JP2004099496A - Asymmetric dihydrophenazine derivative and method for producing the same - Google Patents

Asymmetric dihydrophenazine derivative and method for producing the same Download PDF

Info

Publication number
JP2004099496A
JP2004099496A JP2002262360A JP2002262360A JP2004099496A JP 2004099496 A JP2004099496 A JP 2004099496A JP 2002262360 A JP2002262360 A JP 2002262360A JP 2002262360 A JP2002262360 A JP 2002262360A JP 2004099496 A JP2004099496 A JP 2004099496A
Authority
JP
Japan
Prior art keywords
asymmetric
substituted
dihydrophenazine
dihydrophenazine derivative
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002262360A
Other languages
Japanese (ja)
Other versions
JP4362683B2 (en
Inventor
Toshihiro Okamoto
岡本 敏宏
Masatoshi Ozaki
小嵜 正敏
Keiji Okada
岡田 恵次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2002262360A priority Critical patent/JP4362683B2/en
Publication of JP2004099496A publication Critical patent/JP2004099496A/en
Application granted granted Critical
Publication of JP4362683B2 publication Critical patent/JP4362683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plural Heterocyclic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new asymmetric dihydrophenazine derivative and to provide a method for producing the same. <P>SOLUTION: The method for producing the asymmetric dihydrophenazine derivative comprises reacting a specific phenazine derivative with a first reagent, successively inactivating the reaction system and reacting the reaction product with a second reagent by crosscoupling. The asymmetric dihydrophenazine derivative represented by general formula (1) (R<SB>1</SB>-R<SB>8</SB>are each independently a substituted or nonsubstituted aryl, a heterocyclic group or a specific organic group; Ar<SB>1</SB>is a substituted or nonsubstituted phenyl; Ar<SB>2</SB>is a substituted or nonsubstituted biphenyl; Ar<SB>1</SB>and Ar<SB>2</SB>are not the same group) is obtained by the method. The obtained asymmetric dihydrophenazine derivative is useful as a magnetic material, a conductive material, an organic electroluminescent element and a photoelectrically functional material such as electrophotography, etc. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、電子機能性材料、光機能性材料等への、広範な応用が期待できる新規な非対称ジヒドロフェナジン誘導体、およびその新規な製造法に関するものである。
【0002】
【従来の技術】
π電子系有機化合物を光機能材料と電子機能材料に応用しようとする試みは、多種多彩で多くの研究機関で行われている。これらの中で代表的な化合物群の1つとして、基本構造に窒素原子を持つ1群のπ電子系有機化合物、例えば、ジヒドロフェナジン等が知られている。ジヒドロフェナジンは、電子供与性が高く、ドナー分子としての応用が考えられる。
【0003】
ジヒドロフェナジン誘導体をドナー分子として用いた応用例としては、非特許文献1、非特許文献2、非特許文献3等に記載されているように導電材料に応用した例がある。
【0004】
また、非特許文献4に記載されているように磁性材料に応用した例もある。
一方で、ジヒドロフェナジン誘導体を有機EL素子に用いた特開2000−21574号公報があるが、その電子供与性が強い点に関しては全く記載されていない。また、電子供与性を生かした効果も記載されていない。その発光特性に注目しているのみである。
この様な種々の機能性材料に非対称ジヒドロフェナジン誘導体を応用する場合、目的に応じて様々な置換基を導入することは、化合物の性質をコントロールすることに繋がり、その結果、機能性材料の性能が向上するために、非常に重要な技術の1つと考えられる。
【0005】
ところが、従来からのジヒドロフェナジン誘導体の合成法は限定されており、非対称体の合成が困難であるため、材料への応用に制限があった。例えば、非特許文献5に記載されているように特定のものに限定されており、種々の誘導体を自由に合成することはできないという問題点を有していた。特に、この方法では、光機能材料と電子機能材料に応用するために重要となるπ電子系の置換基が片側に入っている例しか記載されておらず、両側にπ電子系の置換基が入った非対称ジヒドロフェナジン誘導体に関する記載がないという決定的な欠点を有していた。このため、新規で簡便な非対称ジヒドロフェナジン誘導体、特にジアリール置換された非対称ジヒドロフェナジン誘導体の合成法が求められていた。
【0006】
また、特開2000−21574号公報には、種々の非対称ジヒドロフェナジン誘導体が記載されているが、その誘導体の物性およびその合成法に関しては、一切触れられていない。さらにまた、特許文献1にも非対称ジヒドロフェナジン誘導体が記載されているが、一方がアルキルであるため、材料としての使用に制限があった。
【0007】
【特許文献1】
特開2000−241835公報
【非特許文献1】
アクタ・クリスタログラフィカ・セクションB、B36巻、1435ページ、1980年(Acta Crystallogr. Sect. B, (1980), B36, 1435.)
【非特許文献2】
ジャーナル・オブ・ヘテロサイクリック・ケミストリ、26巻、435ページ、1989年(J. Heterocyclic Chem., 26, 435 (1989).)
【非特許文献3】
ジャーナル・オブ・ザ・ケミカル・ソサイエティ・ダルトン・トランザクション、3463ページ、1993年(J. Chem. Soc. DALTON TRANS., 3463 (1993).)
【非特許文献4】
ジャーナル・オブ・ザ・ケミカルフィジックス、74巻、5287ページ、1981年(J. Chem. Phys., 74, 5287 (1981).)
【非特許文献5】
ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティ、79巻、6178ページ、1957年(J. Am. Chem. Soc., 79, 6178 (1957).)
【0008】
【発明が解決しようとする課題】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、非対称ジヒドロフェナジン誘導体を提供すること、及びその簡便な製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、従来の問題を解決し、種々の機能性材料に繋がる新規な非対称ジヒドロフェナジン誘導体、及びその製造法を見いだすべく鋭意検討した結果、フェナジン誘導体に第1の反応剤を反応させ、続いて反応系を不活性化した後、クロスカップリングにより第2の反応剤を反応させることによって得られる非対称ジヒドロフェナジン誘導体を用いた場合、上記問題点が解決されることを見いだし、本発明を完成した。
すなわち、本発明は、下記<1>〜<4>項の各項からなる構成を有する。
【0010】
<1> 下記一般式(1)[式(1)中、R〜Rは、それぞれ独立に、水素原子、置換もしくは無置換のアリールまたはヘテロ環基、アルキル、アルケニル、アルコキシ、アルケニルオキシ、アルキニルオキシ、アリールオキシ、パーフルオロアルキル、パーフルオロアルキルオキシ、アミノ基、またはシリルを示し、Arは、置換もしくは無置換のフェニルを示し、Arは、置換もしくは無置換のビフェニルを示し、かつ、ArとArは互いに異なる基である]で表される非対称ジヒドロフェナジン誘導体。
【化3】

Figure 2004099496
【0011】
<2>  R〜Rが、それぞれ独立に、水素原子、置換もしくは無置換のアルキル、アルケニルまたはアルキニルである1項に記載の非対称ジヒドロフェナジン誘導体。
【0012】
<3> 下記一般式(2)[式(2)中、R〜Rは、それぞれ独立に水素原子、置換もしくは無置換のアリール、ヘテロ環基、アルキル、アルケニル、アルコキシ、アルケニルオキシ、アルキニルオキシ、アリールオキシ、パーフルオロアルキル、パーフルオロアルキルオキシ、アミノ基、またはシリルであり、これらの基が隣接している場合において、縮合環を形成してもよい]で表されるフェナジン誘導体に、第1の反応剤を反応させ、続いて反応系を不活性化させた後、クロスカップリングにより第2の反応剤を反応させることを特徴とする下記一般式(3)[式(3)中、R〜Rは、上述の通りであり、ArおよびArは、それぞれ独立に、置換もしくは無置換のアリール、ヘテロ環基、またはアルケニルを示し、かつ、ArとArは互いに異なる基である]で表される非対称ジヒドロフェナジン誘導体の製造方法。
【化4】
Figure 2004099496
【0013】
<4> 第1の反応剤が有機リチウム試薬であり、第2の反応剤がハロゲン化有機化合物である3項に記載の非対称ジヒドロフェナジン誘導体の製造方法。
【0014】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の一般式(1)で表される非対称ジヒドロフェナジン誘導体の製造方法で製造できる化合物の具体例としては、下記の化学式(4)〜(12)で表される化合物を挙げることができる。
【0015】
【化5】
Figure 2004099496
【0016】
【化6】
Figure 2004099496
【0017】
一般式(1)〜(3)においてR〜Rの具体例は既述の通りである。これらのうちでも水素原子、アルキル、アルケニル又はアルキニルが好ましく、水素原子が特に好ましい。本発明の非対称ジヒドロフェナジン誘導体の具体例としては、前記化合物(9)及び(11)を挙げることができる。本発明の非対称ジヒドロフェナジン誘導体は、本発明の製造法により得ることができる。すなわち、上記一般式(1)で表されるフェナジン誘導体に第1の反応剤を反応させ、続いて反応系を不活性化させた後、クロスカップリングにより第2の反応剤を反応させることによって本発明の非対称ジヒドロフェナジン誘導体が得られる。
【0018】
本発明の非対称ジヒドロフェナジン誘導体の製造法において、用いられる第1の反応剤としては、例えば、置換あるいは無置換のフェニルマグネシウムハライド、置換あるいは無置換のビフェニルマグネシウムハライド、置換あるいは無置換のナフチルマグネシウムハライド等のグリニャ−ル試薬、置換あるいは無置換のフェニルリチウム、置換あるいは無置換のビフェニルリチウム、または置換あるいは無置換のナフチルリチウム等の有機リチウム試薬があげられ、特に後者が好ましい。また、用いられる溶媒としては、これらの第1の反応剤に不活性なものなら特に制限はなく、通常、ジエチルエーテルあるいはテトラヒドロフラン(以降、THFと略記する)のようなエーテル系もしくはベンゼン、トルエン、キシレン等の芳香族系の溶媒が用いられる。
【0019】
また、本発明の非対称ジヒドロフェナジン誘導体の製造法において、用いられる第2の反応剤としては、ブロモベンゼン、ヨードビフェニル、4−フルオロブロモベンゼン、4−ジフェニルアミノ−ブロモベンゼンもしくは1−ブロモナフタレン等のハロゲン化アリール類、クロロピリジンおよびブロモピリミジン等のハロゲン化ヘテロ環類、1−ブロモ−2−フェニルエテンおよび1−ブロモ−2−(4−ジフェニルアミノ)フェニルエテン等のビニル類等が挙げられる。
【0020】
本発明の非対称ジヒドロフェナジン誘導体の製造法における第1の反応剤との反応は、不活性ガス中で行うことが好ましく、窒素もしくはアルゴンガス等が使われる。反応温度は、特に制限はないが、通常、−78℃〜室温程度が好ましい。この反応には、特に反応時間に制限はなく、反応が十分に進行している時点で反応を止めればよい。NMRあるいはクロマトグラフィー等の一般的な分析手段により反応を追跡し、最適の時点で反応の終点を決定すればよい。
【0021】
本発明の非対称ジヒドロフェナジン誘導体の製造法における第1の反応剤との反応によって精製した中間体の反応性を失活させる方法は、不活性ガス中で行うことが好ましく、窒素もしくはアルゴンガス等が使われる。反応温度は、特に制限はないが、通常、−78℃〜室温程度が好ましい。この反応には、特に反応時間に制限はなく、反応が十分進行している時点で反応を止めればよい。NMRあるいはクロマトグラフィー等の一般的な分析手段により反応を追跡し、最適の時点で反応の終点を決定すればよい。
【0022】
本発明の非対称ジヒドロフェナジン誘導体の製造法における第1の反応剤との反応によって生成した中間体の反応性を失活させる方法は、不活性ガス中で行うことが好ましく、窒素若しくはアルゴンガス等が使われる。反応温度は、特に制限はないが、通常、−78℃〜室温程度が好ましい。活性を消失させるために使われる化合物は、後の反応に影響を与えないものであれば制限はないが、例えば、水、メタノール、エタノール等が使われる。これらを適量添加すると、直ちに活性が消失する。
【0023】
本発明の非対称ジヒドロフェナジン誘導体の製造法における第2の反応剤との反応は、不活性ガス中で行うことが好ましく、窒素もしくはアルゴンガス等が使われる。反応温度は、特に制限はないが、通常、0℃〜150℃程度が好ましい。この反応には、特に反応時間に制限はなく、反応が十分に進行している時点で反応を止めればよい。NMRあるいはクロマトグラフィー等の一般的な分析手段により反応を追跡し、最適の時点で反応の終点を決定すればよい。
【0024】
非対称ジヒドロフェナジン誘導体におけるAr〜Arについては既述の通りである。Ar〜Arには置換基を導入することもできる。
置換基の導入方法は、非対称ジヒドロフェナジン環の形成前に導入してもよいし、非対称ジヒドロフェナジン環形成後に導入してもよい。
【0025】
このようにして得られたAr〜Arの置換基としては、メチル、エチル、ノルマルプロピル、イソプロピル、シクロペンチル若しくはtert−ブチル等のアルキル、ビニル、アリル、ブテニル若しくはスチリル等のアルケニル、メトキシ、エトキシ、イソプロポキシ若しくはtert−ブトキシ等のアルコキシ、ビニルオキシ若しくはアリルオキシ等のアルケニルオキシ、エチニルオキシ若しくはフェニルエチニルオキシ等のアルキニルオキシ、フェノキシ、ナフトキシ、ビフェニルオキシ若しくはピレニルオキシ等のアリールオキシ、トリフルオロメチル等のパーフルオロアルキル、トリフルオロメトキシ若しくはペンタフルオロエトキシ等のパーフルオロアルキルオキシ、ジメチルアミノ、ジエチルアミノ、フェニルナフチルアミノ若しくはジフェニルアミノ等の置換アミノ基、トリメチルシリル、ジメチル−tert−ブチルシリル、トリメトキシシリル若しくはトリフェニルシリル等のシリル、フェニル、ナフチル、アントラセニル、ビフェニル、トルイル、ピレニル、ペリレニル、アニシル、ターフェニル若しくはフェナンスレニル等のアリールまたはヒドロフリル、ヒドロピレニル、ジオキサニル、チエニル、フリル、オキサゾリル、オキサジアゾリル、チアゾリル、チアジアゾリル、アクリジニル、キノリル、キノキサロイル、フェナンスロリル、ベンゾチエニル、ベンゾチアゾリル、インドリル、シラシクロペンタジエニル、ピリジル若しくはジヒドロフェナジン−5−イル等のヘテロ環基等が挙げられる。さらに、任意の場所で縮合環を形成していてもよい。その様な縮合環基の具体例としてビフェニルの2つのベンゼン環がオルト位で架橋しているフルオレニルを挙げることができる。これらのうちでもArの置換基としては置換アミノ基、ジヒドロフェナジン−5−イル若しくはフルオレニルが好ましく、置換アミノ基、ジヒドロフェナジン−5−イルが特に好ましい。
【0026】
本発明の非対称ジヒドロフェナジン誘導体は、電子機能性材料および光機能性材料等への広範な応用が期待できる。特に、前記(11)で表わされる化合物を有機EL素子に応用した場合、高効率で長寿命な素子が作製でき、有機EL材料として、本発明の非対称ジヒドロフェナジン誘導体は優れている。
【0027】
【実施例】
以下に実施例にて本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。
【0028】
実施例1
<化学式(4)で表される化合物の合成>
アルゴン雰囲気下、フェナジン2.16g(12mmol)のトルエン溶液25.5ml中に室温で濃度1.06mol/lのフェニルリチウムのシクロヘキサン−ジエチルエーテル溶液15.3mlを滴下した。室温で3.5時間攪拌後、水を約40ml加え、反応を停止させ放置した。別の容器に、還流冷却管を取り付けた二口フラスコにPdd(dba)、P(t−Bu)、そしてNaOt−Buをアルゴン気流下で加えた。脱水トルエンを加え、室温で15分間攪拌した。4−ブロモアニソールをアルゴン気流下加え、さらに室温で15分間攪拌した。攪拌後、先に調製しておいた上澄み液、すなわち、5−フェニル−5,10−ジヒドロフェナジンのトルエン溶液10ml(約3mmol)を加え、アルゴン雰囲気下で、3.5時間加熱還流した。反応終了後、反応溶液をクロロホルムに溶かし、不溶物をひだ折ろ過した。濾液を濃縮後、アルミナカラム(ベンゼン、ヘキサン混合溶媒)を用いて精製し、収率55%で目的物を得た。
1HNMR (C) δ=7.35−6.73 (m, H), 6.77−6.73 (m, 2H), 6.36−6.26 (m, 4H), 5.90 (dd, 2H, J =7.6 Hz, 1.4 Hz), 5.83 (dd, 2H, J =7.7 Hz), 3.25 (s, 3H).
【0029】
実施例2
<化学式(5)で表される化合物の合成>
実施例1で用いた4−ブロモアニソールを4−ブロモトルエンに代えた以外は、実施例1に準ずる方法で合成した。収率は、79%であった。
1HNMR (C) δ=7.29−6.98 (m, 9H), 6.29 (m, 4H), 5.88−5.81 (m, 4H), 2.08 (s, 3H).
【0030】
実施例3
<化学式(6)で表される化合物の合成>
実施例1で用いた4−ブロモアニソールを4−ブロモシアノベンゼンに代えた以外は、実施例1に準ずる方法で合成した。収率は、44%であった。
1HNMR (C) δ=7.18−7.15 (m, 2H), 7.11 (d, 2H, J = 7.0 Hz), 7.05 (t,1H, J = 7.3 Hz), 6.96 (d, 2H, J = 8.4 Hz), 6.76 (d, 2H, J = 8.4 Hz), 6.36−6.32 (m, 4H), 5.90−5.86 (m, 2H), 5.71−5.68 (m, 2H).
【0031】
実施例4
<化学式(7)で表される化合物の合成>
実施例1で用いた4−ブロモアニソールを4−ブロモベンゼンジメチルアセタールに代えた以外は、実施例1に準ずる方法で合成した。その後、得られた化合物をアセトンに溶かし、アセトンと同量の1Mの塩酸溶液を加え、室温で1時間攪拌した。反応溶液をベンゼンで抽出、乾燥、つづいて濃縮した。得られた結晶をエタノールで再結晶することにより、目的の化合物を赤色の結晶で得た。収率は、74%であった。
1HNMR (C) δ=9.61 (s, 1H), 7.49 (d, 2H, J = 8.2 Hz), 7.16−7.01 (m,7H), 6.36−6.32 (m, 4H), 5.91−5.80 (m, 4H).
