating resin composition as described above, and a via hole having a sharp cross section is formed efficiently by irradiation with a carbon dioxide gas laser. To provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, (A) a thermoplastic resin and (B) an infrared absorption spectrum by FT-IR (Fourier transform infrared spectrophotometer) having a wave number of 900 to 1300 cm -1 . An insulating resin composition characterized by containing an inorganic filler having an absorption peak therein.
According to a preferred aspect of the insulating resin composition of the present invention, the thermoplastic resin (A) is a compound containing an olefin-based resin as a main component, and the inorganic filler (B) is barium sulfate. preferable.
Further, according to the present invention, in a printed wiring board having a conductive circuit and a resin insulating layer formed on a substrate, the resin insulating layer is formed from the insulating resin composition, and a via hole is formed by irradiation with a carbon dioxide gas laser. A printed wiring board is provided.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have conducted intensive studies to solve the above-mentioned problems of the prior art, and as a result, have found that the insulating resin composition has extremely excellent laser workability, and have completed the present invention. It is.
That is, according to the study of the present inventors, in the insulating resin composition, the thermoplastic resin as a main component thereof does not have the absorption of the carbon dioxide gas laser, or even if it does, the absorption is small. However, when the inorganic filler compounded in the composition has an absorption peak in a wave number range of 900 to 1300 cm -1 in an infrared absorption spectrum by FT-IR, a carbon dioxide gas laser is applied to a coating film of the composition. It has been found that a via hole with a small diameter and a sharp cross-sectional shape can be efficiently formed by light processing. The “absorption peak” here does not mean an absorption maximum or a single peak, but includes a case where there is at least one absorption peak within a wave number range of 900 to 1300 cm −1 . In addition, processing using not only a carbon dioxide laser but also other laser light is also possible. In this case, it is preferable to have an absorption peak in a wave number range of 950 to 1150 cm −1 , but when using a carbon dioxide laser, It is preferable to have an absorption peak in the wave number range of 1000 to 1200 cm -1 . Particularly, when the inorganic filler has a strong absorption peak that covers (covers) the absorption peak of the laser beam used by the inorganic filler, it has a small diameter and sharpness. This is preferable because a via hole having a sectional shape can be formed extremely efficiently.
[0009]
The present invention has been made based on the above findings. The insulating resin composition of the present invention, together with the thermoplastic resin (A), has a wave number of 900 to 1300 cm −1 in an infrared absorption spectrum by FT-IR. It is characterized in that an inorganic filler (B) having an absorption peak is blended therein. This makes it possible to obtain a resin insulating layer excellent in laser workability without impairing various properties such as toughness and crack resistance of the coating film. Moreover, the cross-sectional shape of the via hole formed is sharper than the composition without an inorganic filler, and the insulation reliability is excellent. In particular, when barium sulfate is used as the inorganic filler, laser processing residues are generated. It is preferable because there is no such.
[0010]
In such an insulating resin composition of the present invention, the inorganic filler (B) has an absorption peak in a wave number range of 900 to 1300 cm −1 in an infrared absorption spectrum by FT-IR as described above. Can be used without limitation. Specific examples thereof include, for example, barium sulfate, calcium sulfate, silica, clay, talc, and aluminum hydroxide. 1 to 6 show the infrared absorption spectra of the above-mentioned six types of inorganic fillers, respectively.
[0011]
Among these inorganic fillers, barium sulfate, calcium sulfate, and the like are more preferable as those having a strong absorption peak in the wavelength band of the carbon dioxide gas laser, and that the residue of the inorganic filler hardly remains at the time of forming a via hole. Barium sulfate is more preferred as a residue-free one.
Since barium sulfate sublimates or decomposes during laser processing, no residue remains after laser processing. In addition, when this barium sulfate is used, a clean via hole can be formed by laser processing, so that the subsequent desmear treatment can be omitted. On the other hand, in the case of an inorganic filler that does not sublime or decompose during laser processing even if it has an absorption peak in the wave number range of 900 to 1300 cm −1 in an infrared absorption spectrum by FT-IR, the inorganic filler is sublimated or decomposed by laser processing. Therefore, desmear treatment after laser processing is required.
[0012]
The inorganic filler (B) may be used alone or in combination of two or more. However, the average particle diameter of the inorganic filler (B) is preferably 5 μm or less, It is desirably in the range of 20 to 100% by mass, more preferably in the range of 30 to 50% by mass, based on the solid content. When the amount of the inorganic filler (B) is less than 20% by mass, the laser processability is poor. On the other hand, when the amount is more than 100% by mass, interface delamination occurs with the resin, which may cause cracks. There is.
[0013]
Since the insulating resin composition of the present invention increases the absorption of a carbon dioxide gas laser and obtains excellent laser processability by blending such a predetermined inorganic filler, the thermoplastic resin (A As), there is no particular limitation as long as it is excellent in various properties such as electric properties and heat resistance regardless of the blending of the inorganic filler.
Examples of such a thermoplastic resin (A) include an olefin resin, a polyimide resin, a polyphenylene ether resin, a polyether sulfone resin, a polyether ether ketone resin, butadiene, acrylonitrile, styrene, (meth) acrylate, and the like. And a compound obtained by copolymerizing a compound having a double bond alone or two or more types. These can be used alone or in a mixture of two or more. Among these, an olefin-based resin is particularly preferred as the thermoplastic resin used for the interlayer resin insulating layer in the printed wiring board because of its small dielectric constant and dielectric loss tangent. Specific examples of the olefin-based resin include polyethylene, polypropylene, polyisobutylene, polybutadiene, polyisopropylene, and polymethylpentene.
[0014]
An organic solvent can be added to the insulating resin composition of the present invention as needed for the purpose of adjusting viscosity and the like. Representative examples thereof include ketones such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, etc., and cyclohexanone, cyclopentanone, isophorone, methyl ethyl ketone, methyl isobutyl ketone; ethyl acetate Esters such as butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate and carbitol acetate; glycol ethers such as methyl cellosolve, butyl cellosolve and propylene glycol monomethyl ether; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; And terpenes such as limonene. These organic solvents can be used alone or in combination of two or more.
[0015]
Further, the insulating resin composition of the present invention is a thermosetting resin such as an epoxy resin, other inorganic fillers, silicon powder, nylon powder, urethane beads, as long as the laser processability and other properties are not impaired. , An organic filler such as a fluororesin powder, and, in some cases, an auxiliary additive such as a flame retardant.
[0016]
The insulating resin composition of the present invention may be one already molded as a resin sheet (film), or a monomer or a low molecular weight polymer having a certain molecular weight dispersed in an organic solvent. It may be in an uncured state. In the case of a resin sheet, it may be in the form of a copper foil with resin.
[0017]
Next, an example of a manufacturing process of the case where the insulating resin composition of the present invention is used as an interlayer resin insulating layer of a multilayer printed wiring board will be described below.
(1) First, an insulating core material made of a glass epoxy resin or the like having a predetermined wiring pattern formed on the surface thereof by copper foil or the like is used, and the insulating resin composition of the present invention is applied to the entire surface of the core material. A resin insulating layer is formed using an arbitrary method.
[0018]
(2) Next, a connection hole is selectively formed in a predetermined electric connection portion using a carbon dioxide laser so as to penetrate the resin insulating layer, thereby exposing a wiring pattern of an inner layer.
Here, in the case of using an insulating resin composition containing an inorganic filler other than barium sulfate in the step (1), desmearing is desirably performed after laser processing. This desmear treatment can be performed using an oxidizing agent composed of an aqueous solution such as chromic acid and permanganate. Alternatively, the treatment may be performed using oxygen plasma, a mixed plasma of CF 4 and oxygen, corona discharge, or the like. Alternatively, the above treatment can be performed by a method using ultraviolet irradiation.
[0019]
(3) Next, an electroless plating film such as electroless copper plating is formed on the surface of the interlayer insulating resin layer, and electrolytic plating is further performed thereon with a plating resist to form a conductor layer. After that, the plating resist is peeled off with a strong alkali aqueous solution, and then unnecessary electroless plating portions are removed by etching to form a conductor circuit pattern including via holes.
(4) The above steps are repeated if necessary, and finally a solder resist layer is formed to manufacture a desired multilayer printed wiring board.
[0020]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, it goes without saying that the present invention is not limited to the following Examples.
[0021]
Examples 1 and 2 and Comparative Examples 1 and 2
First, each component and a solvent and the like were mixed with a dissolver according to the component compositions (parts by mass) shown in Table 1 and uniformly dispersed with a three-roll mill, and then the viscosity was adjusted with a diluting solvent. An insulating resin composition of a comparative example was prepared.
Next, the insulating resin composition thus prepared is applied on an FR-4 inner layer (core thickness: 1.0 mm, copper foil thickness: 18 μm) substrate on which a conductor circuit is formed by screen printing, and then applied at 80 ° C. After drying for 20 minutes, curing was performed at 150 ° C. for 60 minutes to form a resin insulating layer.
Next, a hole was formed in a predetermined position of the formed resin insulating layer with a carbon dioxide laser having a wave number of 1080 cm -1 under the conditions of a pulse width of 10 to 30 μsec, a condensing mask diameter of 100 μm, and one shot.
[0022]
Laser workability:
The via hole formed as described above was observed with an SEM (scanning electron microscope) to evaluate laser workability. Table 2 shows the results. The evaluation criteria are as follows.
:: The filler is removed to the bottom of the via hole and has no filler residue. △: The filler residue is slightly present. X: The filler residue is present on the entire surface.
Existence of processing residue after desmear treatment:
Further, in Example 2 and Comparative Examples 1 and 2, desmear was further performed by plasma treatment (under a mixed gas of CF 4 / O 2 and RF power of 3 kW) using PD10P-L manufactured by Kyushu Matsushita Electric Industrial Co., Ltd. Was carried out, and the via-hole thus desmeared was further observed with an SEM to evaluate the presence or absence of a processing residue. The results are shown in Table 2.
[0024]
Next, an electroless plating film was formed by electroless copper plating on the surface of the interlayer insulating resin layer in which the via hole holes were formed, and electrolytic plating was further performed thereon with a plating resist to form a conductor layer. Thereafter, the plating resist was peeled off with a strong aqueous alkali solution, and unnecessary electroless plating portions were removed by etching to form a conductor circuit pattern including via holes.
[0025]
Various characteristics of the multilayer printed wiring board manufactured as described above were evaluated. The results are shown in Table 2. The evaluation items and evaluation methods are as follows.
[0026]
Electrical insulation:
The insulation resistance value (Ω) was measured for the test substrate after applying an applied voltage of 5 V DC for 500 hours in an atmosphere of 85 ° C. and 85% RH at L (line) / S (space) = 100/100, and Was determined.
:: 1.0 × 10 14 Ω or more Δ: 1.0 × 10 13 to 1.0 × 10 11 Ω
×: 1.0 × 10 10 Ω or less
Adhesion:
After being floated in a 260 ° C. solder bath for 60 seconds, a peeling test using an adhesive tape was performed, and the evaluation was made based on the following criteria.
:: The cured coating film did not peel off.
Δ: Peeling of the cured coating film is slight.
×: The entire surface of the cured coating film was peeled off.
[0028]
Dielectric constant:
○: A dielectric constant of 1 GHz value is less than 3.5. X: A dielectric constant of 1 GHz value is 3.5 or more.
[Table 1]
Figure 2004099745
[0030]
[Table 2]
Figure 2004099745
As is clear from the results shown in Table 2 above, in Comparative Examples 1 and 2 in which the inorganic filler was not blended, when the hole for the via hole was formed by laser processing, there was a filler residue on the entire surface. In Example 1 in which barium sulfate was blended as an agent, a via-hole having a very sharp cross-sectional shape could be formed, and there was no filler residue. On the other hand, in Example 2 in which silica was blended as the inorganic filler, although the filler residue was slight, it could be completely removed by the subsequent desmear treatment. On the other hand, in Comparative Examples 1 and 2, a processing residue was also generated by the desmear treatment. Further, in Examples 1 and 2, excellent laser workability was obtained, and electrical insulation and adhesion were obtained in the same manner as Comparative Example 1 in which the inorganic filler was not blended in spite of blending the inorganic filler. It was also excellent in various properties such as properties and dielectric constant.
[0031]
【The invention's effect】
As described above, the insulating resin composition of the present invention comprises, together with the thermoplastic resin, the inorganic filler (B) having an absorption peak in a wave number range of 900 to 1300 cm −1 in an infrared absorption spectrum by FT-IR. Since it is blended, a resin insulating layer excellent in laser workability can be obtained without impairing the toughness and crack resistance of the coating film. In addition, the cross-sectional shape of the via hole to be formed is sharper, the insulation reliability is excellent, and no residue of the inorganic filler is generated as compared with the composition without the inorganic filler.
Therefore, by irradiating a carbon dioxide laser to the resin insulating layer formed from the insulating resin composition as described above, a via hole hole having a sharp cross-sectional shape can be efficiently formed, and a highly reliable multilayer can be formed. A printed wiring board can be provided. Furthermore, the insulating resin composition of the present invention is excellent in laser workability, so that it can be applied to various molded articles requiring laser processing.
[Brief description of the drawings]
FIG. 1 is a graph showing an infrared absorption spectrum of barium sulfate.
FIG. 2 is a graph showing an infrared absorption spectrum of calcium sulfate.
FIG. 3 is a graph showing an infrared absorption spectrum of silica.
FIG. 4 is a graph showing an infrared absorption spectrum of clay.
FIG. 5 is a graph showing an infrared absorption spectrum of talc.
FIG. 6 is a graph showing an infrared absorption spectrum of aluminum hydroxide.

Claims (4)

(A)熱可塑性樹脂と、(B)FT−IR(フーリエ変換赤外分光光度計)による赤外線吸収スペクトルにおいて波数900〜1300cm−1の範囲内に吸収ピークを持つ無機充填剤を含有することを特徴とする絶縁性樹脂組成物。(A) a thermoplastic resin and (B) an inorganic filler having an absorption peak in a wave number range of 900 to 1300 cm -1 in an infrared absorption spectrum by FT-IR (Fourier transform infrared spectrophotometer). A characteristic insulating resin composition. 前記熱可塑性樹脂(A)が、オレフィン系樹脂を主成分とする化合物であることを特徴とする請求項1に記載の絶縁性樹脂組成物。The insulating resin composition according to claim 1, wherein the thermoplastic resin (A) is a compound containing an olefin-based resin as a main component. 前記無機充填剤(B)が、硫酸バリウムであることを特徴とする請求項1に記載の絶縁性樹脂組成物。The said inorganic filler (B) is barium sulfate, The insulating resin composition of Claim 1 characterized by the above-mentioned. 基板上に導体回路と樹脂絶縁層が形成されてなるプリント配線板において、上記樹脂絶縁層は請求項1〜3のいずれか1項に記載の絶縁性樹脂組成物から形成され、かつ炭酸ガスレーザーの照射によりビアホールが形成されていることを特徴とするプリント配線板。In a printed wiring board having a conductive circuit and a resin insulating layer formed on a substrate, the resin insulating layer is formed from the insulating resin composition according to any one of claims 1 to 3, and a carbon dioxide gas laser. A printed wiring board characterized in that a via hole is formed by irradiation of the printed wiring board.
JP2002263530A 2002-09-10 2002-09-10 Insulating resin composition and printed wiring board using the same Expired - Lifetime JP3848229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263530A JP3848229B2 (en) 2002-09-10 2002-09-10 Insulating resin composition and printed wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263530A JP3848229B2 (en) 2002-09-10 2002-09-10 Insulating resin composition and printed wiring board using the same

Publications (2)

Publication Number Publication Date
JP2004099745A true JP2004099745A (en) 2004-04-02
JP3848229B2 JP3848229B2 (en) 2006-11-22

Family

ID=32263226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263530A Expired - Lifetime JP3848229B2 (en) 2002-09-10 2002-09-10 Insulating resin composition and printed wiring board using the same

Country Status (1)

Country Link
JP (1) JP3848229B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034595A1 (en) * 2003-10-06 2005-04-14 Shinko Electric Industries Co., Ltd. Method of forming via hole in resin layer
JP2010180355A (en) * 2009-02-06 2010-08-19 Taiyo Ink Mfg Ltd Thermosetting resin composition, dry film, printed wiring board and preparation thereof
JP2012028511A (en) * 2010-07-22 2012-02-09 On Semiconductor Trading Ltd Circuit board and its manufacturing method, circuit device and its manufacturing method, and conductive foil with insulation layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005034595A1 (en) * 2003-10-06 2005-04-14 Shinko Electric Industries Co., Ltd. Method of forming via hole in resin layer
JPWO2005034595A1 (en) * 2003-10-06 2006-12-21 新光電気工業株式会社 Method for forming via hole in resin layer
JP2010180355A (en) * 2009-02-06 2010-08-19 Taiyo Ink Mfg Ltd Thermosetting resin composition, dry film, printed wiring board and preparation thereof
JP2012028511A (en) * 2010-07-22 2012-02-09 On Semiconductor Trading Ltd Circuit board and its manufacturing method, circuit device and its manufacturing method, and conductive foil with insulation layer

Also Published As

Publication number Publication date
JP3848229B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
US9258892B2 (en) Circuit materials, circuits laminates, and method of manufacture thereof
KR102122706B1 (en) A prepolymer sheet containing a support
TWI677528B (en) Thermosetting epoxy resin composition for insulating layer of multilayer printed wiring board, adhesive film for insulating layer of multilayer printed wiring board, and multilayer printed wiring board
WO1997047165A1 (en) Resin-carrying metal foil for multilayered wiring board, process for manufacturing the same, multilayered wiring board, and electronic device
JP5029093B2 (en) Resin composition
WO2012042846A1 (en) Method for forming solder resist
TWI808062B (en) Interlayer insulating film and manufacturing method thereof
KR100776725B1 (en) Thermosetting epoxy resin composition, its formed article and multilayer printed circuit board
JP2005502192A (en) Method for improving the adhesion of circuit boards to metal and articles made therewith
JPH09321432A (en) Manufacture of multilayer printed wiring board
KR101013074B1 (en) Epoxy resin composition and an adhesive film for a printed wiring boards prepared using the same
US20070138405A1 (en) Corona etching
JP3848229B2 (en) Insulating resin composition and printed wiring board using the same
WO2014109593A1 (en) Insulation resin film, substrate with thin metal layer and printed circuit board including insulation resin film, and method for fabricating circuit board including insulation resin film
US6565977B2 (en) Insulating film having improved adhesive strength and board having the insulating film
JP2005050999A (en) Wiring board and method of forming wiring
JPH06260763A (en) Manufacture of multilayer wiring board
JP4164904B2 (en) CURABLE RESIN COMPOSITION, SURFACE Roughening Treatment Method, AND ELECTRONIC DEVICE COMPONENT USING THE SAME
JP6156479B2 (en) Adhesive film, multilayer printed wiring board using the adhesive film, and method for producing the multilayer printed wiring board
JP2018027703A (en) Insulative resin sheet
WO2024005103A1 (en) Method for manufacturing circuit board
JPH1174641A (en) Multilayer wiring board
KR20230168407A (en) Adhesive composition for insulating film, insulating film sheet and method for manufacturing printed wiring board
JP2003309361A (en) Multilayer circuit wiring board and manufacture method therefor
JP2000160008A (en) Resin composition, surface etching, circuit substrate and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Ref document number: 3848229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term