JP2004099557A - Fine particle of resin containing agent for suppressing growth of microorganism and aqueous emulsion coating containing the fine particle - Google Patents

Fine particle of resin containing agent for suppressing growth of microorganism and aqueous emulsion coating containing the fine particle Download PDF

Info

Publication number
JP2004099557A
JP2004099557A JP2002265728A JP2002265728A JP2004099557A JP 2004099557 A JP2004099557 A JP 2004099557A JP 2002265728 A JP2002265728 A JP 2002265728A JP 2002265728 A JP2002265728 A JP 2002265728A JP 2004099557 A JP2004099557 A JP 2004099557A
Authority
JP
Japan
Prior art keywords
fine particles
resin
growth inhibitor
microbial growth
aqueous emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002265728A
Other languages
Japanese (ja)
Other versions
JP4820523B2 (en
Inventor
Shigefumi Arai
新井 重文
Katsuki Ochi
越智 克樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2002265728A priority Critical patent/JP4820523B2/en
Publication of JP2004099557A publication Critical patent/JP2004099557A/en
Application granted granted Critical
Publication of JP4820523B2 publication Critical patent/JP4820523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide fine particles of a resin containing a sustained-release agent for suppressing the growth of microorganisms and useful as a raw material for an aqueous emulsion coating, etc., and provide an aqueous emulsion coating containing the fine particles and exhibiting excellent action to suppress the growth of microorganisms over a long period. <P>SOLUTION: The fine particles of a resin containing an agent for suppressing the growth of microorganisms can be produced by melting and kneading a thermoplastic resin with at least one kind of microorganism growth suppressing agent selected from antibacterial agent, mildewproofing agent and algicide and finely pulverizing the kneaded mixture. The aqueous emulsion coating contains the fine particles. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、微生物生育抑制剤含有樹脂微粒子および該微粒子を含む水性エマルジョン塗料に関する。
【0002】
【従来の技術】
工業製品には、その微生物劣化を防止するために、抗菌剤、防黴剤または防藻剤などの様々な微生物生育抑制剤が使用されており、その多くは、長期間に渡って、その微生物抑制効果が持続することが求められている。そのためには、微生物生育抑制剤を樹脂等に担持させ、徐々に該樹脂等から抑制剤が放出されることにより抑制効果が持続する、いわゆる徐放製剤の利用が好ましい。徐放製剤は、主に医薬品の製剤技術として開発され、例えば、水溶性薬物を含む溶液を内水相とし、高分子重合物を含む溶液を油相としたW/O型乳化物を水中乾燥させて作られるマイクロカプセルが報告されている(例えば、特許文献1参照)。しかし、マイクロカプセル化は複雑な工程を要し生産コストがかかるため、製造費が厳しく制限される用途には利用されにくい問題があった。
【0003】
一方、農薬成分に樹脂成分をコーテイングすることにより徐放製剤化する方法、例えば、農薬成分とエマルジョン状態にした融点60℃以上のワックスおよび撥水性粉末を芯材にコーテイングする徐放性農薬の製造方法がある(例えば、特許文献2参照)。しかし、この製造方法も煩雑であり、大幅なコストの低減には繋がっていない。
【0004】
また、熱可塑性有機高分子に有機系抗菌剤を溶融混練して成る抗菌性樹脂組成物が提案されている(例えば、特許文献3参照)。この樹脂組成物は、徐放性の抗菌剤を含むカテーテルなどの医療用具や包装材料などの樹脂成形品の製造に用いられる。
【0005】
【特許文献1】
特開昭62−201816号公報
【特許文献2】
特開2000−239105号公報
【特許文献3】
特開平8−199002号公報
【0006】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、水性エマルジョン塗料などの原料として有用な徐放性の微生物生育抑制剤含有樹脂微粒子及び該微粒子を含む長期に渡り優れた微生物生育抑制作用を有する水性エマルジョン塗料を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決する為に、鋭意検討した結果、微生物生育抑制剤を樹脂と溶融混練して、そのまま成型品とするのではなく、さらに粉砕することにより徐放性の微生物生育抑制剤含有樹脂微粒子が簡便かつ安価に製造可能であること、また該微粒子を用いて、長期に渡り優れた微生物生育抑制作用を有する水性エマルジョン塗料が得られることを見出し、本発明を完成するに到った。
【0008】
すなわち、本発明は、抗菌剤、防黴剤および防藻剤からなる群から選ばれる少なくとも1種以上の微生物生育抑制剤と熱可塑性樹脂とを溶融混練し、次いで微粒子化して得られることを特徴とする微生物生育抑制剤含有樹脂微粒子を提供する。また、本発明は、前記微生物生育抑制剤含有樹脂微粒子を含むことを特徴とする水性エマルジョン塗料を提供する。
【0009】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の微生物生育抑制剤含有樹脂微粒子の製造に用いる熱可塑性樹脂は、特に制限はなく、通常の射出成形や押し出し成形に原料として用いられる熱可塑性樹脂が使用できる。微生物生育抑制剤含有樹脂微粒子を水性エマルジョン塗料の作製原料にするためには、用いる熱可塑性樹脂は疎水性で水不溶性の熱可塑性樹脂であることが好ましい。また、用いる熱可塑性樹脂は、混合する微生物生育抑制剤の分解温度未満の融解温度で溶融する必要があることから、用いる熱可塑性樹脂は、融解温度が300℃以下、好ましくは200℃以下である熱可塑性樹脂が好ましい。
【0010】
これらの好ましい熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂、ポリ(メタ)アクリル系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリウレタン樹脂などが挙げられる。
【0011】
ポリオレフィン系樹脂としては、一般の成形用樹脂として使用される低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリエチレンワックス、エチレン−αオレイン共重合体エラストマー等のポリエチレン樹脂;エチレン・酢酸ビニル共重合体、エチレン・(メタ)アクリル酸共重合体、ポリプロピレン、プロピレン・エチレン共重合体、エチレン・プロピレン共重合体、ポリブテン、エチレン・プロピレン・ブタジエン共重合体などを挙げることが出来る。
【0012】
ポリ(メタ)アクリル系樹脂としては、例えばメチルメタクリレート単独重合体の他、アクリル酸エステルやメタクリル酸エステルに、エチレン、スチレン、α−メチルスチレン、アクリロニトリルなどをそれぞれ共重合させた(メタ)アクリル系共重合体、(メタ)アクリル酸エステルにブタジエン、スチレン、アクリロニトリルを共重合させた対衝撃性(メタ)アクリル樹脂などが挙げられる。
【0013】
ポリスチレン系樹脂としては、一般に成形用樹脂として使用される、例えば、スチレンの単一重合体のほか、ハイインパクトポリスチレン(HIPS)、メチルメタクリレート・ブタジエン・スチレン共重合体、スチレン・無水マレイン酸共重合体、スチレン・(メタ)アクリル酸共重合体、スチレン・アクリロニトリル共重合体などを挙げることが出来る。
【0014】
ポリエステル系樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどの芳香族ポリエステル、さらに塗料用樹脂などで使用されるジオールとジカルボン酸との縮合により得られるポリエステル、なかでも脂肪族系のジオールとジカルボン酸との重縮合により得られる脂肪族ポリエステルを挙げることが出来る。
【0015】
また、得られる微生物生育抑制剤含有樹脂微粒子を生分解性のある樹脂で構成したい場合には、脂肪族ポリエステル系樹脂が好ましく、なかでも、3−ヒドロキシブチレート・3−ヒドロキシバリレート共重合体を代表とするポリヒドロキシアルカノエート共重合体、またはポリ乳酸に代表される単一ヒドロキシアルカノエートによる単独重合体、ポリカプロラクトン、またはポリ乳酸とポリエステルの共重合体など、これらの共重合体を挙げることができる。
【0016】
ポリ塩化ビニル系樹脂としては、例えば塩化ビニル単独重合体のほか、塩化ビニルとエチレン、プロピレン、アクリロニトリル、塩化ビニリデン、酢酸ビニル等とのそれぞれの共重合体を挙げることができる。
【0017】
これらの中でも、ポリオレフィン系樹脂、特にポリエチレンワックスは融解温度が低いものが選択でき、熱分解しやすい微生物生育抑制剤を用いる場合に特に好適である。
【0018】
上記の熱可塑性樹脂は単独で用いても良いし、2種以上を組み合わせて混合して用いても良い。用いる微生物生育抑制剤と熱可塑性樹脂との相溶性によって、得られる微生物生育抑制剤含有樹脂微粒子に含まれる微生物生育抑制剤の放出速度が異なって来るため、複数の熱可塑性樹脂を用いて数種の微生物生育抑制剤含有樹脂微粒子を作製し、例えば、それらの2つ以上を水性エマルジョンに混合分散することにより、得られる水性エマルジョン塗料の微生物生育抑制剤の残効性を調整することが可能である。
【0019】
上記の熱可塑性樹脂の好ましい質量平均分子量は、用いる樹脂の種類と調製する微粒子の目的及び用途によって異なり、特に限定されないが、通常、2500〜50万が好ましく、より好ましくは5000〜30万である。質量平均分子量が2500を下回ると、得られる微粒子の耐水性が不十分になりやすく、残効性が低下しやすい。また50万を超えると粘度が増して均一な混練が難しくなる。
【0020】
本発明に用いる微生物生育抑制剤は、抗菌剤、防黴剤および防藻剤からなる群から選ばれる少なくとも1種の薬剤であり、室温で液体または固体のいずれであっても良い。水性エマルジョン塗料用に用いる微生物生育抑制剤微粒子の場合は、該微粒子に含有される微生物生育抑制剤の作用を持続させるために、用いる微生物生育抑制剤は疎水性であることが好ましく、より具体的には、20℃での水に対する溶解度が0.2質量部%以下であることが好ましい。
【0021】
防藻剤としては、表1と表2に記載の一般名DCMUなどの尿素系防藻剤、ジメタメトリンなどのトリアジン系防藻剤、ブロマシルなどのダイアジン系防藻剤が挙げられる。
【0022】
また、防黴剤としては、表3と表4に記載の一般名テブコナゾールなどのアゾール系防黴剤、2,3,5,6−テトラクロロ−4−メチルスルホニル−ピリジン等のピリジン系防黴剤、3−ヨード−2−プロピニルブチルカーバメート等の有機ヨード系防黴剤、2−n−オクチル−4−イソチアゾリン−3−オン等のチアゾール系防黴剤、2−メトキシカルボニルアミノベンゾイミダゾール等のベンゾイミダゾール系化合物、N−(フルオロジクロロメチルチオ)−フタルイミド等のハロアルキルチオ系防黴剤が挙げられる。
【0023】
また、抗菌剤は水に対する溶解度の高いものが多いが、表5に記載の抗菌剤が好ましく、中でも1,2−ベンゾイソチアゾリン−3−オンが特に好ましい。
これらの微生物生育抑制剤は、作用の異なる薬剤または同種の薬剤を単独または複数組み合わせて使用することができる。
【0024】
【表1】

Figure 2004099557
【0025】
【表2】
Figure 2004099557
【0026】
【表3】
Figure 2004099557
【0027】
【表4】
Figure 2004099557
【0028】
【表5】
Figure 2004099557
【0029】
本発明の微生物生育抑制剤含有樹脂微粒子は、上記の熱可塑性樹脂100質量部に対して、微生物生育抑制剤0.5〜70質量部、より好ましくは5〜50質量部を溶融混練し、次いで得られた溶融混合物を微粒子化することにより得られる。
【0030】
本発明の微生物生育抑制剤含有樹脂微粒子の製造方法は、上記の熱可塑性樹脂を加熱溶融した後、もしくはその加熱溶融過程において微生物生育抑制剤を添加して溶融混練することにより、両者を均一に混合する。また、熱可塑性樹脂のペレットまたは粉末と微生物生育抑制剤の粉末を固形物のまま混合し、加熱して溶融混練することも可能である。溶融混練は、加熱装置付のニーダー、ミキシングロール、一軸または多軸の押し出し機などの慣用の混練装置によって行うことが出来る。
【0031】
次いで、得られた溶融混練物を微粒子化する。得られた溶融混練物の微粒子化は、溶融混練物の冷後、粉砕により行ってよく、ハンマーミル、ジェットミル等の一般的な乾式粉砕機あるいは剛体ビーズを使用したビーズミル等の湿式粉砕機などにより粉砕できる。粉砕効率を上げるために、粉砕前に解砕機を使用することも可能である。
【0032】
また、上記の熱可塑性樹脂のうち、メタクリル系樹脂、スチレン系樹脂、脂肪族ポリエステル樹脂等のように溶剤に溶解する樹脂の場合は、溶融混練した混合物を一度、有機溶媒に溶解させ、それを高速撹拌下の水中に滴下するか、または、逆に溶融混練した混合物を溶解した高速撹拌下の有機溶媒に水を滴下して微粒子化することも可能である。このとき、液の滴下速度と撹拌速度を調整することにより、得られる微生物生育抑制剤含有樹微粒子の平均粒径を変えることが可能である。
【0033】
微生物生育抑制剤含有樹脂粒子の平均粒径は、使用目的に応じて異なるため、一概に規定できないが、一般に500μm以下のものが好ましい。例えば、水性エマルジョン塗料などの塗料組成物に添加して用いる場合は、平均粒径が100μm以下のものが平滑性に優れた塗膜表面を得られることから好ましい。一方、コンクリート目地の充填剤に添加して用いる場合は、平均粒径500μm程度のものが十分使用できる。なお、本発明において、微生物生育抑制剤含有樹脂粒子の平均粒径は、ベックマン・コールター株式会社のコールターカウンターにより測定した質量平均粒径を言う。
【0034】
微生物生育抑制剤含有樹脂粒子は、その平均粒径が小さい方が比表面積が大きくなるため、含有する微生物生育抑制剤の放出速度が大きい。このため、異なる粒径の微生物生育抑制剤含有樹脂微粒子を2種以上、組み合わせて用いることにより、混合した微生物生育抑制剤含有樹脂微粒子からの微生物生育抑制剤の放出速度を調整することができる。従って、2種以上の微生物生育抑制剤微粒子を水性エマルジョン塗料に含有させることにより、該水性エマルジョン塗料で形成される塗膜の微生物生育抑制剤の効果持続期間を調節することや、活性発現時期を調節することも可能である。
【0035】
本発明の微生物生育抑制剤含有樹脂微粒子には、必要に応じて、アルミナ粉、シリカゲル、ゼオライト、ヒドロキシアパタイト、リン酸ジルコニウム、リン酸チタン、酸化チタン、酸化亜鉛、ハイドロタルサイト、タルク、クレー、ホワイトカーボンなどの無機添加剤、酸化防止剤、着色剤、滑剤、紫外線吸収剤、耐電防止剤などが添加されていても良い。
【0036】
本発明の微生物生育抑制剤含有樹脂微粒子を市販の水性エマルジョン塗料100質量部に対して、0.01〜15質量部、好ましくは0.1〜6質量部を添加することにより、持続性のある微生物生育抑制作用を有する水性エマルジョン塗料が容易に得られる。
【0037】
市販の水性エマルジョン塗料は、通常、顔料等を20〜40質量%、水性樹脂を15〜40質量%、塗料の物性保持、品質改良に必要な機能性添加剤を5〜20質量%、界面活性剤を0.1〜20質量%、増粘剤を0.1〜10質量%、有機溶媒を0〜5質量%程度含有する。
【0038】
微生物生育抑制剤含有樹脂微粒子を添加する水性エマルジョンあるいは水性エマルジョン塗料には、上記の市販の水性エマルジョン塗料に必要に応じて、さらに、アクリル樹脂、アクリル−スチレン樹脂、酢酸ビニル樹脂、アルキッド樹脂、SBRラテックスなどの樹脂成分;エチレングリコールやプロピレングリコール等の多価アルコール;ノニオン系、アニオン系、シリコン系等の界面活性剤;キサンタンガム、カルボキシメチルセルロース、グアーガム等の増粘剤;チタン白やフタロシアニン等の着色剤を添加しても良い。
これらの中でも、界面活性剤や増粘剤は、得られる水性エマルジョンあるいは水性エマルジョン塗料への分散性と得られるエマルジョンの安定性が向上するので、好ましい。
【0039】
本発明の微生物生育抑制剤微粒子は、この他、例えば、他の熱可塑性樹脂ペレットと任意の量で混合して、加熱成形することにより、微生物生育抑制作用を有する樹脂成形品を製造することもできる。
【0040】
本発明の微生物生育抑制剤含有樹脂微粒子及び該微粒子を含む水性エマルジョン塗料は、長期に渡って優れた微生物生育抑制作用を有し、ドア、壁、窓枠、瓦材などの外部建材、ユニットバス、便座、床材、壁紙などの内装材、家具、家電製品のケーシング材などの極めて広い分野で有用である。
【0041】
【実施例】
以下に実施例を用いて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0042】
(実施例1)微生物生育抑制剤含有樹脂微粒子の製造
熱可塑性樹脂として、ポリエチレンワックス(クラリアント ジャパン株式会社製、商品名リコワックスPE520)を使用し、熱可塑性樹脂と微生物生育抑制剤との配合比率は熱可塑性樹脂70質量%、微生物生育抑制剤30質量%とした。使用した微生物生育抑制剤を以下に示す。
【0043】
(防藻剤)
No.1:3,4−ジクロロフェニル−1,1−ジメチルウレア(一般名;DCMU、保土ヶ谷化学工業株式会社製)
No.2:2−メチルチオ−4−t−ブチルアミノ−6−シクロプロピルアミノ−S−トリアジン(日本チバガイギー株式会社製、商品名;イルガロール1071)
【0044】
(防黴剤)
No.3:α[2−(4−クロロフェニル)−エチル]−α(1,1−ジメチルエチル)−1H−1,2,4−トリアゾール−1−エタノール(一般名;テブコナゾール、バイエル株式会社製)
No.4:2,3,5,6−テトラクロロ−4−メチルスルホニル−ピリジン(大日本インキ化学工業株式会社製、商品名;バイオカットSP−100)
No.5:3−ヨード−2−プロピニルブチルカーバメート(三井東圧株式会社製、商品名;ヨ−トルIP)
No.6:4,5−ジクロロ−2−n−オクチル−4−イソチアゾリン−3−オン(ジクロロ−OIT)(ロームアンドハース株式会社製):
を使用した。
【0045】
ポリエチレンワックスをニーダー(株式会社森山製作所製、DS−3−7.5MHB−E型)に入れて加熱溶解させた後、上記の微生物生育抑制剤をそれぞれ添加して溶融混練し、その後、単軸押出機(田辺プラスチック機械株式会社、VS−40)により押出し、ペレタイザー(大阪精機工作株式会社、P−40)によりペレット化した。得られたペレットは、解砕後、粉砕機(増幸産業株式会社、セレンミラー、型式:MKCL8−10)にかけ微粒子化し、試験に供した。得られた微生物生育抑制剤含有樹脂微粒子をベックマン・コールター株式会社のコールターLS230により測定した結果、この微生物生育抑制剤含有樹脂微粒子の質量平均粒径は各々80μmであった。
【0046】
(実施例2)水性エマルジョン塗料の作製
水性エマルジョン塗料の配合は下記の通りとした。
チタン白:22質量%、
マイカ:3質量%、
タルク:8質量%、
アクリルエマルジョン(大日本インキ化学工業株式会社製、ボンコートEC−818)33質量%、
増粘剤(カルボキシメチルセルロース):10質量%、
トリポリリン酸カリ:0.1質量%、
分散剤(ポリオキシエチレンアルキルフェノールエーテル):0.7質量%、
シリコン系消泡剤(東レシリコンSM5512):0.2質量%、
エチレングリコール:2質量%、
ブチルセロソルブ:1質量%、
純水:20質量%
この水性エマルジョン塗料に実施例1で作製した樹脂粒子を所定量添加して試験を行った。
【0047】
<防藻試験>
(試験藻類種菌の培養)
シリコン栓をした100ml容三角フラスコにマイヤーズ(Myers)藻類用培地50mlを入れ、クロレラ ブルガリス(Chlorella vulgaris)、アナベナ エスピー(Anabena sp.)、ホルミジウム エスピー(Hormidium sp.)の3種の藻類を25℃で約2000ルックスの光を照射しながら14日間培養した。
【0048】
(試験片の作製)
4cm×4cmに切断した濾紙(東洋濾紙製、アドバンテックNo.26)に、一定量の微生物生育抑制剤含有樹脂微粒子を添加した水性エマルジョン塗料を塗布し、1週間室温で風乾後、試験片とした。
【0049】
(試験片の耐候処理)
塗膜からの薬剤の残効性の試験に、ウェザーメ−ター1000時間相当(外壁用塗料の抗微生物活性維持3年)に該当する加速試験を実施した。すなわち、作製した試験片を50mlの水道水に浸漬し、40℃で20日間放置した。浸漬に使用した水は、1日ごとに新しい水と置き換えた。耐候期間が終了した試験片は水切りし、室温で1週間風乾後、防藻試験に供した。
【0050】
耐候処理した試験片を1.5質量%の寒天を添加したマイヤーズ(Myers)藻類用培地上に置き、試験菌の混合溶液を25ml添加し、25℃で約2000ルックスの光を照射しながら30日間培養した。試験菌の混合溶液は、培養した各試験菌液を水道水で10倍希釈後、それぞれを等量混合したものを使用した。試験に使用したマイヤーズ藻類用培地の組成は、以下の通りである。
【0051】
(マイヤーズ藻類用培地の組成)
KNO;5g、MgSO・7HO;2.5g、KHPO;1.25g、FeSO・7HO;2.8mg、HBO;2.85mg、MnCl・4HO;1.81mg、ZnSO・7HO;0.22mg、CuSO・5HO;0.078mg、(NH・Mo24・4HO;0.171mgを蒸留水1リットル中に含む。pHは、6.0に調整した。
【0052】
<防黴試験>
(使用黴)
試験には下記の5種の黴を使用した。
アスペルゲルス ニゲル(Aspergillus niger)IFO6342、ペニシリウム フニクロスム(Penicillium funiculosum)IFO6345、クラドスポリウム クラドスポリオイデス(Cladosporium cladosporioides)IFO6348、オーレオバシジウム プルランス(Aureobasidium pullulans)IFO6353、グリオクラジウム ビレンス(Gliocladium virens)IFO6355。
【0053】
(混合胞子懸濁液の調製)
上記試験黴毎の単一胞子懸濁液を調製後、等量ずつ採取混合して混合胞子懸濁液とした。詳細はJISZ2911黴抵抗性試験方法に準じて行った。
【0054】
(試験片の作製)
防藻試験で行った条件に準じた。
【0055】
(耐候処理)
防藻試験で行った条件に準じた。
耐候処理した試験片を栄研化学株式会社製パールコアポテトデキストロース(以下PDAと略す)寒天培地上に置き、試験菌の混合溶液1mlを試験片上に振りかけ、28℃で7日間培養した。試験菌の混合溶液は、培養した各試験菌斜面培地から一白金耳ずつ掻き取った菌叢を50mlの滅菌水中で分散させ、それをさらに滅菌水で10倍希釈したものを使用した。なお、PDA培地の組成は、培地1リットルあたり、バレイショ浸出液200g、ブドウ糖20g、カンテン15gを含み、pHは5.6±0.2とした。
【0056】
(評価基準)
防藻試験、防黴試験の結果は、目視観察で行い、評価基準は以下の通りとした。−:試験片上に微生物は発生しなかった。
±:試験片上に僅かに微生物が発生した。
+:試験片上に1/3以下の微生物が発生した。
++:試験片上に2/3以下の微生物が発生した。
+++:試験片上に2/3以上の微生物が発生した。
【0057】
得られた微生物生育抑制剤含有樹脂微粒子の防藻、防かび性試験の結果を表7〜表12に示す。なお、表中のNo.は用いた微生物生育抑制剤の番号を、塗料塗布量は1m当たりの塗布量(g)を示す。対照区は微生物生育抑制剤を添加しなかった結果を、比較例は実施例の微生物生育抑制剤含有樹脂微粒子を添加したのと同じ薬剤の薬剤換算で同量を、そのまま塗料に添加した結果である。薬剤原体に換算した数値を表6に示す。
【0058】
【表6】
Figure 2004099557
【0059】
【表7】
Figure 2004099557
【0060】
【表8】
Figure 2004099557
【0061】
【表9】
Figure 2004099557
【0062】
【表10】
Figure 2004099557
【0063】
【表11】
Figure 2004099557
【0064】
【表12】
Figure 2004099557
【0065】
表7〜12に示したように、本発明の微生物生育抑制剤含有樹脂微粒子を含む水性エマルジョン塗料は、防藻剤や防黴剤を直接、水性エマルジョン塗料に添加する従来の防藻剤や防黴剤含有の水性エマルジョン塗料に比べて、遥かに優れた薬剤の残効性を示すことが明らかである。
【0066】
<抗菌試験>
抗菌試験は、抗菌製品技術協議会、抗菌製品の抗菌力評価試験法Iフィルム密着法(1998)(JIS Z2801)に準じて行った。
【0067】
(試験片の作製)
使用薬剤を1,2−ベンゾイソチアゾリン−3−オンとし、熱可塑性樹脂80質量%に対して1,2−ベンゾイソチアゾリン−3−オン20質量%の混合比で作製した微生物抑制剤含有微粒子を、水性エマルジョン塗料に0.5質量%添加(有効成分最終濃度1000ppm)した以外は、防藻試験と防黴試験に使用したものと同様の操作で試験片(A)を作製した。また、比較例として、上記抗菌剤を有効成分最終濃度1000ppmになるように添加した水性エマルジョン塗料を用いて、試験片(B)を、抗菌剤を含まない水性エマルジョン塗料のみを塗布した試験片(C)をそれぞれ作製した。
【0068】
(試験操作)
NA培地で前培養した下記2種の試験菌を、それぞれNB培地50倍希釈液で希釈して接種用菌液とした。
エシェリキア コリ(Escherichia coli IFO3972、大腸菌)
スタフィロコッカス アウレウス(Staphylococcus aureus IFO12732、黄色ブドウ球菌)
【0069】
(耐候性加速試験としての前処理)
試験片(A)、試験片(B)及び試験片(C)を50±5℃の温水に16時間浸漬した後、室温で風乾し、耐候性の加速試験の前処理とした。
【0070】
(接種方法)
前処理した各々3個の試験片(A)、試験片(B)および試験片(C)をそれぞれ滅菌シャーレに入れ、その試験面に接種用菌液0.4ml(1.0〜5.0×10/mlの菌を含む)を接種した。被覆フィルムを被せ、温度35±1℃、相対湿度90%以上の条件下、24時間保存した。
【0071】
使用した培地組成は以下の通りである。
(NB培地)
肉エキス:5.0g
ペプトン:10.0g
塩化ナトリウム:5.0g
精製水:1000ml
pH:7.1±0.1
【0072】
(NA培地)
NB培地に寒天を1.5%添加したもの
【0073】
(SA培地)
酵母エキス:2.5g
トリプトン:5.0g
グルコース:1.0g
寒天:15.0g
精製水:1000ml
pH:7.1±0.1
【0074】
(SCDLP培地)
カゼイン製ペプトン:17.0g
大豆製ペプトン:3.0g
塩化ナトリウム:5.0g
リン酸1水素カリウム:2.5g
グルコース:2.5g
レシチン:1.0g
ポリソルベート80:7.0g
精製水:1000ml
pH:6.8〜7.2
【0075】
(生菌数測定)
被覆フィルムに付着している菌を10mlのSCDLP培地でシャーレ中に洗い出し、この液1ml中の生菌数をSA培地を使用した寒天平板希釈法により測定した。生菌数測定時の希釈は、滅菌リン酸緩衝生理食塩水にて行い、生菌数の平均値を求めた。抗菌試験の結果を表13に示す。表中の試料Aは抗菌薬剤含有微粒子含有水性エマルジョン塗料を塗布したもの、試料Bは抗菌薬剤を水性エマルジョン塗料に直接添加した塗料を塗布したもの、試料Cは抗菌薬剤無添加のものを表す。
【0076】
【表13】
Figure 2004099557
【0077】
表13に示す通り、本発明の微生物生育抑制剤含有樹脂微粒子を含む水性エマルジョン塗料を用いた試料は、単に水性エマルジョン塗料に抗菌剤を添加したものに比べて対数値の増減値差が2以上あり、本試験においても、本発明の微生物生育抑制剤含有樹脂微粒子を含む水性エマルジョン塗料の優れた抗菌活性の残効性が明らかである。
【0078】
【発明の効果】
本発明の微生物生育抑制剤含有樹脂微粒子は徐放性を有し、市販の水性エマルジョン塗料に混合することにより、長期に渡って優れた微生物生育抑制活性を水性エマルジョン塗料に容易に付与することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to microbial growth inhibitor-containing resin fine particles and an aqueous emulsion paint containing the fine particles.
[0002]
[Prior art]
In order to prevent microbial degradation of industrial products, various microbial growth inhibitors such as antibacterial agents, fungicides, or algaecides are used. It is required that the suppression effect be maintained. For this purpose, it is preferable to use a so-called sustained-release preparation in which a microorganism growth inhibitor is carried on a resin or the like, and the inhibitory effect is sustained by gradually releasing the inhibitor from the resin or the like. Sustained-release preparations are mainly developed as pharmaceutical technology. For example, a W / O-type emulsion in which a solution containing a water-soluble drug is used as an internal aqueous phase and a solution containing a polymer is used as an oil phase is dried in water. A microcapsule produced by the method has been reported (for example, see Patent Document 1). However, microencapsulation requires a complicated process and requires a high production cost, and thus has a problem that it is difficult to use the microencapsulation in applications where production costs are severely limited.
[0003]
On the other hand, a method of preparing a sustained-release pesticide by coating a resin component on a pesticide component, for example, manufacturing a sustained-release pesticide by coating a core material with a wax having a melting point of 60 ° C. or more and a water-repellent powder in an emulsion state with the pesticide component There is a method (for example, see Patent Document 2). However, this manufacturing method is also complicated, and does not lead to significant cost reduction.
[0004]
Further, an antibacterial resin composition in which an organic antibacterial agent is melt-kneaded with a thermoplastic organic polymer has been proposed (for example, see Patent Document 3). This resin composition is used for the production of a resin molded article such as a medical device such as a catheter containing a sustained-release antibacterial agent and a packaging material.
[0005]
[Patent Document 1]
JP-A-62-201816
[Patent Document 2]
JP-A-2000-239105
[Patent Document 3]
JP-A-8-199002
[0006]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a sustained-release microbial growth inhibitor-containing resin fine particle useful as a raw material for an aqueous emulsion paint and the like, and an aqueous emulsion paint containing the fine particle and having an excellent microbial growth inhibitory action over a long period of time. To provide.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, melt-kneading a microorganism growth inhibitor with a resin, instead of forming a molded product as it is, and further pulverizing it to obtain a sustained-release microorganism. It has been found that resin particles containing a growth inhibitor can be easily and inexpensively produced, and that an aqueous emulsion paint having excellent microbial growth inhibitory action can be obtained over a long period of time using the particles, thereby completing the present invention. Reached.
[0008]
That is, the present invention is characterized by being obtained by melt-kneading at least one kind of microbial growth inhibitor selected from the group consisting of an antibacterial agent, an antifungal agent and an anti-algae agent and a thermoplastic resin, and then forming fine particles. To provide a microbial growth inhibitor-containing resin fine particle. In addition, the present invention provides an aqueous emulsion paint comprising the microbial growth inhibitor-containing resin fine particles.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The thermoplastic resin used for producing the microbial growth inhibitor-containing resin fine particles of the present invention is not particularly limited, and a thermoplastic resin used as a raw material in ordinary injection molding or extrusion molding can be used. In order to use the microbial growth inhibitor-containing resin fine particles as a raw material for producing an aqueous emulsion paint, the thermoplastic resin used is preferably a hydrophobic, water-insoluble thermoplastic resin. Further, since the thermoplastic resin to be used must be melted at a melting temperature lower than the decomposition temperature of the microorganism growth inhibitor to be mixed, the thermoplastic resin to be used has a melting temperature of 300 ° C or lower, preferably 200 ° C or lower. Thermoplastic resins are preferred.
[0010]
As these preferable thermoplastic resins, for example, polyolefin resin, poly (meth) acrylic resin, polystyrene resin, polyester resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyamide resin, polyacetal resin, polycarbonate resin And polyurethane resins.
[0011]
Polyolefin resins include polyethylene resins such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, polyethylene wax, and ethylene-α-olein copolymer elastomer used as general molding resins; ethylene-vinyl acetate copolymer And ethylene / (meth) acrylic acid copolymer, polypropylene, propylene / ethylene copolymer, ethylene / propylene copolymer, polybutene, and ethylene / propylene / butadiene copolymer.
[0012]
Examples of the poly (meth) acrylic resin include a (meth) acrylic resin obtained by copolymerizing ethylene, styrene, α-methylstyrene, acrylonitrile, etc. with an acrylic ester or a methacrylic ester, for example, in addition to a methyl methacrylate homopolymer. Examples of the copolymer include an impact-resistant (meth) acrylic resin obtained by copolymerizing butadiene, styrene, and acrylonitrile with a (meth) acrylic ester.
[0013]
As the polystyrene resin, for example, a styrene homopolymer, a high impact polystyrene (HIPS), a methyl methacrylate / butadiene / styrene copolymer, a styrene / maleic anhydride copolymer, which is generally used as a molding resin, is used. And a styrene / (meth) acrylic acid copolymer and a styrene / acrylonitrile copolymer.
[0014]
Examples of the polyester-based resin include aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyesters obtained by condensation of diols and dicarboxylic acids used in coating resins; and aliphatic diols. And aliphatic polyesters obtained by polycondensation of dicarboxylic acids.
[0015]
Further, when it is desired to constitute the obtained microbial growth inhibitor-containing resin fine particles with a biodegradable resin, an aliphatic polyester resin is preferable, and among them, a 3-hydroxybutyrate / 3-hydroxyvalerate copolymer is preferred. Polyhydroxyalkanoate copolymer represented by, or a homopolymer by a single hydroxyalkanoate represented by polylactic acid, polycaprolactone, or a copolymer of polylactic acid and polyester, these copolymers, such as be able to.
[0016]
Examples of the polyvinyl chloride resin include, in addition to a vinyl chloride homopolymer, respective copolymers of vinyl chloride with ethylene, propylene, acrylonitrile, vinylidene chloride, vinyl acetate and the like.
[0017]
Among these, polyolefin-based resins, particularly polyethylene wax, can be selected from those having a low melting temperature, and are particularly suitable when a microbial growth inhibitor which is easily decomposed by heat is used.
[0018]
The above thermoplastic resins may be used alone or in combination of two or more. The release rate of the microbial growth inhibitor contained in the obtained microbial growth inhibitor-containing resin microparticles varies depending on the compatibility between the microbial growth inhibitor used and the thermoplastic resin. It is possible to adjust the residual effect of the microbial growth inhibitor of the resulting aqueous emulsion paint by preparing a microbial growth inhibitor-containing resin fine particles of, for example, by mixing and dispersing two or more of them in an aqueous emulsion. is there.
[0019]
The preferred mass average molecular weight of the thermoplastic resin varies depending on the type of the resin used and the purpose and use of the fine particles to be prepared, and is not particularly limited, but is usually preferably 2,500 to 500,000, and more preferably 5,000 to 300,000. . When the weight average molecular weight is less than 2500, the water resistance of the obtained fine particles tends to be insufficient, and the residual effect tends to decrease. If it exceeds 500,000, the viscosity increases and uniform kneading becomes difficult.
[0020]
The microbial growth inhibitor used in the present invention is at least one drug selected from the group consisting of an antibacterial agent, a fungicide, and an antialgal agent, and may be a liquid or a solid at room temperature. In the case of microbial growth inhibitor fine particles used for an aqueous emulsion paint, the microbial growth inhibitor used is preferably hydrophobic in order to maintain the action of the microbial growth inhibitor contained in the fine particles, and more specifically. It is preferable that the solubility in water at 20 ° C. is 0.2% by mass or less.
[0021]
Examples of the anti-algal agent include urea-based anti-algae agents such as DCMU in Tables 1 and 2; triazine-based anti-algae agents such as dimethamethrin; and diazine-based anti-algae agents such as bromacil.
[0022]
Examples of the fungicide include azole fungicides such as tebuconazole shown in Tables 3 and 4 and pyridine fungicides such as 2,3,5,6-tetrachloro-4-methylsulfonyl-pyridine. Organic fungicides such as 3-iodo-2-propynylbutylcarbamate; thiazole fungicides such as 2-n-octyl-4-isothiazolin-3-one; 2-methoxycarbonylaminobenzimidazole; Haloalkylthio-based fungicides such as benzimidazole-based compounds and N- (fluorodichloromethylthio) -phthalimide.
[0023]
Moreover, although many antibacterial agents have high solubility in water, the antibacterial agents described in Table 5 are preferable, and 1,2-benzoisothiazolin-3-one is particularly preferable.
These microbial growth inhibitors can be used alone or in combination of agents having different actions or agents of the same type.
[0024]
[Table 1]
Figure 2004099557
[0025]
[Table 2]
Figure 2004099557
[0026]
[Table 3]
Figure 2004099557
[0027]
[Table 4]
Figure 2004099557
[0028]
[Table 5]
Figure 2004099557
[0029]
The microbial growth inhibitor-containing resin fine particles of the present invention are based on 100 parts by mass of the above-mentioned thermoplastic resin, and 0.5 to 70 parts by mass of the microbial growth inhibitor, more preferably 5 to 50 parts by mass are melt-kneaded, and then It is obtained by micronizing the obtained molten mixture.
[0030]
The method for producing microbial growth inhibitor-containing resin fine particles of the present invention, after heating and melting the above thermoplastic resin, or by melt-kneading with the addition of a microbial growth inhibitor in the heating and melting process, to uniformly mix both. Mix. It is also possible to mix the pellets or powder of the thermoplastic resin and the powder of the microbial growth inhibitor in a solid state, and to heat and knead the mixture. Melt kneading can be performed by a conventional kneading device such as a kneader equipped with a heating device, a mixing roll, or a single-screw or multi-screw extruder.
[0031]
Next, the obtained melt-kneaded material is micronized. The resulting melt-kneaded material may be micronized by cooling and then pulverizing the melt-kneaded material, such as a common dry pulverizer such as a hammer mill or a jet mill, or a wet pulverizer such as a bead mill using rigid beads. Can be crushed. In order to increase the crushing efficiency, it is possible to use a crusher before crushing.
[0032]
In addition, among the thermoplastic resins described above, in the case of a resin that dissolves in a solvent such as a methacrylic resin, a styrene resin, or an aliphatic polyester resin, the melt-kneaded mixture is once dissolved in an organic solvent, and the resulting mixture is dissolved in an organic solvent. It is also possible to form fine particles by dropping into water under high-speed stirring, or conversely, dropping water into an organic solvent under high-speed stirring in which a melt-kneaded mixture is dissolved. At this time, it is possible to change the average particle size of the obtained microbial growth inhibitor-containing tree fine particles by adjusting the liquid dropping speed and the stirring speed.
[0033]
The average particle size of the microbial growth inhibitor-containing resin particles differs depending on the purpose of use and cannot be unconditionally specified, but is generally preferably 500 μm or less. For example, when it is used by adding to a coating composition such as an aqueous emulsion coating, a coating composition having an average particle size of 100 μm or less is preferable because a coating film surface having excellent smoothness can be obtained. On the other hand, when it is used by adding to a filler for a concrete joint, one having an average particle size of about 500 μm can be sufficiently used. In the present invention, the average particle size of the microbial growth inhibitor-containing resin particles refers to a mass average particle size measured by a Coulter counter of Beckman Coulter, Inc.
[0034]
The smaller the average particle size of the microbial growth inhibitor-containing resin particles is, the larger the specific surface area is, so that the release rate of the contained microbial growth inhibitor is high. Therefore, the release rate of the microorganism growth inhibitor from the mixed microbial growth inhibitor-containing resin fine particles can be adjusted by using two or more kinds of the microbial growth inhibitor-containing resin fine particles having different particle diameters in combination. Therefore, by adding two or more kinds of microbial growth inhibitor fine particles to the aqueous emulsion paint, it is possible to adjust the duration of the effect of the microbial growth inhibitor of the coating film formed by the aqueous emulsion paint, and to adjust the activity onset time. Adjustment is also possible.
[0035]
The microbial growth inhibitor-containing resin fine particles of the present invention, if necessary, alumina powder, silica gel, zeolite, hydroxyapatite, zirconium phosphate, titanium phosphate, titanium oxide, zinc oxide, hydrotalcite, talc, clay, An inorganic additive such as white carbon, an antioxidant, a coloring agent, a lubricant, an ultraviolet absorber, an antistatic agent, and the like may be added.
[0036]
By adding 0.01 to 15 parts by mass, preferably 0.1 to 6 parts by mass, of the microbial growth inhibitor-containing resin fine particles of the present invention to 100 parts by mass of a commercially available aqueous emulsion paint, the composition has long-lasting properties. An aqueous emulsion paint having a microbial growth inhibitory action can be easily obtained.
[0037]
Commercially available aqueous emulsion paints usually contain 20 to 40% by mass of pigments and the like, 15 to 40% by mass of an aqueous resin, 5 to 20% by mass of functional additives necessary for maintaining physical properties and improving quality of the paint, and surface activity. The composition contains about 0.1 to 20% by mass of an agent, about 0.1 to 10% by mass of a thickener, and about 0 to 5% by mass of an organic solvent.
[0038]
The aqueous emulsion or the aqueous emulsion paint to which the microbial growth inhibitor-containing resin fine particles are added may further include an acrylic resin, an acryl-styrene resin, a vinyl acetate resin, an alkyd resin, an SBR as required for the above-mentioned commercially available aqueous emulsion paint. Resin components such as latex; polyhydric alcohols such as ethylene glycol and propylene glycol; surfactants such as nonionic, anionic and silicone; thickeners such as xanthan gum, carboxymethyl cellulose and guar gum; coloring such as titanium white and phthalocyanine An agent may be added.
Among them, surfactants and thickeners are preferable because the dispersibility in the obtained aqueous emulsion or aqueous emulsion paint and the stability of the obtained emulsion are improved.
[0039]
The microbial growth inhibitor fine particles of the present invention can also be used to produce a resin molded product having a microbial growth inhibitory effect, for example, by mixing in an arbitrary amount with other thermoplastic resin pellets and heat molding. it can.
[0040]
The microbial growth inhibitor-containing resin fine particles of the present invention and the aqueous emulsion paint containing the fine particles have an excellent microbial growth inhibitory effect over a long period of time, and are used for exterior building materials such as doors, walls, window frames, and tiles, and unit baths. It is useful in extremely wide fields such as interior materials such as toilet seats, flooring materials, wallpaper, furniture, and casing materials for home appliances.
[0041]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to the following Examples.
[0042]
(Example 1) Production of microbial growth inhibitor-containing resin fine particles
Polyethylene wax (manufactured by Clariant Japan K.K., trade name: Licowax PE520) was used as the thermoplastic resin. The blending ratio of the thermoplastic resin and the microorganism growth inhibitor was 70% by mass of the thermoplastic resin and 30% by mass of the microorganism growth inhibitor. %. The used microorganism growth inhibitors are shown below.
[0043]
(Algaeproofing agent)
No. 1: 3,4-dichlorophenyl-1,1-dimethylurea (generic name: DCMU, manufactured by Hodogaya Chemical Industry Co., Ltd.)
No. 2: 2-methylthio-4-t-butylamino-6-cyclopropylamino-S-triazine (manufactured by Nippon Ciba Geigy Co., Ltd., trade name: Irgarol 1071)
[0044]
(Fungicide)
No. 3: α [2- (4-chlorophenyl) -ethyl] -α (1,1-dimethylethyl) -1H-1,2,4-triazole-1-ethanol (generic name: tebuconazole, manufactured by Bayer Corporation)
No. 4: 2,3,5,6-tetrachloro-4-methylsulfonyl-pyridine (manufactured by Dainippon Ink and Chemicals, Inc., trade name; Biocut SP-100)
No. 5: 3-Iodo-2-propynylbutyl carbamate (Mitsui Toatsu Co., Ltd., trade name; Yitol IP)
No. 6: 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (dichloro-OIT) (manufactured by Rohm and Haas Co., Ltd.):
It was used.
[0045]
Polyethylene wax is put into a kneader (Moriyama Seisakusho Co., Ltd., DS-3-7.5MHB-E type) and dissolved by heating. Then, each of the above-mentioned microbial growth inhibitors is added and melt-kneaded. The mixture was extruded by an extruder (Tanabe Plastic Machinery Co., Ltd., VS-40) and pelletized by a pelletizer (Osaka Seiki Co., Ltd., P-40). The obtained pellets were disintegrated and then pulverized by a pulverizer (Masuyuki Sangyo Co., Ltd., selenium mirror, model: MKCL8-10) to be subjected to a test. As a result of measuring the obtained microbial growth inhibitor-containing resin fine particles using Coulter LS230 manufactured by Beckman Coulter, the mass average particle diameter of the microbial growth inhibitor-containing resin fine particles was 80 μm.
[0046]
(Example 2) Preparation of aqueous emulsion paint
The formulation of the aqueous emulsion paint was as follows.
Titanium white: 22% by mass,
Mica: 3% by mass,
Talc: 8% by mass,
Acrylic emulsion (manufactured by Dainippon Ink and Chemicals, Inc., Boncoat EC-818) 33% by mass,
Thickener (carboxymethylcellulose): 10% by mass,
Potassium tripolyphosphate: 0.1% by mass,
Dispersant (polyoxyethylene alkylphenol ether): 0.7% by mass,
Silicon-based defoaming agent (Toray Silicon SM5512): 0.2% by mass,
Ethylene glycol: 2% by mass,
Butyl cellosolve: 1% by mass,
Pure water: 20% by mass
A test was conducted by adding a predetermined amount of the resin particles prepared in Example 1 to this aqueous emulsion paint.
[0047]
<Algae test>
(Culture of test algal seed fungus)
A 100 ml Erlenmeyer flask with a silicon stopper was charged with 50 ml of a medium for Myers algae, and 25 kinds of three algae, Chlorella vulgaris, Anabena sp., And Holmiumium sp. The cells were cultured for 14 days while irradiating at about 2000 lux of light at ℃.
[0048]
(Preparation of test pieces)
A filter paper (Advantech No. 26, manufactured by Toyo Roshi Kaisha, Ltd.) cut to 4 cm × 4 cm was coated with an aqueous emulsion paint to which a certain amount of microbial growth inhibitor-containing resin microparticles was added. .
[0049]
(Weather treatment of test pieces)
In the test of the residual effect of the drug from the coating film, an acceleration test corresponding to a weather meter of 1,000 hours (maintaining the antimicrobial activity of the paint for exterior walls for 3 years) was performed. That is, the prepared test piece was immersed in 50 ml of tap water and left at 40 ° C. for 20 days. The water used for immersion was replaced with fresh water every day. After the weathering period, the test piece was drained, air-dried at room temperature for one week, and then subjected to an algal test.
[0050]
The weather-treated test piece was placed on a Myers algae medium supplemented with 1.5% by mass of agar, 25 ml of a mixed solution of the test bacteria was added, and the mixture was irradiated with light of about 2000 lux at 25 ° C. for 30 minutes. Cultured for days. The mixed solution of the test bacteria was used by diluting each of the cultured test bacteria solutions 10-fold with tap water and then mixing equal amounts of each. The composition of the medium for Myers algae used in the test is as follows.
[0051]
(Composition of medium for Myers algae)
KNO 3 5 g, MgSO 4 ・ 7H 2 O; 2.5 g, KH 2 PO 4 1.25 g, FeSO 4 ・ 7H 2 O; 2.8 mg, H 3 BO 3 2.85 mg, MnCl 2 ・ 4H 2 O; 1.81 mg, ZnSO 4 ・ 7H 2 O; 0.22 mg, CuSO 4 ・ 5H 2 O; 0.078 mg, (NH 4 ) 6 ・ Mo 7 O 24 ・ 4H 2 O; 0.171 mg is contained in 1 liter of distilled water. The pH was adjusted to 6.0.
[0052]
<Mold prevention test>
(Use mold)
The following five molds were used in the test.
Asuperugerusu niger (Aspergillus niger) IFO6342, Penicillium funiculosum (Penicillium funiculosum) IFO6345, Cladosporium class dos polio Lee Death (Cladosporium cladosporioides) IFO6348, Aureobasidium pullulans (Aureobasidium pullulans) IFO6353, Griot click radium Birensu (Gliocladium virens) IFO6355.
[0053]
(Preparation of mixed spore suspension)
After preparing a single spore suspension for each of the test molds, an equal amount was collected and mixed to obtain a mixed spore suspension. The details were carried out according to JISZ2911 mold resistance test method.
[0054]
(Preparation of test pieces)
The conditions were the same as those used in the anti-algae test.
[0055]
(Weatherproof treatment)
The conditions were the same as those used in the anti-algae test.
The test piece subjected to the weathering treatment was placed on a pearl core potato dextrose (hereinafter abbreviated as PDA) agar medium manufactured by Eiken Chemical Co., Ltd., and 1 ml of a mixed solution of the test bacteria was sprinkled on the test piece and cultured at 28 ° C. for 7 days. A mixed solution of the test bacteria was prepared by dispersing a bacterial flora scraped from the slant culture medium of each of the test bacteria one by one loop in 50 ml of sterilized water and further diluting it with sterile water 10-fold. The composition of the PDA medium contained 200 g of potato leachate, 20 g of glucose and 15 g of agar per liter of the medium, and the pH was 5.6 ± 0.2.
[0056]
(Evaluation criteria)
The results of the anti-algal test and the anti-mold test were visually observed, and the evaluation criteria were as follows. -: No microorganism was generated on the test piece.
±: Slight microorganisms were generated on the test piece.
+: 1/3 or less of microorganisms were generated on the test piece.
++: / or less of microorganisms were generated on the test piece.
+++: 2/3 or more microorganisms were generated on the test piece.
[0057]
Tables 7 to 12 show the results of the algal and fungicidal tests of the obtained microbial growth inhibitor-containing resin fine particles. In addition, No. in the table. Is the number of the microorganism growth inhibitor used, and the coating amount is 1 m 2 Per application (g). The control group shows the result without the addition of the microorganism growth inhibitor, and the comparative example shows the result of adding the same amount of the same agent in the same drug equivalent as adding the microbial growth inhibitor-containing resin fine particles of the example to the paint as it was. is there. Table 6 shows the values converted to the drug substance.
[0058]
[Table 6]
Figure 2004099557
[0059]
[Table 7]
Figure 2004099557
[0060]
[Table 8]
Figure 2004099557
[0061]
[Table 9]
Figure 2004099557
[0062]
[Table 10]
Figure 2004099557
[0063]
[Table 11]
Figure 2004099557
[0064]
[Table 12]
Figure 2004099557
[0065]
As shown in Tables 7 to 12, the aqueous emulsion paint containing the microbial growth inhibitor-containing resin fine particles of the present invention is prepared by adding a conventional antialgal agent or antifungal agent by directly adding an antialgal agent or an antifungal agent to the aqueous emulsion paint. It is evident that it shows much better drug residual effect than the aqueous emulsion paint containing the fungicide.
[0066]
<Antibacterial test>
The antibacterial test was carried out according to the Antibacterial Product Technical Council, the antibacterial product evaluation test method for antibacterial products I film adhesion method (1998) (JIS Z2801).
[0067]
(Preparation of test pieces)
The drug used was 1,2-benzisothiazolin-3-one, and microbial inhibitor-containing fine particles prepared at a mixing ratio of 1,2-benzisothiazolin-3-one to 20% by mass with respect to 80% by mass of a thermoplastic resin, A test piece (A) was prepared by the same operation as that used in the algal control test and the antifungal test, except that 0.5% by mass (final concentration of the active ingredient was 1000 ppm) was added to the aqueous emulsion paint. As a comparative example, a test piece (B) was prepared by using an aqueous emulsion paint to which the above-mentioned antibacterial agent was added so as to have a final concentration of the active ingredient of 1000 ppm. C) was prepared.
[0068]
(Test operation)
The following two types of test bacteria pre-cultured in the NA medium were each diluted with a 50-fold diluted NB medium to obtain a bacterial solution for inoculation.
Escherichia coli (Escherichia coli IFO3972, Escherichia coli)
Staphylococcus aureus (Staphylococcus aureus IFO12732, Staphylococcus aureus)
[0069]
(Pretreatment as accelerated weathering test)
The test piece (A), the test piece (B) and the test piece (C) were immersed in warm water at 50 ± 5 ° C. for 16 hours, and then air-dried at room temperature to perform pretreatment for an accelerated weather resistance test.
[0070]
(Inoculation method)
Each of the three pretreated test pieces (A), (B) and (C) was placed in a sterile petri dish, and 0.4 ml (1.0 to 5.0) of the inoculum was placed on the test surface. × 10 5 / Ml of bacteria). The coated film was covered and stored for 24 hours under conditions of a temperature of 35 ± 1 ° C. and a relative humidity of 90% or more.
[0071]
The medium composition used is as follows.
(NB medium)
Meat extract: 5.0g
Peptone: 10.0g
Sodium chloride: 5.0 g
Purified water: 1000ml
pH: 7.1 ± 0.1
[0072]
(NA medium)
1.5% agar added to NB medium
[0073]
(SA medium)
Yeast extract: 2.5g
Tryptone: 5.0g
Glucose: 1.0g
Agar: 15.0g
Purified water: 1000ml
pH: 7.1 ± 0.1
[0074]
(SCDLP medium)
Casein peptone: 17.0 g
Soy peptone: 3.0g
Sodium chloride: 5.0 g
Potassium monohydrogen phosphate: 2.5 g
Glucose: 2.5g
Lecithin: 1.0g
Polysorbate 80: 7.0 g
Purified water: 1000ml
pH: 6.8-7.2
[0075]
(Viable cell count measurement)
Bacteria adhering to the coated film were washed out in a Petri dish with 10 ml of SCDLP medium, and the number of viable cells in 1 ml of this solution was measured by an agar plate dilution method using SA medium. The dilution at the time of measuring the viable cell count was performed with sterile phosphate buffered saline, and the average value of the viable cell count was determined. Table 13 shows the results of the antibacterial test. In the table, sample A is a sample to which an aqueous emulsion paint containing antimicrobial agent-containing fine particles is applied, sample B is a sample to which an antimicrobial agent is directly added to an aqueous emulsion paint, and sample C is a sample to which no antimicrobial agent is added.
[0076]
[Table 13]
Figure 2004099557
[0077]
As shown in Table 13, the sample using the aqueous emulsion paint containing the microbial growth inhibitor-containing resin fine particles of the present invention had a difference of 2 or more in the logarithmic value as compared with the case where the antibacterial agent was simply added to the aqueous emulsion paint. In this test, it is apparent that the aqueous emulsion paint containing the microbial growth inhibitor-containing resin fine particles of the present invention has excellent antimicrobial activity and residual effect.
[0078]
【The invention's effect】
The microbial growth inhibitor-containing resin fine particles of the present invention have a sustained release property, and by being mixed with a commercially available aqueous emulsion paint, it is possible to easily impart excellent microbial growth inhibitory activity to the aqueous emulsion paint over a long period of time. it can.

Claims (5)

抗菌剤、防黴剤および防藻剤からなる群から選ばれる少なくとも1種以上の微生物生育抑制剤と熱可塑性樹脂とを溶融混練し、次いで微粒子化して得られることを特徴とする微生物生育抑制剤含有樹脂微粒子。A microorganism growth inhibitor characterized by being obtained by melt-kneading at least one or more microorganism growth inhibitors selected from the group consisting of an antibacterial agent, a fungicide, and an alga-proofing agent with a thermoplastic resin, and then forming fine particles. Containing resin fine particles. 前記熱可塑性樹脂がポリスチレン系樹脂、ポリ(メタ)アクリル系樹脂、ポリオレフィン系樹脂、ポリ塩化ビニル系樹脂、ポリエステル系樹脂からなる群から選ばれる少なくとも1種である請求項1に記載の微生物生育抑制剤含有樹脂微粒子。The microorganism growth suppression according to claim 1, wherein the thermoplastic resin is at least one selected from the group consisting of a polystyrene resin, a poly (meth) acrylic resin, a polyolefin resin, a polyvinyl chloride resin, and a polyester resin. Agent-containing resin fine particles. 前記微生物生育抑制剤含有樹脂微粒子の平均粒径が500μm以下である請求項1に記載の微生物生育抑制剤含有樹脂微粒子。The microbial growth inhibitor-containing resin fine particles according to claim 1, wherein the average particle diameter of the microbial growth inhibitor-containing resin fine particles is 500 µm or less. 前記熱可塑性樹脂がポリエチレンワックスであり、前記微生物生育抑制剤が防黴剤と防藻剤の少なくとも1種である請求項1に記載の微生物生育抑制剤含有樹脂微粒子。2. The microbial growth inhibitor-containing resin fine particles according to claim 1, wherein the thermoplastic resin is polyethylene wax, and the microbial growth inhibitor is at least one of a fungicide and an algal inhibitor. 請求項1〜4のいずれか1つに記載の微生物生育抑制剤含有樹脂微粒子を含むことを特徴とする水性エマルジョン塗料。An aqueous emulsion paint comprising the microbial growth inhibitor-containing resin fine particles according to any one of claims 1 to 4.
JP2002265728A 2002-09-11 2002-09-11 Microbial growth inhibitor-containing resin fine particles and aqueous emulsion paint containing the fine particles Expired - Fee Related JP4820523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265728A JP4820523B2 (en) 2002-09-11 2002-09-11 Microbial growth inhibitor-containing resin fine particles and aqueous emulsion paint containing the fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265728A JP4820523B2 (en) 2002-09-11 2002-09-11 Microbial growth inhibitor-containing resin fine particles and aqueous emulsion paint containing the fine particles

Publications (2)

Publication Number Publication Date
JP2004099557A true JP2004099557A (en) 2004-04-02
JP4820523B2 JP4820523B2 (en) 2011-11-24

Family

ID=32264785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265728A Expired - Fee Related JP4820523B2 (en) 2002-09-11 2002-09-11 Microbial growth inhibitor-containing resin fine particles and aqueous emulsion paint containing the fine particles

Country Status (1)

Country Link
JP (1) JP4820523B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013972A1 (en) * 2004-08-06 2006-02-09 Nippon Soda Co., Ltd. Agricultural-chemical preparation having controlled releasability
JP2010530860A (en) * 2007-06-22 2010-09-16 ランクセス・ドイチュランド・ゲーエムベーハー Polymer particles containing a biocide active substance
EP2380438A1 (en) 2010-04-22 2011-10-26 LANXESS Deutschland GmbH Biocidal material
EP2801256A1 (en) 2013-05-08 2014-11-12 LANXESS Deutschland GmbH Microcapsules containing an algicide and a melamine-formaldehyde polymer
JP2015528519A (en) * 2012-08-09 2015-09-28 ローム アンド ハース カンパニーRohm And Haas Company Coating composition having a biocide
JP2017143035A (en) * 2016-02-12 2017-08-17 Jsr株式会社 Composition for light guide plate and light guide plate
CN107085258A (en) * 2016-02-12 2017-08-22 Jsr株式会社 Light guide plate composition and light guide plate
JP2018150278A (en) * 2017-03-14 2018-09-27 日本曹達株式会社 Alga-proof test method
US10212935B2 (en) 2014-02-27 2019-02-26 Lanxess Deutschland Gmbh Biocidic microcapsules
JP2019085655A (en) * 2017-11-01 2019-06-06 凸版印刷株式会社 Foamed wallpaper and method of manufacturing the same
JP2019131551A (en) * 2018-02-02 2019-08-08 大阪ガスケミカル株式会社 Antialgae particle, method for producing the same and antialgae coating
CN114277504A (en) * 2021-12-31 2022-04-05 嘉兴万康无纺制品有限公司 Composite non-glue cotton and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848605A (en) * 1994-08-08 1996-02-20 Matsushita Electric Ind Co Ltd Antimicrobial complex and its production
JPH0860022A (en) * 1994-08-19 1996-03-05 Nippon Shokubai Co Ltd Composite zinc oxide/polymer microparticle, production and use thereof
JPH08199089A (en) * 1995-01-25 1996-08-06 Tomoegawa Paper Co Ltd Powder coating material
JPH08199002A (en) * 1995-01-30 1996-08-06 Unitika Ltd Antibacterial resin composition
JPH08302028A (en) * 1995-05-10 1996-11-19 Nippon Mizushiyori Giken:Kk Antimicrobial masterbatch
JPH10265621A (en) * 1997-03-25 1998-10-06 Hightech Kemi Kk Colored resin composition for water pipe
JP2001323218A (en) * 2000-05-17 2001-11-22 Asahi Kasei Corp Water-based coating material containing antimicrobial agent
JP2002521464A (en) * 1998-07-28 2002-07-16 アヴェンティス・クロップサイエンス・ゲーエムベーハー Microparticles made from cycloolefin copolymers and their use for controlled release of active substances
JP2005529173A (en) * 2002-06-13 2005-09-29 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト Powder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0848605A (en) * 1994-08-08 1996-02-20 Matsushita Electric Ind Co Ltd Antimicrobial complex and its production
JPH0860022A (en) * 1994-08-19 1996-03-05 Nippon Shokubai Co Ltd Composite zinc oxide/polymer microparticle, production and use thereof
JPH08199089A (en) * 1995-01-25 1996-08-06 Tomoegawa Paper Co Ltd Powder coating material
JPH08199002A (en) * 1995-01-30 1996-08-06 Unitika Ltd Antibacterial resin composition
JPH08302028A (en) * 1995-05-10 1996-11-19 Nippon Mizushiyori Giken:Kk Antimicrobial masterbatch
JPH10265621A (en) * 1997-03-25 1998-10-06 Hightech Kemi Kk Colored resin composition for water pipe
JP2002521464A (en) * 1998-07-28 2002-07-16 アヴェンティス・クロップサイエンス・ゲーエムベーハー Microparticles made from cycloolefin copolymers and their use for controlled release of active substances
JP2001323218A (en) * 2000-05-17 2001-11-22 Asahi Kasei Corp Water-based coating material containing antimicrobial agent
JP2005529173A (en) * 2002-06-13 2005-09-29 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト Powder

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888907B1 (en) * 2004-08-06 2009-03-16 닛뽕소다 가부시키가이샤 Agricultural-chemical preparation having controlled releasability
KR100950883B1 (en) * 2004-08-06 2010-04-06 닛뽕소다 가부시키가이샤 Agricultural-chemical preparation having controlled releasability
EA014938B1 (en) * 2004-08-06 2011-04-29 Ниппон Сода Ко., Лтд. Agricultural-chemical polymer preparation, production process thereof and use
WO2006013972A1 (en) * 2004-08-06 2006-02-09 Nippon Soda Co., Ltd. Agricultural-chemical preparation having controlled releasability
JP2010530860A (en) * 2007-06-22 2010-09-16 ランクセス・ドイチュランド・ゲーエムベーハー Polymer particles containing a biocide active substance
EP2380438A1 (en) 2010-04-22 2011-10-26 LANXESS Deutschland GmbH Biocidal material
JP2015528519A (en) * 2012-08-09 2015-09-28 ローム アンド ハース カンパニーRohm And Haas Company Coating composition having a biocide
EP2801256A1 (en) 2013-05-08 2014-11-12 LANXESS Deutschland GmbH Microcapsules containing an algicide and a melamine-formaldehyde polymer
US10212935B2 (en) 2014-02-27 2019-02-26 Lanxess Deutschland Gmbh Biocidic microcapsules
JP2017143035A (en) * 2016-02-12 2017-08-17 Jsr株式会社 Composition for light guide plate and light guide plate
CN107085258A (en) * 2016-02-12 2017-08-22 Jsr株式会社 Light guide plate composition and light guide plate
JP2018150278A (en) * 2017-03-14 2018-09-27 日本曹達株式会社 Alga-proof test method
JP2019085655A (en) * 2017-11-01 2019-06-06 凸版印刷株式会社 Foamed wallpaper and method of manufacturing the same
JP2022136331A (en) * 2017-11-01 2022-09-15 凸版印刷株式会社 Foamed wallpaper and method of manufacturing the same
JP7388498B2 (en) 2017-11-01 2023-11-29 Toppanホールディングス株式会社 Foam wallpaper, foam wallpaper manufacturing method
JP2019131551A (en) * 2018-02-02 2019-08-08 大阪ガスケミカル株式会社 Antialgae particle, method for producing the same and antialgae coating
JP7228393B2 (en) 2018-02-02 2023-02-24 大阪ガスケミカル株式会社 Anti-algae particles, method for producing the same, and anti-algae paint
CN114277504A (en) * 2021-12-31 2022-04-05 嘉兴万康无纺制品有限公司 Composite non-glue cotton and preparation method thereof

Also Published As

Publication number Publication date
JP4820523B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US6093407A (en) Anti-microbial powder coatings
US6566419B2 (en) Degradable plastics possessing a microbe-inhibiting quality
US11154063B2 (en) Method for producing a bacteriostatic and fungistatic additive in masterbatch for application in plastics
DE102005041005B4 (en) Biocidal composition containing nanoparticulate silver, the use of this composition and a method for the production of biocidal products using this composition
CN109705455A (en) A kind of antibacterial and mouldproof thermoplastic resin composition and preparation method thereof
JP2017525692A (en) Antiseptic product, its production method and its use
JP4820523B2 (en) Microbial growth inhibitor-containing resin fine particles and aqueous emulsion paint containing the fine particles
CN101218093B (en) Co-biocidal formulation for polymeric materials
CN104470995A (en) Aqueous coatings and paints incorporating one or more antimicrobial biosurfactants and methods for using same
US20160326670A1 (en) Antibacterial fiber material, antibacterial fibers, master batch for manufacturing antibacterial fibers, and method for manufacturing antibacterial fibers
SK10992001A3 (en) Biocidal plastic material
JP5529834B2 (en) Synergistic combination of glyphosate compound and ZPT
US5229124A (en) Microbicides immobilized in water soluble thermoplastic resins and aqueous dispersions of microbicides prepared therefrom
WO2014209222A1 (en) Antimicrobial coating composition
JP5529831B2 (en) Synergistic combination of glyphosate compound and IPBC
CA2842245A1 (en) Polymers containing heat labile components adsorbed on polymeric carriers and methods for their preparation
JPH06305906A (en) Antibacterial material, antibacterial resin composition, antibacterial synthetic fiber, paper having antibacterial property, antibacterial coating and cosmetic and production of antibacterial material
US20130172436A1 (en) Polymers containing heat labile components adsorbed on polymeric carriers and methods for their preparation
JPH10109906A (en) Antibacterial and fungicidal agent for industrial purposes
JP5511093B2 (en) Synergistic combination of glyphosate compound and TBZ
JPH03206009A (en) Antimicrobial agent, antimicrobial resin composition, molded product of antimicrobial resin, antimicrobial water tank made of synthetic resin, antimicrobial synthetic fiber, paper having antimicrobial property, antimicrobial coating, local antimicrobial agent and cosmetic
JP2000026649A (en) Algae proof expandable resin particle and molded product thereof
JP2000044408A (en) Antibacterial agent, antibacterial resin composition and antibacterial molded product
JP5529833B2 (en) Synergistic combination of glyphosate compound and DMITS
IL97673A (en) Microbicides immobilized in water-soluble thermoplastic polymeric resins and aqueous dispersions of microbicides prepared therefrom

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees