JP2004099370A - Fire prevention glass - Google Patents

Fire prevention glass Download PDF

Info

Publication number
JP2004099370A
JP2004099370A JP2002263937A JP2002263937A JP2004099370A JP 2004099370 A JP2004099370 A JP 2004099370A JP 2002263937 A JP2002263937 A JP 2002263937A JP 2002263937 A JP2002263937 A JP 2002263937A JP 2004099370 A JP2004099370 A JP 2004099370A
Authority
JP
Japan
Prior art keywords
glass
fire
fire prevention
ion exchange
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002263937A
Other languages
Japanese (ja)
Inventor
Yoshio Hashibe
橋部 吉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2002263937A priority Critical patent/JP2004099370A/en
Publication of JP2004099370A publication Critical patent/JP2004099370A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties

Abstract

<P>PROBLEM TO BE SOLVED: To provide fire prevention glass which causes no troubles in refuge activities and fire fighting activities, has high fire prevention performance and has no waviness or warpage in case of a fire. <P>SOLUTION: The fire prevention glass consists of glass having a composition comprising, by mass, 50 to 75% SiO<SB>2</SB>, 10 to 35% Al<SB>2</SB>O<SB>3</SB>and 0.5 to 15% Li<SB>2</SB>O, and subjected to ion exchange treatment. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、防火設備及び特定防火設備として使用される防火ガラスに関するものである。
【0002】
【従来の技術】
従来、防火ガラスとしては、網入りガラス、風冷強化ソーダ石灰ガラス、風冷強化硼珪酸ガラスが用いられてきた。
【0003】
網入りガラスは、金属網をガラス板全面に亘って肉厚の略中間に埋設することによって、機械的強度や熱的強度を向上させた防火ガラスである。一方、風冷強化ソーダ石灰ガラスや風冷強化硼珪酸ガラスは、ガラス板をガラスの軟化点以上の温度で加熱した後、冷却空気を高圧で吹き付けることにより、ガラス板の表面層に圧縮応力を付与させて強化する、いわゆる風冷強化処理が施され、機械的強度や熱的強度を向上させた防火ガラスである。
【0004】
また、上記以外にも、SiO−Al−B系ガラスをイオン交換処理して強化した防火ガラスが開示されている(例えば、特許文献1及び特許文献2参照。)。
【0005】
【特許文献1】
特開平10−182182号公報
【特許文献2】
特許第2559572号公報
【0006】
【発明が解決しようとする課題】
しかしながら、網入りガラスは、埋設された金属網があるため、意匠性が悪いだけでなく、火災時においても、避難活動や消火活動に支障をきたす。また、熱膨張係数が略90×10−7/℃と大きいので、耐熱性に劣り、火災時には破損してしまうという問題を有していた。
【0007】
また、風冷強化硼珪酸ガラスや風冷強化ソーダ石灰ガラスは、機械的強度を向上させるためには、風冷強化処理温度を、ガラスの軟化点と略同等かもしくはそれ以上の温度にして風冷強化処理を行わなければならず、その結果、ガラス表面にうねりが生じたり、ガラスに反りが発生したりして、像の歪みが生じやすい。
【0008】
また、特許文献1(特開平10−182182号公報)や特許文献2(特許第2559572号公報)に記載のイオン交換強化SiO−Al−B系ガラスは、Al含有量が5%以下と少なく、また、アルカリ酸化物として、LiOを含有せず、NaOやKOしか含まないため、イオン交換処理によって機械的強度が向上する程度が低く、防火性能が低い。
【0009】
本発明の目的は、火災時において、非難活動や消化活動に支障をきたさず、防火性能が高く、うねりやそりがない防火ガラスを提供することである。
【0010】
【課題を解決するための手段】
本発明の防火ガラスは、質量%で、SiO 50〜75%、Al 10〜35%、LiO 0.5〜15%の組成を有し、イオン交換処理されたガラスからなることを特徴とする。
【0011】
【発明の実施の形態】
本発明の防火ガラスは、Alを多量に含有し、LiOを含有するアルミノシリケートガラスからなるため、具体的には、質量%で、SiO 50〜75%、Al 10〜35%、LiO 0.5〜15%の組成を有し、イオン交換処理されたガラスからなるため、機械的強度や耐熱衝撃強度が高く、防火性能に優れる。
【0012】
上記のようにガラス組成を限定した理由は、以下の通りである。
【0013】
SiOは、ガラスの骨格を形成する成分であり、その含有量は50〜75%、好ましくは55〜75%、より好ましくは60〜72%である。SiOが50%よりも少ないと、歪点が低下するとともに熱膨張係数が大きくなって、耐熱衝撃強度が低くなり、75%より多いと、ガラスの溶融が困難になる。
【0014】
AlもSiOと同様に、ガラスの骨格を形成する成分であり、その含有量は10〜35%、好ましくは10〜30%、より好ましくは12〜28%である。Alが10%よりも少ないと、歪点が低下して耐熱衝撃強度が低くなるとともに、イオン交換処理に時間がかかり、イオン交換処理を施しても機械的強度が向上する程度が低い。35%よりも多いと、ガラスが失透しやすく、またガラスの粘度が高くなり、ガラスの溶融が困難になる。
【0015】
LiOは、ガラスの粘度を調整するとともに、イオン交換成分であり、合量で0.5〜15%、好ましくは1〜10%、より好ましくは1〜7%である。LiOが0.5%よりも少ないと、イオン交換しても充分な機械的強度を得ることができず、15%よりも多いと、ガラスが失透しやすくなる。
【0016】
また、本発明の防火ガラスのガラス組成としては、上記成分以外にも、ガラスの粘性、熱膨張係数、失透性、溶融性等を調整する目的で、NaO、KO、MgO、CaO、ZnO、BaO、B、TiO、ZrO、P等を各々10%まで、Sb、SnO、As及びClからなる群より選ばれた一種又はニ種以上の清澄剤を合量で2%まで含有させることができる。尚、Asは、環境上、有害であるため使用しない方がよい。
【0017】
また、本発明の防火ガラスは、歪点が600℃以上、熱膨張係数が20〜60×10−7/℃、可視光域の平均透過率が90%以上であるガラスからなると、耐熱衝撃性や耐熱性に優れ、イオン交換処理時の急熱急冷にも耐えることができるため好ましい。
【0018】
上記した特性を有するガラスとしては、SiO 60〜72%、Al 12〜28%、LiO 1〜7%、NaO 0〜5%、KO 0〜5%、MgO 0〜5%、ZnO 0〜5%、BaO 0〜8%、TiO 0〜8%、ZrO 0〜7%、P 0〜7%、Sb 0〜2%、SnO 0〜2%の組成を有するガラスであると好ましい。
【0019】
また、本発明の防火ガラスは、フロート法、ダウンドロー法、ロールアウト法等の周知の成形法によって作製されたガラス板を使用できる。
【0020】
次に、本発明のイオン交換処理方法について以下に説明する。
【0021】
まず、上記した組成を有するガラス板を、ガラスの軟化点以下の温度、より具体的にはガラスの徐冷点よりも少し低い温度に保った硝酸カリウム(KNO)、硝酸ナトリウム(NaNO)等の溶融塩に、4〜48時間浸漬させる。この処理によって、ガラス表面において、ガラス中のイオン半径の小さいLiイオンと、溶融塩中のイオン半径の大きいNaイオンもしくはKイオンとのアルカリイオンの交換反応が進行し、ガラス表面の容積増加が起こり、ガラス表層中に圧縮応力が発生し、その結果、ガラス板の機械的強度が向上する。
【0022】
このようにイオン交換処理によって化学強化されたガラスは、風冷強化処理に代表される物理強化されたガラスよりも、2倍以上の機械的強度を得ることができる。
【0023】
また、イオン交換処理方法は、形状や肉厚の制約を受けず、徐冷点よりも低い温度で処理を行うため、ガラスの寸法変化や変形を伴わず、また表面の硬度が高くなるため、キズがつきにくく、さらには、イオン交換処理を行った後でも切断加工、端面加工等の加工が可能であるという特徴を有するものである。
【0024】
【実施例】
以下、本発明の防火ガラスを実施例に基づいて詳細に説明する。
【0025】
表1は、実施例と比較例1〜3を示す。
【0026】
【表1】

Figure 2004099370
【0027】
実施例及び比較例3の防火ガラスは以下のようにして作製した。
【0028】
まず、表中の組成になるように調合したバッチ原料を溶融窯に投入し、1600〜1650℃で溶融した後、溶融ガラス生地を、ロール成形し、次いで徐冷して、900×1800×5mmのガラス板を作製した。尚、比較例1は、市販の肉厚が5mmのソーダ石灰ガラス板(窓板)を、比較例2は、市販の肉厚が5mmの硼珪酸ガラス板を用いた。
【0029】
次にこれらのガラス板から熱膨張係数、軟化点、歪点測定用試料を切り出した。
【0030】
さらに、25×60×5mmの曲げ強度測定用試料と、900×600×5mmの防火試験用試料を切り出し、曲げ強度測定用試料と防火試験用試料については、イオン交換処理又は風冷強化処理を施した。
【0031】
すなわち、実施例及び比較例3は、試料を500℃に保持したKNO溶融塩中に24時間浸漬することによってイオン交換処理を行った。また、比較例1及び2は、試料を軟化点と同じ温度に設定した電気炉中に入れ、1時間保持した後取り出し、冷却空気を吹き付けることによって風冷強化処理を行った。
【0032】
表1から明らかなように、本発明の実施例は、イオン交換処理により、曲げ強度が非常に高くなったため、防火試験で破損せず、また、イオン交換処理後の外観品位も、うねりや反りがなく問題がなかった。さらに、熱膨張係数が42×10−7/℃低く、歪点が640℃と高いため、耐熱衝撃性にも優れていると判断される。
【0033】
一方、比較例1及び2は、風冷強化処理によって、曲げ強度が高くなり、防火試験で破損しなかったものの、風冷強化処理後の外観品位が悪く、像がゆがんで見えた。比較例3は、イオン交換処理後の外観品位は問題なかったが、イオン交換処理を行ったものの、曲げ強度が190MPaと低めで、防火試験において、破損した。
【0034】
尚、表中の30〜380℃の温度範囲における熱膨張係数は、Dilato計を用いて測定した。軟化点及び歪点は、Fiber Elongation法によって測定した。
【0035】
また、イオン交換や風冷強化処理の前後で、機械的強度を曲げ強度によって評価し、曲げ強度は3点荷重法を用いて測定した。
【0036】
外観品位は、イオン交換処理や風冷強化処理を行った後のガラス板の外観を目視によって観察し、全く像に歪みが見られない場合を「○」、像にゆがみがみられる場合を「×」とした。
【0037】
防火性能は、試料の片面に加熱炉をセットし、ISO834の標準加熱曲線に準じ、20分後に781℃、60分後に945℃となるように加熱し、加熱後60分経過しても、試料が破損せず、防火試験に合格したものを「○」、試料が破損し、防火試験に合格しなかったものを「×」として評価した。
【0038】
【発明の効果】
以上説明したように、本発明の防火ガラスは、機械的強度や耐熱衝撃強度が高く、防火性能に優れ、機械的強度を向上させる処理を行っても外観品位が維持されるため、防火設備及び特定防火設備に用いる防火ガラスとして好適である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to fire prevention equipment and fire prevention glass used as specific fire prevention equipment.
[0002]
[Prior art]
Conventionally, as fire-resistant glass, netted glass, air-cooled tempered soda-lime glass, and air-cooled tempered borosilicate glass have been used.
[0003]
Netted glass is fire-resistant glass in which mechanical strength and thermal strength are improved by embedding a metal net almost in the middle of the thickness over the entire surface of a glass plate. On the other hand, air-cooled tempered soda-lime glass and air-cooled tempered borosilicate glass apply a compressive stress to the surface layer of the glass plate by heating the glass plate at a temperature higher than the softening point of the glass and then blowing high-pressure cooling air. This is a fireproof glass that has been subjected to a so-called air-cooling tempering treatment to enhance the mechanical strength and the thermal strength.
[0004]
In addition to the fire protection glass with enhanced SiO 2 -Al 2 O 3 -B 2 O 3 based glass by ion exchange treatment is disclosed (for example, see Patent Documents 1 and 2.).
[0005]
[Patent Document 1]
JP-A-10-182182 [Patent Document 2]
Japanese Patent No. 2559572
[Problems to be solved by the invention]
However, the netted glass has a buried metal net, so not only has poor design, but also hinders evacuation and extinguishing activities in the event of a fire. Further, since the coefficient of thermal expansion is as large as about 90 × 10 −7 / ° C., there is a problem that heat resistance is inferior and the material is damaged in a fire.
[0007]
Further, in order to improve mechanical strength, air-cooled tempered borosilicate glass or air-cooled soda lime glass is set by setting the air-cooling tempering temperature to a temperature substantially equal to or higher than the softening point of the glass. It is necessary to perform a cold strengthening process, and as a result, the glass surface is undulated or the glass is warped, so that image distortion is likely to occur.
[0008]
Further, Patent Document 1 (JP-A-10-182182) and Patent Document 2 ion exchange strengthening SiO 2 -Al 2 O 3 -B 2 O 3 based glass described in (Japanese Patent No. 2559572) is, Al 2 O 3 The content is as low as 5% or less, and the alkali oxide does not contain Li 2 O and contains only Na 2 O or K 2 O. Therefore, the degree of improvement in mechanical strength by ion exchange treatment is low. Low fire protection performance.
[0009]
An object of the present invention is to provide a fire prevention glass which has high fire prevention performance without swelling and warpage without interfering with slamming and digestive activities in a fire.
[0010]
[Means for Solving the Problems]
The fire prevention glass of the present invention has a composition of 50 to 75% of SiO 2 , 10 to 35% of Al 2 O 3 , and 0.5 to 15% of Li 2 O by mass%, and is made of ion-exchanged glass. It is characterized by the following.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Since the fire protection glass of the present invention contains a large amount of Al 2 O 3 and is made of aluminosilicate glass containing Li 2 O, specifically, 50% to 75% of SiO 2 and Al 2 O 3 by mass% Since it has a composition of 10 to 35% and Li 2 O of 0.5 to 15% and is made of ion-exchanged glass, it has high mechanical strength and thermal shock resistance, and is excellent in fire protection performance.
[0012]
The reasons for limiting the glass composition as described above are as follows.
[0013]
SiO 2 is a component that forms the skeleton of glass, and its content is 50 to 75%, preferably 55 to 75%, and more preferably 60 to 72%. When the content of SiO 2 is less than 50%, the strain point is lowered and the coefficient of thermal expansion is increased, and the thermal shock resistance is reduced. When the content is more than 75%, melting of the glass becomes difficult.
[0014]
Al 2 O 3 is also a component forming a glass skeleton similarly to SiO 2, and its content is 10 to 35%, preferably 10 to 30%, more preferably 12 to 28%. If the content of Al 2 O 3 is less than 10%, the strain point decreases, the thermal shock resistance decreases, and the ion exchange treatment takes a long time. Even if the ion exchange treatment is performed, the degree of improvement in mechanical strength is low. . If it is more than 35%, the glass tends to be devitrified, the viscosity of the glass increases, and the melting of the glass becomes difficult.
[0015]
Li 2 O adjusts the viscosity of the glass and is an ion exchange component. The total amount is 0.5 to 15%, preferably 1 to 10%, more preferably 1 to 7%. If Li 2 O is less than 0.5%, sufficient mechanical strength cannot be obtained even by ion exchange, and if it is more than 15%, glass tends to be devitrified.
[0016]
Further, in addition to the above components, the glass composition of the fireproof glass of the present invention includes Na 2 O, K 2 O, MgO, and the like for the purpose of adjusting the viscosity, thermal expansion coefficient, devitrification, melting property, and the like of the glass. CaO, ZnO, BaO, B 2 O 3 , TiO 2 , ZrO 2 , P 2 O 5, etc., each up to 10%, a kind selected from the group consisting of Sb 2 O 3 , SnO 2 , As 2 O 3 and Cl Alternatively, two or more fining agents can be contained in a total amount of up to 2%. As 2 O 3 is harmful to the environment and should not be used.
[0017]
In addition, when the fire-resistant glass of the present invention is made of glass having a strain point of 600 ° C. or more, a coefficient of thermal expansion of 20 to 60 × 10 −7 / ° C., and an average transmittance in a visible light region of 90% or more, thermal shock resistance is obtained. It is preferable because it is excellent in heat resistance and heat resistance and can withstand rapid heating and quenching during ion exchange treatment.
[0018]
As a glass having the above characteristics, SiO 2 60~72%, Al 2 O 3 12~28%, Li 2 O 1~7%, Na 2 O 0~5%, K 2 O 0~5%, MgO 0~5%, 0~5% ZnO, BaO 0~8%, TiO 2 0~8%, ZrO 2 0~7%, P 2 O 5 0~7%, Sb 2 O 3 0~2%, SnO Preferably, the glass has a composition of 20 to 2%.
[0019]
Further, as the fire prevention glass of the present invention, a glass plate produced by a well-known molding method such as a float method, a down draw method, and a roll out method can be used.
[0020]
Next, the ion exchange treatment method of the present invention will be described below.
[0021]
First, a glass plate having the above composition is kept at a temperature lower than the softening point of the glass, more specifically, at a temperature slightly lower than the annealing point of the glass, such as potassium nitrate (KNO 3 ) and sodium nitrate (NaNO 3 ). For 4 to 48 hours. By this treatment, on the glass surface, an alkali ion exchange reaction between Li + ions having a small ionic radius in the glass and Na + ions or K + ions having a large ionic radius in the molten salt proceeds, and the volume of the glass surface is increased. An increase occurs and a compressive stress is generated in the glass surface layer, and as a result, the mechanical strength of the glass sheet is improved.
[0022]
In this way, the glass chemically strengthened by the ion exchange treatment can obtain a mechanical strength twice or more that of the physically strengthened glass represented by the air-cooling tempering treatment.
[0023]
In addition, the ion-exchange treatment method is not restricted by the shape and thickness, and is performed at a temperature lower than the annealing point, so that the dimensional change and deformation of the glass are not accompanied, and the hardness of the surface is increased. It is characterized in that it is not easily scratched, and that it is possible to perform processing such as cutting and end face processing even after performing ion exchange processing.
[0024]
【Example】
Hereinafter, the fire prevention glass of the present invention will be described in detail based on examples.
[0025]
Table 1 shows Examples and Comparative Examples 1 to 3.
[0026]
[Table 1]
Figure 2004099370
[0027]
The fire prevention glasses of the example and the comparative example 3 were produced as follows.
[0028]
First, a batch raw material prepared so as to have the composition shown in the table was put into a melting furnace and melted at 1600 to 1650 ° C., and then a molten glass material was roll-formed and then gradually cooled to 900 × 1800 × 5 mm Was prepared. In Comparative Example 1, a commercially available soda-lime glass plate (window plate) having a thickness of 5 mm was used, and in Comparative Example 2, a commercially available borosilicate glass plate having a thickness of 5 mm was used.
[0029]
Next, samples for measuring thermal expansion coefficient, softening point and strain point were cut out from these glass plates.
[0030]
Further, a 25 × 60 × 5 mm bending strength measurement sample and a 900 × 600 × 5 mm fire protection test sample were cut out, and the bending strength measurement sample and the fire protection test sample were subjected to ion exchange treatment or wind-cooling strengthening treatment. gave.
[0031]
That is, in Example and Comparative Example 3, the sample was immersed in a KNO 3 molten salt kept at 500 ° C. for 24 hours to perform the ion exchange treatment. In Comparative Examples 1 and 2, the samples were placed in an electric furnace set at the same temperature as the softening point, held for 1 hour, taken out, and subjected to wind-cooling treatment by blowing cooling air.
[0032]
As is clear from Table 1, the examples of the present invention did not break in the fire prevention test because the bending strength became extremely high due to the ion exchange treatment, and the appearance quality after the ion exchange treatment was undulating or warped. There was no problem. Further, since the thermal expansion coefficient is as low as 42 × 10 −7 / ° C. and the strain point is as high as 640 ° C., it is judged that the thermal shock resistance is excellent.
[0033]
On the other hand, in Comparative Examples 1 and 2, the bending strength was increased by the air-cooling treatment, and the fire-proof test did not cause damage. However, the appearance quality after the air-cooling treatment was poor, and the images appeared distorted. In Comparative Example 3, although the appearance quality after the ion exchange treatment was not a problem, although the ion exchange treatment was performed, the bending strength was as low as 190 MPa, and it was broken in the fire prevention test.
[0034]
In addition, the coefficient of thermal expansion in the temperature range of 30 to 380 ° C. in the table was measured using a Dilatometer. The softening point and strain point were measured by the Fiber Elongation method.
[0035]
Before and after the ion exchange and the air cooling treatment, the mechanical strength was evaluated by the bending strength, and the bending strength was measured by using a three-point load method.
[0036]
The appearance quality was evaluated by visually observing the external appearance of the glass plate after performing the ion exchange treatment and the air-cooling strengthening treatment.If no distortion was observed in the image, `` ○ '' was indicated, and if the image was distorted, `` ○ '' × ”.
[0037]
For the fire prevention performance, a heating furnace was set on one side of the sample, and the sample was heated to 781 ° C after 20 minutes and 945 ° C after 60 minutes according to the standard heating curve of ISO834. Was evaluated as "O" when the sample did not break and passed the fire protection test, and as "X" when the sample was broken and did not pass the fire test.
[0038]
【The invention's effect】
As described above, the fire protection glass of the present invention has high mechanical strength and high thermal shock resistance, excellent fire protection performance, and the appearance quality is maintained even when a process for improving mechanical strength is performed. It is suitable as fire protection glass used for specific fire protection equipment.

Claims (2)

質量%で、SiO 50〜75%、Al 10〜35%、LiO 0.5〜15%の組成を有し、イオン交換処理されたガラスからなることを特徴とする防火ガラス。By mass%, SiO 2 50~75%, Al 2 O 3 10~35%, has a Li 2 O 0.5 to 15% of the composition, the fire retardant glass, characterized in that an ion-exchange treated glass . 歪点が600℃以上、30〜380℃の温度範囲における熱膨張係数が20〜60×10−7/℃、可視光域の平均透過率が90%以上であるガラスからなることを特徴とする請求項1の防火ガラス。It is made of glass having a strain point of 600 ° C. or more, a thermal expansion coefficient in a temperature range of 30 to 380 ° C. of 20 to 60 × 10 −7 / ° C., and an average transmittance in a visible light region of 90% or more. The fireproof glass of claim 1.
JP2002263937A 2002-09-10 2002-09-10 Fire prevention glass Pending JP2004099370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263937A JP2004099370A (en) 2002-09-10 2002-09-10 Fire prevention glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263937A JP2004099370A (en) 2002-09-10 2002-09-10 Fire prevention glass

Publications (1)

Publication Number Publication Date
JP2004099370A true JP2004099370A (en) 2004-04-02

Family

ID=32263510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263937A Pending JP2004099370A (en) 2002-09-10 2002-09-10 Fire prevention glass

Country Status (1)

Country Link
JP (1) JP2004099370A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115755A (en) * 2005-10-18 2007-05-10 Murata Mfg Co Ltd Electronic component and its manufacturing method
WO2008044694A1 (en) 2006-10-10 2008-04-17 Nippon Electric Glass Co., Ltd. Reinforced glass substrate
JP2010059038A (en) * 2008-08-04 2010-03-18 Nippon Electric Glass Co Ltd Reinforced glass and method of manufacturing the same
US8043706B2 (en) 2007-04-06 2011-10-25 Ohara Inc. Inorganic composition article
JP5799482B2 (en) * 2006-08-14 2015-10-28 旭硝子株式会社 Heat-resistant tempered glass and method for producing heat-resistant tempered glass
US9593042B2 (en) 2014-10-08 2017-03-14 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US9908811B2 (en) 2015-12-11 2018-03-06 Corning Incorporated Fusion formable glass-based articles including a metal oxide concentration gradient
US10017417B2 (en) 2016-04-08 2018-07-10 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US10579106B2 (en) 2015-07-21 2020-03-03 Corning Incorporated Glass articles exhibiting improved fracture performance
US11021393B2 (en) 2014-11-04 2021-06-01 Corning Incorporated Deep non-frangible stress profiles and methods of making
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US11084756B2 (en) 2014-10-31 2021-08-10 Corning Incorporated Strengthened glass with ultra deep depth of compression
CN114213006A (en) * 2021-12-28 2022-03-22 秦皇岛弘华特种玻璃有限公司 Production method and device of borosilicate 2.5 high-performance single-sheet fireproof thin glass
US11292741B2 (en) 2018-12-12 2022-04-05 Corning Incorporated Ion-exchangeable lithium-containing aluminosilicate glasses
US11492291B2 (en) 2012-02-29 2022-11-08 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
US11634359B2 (en) 2014-02-24 2023-04-25 Corning Incorporated Strengthened glass with deep depth of compression
US11878941B2 (en) 2014-06-19 2024-01-23 Corning Incorporated Glasses having non-frangible stress profiles
US11963320B2 (en) 2016-04-08 2024-04-16 Corning Incorporated Glass-based articles including a stress profile comprising two regions

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180936A (en) * 1984-02-27 1985-09-14 Nippon Electric Glass Co Ltd Production of heat resistant glass product having high strength

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180936A (en) * 1984-02-27 1985-09-14 Nippon Electric Glass Co Ltd Production of heat resistant glass product having high strength

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007115755A (en) * 2005-10-18 2007-05-10 Murata Mfg Co Ltd Electronic component and its manufacturing method
JP5799482B2 (en) * 2006-08-14 2015-10-28 旭硝子株式会社 Heat-resistant tempered glass and method for producing heat-resistant tempered glass
WO2008044694A1 (en) 2006-10-10 2008-04-17 Nippon Electric Glass Co., Ltd. Reinforced glass substrate
EP2075237A4 (en) * 2006-10-10 2010-10-27 Nippon Electric Glass Co Reinforced glass substrate
US8652979B2 (en) 2006-10-10 2014-02-18 Nippon Electric Glass Co., Ltd. Tempered glass substrate
US8043706B2 (en) 2007-04-06 2011-10-25 Ohara Inc. Inorganic composition article
KR101113357B1 (en) * 2007-04-06 2012-03-02 가부시키가이샤 오하라 Inorganic composition article
JP2010059038A (en) * 2008-08-04 2010-03-18 Nippon Electric Glass Co Ltd Reinforced glass and method of manufacturing the same
US11492291B2 (en) 2012-02-29 2022-11-08 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US11634359B2 (en) 2014-02-24 2023-04-25 Corning Incorporated Strengthened glass with deep depth of compression
US11878941B2 (en) 2014-06-19 2024-01-23 Corning Incorporated Glasses having non-frangible stress profiles
US10266447B2 (en) 2014-10-08 2019-04-23 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US10294151B2 (en) 2014-10-08 2019-05-21 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US10364182B2 (en) 2014-10-08 2019-07-30 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US10532947B2 (en) 2014-10-08 2020-01-14 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US11220456B2 (en) 2014-10-08 2022-01-11 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US10259746B2 (en) 2014-10-08 2019-04-16 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US10730791B2 (en) 2014-10-08 2020-08-04 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US11465937B2 (en) 2014-10-08 2022-10-11 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US9593042B2 (en) 2014-10-08 2017-03-14 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US11459270B2 (en) 2014-10-08 2022-10-04 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US11746046B2 (en) 2014-10-31 2023-09-05 Corning Incorporated Strengthened glass with ultra deep depth of compression
US11084756B2 (en) 2014-10-31 2021-08-10 Corning Incorporated Strengthened glass with ultra deep depth of compression
US11021393B2 (en) 2014-11-04 2021-06-01 Corning Incorporated Deep non-frangible stress profiles and methods of making
US11377388B2 (en) 2014-11-04 2022-07-05 Corning Incorporated Deep non-frangible stress profiles and methods of making
US10579106B2 (en) 2015-07-21 2020-03-03 Corning Incorporated Glass articles exhibiting improved fracture performance
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
US11267228B2 (en) 2015-07-21 2022-03-08 Corning Incorporated Glass articles exhibiting improved fracture performance
US11878936B2 (en) 2015-12-11 2024-01-23 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
US9908811B2 (en) 2015-12-11 2018-03-06 Corning Incorporated Fusion formable glass-based articles including a metal oxide concentration gradient
US10787387B2 (en) 2015-12-11 2020-09-29 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
US11472734B2 (en) 2015-12-11 2022-10-18 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
US11174197B2 (en) 2016-04-08 2021-11-16 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US10570059B2 (en) 2016-04-08 2020-02-25 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11691913B2 (en) 2016-04-08 2023-07-04 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US10017417B2 (en) 2016-04-08 2018-07-10 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11279652B2 (en) 2016-04-08 2022-03-22 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11963320B2 (en) 2016-04-08 2024-04-16 Corning Incorporated Glass-based articles including a stress profile comprising two regions
US11292741B2 (en) 2018-12-12 2022-04-05 Corning Incorporated Ion-exchangeable lithium-containing aluminosilicate glasses
CN114213006A (en) * 2021-12-28 2022-03-22 秦皇岛弘华特种玻璃有限公司 Production method and device of borosilicate 2.5 high-performance single-sheet fireproof thin glass

Similar Documents

Publication Publication Date Title
WO2022048377A1 (en) Aluminosilicate glass having high strength and low brittleness, strengthening method therefor, and application thereof
JP2004099370A (en) Fire prevention glass
CN110316974B (en) Alkali-containing aluminosilicate glass, product, strengthening method and application thereof
JP6973959B2 (en) Chemically strengthenable glass plate
US10150691B2 (en) Ion exchangeable Li-containing glass compositions for 3-D forming
EP3286150B1 (en) Chemically temperable glass sheet
EP3126302B1 (en) Chemically temperable glass sheet
JP5621239B2 (en) GLASS PLATE FOR DISPLAY DEVICE, PLATE GLASS FOR DISPLAY DEVICE, AND METHOD FOR PRODUCING THE SAME
JP5889702B2 (en) Glass for chemical strengthening and glass plate for display device
CN115385571B (en) Chemically strengthened glass and chemically strengthened glass
US8691711B2 (en) Glass for display device and glass plate
TW201726575A (en) Chemically strengthened glass, and glass for chemical strengthening
JP5427278B2 (en) Glass composition, glass obtained therefrom, and method and use of glass.
US6297182B1 (en) Glass for a substrate
US20170320769A1 (en) Glass compositions that retain high compressive stress after post-ion exchange heat treatment
EP3074357A1 (en) Fast ion exchangeable glasses with high indentation threshold
CN111670172A (en) Glass for chemical strengthening
CN115231820A (en) Glass for chemical strengthening and chemically strengthened glass
JP2013249222A (en) Chemically strengthened crystallized glass article and method for producing the same
JP2001348245A (en) Reinforced glass, method for manufacturing the same and glass for display
JP6675592B2 (en) Tempered glass
WO2012066989A1 (en) Glass composition for chemical strengthening
JP2001064028A (en) Tempered glass base plate for flat panel display
JP2018505117A (en) Chemically temperable glass plate
US20230399258A1 (en) Toughened glass plate, method for manufacturing toughened glass plate, and glass plate to be toughened

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081107