【0032】
実施例5
<化学式(8)で表される化合物の合成>
実施例1で用いた4−ブロモアニソールを2−ブロモチオフェンに代えた以外は、実施例1に準ずる方法で合成した。収率は、37%であった。
1HNMR (C) δ=7.14 (d, 2H, J = 7.7 Hz), 7.07 (d, 2H, J = 7.3 Hz), 7.03 (t, 1H, J = 7.4 Hz), 6.82 (dd, 1H, J = 5.3 Hz, 1.6 Hz), 6.68−6.64 (m, 2H), 6.36 (td, 2H, J = 7.6 Hz, 1.3 Hz), 6.31 (td, 2H, J = 7.7 Hz, 1.4 Hz), 6.21 (dd, 2H, J = 7.8 Hz, 1.3 Hz), 5.80 (dd, 2H, J = 7.8 Hz, 1.3 Hz).
【0033】
実施例6
<化学式(9)で表される化合物の合成>
実施例1で用いた4−ブロモアニソールを4,4′−ジブロモビフェニルに代え、その化学等量を半分にした以外は、実施例1に準ずる方法で合成した。
【0034】
実施例7
<化学式(10)で表される化合物の合成>
実施例1で用いた4−ブロモアニソールを4−ブロモフェニルナフチルフェニルアミンに、Pd(dba)をPd(OAc)に代えた以外は、実施例1に準ずる方法で合成した。収率は、69%であった。
1HNMR (C)δ=5.79(dd,2H), 6.03(dd,2H), 6.25−6.37(m,4H), 6.79(t,2H), 6.95−7.24(m,16H), 7.53(d,1H), 7.63(d,1H), 8.11(d,1H).
【0035】
実施例8
<化学式(11)で表される化合物の合成>
実施例7で用いた4−ブロモフェニルナフチルフェニルアミンを4−ブロモ−4′−ジフェニルアミノビフェニルに代えた以外は、実施例7に準ずる方法で合成した。収率は、70%であった。この化合物のイオン化ポテンシャルは4.9eVであり、ドナー性の高い化合物であった。
1HNMR (C)δ=5.82−5.85(m,2H), 5.92−5.95(m,2H), 6.26−6.34(m,4H), 6.87(tt,2H), 7.04−7.23(m,17H), 7.34(d,2H), 7.49(d,2H).
【0036】
実施例9
<化学式(12)で表される化合物の合成>
実施例7で用いた4−ブロモフェニルナフチルフェニルアミンを4−ブロモフェニルジフェニルアミンに代えた以外は、実施例7に準ずる方法で合成した。収率は、62%であった。
【0037】
応用例
<有機EL素子への応用>
透明電極ITOの付いたガラス基板を蒸着装置に固定し、実施例8で得られた化合物(11)を入れた蒸着ボート、N,N′−ジナフチル−N,N′−ジフェニル−4,4′−ジアミノビフェニル(以下、NPBと略記する)を入れた蒸着ボート、トリス(8−ヒドロキシキノリン)アルミニウム(以下、Alqと略記する)を入れた蒸着ボート、弗化リチウムを入れた蒸着ボートおよびアルミニウムを入れた蒸着ボートを蒸着装置に装着した。装置を1X10−3Pa以下まで減圧し、化合物(11)、NPBおよびAlqの入ったボートを順に加熱し、それぞれ、40nm、10nmおよび50nmになるようにガラス基板のITO上に蒸着した。蒸着速度は、0.1〜0.2nm/secであった。次に、弗化リチウムおよびアルミニウムの入ったボートを順に加熱し、それぞれ、0.5nmおよび100nmになるように有機層の上に蒸着し、有機EL素子を得た。この素子に電流を流すと、緑色の発光が得られた。
【0038】
【発明の効果】
本発明の非対称ジヒドロフェナジン誘導体の製造方法は、簡便に対称ジヒドロフェナジン誘導体の製造方法で得られない非対称ジヒドロフェナジン誘導体が得られ、種々のp共役置換基を独立して導入できる。また、得られた非対称ジヒドロフェナジン誘導体は、磁性材料、導電性材料、有機EL素子および電子写真等の光電子機能材料、およびそれらの原料として有用である。[0001]
[Industrial applications]
The present invention relates to a novel asymmetric dihydrophenazine derivative that can be expected to be widely applied to electronic functional materials, optical functional materials, and the like, and a novel production method thereof.
[0002]
[Prior art]
Attempts to apply π-electron-based organic compounds to optical functional materials and electronic functional materials have been made by a wide variety of research institutions. As one of typical compound groups among these, a group of π-electron-based organic compounds having a nitrogen atom in a basic structure, for example, dihydrophenazine and the like are known. Dihydrophenazine has a high electron-donating property and can be applied as a donor molecule.
[0003]
As an application example using a dihydrophenazine derivative as a donor molecule, there is an example applied to a conductive material as described in Non-Patent Document 1, Non-Patent Document 2, Non-Patent Document 3, and the like.
[0004]
There is also an example in which the present invention is applied to a magnetic material as described in Non-Patent Document 4.
On the other hand, Japanese Patent Application Laid-Open No. 2000-21574 uses a dihydrophenazine derivative for an organic EL device, but does not disclose a point that its electron donating property is strong. Further, there is no description of an effect utilizing the electron donating property. Only attention is paid to the light emission characteristics.
When an asymmetric dihydrophenazine derivative is applied to such various functional materials, introduction of various substituents according to the purpose leads to control of the properties of the compound, and as a result, the performance of the functional material It is considered to be one of the very important technologies for improving the quality.
[0005]
However, conventional methods for synthesizing a dihydrophenazine derivative are limited, and it is difficult to synthesize an asymmetric body, so that application to materials has been limited. For example, as described in Non-Patent Document 5, it is limited to a specific one, and there is a problem that various derivatives cannot be freely synthesized. In particular, this method only describes an example in which a π-electron-based substituent that is important for application to an optical functional material and an electronic functional material is included on one side, and the π-electron-based substituent is present on both sides. It has the decisive disadvantage that there is no description about the asymmetric dihydrophenazine derivative contained. Therefore, there has been a demand for a new and simple method for synthesizing an asymmetric dihydrophenazine derivative, particularly a diaryl-substituted asymmetric dihydrophenazine derivative.
[0006]
Japanese Patent Application Laid-Open No. 2000-21574 describes various asymmetric dihydrophenazine derivatives, but does not mention the physical properties of the derivatives and the synthesis method thereof. Further, Patent Literature 1 also describes an asymmetric dihydrophenazine derivative. However, since one of them is alkyl, there is a limitation on its use as a material.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-241835 [Non-Patent Document 1]
Acta Crystallography. Section B, Volume B36, p. 1435, 1980 (Acta Crystallogr. Sect. B, (1980), B36, 1435.)
[Non-patent document 2]
Journal of Heterocyclic Chemistry, 26, 435, 1989 (J. Heterocyclic Chem., 26, 435 (1989)).
[Non-Patent Document 3]
J. Chem. Soc. DALTON TRANS., 3463 (1993). Journal of the Chemical Society Dalton Transactions, p. 3463.
[Non-patent document 4]
Journal of the Chemical Physics, 74, 5287, 1981 (J. Chem. Phys., 74, 5287 (1981)).
[Non-Patent Document 5]
Journal of the American Chemical Society, 79, 6178, 1957 (J. Am. Chem. Soc., 79, 6178 (1957)).
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of such problems of the related art, and has as its object to provide an asymmetric dihydrophenazine derivative and to provide a simple production method thereof.
[0009]
[Means for Solving the Problems]
Means for Solving the Problems The present inventors have solved the problems of the prior art, and have conducted intensive studies to find a novel asymmetric dihydrophenazine derivative that leads to various functional materials, and a method for producing the same. As a result, the phenazine derivative was reacted with a first reactant. It has been found that the above problems can be solved when an asymmetric dihydrophenazine derivative obtained by reacting a second reactant by cross-coupling after inactivating the reaction system is used, and the present invention Was completed.
That is, the present invention has a configuration including the following items <1> to <4>.
[0010]
<1> In the following general formula (1), wherein R 1 to R 8 are each independently a hydrogen atom, a substituted or unsubstituted aryl or heterocyclic group, alkyl, alkenyl, alkoxy, alkenyloxy, Alkynyloxy, aryloxy, perfluoroalkyl, perfluoroalkyloxy, an amino group, or silyl, Ar 1 represents a substituted or unsubstituted phenyl, Ar 2 represents a substituted or unsubstituted biphenyl, and , Ar 1 and Ar 2 are different groups from each other].
Embedded image
Figure 2004099496
[0011]
<2> The asymmetric dihydrophenazine derivative according to item 1, wherein R 1 to R 8 are each independently a hydrogen atom, substituted or unsubstituted alkyl, alkenyl, or alkynyl.
[0012]
<3> The following general formula (2) [wherein R 1 to R 8 are each independently a hydrogen atom, substituted or unsubstituted aryl, heterocyclic group, alkyl, alkenyl, alkoxy, alkenyloxy, alkynyl Oxy, aryloxy, perfluoroalkyl, perfluoroalkyloxy, amino group, or silyl, and when these groups are adjacent to each other, they may form a condensed ring]. After reacting the first reactant, subsequently inactivating the reaction system, reacting the second reactant by cross-coupling, the following general formula (3) [wherein the formula (3) , R 1 to R 8 are as described above, Ar 3 and Ar 4 each independently represent a substituted or unsubstituted aryl, a heterocyclic group or an alkenyl, One, Ar 3 and Ar 4 is a manufacturing method of the asymmetric dihydrophenazine derivative represented by mutually are different groups.
Embedded image
Figure 2004099496
[0013]
<4> The method for producing an asymmetric dihydrophenazine derivative according to item 3, wherein the first reactant is an organolithium reagent and the second reactant is a halogenated organic compound.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
Specific examples of the compound that can be produced by the method for producing an asymmetric dihydrophenazine derivative represented by the general formula (1) of the present invention include compounds represented by the following chemical formulas (4) to (12).
[0015]
Embedded image
Figure 2004099496
[0016]
Embedded image
Figure 2004099496
[0017]
Specific examples of R 1 to R 8 in the general formulas (1) to (3) are as described above. Among these, a hydrogen atom, alkyl, alkenyl or alkynyl is preferred, and a hydrogen atom is particularly preferred. Specific examples of the asymmetric dihydrophenazine derivative of the present invention include the compounds (9) and (11). The asymmetric dihydrophenazine derivative of the present invention can be obtained by the production method of the present invention. That is, by reacting the phenazine derivative represented by the general formula (1) with the first reactant, subsequently inactivating the reaction system, and then reacting the second reactant by cross-coupling. An asymmetric dihydrophenazine derivative of the present invention is obtained.
[0018]
In the method for producing an asymmetric dihydrophenazine derivative according to the present invention, examples of the first reactant used include substituted or unsubstituted phenylmagnesium halide, substituted or unsubstituted biphenylmagnesium halide, and substituted or unsubstituted naphthylmagnesium halide. And organolithium reagents such as substituted or unsubstituted phenyllithium, substituted or unsubstituted biphenyllithium, and substituted or unsubstituted naphthyllithium. The latter is particularly preferred. The solvent used is not particularly limited as long as it is inert to these first reactants, and is usually an ether such as diethyl ether or tetrahydrofuran (hereinafter abbreviated as THF), benzene, toluene, or the like. An aromatic solvent such as xylene is used.
[0019]
In the method for producing an asymmetric dihydrophenazine derivative of the present invention, the second reactant used may be bromobenzene, iodobiphenyl, 4-fluorobromobenzene, 4-diphenylamino-bromobenzene or 1-bromonaphthalene. Examples include aryl halides, halogenated heterocycles such as chloropyridine and bromopyrimidine, and vinyls such as 1-bromo-2-phenylethene and 1-bromo-2- (4-diphenylamino) phenylethene.
[0020]
The reaction with the first reactant in the method for producing an asymmetric dihydrophenazine derivative of the present invention is preferably performed in an inert gas, and nitrogen or argon gas is used. The reaction temperature is not particularly limited, but is usually preferably about -78 ° C to about room temperature. There is no particular limitation on the reaction time for this reaction, and the reaction may be stopped at the time when the reaction is sufficiently proceeding. The reaction may be tracked by a general analytical means such as NMR or chromatography, and the end point of the reaction may be determined at an optimum time.
[0021]
The method for deactivating the reactivity of the purified intermediate by reacting with the first reactant in the method for producing an asymmetric dihydrophenazine derivative of the present invention is preferably carried out in an inert gas. used. The reaction temperature is not particularly limited, but is usually preferably about -78 ° C to about room temperature. There is no particular limitation on the reaction time for this reaction, and the reaction may be stopped when the reaction has sufficiently proceeded. The reaction may be tracked by a general analytical means such as NMR or chromatography, and the end point of the reaction may be determined at an optimum time.
[0022]
The method for inactivating the reactivity of the intermediate formed by the reaction with the first reactant in the method for producing an asymmetric dihydrophenazine derivative of the present invention is preferably carried out in an inert gas. used. The reaction temperature is not particularly limited, but is usually preferably about -78 ° C to about room temperature. The compound used to eliminate the activity is not limited as long as it does not affect the subsequent reaction, and for example, water, methanol, ethanol, and the like are used. When an appropriate amount of these is added, the activity immediately disappears.
[0023]
The reaction with the second reactant in the method for producing an asymmetric dihydrophenazine derivative of the present invention is preferably performed in an inert gas, and nitrogen or argon gas is used. The reaction temperature is not particularly limited, but is usually preferably about 0 ° C to 150 ° C. There is no particular limitation on the reaction time for this reaction, and the reaction may be stopped at the time when the reaction is sufficiently proceeding. The reaction may be tracked by a general analytical means such as NMR or chromatography, and the end point of the reaction may be determined at an optimum time.
[0024]
Ar 1 to Ar 4 in the asymmetric dihydrophenazine derivative are as described above. A substituent may be introduced into Ar 1 to Ar 4 .
The substituent may be introduced before the formation of the asymmetric dihydrophenazine ring or after the formation of the asymmetric dihydrophenazine ring.
[0025]
The substituents of Ar 1 to Ar 4 thus obtained include alkyl such as methyl, ethyl, normal propyl, isopropyl, cyclopentyl and tert-butyl, alkenyl such as vinyl, allyl, butenyl and styryl, methoxy and ethoxy. Alkoxy such as isopropoxy or tert-butoxy, alkenyloxy such as vinyloxy or allyloxy, alkynyloxy such as ethynyloxy or phenylethynyloxy, aryloxy such as phenoxy, naphthoxy, biphenyloxy or pyrenyloxy, and perfluoro such as trifluoromethyl. Alkyl, perfluoroalkyloxy such as trifluoromethoxy or pentafluoroethoxy, dimethylamino, diethylamino, phenylnaphthylyl Substituted amino group such as phenyl or diphenylamino, silyl such as trimethylsilyl, dimethyl-tert-butylsilyl, trimethoxysilyl or triphenylsilyl, phenyl, naphthyl, anthracenyl, biphenyl, toluyl, pyrenyl, perylenyl, anisyl, terphenyl or phenanthrenyl, etc. Aryl or hydrofuryl, hydropyrenyl, dioxanyl, thienyl, furyl, oxazolyl, oxadiazolyl, thiazolyl, thiadiazolyl, acridinyl, quinolyl, quinoxaloyl, phenanthrolyl, benzothienyl, benzothiazolyl, indolyl, silacyclopentadienyl, pyridyl or dihydrophenazin-5-yl And the like. Further, a condensed ring may be formed at an arbitrary position. A specific example of such a condensed ring group is fluorenyl in which two benzene rings of biphenyl are bridged at the ortho position. Among them, the substituent of Ar 2 is preferably a substituted amino group, dihydrophenazin-5-yl or fluorenyl, and particularly preferably a substituted amino group or dihydrophenazin-5-yl.
[0026]
The asymmetric dihydrophenazine derivative of the present invention can be expected to be widely applied to electronic functional materials, optical functional materials, and the like. In particular, when the compound represented by the above (11) is applied to an organic EL device, a device with high efficiency and long life can be manufactured, and the asymmetric dihydrophenazine derivative of the present invention is excellent as an organic EL material.
[0027]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to the following Examples.
[0028]
Example 1
<Synthesis of Compound Represented by Chemical Formula (4)>
Under an argon atmosphere, 15.3 ml of a cyclohexane-diethyl ether solution of phenyl lithium having a concentration of 1.06 mol / l was added dropwise to 25.5 ml of a toluene solution of 2.16 g (12 mmol) of phenazine at room temperature. After stirring at room temperature for 3.5 hours, about 40 ml of water was added to stop the reaction, and the mixture was allowed to stand. In a separate vessel, Pdd 2 (dba) 3 , P (t-Bu) 3 , and NaOt-Bu were added to a two-necked flask equipped with a reflux condenser under a stream of argon. Dehydrated toluene was added, and the mixture was stirred at room temperature for 15 minutes. 4-Bromoanisole was added under a stream of argon, and the mixture was further stirred at room temperature for 15 minutes. After stirring, 10 ml (approximately 3 mmol) of a previously prepared supernatant solution, that is, a toluene solution of 5-phenyl-5,10-dihydrophenazine, was added, and the mixture was heated under reflux for 3.5 hours under an argon atmosphere. After completion of the reaction, the reaction solution was dissolved in chloroform, and insolubles were fold-filtered. After concentrating the filtrate, purification was carried out using an alumina column (a mixed solvent of benzene and hexane) to obtain the desired product in a yield of 55%.
1H NMR (C 6 D 6 ) δ = 7.35-6.73 (m, H), 6.77-6.73 (m, 2H), 6.36-6.26 (m, 4H), 5. 90 (dd, 2H, J = 7.6 Hz, 1.4 Hz), 5.83 (dd, 2H, J = 7.7 Hz), 3.25 (s, 3H).
[0029]
Example 2
<Synthesis of Compound Represented by Chemical Formula (5)>
The synthesis was carried out in the same manner as in Example 1 except that 4-bromoanisole used in Example 1 was replaced with 4-bromotoluene. The yield was 79%.
1H NMR (C 6 D 6 ) δ = 7.29-6.98 (m, 9H), 6.29 (m, 4H), 5.88-5.81 (m, 4H), 2.08 (s, 3H).
[0030]
Example 3
<Synthesis of Compound Represented by Chemical Formula (6)>
Synthesis was carried out in the same manner as in Example 1, except that 4-bromoanisole used in Example 1 was replaced with 4-bromocyanobenzene. The yield was 44%.
1H NMR (C 6 D 6 ) δ = 7.18-7.15 (m, 2H), 7.11 (d, 2H, J = 7.0 Hz), 7.05 (t, 1H, J = 7.0). 3 Hz), 6.96 (d, 2H, J = 8.4 Hz), 6.76 (d, 2H, J = 8.4 Hz), 6.36-6.32 (m, 4H), 5 .90-5.86 (m, 2H), 5.71-5.68 (m, 2H).
[0031]
Example 4
<Synthesis of Compound Represented by Chemical Formula (7)>
The synthesis was carried out in the same manner as in Example 1 except that 4-bromoanisole used in Example 1 was replaced with 4-bromobenzenedimethylacetal. Thereafter, the obtained compound was dissolved in acetone, a 1M hydrochloric acid solution in the same amount as acetone was added, and the mixture was stirred at room temperature for 1 hour. The reaction solution was extracted with benzene, dried, and concentrated. By recrystallizing the obtained crystals with ethanol, the target compound was obtained as red crystals. The yield was 74%.
1H NMR (C 6 D 6 ) δ = 9.61 (s, 1H), 7.49 (d, 2H, J = 8.2 Hz), 7.16-7.01 (m, 7H), 6.36 -6.32 (m, 4H), 5.91-5.80 (m, 4H).
[0032]
Example 5
<Synthesis of Compound Represented by Chemical Formula (8)>
The synthesis was carried out in the same manner as in Example 1, except that 4-bromoanisole used in Example 1 was replaced with 2-bromothiophene. The yield was 37%.
1H NMR (C 6 D 6 ) δ = 7.14 (d, 2H, J = 7.7 Hz), 7.07 (d, 2H, J = 7.3 Hz), 7.03 (t, 1H, J = 7.4 Hz), 6.82 (dd, 1H, J = 5.3 Hz, 1.6 Hz), 6.68-6.64 (m, 2H), 6.36 (td, 2H, J = 7.6 Hz, 1.3 Hz), 6.31 (td, 2H, J = 7.7 Hz, 1.4 Hz), 6.21 (dd, 2H, J = 7.8 Hz, 1. 5.80 (dd, 2H, J = 7.8 Hz, 1.3 Hz).
[0033]
Example 6
<Synthesis of Compound Represented by Chemical Formula (9)>
The synthesis was carried out in the same manner as in Example 1 except that 4-bromoanisole used in Example 1 was replaced with 4,4'-dibromobiphenyl and the chemical equivalent was halved.
[0034]
Example 7
<Synthesis of Compound Represented by Chemical Formula (10)>
The synthesis was carried out in the same manner as in Example 1 except that 4-bromoanisole used in Example 1 was changed to 4-bromophenylnaphthylphenylamine and Pd 2 (dba) 3 was changed to Pd (OAc) 2 . The yield was 69%.
1H NMR (C 6 D 6 ) δ = 5.79 (dd, 2H), 6.03 (dd, 2H), 6.25-6.37 (m, 4H), 6.79 (t, 2H), 6 .95-7.24 (m, 16H), 7.53 (d, 1H), 7.63 (d, 1H), 8.11 (d, 1H).
[0035]
Example 8
<Synthesis of Compound Represented by Chemical Formula (11)>
The synthesis was carried out in the same manner as in Example 7 except that 4-bromophenylnaphthylphenylamine used in Example 7 was replaced with 4-bromo-4'-diphenylaminobiphenyl. The yield was 70%. This compound had an ionization potential of 4.9 eV and was a compound having a high donor property.
1H NMR (C 6 D 6 ) δ = 5.82-5.85 (m, 2H), 5.92-5.95 (m, 2H), 6.26-6.34 (m, 4H), 6. 87 (tt, 2H), 7.04-7.23 (m, 17H), 7.34 (d, 2H), 7.49 (d, 2H).
[0036]
Example 9
<Synthesis of Compound Represented by Chemical Formula (12)>
The compound was synthesized in the same manner as in Example 7 except that 4-bromophenylnaphthylphenylamine used in Example 7 was replaced with 4-bromophenyldiphenylamine. The yield was 62%.
[0037]
Application example <Application to organic EL device>
A glass substrate provided with a transparent electrode ITO was fixed to a vapor deposition apparatus, and a vapor deposition boat containing the compound (11) obtained in Example 8, N, N'-dinaphthyl-N, N'-diphenyl-4,4 ' A deposition boat containing diaminobiphenyl (hereinafter abbreviated as NPB), a deposition boat containing tris (8-hydroxyquinoline) aluminum (hereinafter abbreviated as Alq), a deposition boat containing lithium fluoride and aluminum. The deposited evaporation boat was mounted on an evaporation apparatus. The pressure of the apparatus was reduced to 1 × 10 −3 Pa or less, and the boats containing the compound (11), NPB and Alq were sequentially heated and vapor-deposited on the glass substrate ITO to 40 nm, 10 nm and 50 nm, respectively. The deposition rate was 0.1 to 0.2 nm / sec. Next, the boats containing lithium fluoride and aluminum were sequentially heated and vapor-deposited on the organic layer so as to have a thickness of 0.5 nm and 100 nm, respectively, to obtain an organic EL device. When a current was passed through the device, green light emission was obtained.
[0038]
【The invention's effect】
According to the method for producing an asymmetric dihydrophenazine derivative of the present invention, an asymmetric dihydrophenazine derivative which cannot be easily obtained by the method for producing a symmetric dihydrophenazine derivative can be obtained, and various p-conjugated substituents can be independently introduced. Further, the obtained asymmetric dihydrophenazine derivative is useful as a magnetic material, a conductive material, an optoelectronic functional material such as an organic EL device and electrophotography, and a raw material thereof.

Claims (4)

下記一般式(1)[式(1)中、R〜Rは、それぞれ独立に、水素原子、置換もしくは無置換のアリール、ヘテロ環基、アルキル、アルケニル、アルコキシ、アルケニルオキシ、アルキニルオキシ、アリールオキシ、パーフルオロアルキル、パーフルオロアルキルオキシ、アミノ基、シリルであり;Arは、置換もしくは無置換のフェニルを示し;Arは、置換もしくは無置換のビフェニルを示し;かつ、ArとArは互いに異なる基である]で表される非対称ジヒドロフェナジン誘導体。
Figure 2004099496
In the following general formula (1), wherein R 1 to R 8 are each independently a hydrogen atom, substituted or unsubstituted aryl, heterocyclic group, alkyl, alkenyl, alkoxy, alkenyloxy, alkynyloxy, Ar 1 represents a substituted or unsubstituted phenyl; Ar 2 represents a substituted or unsubstituted biphenyl; and Ar 1 represents an aryloxy, perfluoroalkyl, perfluoroalkyloxy, amino group, or silyl. Ar 2 is a different group from each other].
Figure 2004099496
〜Rが、それぞれ独立に、水素原子、置換もしくは無置換のアルキル、アルケニルまたはアルキニルである請求項1に記載の非対称ジヒドロフェナジン誘導体。The asymmetric dihydrophenazine derivative according to claim 1, wherein R 1 to R 8 are each independently a hydrogen atom, substituted or unsubstituted alkyl, alkenyl, or alkynyl. 下記一般式(2)[式(2)中、R〜Rは、それぞれ独立に水素原子、置換もしくは無置換のアリール、ヘテロ環基、アルキル、アルケニル、アルコキシ、アルケニルオキシ、アルキニルオキシ、アリールオキシ、パーフルオロアルキル、パーフルオロアルキルオキシ、アミノ基、またはシリルであり、これらが隣接している場合において、縮合環を形成してもよい]で表されるフェナジン誘導体に、第1の反応剤を反応させ、続いて反応系を不活性化させた後、クロスカップリングにより第2の反応剤を反応させることを特徴とする一般式(3)[式(3)中、R〜Rは、上述した通りであり、ArおよびArは、それぞれ独立に、置換もしくは無置換のアリール、ヘテロ環基、またはアルケニルを示し、かつ、ArとArは互いに異なる基である]で表される非対称ジヒドロフェナジン誘導体の製造方法。
Figure 2004099496
In the following general formula (2), wherein R 1 to R 8 are each independently a hydrogen atom, substituted or unsubstituted aryl, heterocyclic group, alkyl, alkenyl, alkoxy, alkenyloxy, alkynyloxy, aryl Oxy, perfluoroalkyl, perfluoroalkyloxy, amino group, or silyl, which may form a condensed ring when they are adjacent to each other]. , Followed by inactivating the reaction system, and then reacting the second reactant by cross-coupling, wherein R 1 to R 8 in the formula (3) are as described above, Ar 3 and Ar 4 each independently represent a substituted or unsubstituted aryl, a heterocyclic group or an alkenyl, and, Ar 3 Ar 4 is a manufacturing method of the asymmetric dihydrophenazine derivative represented by mutually are different groups.
Figure 2004099496
第1の反応剤が有機リチウム試薬であり、第2の反応剤がハロゲン化有機化合物である請求項3に記載の非対称ジヒドロフェナジン誘導体の製造方法。The method for producing an asymmetric dihydrophenazine derivative according to claim 3, wherein the first reactant is an organolithium reagent, and the second reactant is a halogenated organic compound.
JP2002262360A 2002-09-09 2002-09-09 Asymmetric dihydrophenazine derivative and method for producing the same Expired - Fee Related JP4362683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262360A JP4362683B2 (en) 2002-09-09 2002-09-09 Asymmetric dihydrophenazine derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262360A JP4362683B2 (en) 2002-09-09 2002-09-09 Asymmetric dihydrophenazine derivative and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004099496A true JP2004099496A (en) 2004-04-02
JP4362683B2 JP4362683B2 (en) 2009-11-11

Family

ID=32262423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262360A Expired - Fee Related JP4362683B2 (en) 2002-09-09 2002-09-09 Asymmetric dihydrophenazine derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP4362683B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279115A (en) * 2015-06-10 2017-01-04 上海和辉光电有限公司 A kind of compound for luminescent material
CN110407817A (en) * 2019-07-04 2019-11-05 武汉华星光电半导体显示技术有限公司 Hole mobile material and preparation method thereof, electroluminescent device
CN111072578A (en) * 2019-11-25 2020-04-28 武汉华星光电半导体显示技术有限公司 P-type dopant and organic light emitting diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106279115A (en) * 2015-06-10 2017-01-04 上海和辉光电有限公司 A kind of compound for luminescent material
CN110407817A (en) * 2019-07-04 2019-11-05 武汉华星光电半导体显示技术有限公司 Hole mobile material and preparation method thereof, electroluminescent device
CN111072578A (en) * 2019-11-25 2020-04-28 武汉华星光电半导体显示技术有限公司 P-type dopant and organic light emitting diode

Also Published As

Publication number Publication date
JP4362683B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
Cammidge et al. Synthesis of chiral binaphthalenes using the asymmetric Suzuki reaction
US8134019B2 (en) Process for producing fullerene derivative
Roemer et al. Syntheses and purification of the versatile synthons iodoferrocene and 1, 1′-diiodoferrocene
KR20140000693A (en) Novel spirobifluorene compounds
TWI582098B (en) Organoboron compound and method for manufacturing the same
JP2013505898A (en) Process for the preparation of aromatic boronic ester compounds
JP4320434B2 (en) Organoboron π-electron compound and material containing the same
JP4362683B2 (en) Asymmetric dihydrophenazine derivative and method for producing the same
JP2012176928A (en) Pyrene derivative, production method of pyrene derivative, complex, catalyst, electronic material, light-emitting material and pigment
JP4139904B2 (en) 9-substituted fluorene derivative and method for producing the same
JP2008143857A (en) Method for producing benzofluorene derivative and its intermediate
JP5536458B2 (en) Process for producing 6-halogeno-3-arylpyridine derivatives
JP3931409B2 (en) Silacyclopentadiene derivative
JP3777428B2 (en) Triphenylene compound having silylethynyl group and process for producing the same
JP2004256468A (en) New 9-oxo-9-phosphafluorene derivative, method for producing the same and its application
JP4935130B2 (en) Dibenzosilole derivative, precursor compound thereof and production method thereof
JP7023177B2 (en) Method for Producing 9- (2-Substituted Phenyl) -9H-Carbazole
JP4346198B2 (en) Method for producing fulvene derivative
JP4135205B2 (en) Multimers of silacyclopentadiene derivatives
JP4660767B2 (en) Organic luminescent material
JP2004137165A (en) Method for producing nitrogen-containing heterocyclic compound
JP4210752B2 (en) Dendron compound and method for producing the same
JP4210754B2 (en) Metal complex dendrimer and its use
JP4210751B2 (en) Dendron compound and method for producing the same
JP3604966B2 (en) Method for producing ditin telluride and ziplum batellide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4362683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees