JP2004098774A - Shock absorbing member - Google Patents

Shock absorbing member Download PDF

Info

Publication number
JP2004098774A
JP2004098774A JP2002261084A JP2002261084A JP2004098774A JP 2004098774 A JP2004098774 A JP 2004098774A JP 2002261084 A JP2002261084 A JP 2002261084A JP 2002261084 A JP2002261084 A JP 2002261084A JP 2004098774 A JP2004098774 A JP 2004098774A
Authority
JP
Japan
Prior art keywords
shock absorbing
absorbing member
ribs
thickness
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002261084A
Other languages
Japanese (ja)
Other versions
JP4082145B2 (en
Inventor
Tetsuya Kato
加藤 哲也
Hideaki Tokita
時田 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002261084A priority Critical patent/JP4082145B2/en
Publication of JP2004098774A publication Critical patent/JP2004098774A/en
Application granted granted Critical
Publication of JP4082145B2 publication Critical patent/JP4082145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shock absorbing member demonstrating high shock absorbing performance by expanding a range of compressive strain indicating below allowable compressive stress when shock load acts thereon. <P>SOLUTION: The shock absorbing member 1 is provided with a base part 11 including a first and second surfaces 111, 112, a main rib 12 formed on the first surface of the base part, and at least one or more subsidiary ribs 13, 14, 15 crossing the main rib and formed on the first surface of te base part. Thickness t1, t2, t3 of at least one or more subsidiary ribs are within 100% of thickness t4 of the main rib 12 and thickness t1, t2, t3 of at least one or more subsidiary ribs are different. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、衝撃荷重が作用したときにそのエネルギを吸収して衝撃を緩和する衝撃吸収部材に関する。
【0002】
【従来の技術】
例えば、自動車においては、万一の衝突時に乗員を保護するために、客室へのダメージを最小限に抑えることを目的として、ボディを構造的に変形しやすくしたり、バンパや天井,ドア,側突パッド等の内部に衝撃吸収部材を設けて、衝突時の衝撃をできるだけ吸収するようにすることが行われている。
【0003】
衝撃吸収部材の衝撃エネルギ吸収能力は、衝突による衝撃吸収部材の潰れ代と、そのときの圧縮応力値の積分値であることから、許容できる圧縮応力の範囲内で、より大きい潰れ代を確保することが求められる。
一般に、自動車に用いられる衝撃吸収部材は設置スペースの関係から、衝撃吸収部材の潰れ代は限られており、おおよそ30〜100mm程度である。他方、衝撃吸収部材は衝突時の乗員保護を目的とすることから、人に加わる応力も、数10N/cm以内に抑えなければならない。
【0004】
従来、このような衝撃吸収部材としては、熱硬化性の発泡ウレタンが多く用いられていた。
しかし、このような熱硬化性の発泡ウレタンは、リサイクルが困難である上、コスト的にも割高であるばかりでなく、初期衝撃吸収性能の維持面から耐水性、耐熱性から経時安定性に課題があった。
そこで、近年ではリサイクルが容易で、包装用の緩衝材として広く用いられている発泡ポリスチレンや発泡ポリプロピレン等の発泡熱可塑性樹脂が多く使用されるに至っている。
【0005】
しかしながら、このような発泡熱可塑性樹脂も、衝撃吸収の性能面で以下のような問題がある。
即ち、発泡ポリスチレンや発泡ポリプロピレン等の発泡熱可塑性樹脂で形成された衝撃吸収部材においては、圧縮ひずみ(衝撃吸収部材の元の厚みに対する圧縮変形の割合、以下の説明ではひずみ量(%)を用いる)が、大きくなると、例えば50%を超えると、内部に発生する応力(圧縮応力)が急激に上昇し、以後、衝撃吸収部材としての性能が著しく低下する。
従って、発泡熱可塑性樹脂の衝撃吸収部材を自動車等の用途に用いる場合は、許容される範囲の応力を示す、圧縮ひずみの範囲が狭いため、最大許容応力に至るまでに衝撃吸収部材に吸収されるエネルギ量が十分でないという問題があった。
また、多様な衝撃荷重に対応し、要求される応力の範囲内で衝撃吸収性能を発現するためには、衝撃吸収部材の肉厚を大きくする必要があり、バンパや天井,ドア,側突パッド等の各部の寸法が大きくなるといった問題があった。
【0006】
本発明者らは、先に発泡プラスチックであって、特定のリブ構造を有する発泡成形品が高い衝撃吸収性能を示すことを見いだした(特願2002−157782号等)。この方法は比較的小さな潰れ代で設計される衝撃吸収部材としては有効であった。
しかしながら、この衝撃吸収部材は、より大きな衝撃エネルギを吸収するために、より大きな潰れ代を確保しなければならない衝撃吸収部材には不向きな構造であった。
【0007】
【発明が解決しようとする課題】
本発明は上記の問題点にかんがみてなされたもので、衝撃荷重が作用したとき、許容される圧縮応力以下を示す、圧縮ひずみの範囲を広くすることにより、高い衝撃吸収性能を発揮する衝撃吸収部材を提供することを目的とする。
【0008】
【課題を解決するための手段】
この課題を解決するために、本発明者らは、主リブと、主リブと厚さの異なる副リブを組み合わせた構造が、衝撃吸収に優れていることを見出し、本発明を完成させた。
【0009】
本発明によれば、第1及び第2の面を有する基部と、基部の第1の面の上に形成される主リブと、主リブと交わって、基部の第1の面の上に形成される、少なくとも1つ以上の副リブとを具備し、少なくとも1つ以上の副リブの厚さが主リブの厚さの100%以内であって、さらに、少なくとも1つ以上の副リブの厚さが異なる衝撃吸収部材が提供される。
副リブは、主リブと、直角又は斜めに交わることができる。
本発明における主リブ(縦リブ)は、衝撃荷重が、主リブの上方からかかるとき、動的及び静的な圧縮応力の強さを決定する。一方、副リブ(横リブ)は、主リブの衝撃による倒れを防止すると共に、副リブの厚さを変化させることで、厚さ方向において、主リブに複数の異なる屈曲点をもたせる働きをする。
副リブにより、主リブが複数の屈曲点を持つことで、主リブのみの場合における、ひずみ途中での応力値の低下や、厚さの一定な格子リブの場合における、ひずみ後半での応力の上昇を防止できる。
従って、衝撃吸収部材を構成する部材がもつ衝撃吸収性能と、上記の格子状リブ構造が相乗的に働き、高い衝撃吸収性能を発現できる。
これにより、例えば、50mmを越える肉厚を持つ衝撃吸収部材においても、圧縮ひずみが、おおよそ20〜70%の範囲内において、主リブの設計により定められた一定の応力値を示すものとすることができる。
【0010】
また、本発明によれば、この衝撃吸収部材において、基部が無い衝撃吸収部材が提供される。
【0011】
少なくとも2つの主リブと、少なくとも1つ以上の副リブにより、格子状構成を形成することができる。格子状構成は、格子の形が四角だけでなく、三角等でもよく、一部欠けていてもよい。
本発明では、少なくとも1つ以上の副リブの厚さを変えるだけでなく、少なくとも1つ以上の副リブの厚さを、複数の主リブ間で、変えることができる。厚さは、規則的(連続的、段階的、交互)又は不規則に変えることができる。
副リブの厚さを、段階的若しくは連続的に変化させることで、衝撃吸収部材を構成する部材がもつ衝撃吸収性能と特定の格子状リブ構造が相乗的に働き、高い衝撃吸収性能を発現できる。
【0012】
本発明によれば、上記の衝撃吸収部材の組み合わせが提供できる。
2以上の衝撃吸収部材を、重ねたり又は並べたりして、組み合わせることができる。
【0013】
【発明の実施の形態】
以下、本発明の衝撃吸収部材の実施形態について、図面を参照しながら詳細に説明する。
図1は、本発明の一実施形態である衝撃吸収部材の一部の斜視図であり、図2は、図1に示す衝撃吸収部材1の平面図である。
衝撃吸収部材1は、基部11、主リブ12及び副リブ13,14,15からなる。
基部11は、平板状であり、対向する第1の面111と第2の面112を有し、さらに、対向する第1の端113及び第2の端114を有する。
主リブ12は、基部11の第1の面111に形成され、複数列をなしている。主リブ12は、基部11の第1の面111に均等間隔で平行に形成されているとともに、基部11の第1の端113から第1の端114までほぼ直線状に延びている。
副リブ13,14,15は、主リブ12に対し、格子状に直角に交差して、基部11の第1の面111に形成されている。
副リブ13,14,15の厚さt1,t2,t3は、主リブ12の厚さt4より小さく、互いに異なっている。副リブ13,14,15の厚さt1,t2,t3は、連続して減少している。即ち、t1はt4の75%の厚さ、t2はt4の50%の厚さ、t3はt4の25%の厚さである。
衝撃荷重は、矢印の方向から、衝撃吸収部材1にかかる。
【0014】
図3は、図2のA−Aに添った衝撃吸収部材1の部分断面図である。
図3に示すように、主リブ12の断面形状は台形であり、この台形の下底部121(基部11側の底辺部分)の幅w1が、上底部122(主リブ12の先端部分)の幅w2よりも大きい。
さらに、主リブ12の平均幅wa=(w1+w2)/2と、衝撃吸収部材1の全厚t5(主リブ12の上底部121から基部11の第2の面112までの厚み)との関係が、0.05×t5≦wa≦0.3×t5となるように、幅w1,w2及び全厚t5を選択することが好ましい。
0.05倍未満では主リブの幅が小さくなりすぎ、衝撃吸収部材1の発泡成形が困難になるだけでなく、衝撃荷重を加えたときに、衝撃吸収部材1の内部に十分な圧縮応力が発生しないおそれがあり、また、0.3倍を超えると、衝撃吸収部材1の内部に発生する圧縮衝撃荷重が大きくなり過ぎ、必要とする衝撃吸収性能が十分に得られないおそれがある。
【0015】
主リブ12の厚さt4は、衝撃吸収部材の全厚t5に対し、0.5×t5≦t4≦1.0×t5に設定することが好ましい。0.5倍未満では、衝撃吸収域が狭く経済的ではない。上限は、一般には0.9倍を越えると発泡成形の作業上支障をきたすため、生産性を阻害するため好ましくない。しかし、後加工等により基部11を除いてもよいし、基部11は部分的に欠けていてもよい。衝撃吸収性能と経済上の理由により、特に0.7×t3≦t4≦0.9×t3が好ましい。
【0016】
また、副リブの幅w3(図2)は、圧縮途中での主リブ3の倒れる位置を規定できる幅なら、特に限定されないが、通常、主リブ12の幅waの50%〜100%程度に設定する。
【0017】
また、主リブ12は、基部11の垂線に対し、傾斜角度αで傾斜している。傾斜角度αが、0°〜7°の範囲となるようなテーパ状の形態が好ましい。より好ましくは、3°〜5°の範囲である。傾斜角αが0°より小さいときは、発泡樹脂の成型工程において、離型が容易ではなく、7°より大きいと、圧縮ひずみに対する応力上昇が漸増するため好ましくない。
【0018】
この衝撃吸収部材1の作用について説明する。
衝撃吸収部材1は、図1の矢印に示されるように、主リブ12に対し垂直の衝撃荷重が加わり圧縮される場合、主リブ12が、副リブ13の厚さt1、副リブ14の厚さt2、副リブ15の厚さt3で順次屈曲しながら圧縮される。
【0019】
従って、副リブを有しない場合のように、主リブ12が衝撃荷重により、不特定箇所で折れたり曲がったりすることで生じる、ひずみ途中での応力低下がない。また、厚さの一定な格子リブの場合のように、圧縮ひずみが大きくなっても、圧縮応力が急激に上昇することはなく、主リブ12の構造で規定される範囲内で推移する。本実施形態では、約70%の圧縮ひずみまで、規定された圧縮応力以下で有効に衝撃エネルギを吸収できる。
【0020】
尚、本実施形態を示す図は、衝撃吸収部材1の一部を示したものであり、主リブと副リブの数は、使用分野により要求される最大圧縮応力に応じて、適宜決定することができる。また、衝撃吸収部材1の全体の形も、用途に合わせて各形状に成形することができる。
本実施形態では、副リブの厚さは連続して変化しているが、何本かが同じ厚さで、次に何本かが異なる厚さとなるように、段階的に変化してもよい。
本実施形態では、副リブの厚さは、主リブの厚さの25%〜75%であるが、主リブの厚さの100%以内で適宜設定できるが、好ましくは、主リブの厚さの5%以上である。
【0021】
本実施形態では、図3に示すように、図2の矢印Aの方向の列の副リブ13の厚さは同じであるが、主リブ間毎に厚さの異なる副リブを設けたり、途中で副リブのない歯抜け状の構成にすることもできる。
図4は、図3において副リブ13の厚さを連続的に減少させた場合の衝撃吸収部材の部分断面図である。
このように、副リブ13は、主リブ間で、厚さの異なる部分130,131,132からなる。
また、主リブ12間毎に、副リブの幅を同じにしてもよいし、変えてもよい。同様に、主リブについても、主リブ毎に幅や厚さを変えることができる。主リブの厚さが異なるときは、副リブの厚さは隣接する主リブの厚さの100%以内にする。
【0022】
格子状の形状については、図2に示すように主リブ12と副リブ13,14,15が直角に交差する4角形状だけでなく、3角形状、6角形状等の多角形でもよい。これらは、主リブ12と副リブを明確に分けることで同様な効果を発揮することができる。但し、金型製作や最大応力値の設計等が煩雑になるため、4角形状が好ましい。また、主リブと副リブの一部が欠けていてもよい。
【0023】
主リブ12の断面形状は、台形に限らず長方形、三角形や半円形等であってもよい。また、連続的に幅が変化するものに限らず、衝撃荷重の作用方向に沿って段階的に幅が変化するものであってもよい。このようにすると、衝撃に対してリブ折れによる応力の低下を抑制でき、また、圧縮ひずみが大きくなっても急激な応力の上昇を抑制することができるという利点がある。
副リブ13,14,15の断面形状も、同様に、長方形に限らず台形、三角形や半円形等であってもよい。
【0024】
衝撃吸収部材1の基部11、主リブ12及び副リブ13,14,15を構成する部材としては、使用される用途により様々な部材を用いることができる。好ましくは、発泡熱可塑性樹脂から構成される。
衝撃吸収部材1に使用される熱可塑性樹脂の材料としては、種々のものが使用可能である。例えば、ポリスチレンや、スチレンと、アクリロニトリル、メタクリロニトリル、α−メチルスチレン、無水マレイン酸、フェニルマレイミドシクロヘキシルマレイミド等のマレイミド系単量体、アクリル酸、アクリル酸エステル等のアクリル酸系単量体、メタクリル酸、メタクリル酸エステル等のメタクリル酸系単量体を共重合させたスチレン系共重合体、又はメタクリル酸系単量体の単独重合体、メタクリル酸系単量体及びアクリル酸系単量体の2種類以上の組合せによる共重合体、ポリエチレン、ポリプロピレン等のオレフィン系樹脂等が挙げられる。
【0025】
上記の中でも、製造コスト、リサイクル性、発泡成形性等の点から、スチレン系共重合体が好ましく、耐熱性、耐油性に優れるアクリロニトリル・スチレン共重合体が製造コストや性能の点から好適である。また、このような材料を用いることで、本発明の衝撃吸収部材を、自動車のバンパや天井,ドア,側突パッド等に適用することができる。
尚、発泡性アクリロニトリル・スチレン共重体の樹脂としては、例えば、日立化成工業(株)製の(商品名:HIBEADS GR)を用いることができる。もちろん、上記した本発明の要件を備えるものであって、自動車用の衝撃吸収部材として用いることができるのであれば、他の樹脂を用いてもよい。
【0026】
本発明の衝撃吸収部材に使用される熱可塑性樹脂の発泡剤としては、発泡性スチレン系樹脂等の製造に一般的に用いられている発泡剤を用いることができる。この発泡剤は、常温常圧下で気体又は液体であり、かつ上記熱可塑性樹脂を溶解しないような易揮発性有機化合物であるのが好ましい。例えば、ブタン、プロパン、ペンタン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン等の環式脂肪族炭化水素等が挙げられる。また、必要に応じて、熱可塑性樹脂を溶解又は膨潤させることができるエチルベンゼン、トルエン、スチレン、キシレン等の有機溶剤やエポキシ化大豆油、植物油等を可塑剤として使用してもよい。
【0027】
本発明の衝撃吸収部材は、上記の熱可塑性樹脂及び発泡剤を含む発泡性熱可塑性樹脂粒子を一次発泡させて、所定の密度の発泡熱可塑性樹脂粒子を得た後、所定の形状を有する金型に充填、加熱して形成される。
熱可塑性樹脂を一次発泡させて得られる発泡熱可塑性樹脂は、衝撃荷重が作用したときに、衝撃吸収部材の用途に応じた適度な圧縮応力を生じさせるものでなければならない。
この圧縮応力が大きすぎると、衝撃加重が作用した際の反発力が大きくなりすぎて衝撃を十分に吸収することができず、また、小さすぎると、衝撃加重に耐えられず容易に破壊してしまい、所望の衝撃吸収性能を得ることができない。
【0028】
本発明の衝撃吸収部材を、自動車に適用する場合の圧縮応力の範囲は、JIS−Z0235に規定される方法に準じて測定した圧縮ひずみが0.5の下において、0.01〜2.5MPaの範囲であるのが好ましい。
これは、圧縮ひずみが0.5になったときに、圧縮応力が0.01MPa未満では、圧縮応力が小さすぎて、十分な衝撃吸収性能を得ることができず、また、2.5MPaよりも高いと、圧縮応力が大きすぎて、衝撃荷重に対する反発力が大きくなり、衝撃を吸収しにくくなって衝撃吸収性能が低下する不具合があるからである。
尚、上記の範囲内において、より好ましい圧縮応力の範囲は0.05〜2.0MPaであり、さらに好ましい圧縮応力の範囲は0.1〜1.5MPaである。
【0029】
本発明の衝撃吸収部材を構成する発泡熱可塑性樹脂の密度は、0.02g/ml〜0.2g/ml以下であることが好ましい。密度が、0.02g/ml未満では、要求される応力を達成する物性を得ることが難しい場合があり、0.2g/mlより大きいと、応力値が高くなるばかりでなく、衝撃吸収部材の重量の低減が困難になるおそれがある。より好ましくは、0.04g/ml〜0.1g/mlである。
【0030】
図5は、本発明の衝撃吸収部材の組み合わせの一実施形態を示す斜視図である。
この実施形態では、図1に示した衝撃吸収部材1を2つ準備し、衝撃荷重の作用方向に、それぞれを基部11の第2の面112で組み合わせている。
このように、衝撃荷重の作用方向に衝撃吸収部材を複数重ねることにより、より大きな衝撃荷重に対して、大きな衝撃吸収性能を発揮する衝撃吸収部材を得ることができる。
この実施形態では、潰れ代が大きい用途に使用する場合、圧縮ひずみが大きく変動しても、主リブ12の設計において予め設定した圧縮応力以下で衝撃を吸収できるため、より大きな衝撃エネルギを吸収できる。
【0031】
本発明の衝撃吸収部材は、発泡樹脂がもつ衝撃吸収性能と特定の格子状リブ構造が相乗的に働き、高い衝撃吸収性能を発現できる。
また、厚さ方向において、主リブが数種の異なる屈曲点を有することで、圧縮ひずみが大きくなっても、圧縮応力が急激に上昇することはないので、衝撃エネルギを有効に吸収できる。
本発明の衝撃吸収部材は、自動車のバンパや天井,ドア,側突パッド等に適用することができる。
【0032】
【実施例】
以下、実施例及び比較例により、本発明をさらに具体的に説明するが、本発明はこれらにより限定されるものではない。
【0033】
実施例1
発泡熱可塑性樹脂粒子として、発泡性アクリロニトリル・スチレン共重合樹脂(日立化成工業(株)製:HIBEADS GR)を使用した。この樹脂を発泡スチロール用のバッチ式発泡機(日立化成テクノプラント(株)製発泡機:HBP−500LW)を用い、嵩密度0.0556g/ml(発泡倍数:18倍)に予備発泡したのち、成形までの18時間、通気性の良いサイロに保管した。
引き続き、発泡スチロール用成形機(日立化成工業(株)製:モルデックス10VS)に所定の金型をセットし、型締めしたのち、発泡粒子の充填工程、0.08MPaのゲージ圧を有する水蒸気で25秒間加熱し、その後、水冷工程、真空冷却工程を経て、衝撃吸収部材を得た。
図6は、実施例1で作製した衝撃吸収部材の斜視図である。
衝撃吸収部材2は、基部11上に主リブ12を6本、副リブ21と副リブ22を各1列有し、副リブ21の厚さは主リブ12と同じ厚さに、副リブ32は主リブ12の50%の厚さにした。
【0034】
実施例2
金型を交換した他は、実施例1と同様にして、副リブ22に変えて厚さを主リブ12の75%の厚さにした副リブを有する衝撃吸収部材を作製した。
【0035】
実施例3
金型を交換した他は、実施例1と同様にして、衝撃吸収部材を作製した。
図7は、実施例3で作製した衝撃吸収部材の斜視図である。
衝撃吸収部材3は、主リブ12及び副リブ21の構成は実施例1と同じであるが、副リブ22に変えて、同列上に副リブ31を設けた。副リブ31は主リブ12間で、主リブ12の75%の厚さ、主リブ12の50%の厚さに、交互に変化させた。
【0036】
比較例1
金型を交換した他は、実施例1と同様にして、衝撃吸収部材を作製した。
図8は、比較例1で作製した衝撃吸収部材の斜視図である。
衝撃吸収部材4は、副リブ22を設けていない他は、実施例1と同じ構成とした。
【0037】
比較例2
金型を交換した他は、実施例1と同様にして、衝撃吸収部材を作製した。
図9は、比較例2で作製した衝撃吸収部材の斜視図である。
衝撃吸収部材5は、副リブ22に変えて、厚さを主リブ12と同じとした副リブ51にした他は、実施例1と同じ構成とした。
各実施例及び比較例で作製した衝撃吸収部材の寸法及び物性を表1に示す。
【0038】
【表1】

Figure 2004098774
【0039】
評価例
得られた衝撃吸収部材を、縦140mm×横140mm×厚み70mmの試験体とし、衝撃荷重試験をおこなった。衝撃荷重試験は、試験体より広い平面をもち、質量を可変できるおもりを、試験体表面に垂直に規定速度で落下させて、おもりに生じた加速度(G値)と試験体の厚さ変化量を測定し、衝撃吸収部材の衝撃吸収性能を評価した。尚、おもりは5kg、落下高さは1.3mとした。
図10は、各衝撃吸収部材の圧縮ひずみと圧縮荷重の関係を示す図である。
この結果から、比較例1及び2の衝撃吸収部材は、圧縮ひずみによって圧縮荷重が大きく変動していることが確認でき、また、本発明の衝撃吸収部材では、比較例より、圧縮ひずみの変化による圧縮荷重の変化が小さく、圧縮ひずみが大きくなっても、安定した値を示すことが確認できた。
即ち、衝撃荷重が作用したとき、圧縮応力が予め定められた値以下で、予め定められた動的圧縮ひずみの間を推移するので、より高い衝撃吸収性能を発揮できることが示唆された。
従って、本発明の衝撃吸収部材は、自動車用衝撃吸収材に適した衝撃吸収性能を有することが示された。
【0040】
【発明の効果】
本発明によれば、衝撃荷重が作用したとき、許容される圧縮応力以下を示す、圧縮ひずみの範囲を広くすることにより、高い衝撃吸収性能を発揮する衝撃吸収部材を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態である衝撃吸収部材の一部の斜視図である。
【図2】図1の衝撃吸収部材の平面図である。
【図3】図2のA−Aに添った衝撃吸収部材の部分断面図である。
【図4】図3において、副リブの厚さを変化させた衝撃吸収部材の部分断面図である。
【図5】衝撃吸収部材1の組み合わせを示すの斜視図である。
【図6】実施例1で作製した衝撃吸収部材の斜視図である。
【図7】実施例3で作製した衝撃吸収部材の斜視図である。
【図8】比較例1で作製した衝撃吸収部材の斜視図である。
【図9】比較例2で作製した衝撃吸収部材の斜視図である。
【図10】実施例1〜3及び比較例1,2の衝撃吸収部材の圧縮ひずみと圧縮荷重の関係を示す図である。
【符号の説明】
1,2,3 衝撃吸収部材
11 基部
12 主リブ
13,14,15,21,22,31,32 副リブ
111 第1の面
112 第2の面
122 上底部(主リブの先端)
t1,t2,t3 副リブの厚さ
t4 主リブの厚さ
t5 衝撃吸収部材の全厚
w1 主リブ下底部の幅(主リブの幅)
w2 主リブ上底部の幅(主リブの幅)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an impact absorbing member that absorbs energy when an impact load is applied and reduces the impact.
[0002]
[Prior art]
For example, in the case of automobiles, in order to protect occupants in the event of a collision, the body is easily deformed structurally to minimize damage to the passenger compartment, and bumpers, ceilings, doors, side 2. Description of the Related Art An impact absorbing member is provided inside a protruding pad or the like so as to absorb an impact at the time of collision as much as possible.
[0003]
Since the impact energy absorbing ability of the shock absorbing member is an integral value of a crush amount of the shock absorbing member due to a collision and a compressive stress value at that time, a larger crush amount is secured within an allowable range of compressive stress. Is required.
In general, the impact absorbing member used in an automobile has a limited amount of crushing of the impact absorbing member due to the installation space, and is about 30 to 100 mm. On the other hand, since the impact absorbing member is intended to protect an occupant in the event of a collision, the stress applied to a person must be suppressed to within several tens of N / cm 2 .
[0004]
Conventionally, thermosetting urethane foam has often been used as such a shock absorbing member.
However, such thermosetting urethane foam is difficult to recycle and is not only expensive, but also has problems in water resistance from the viewpoint of maintaining initial shock absorption performance and stability over time from heat resistance. was there.
Therefore, in recent years, expanded thermoplastic resins such as expanded polystyrene and expanded polypropylene, which are easily recycled and widely used as cushioning materials for packaging, have come to be used in many cases.
[0005]
However, such foamed thermoplastic resins also have the following problems in terms of shock absorption performance.
That is, in a shock absorbing member formed of a foamed thermoplastic resin such as expanded polystyrene or expanded polypropylene, a compression strain (a ratio of compressive deformation to an original thickness of the shock absorbing member, the amount of strain (%) is used in the following description) ) Increases, for example, if it exceeds 50%, the stress (compressive stress) generated inside rapidly increases, and thereafter, the performance as a shock absorbing member is significantly reduced.
Therefore, when the shock absorbing member of the foamed thermoplastic resin is used for an application such as an automobile, the range of compressive strain, which indicates an allowable range of stress, is narrow, so that the shock absorbing member absorbs the stress up to the maximum allowable stress. Energy is not sufficient.
In addition, in order to respond to various impact loads and to exhibit impact absorption performance within the required stress range, it is necessary to increase the thickness of the impact absorption member, and to use bumpers, ceilings, doors, side impact pads. There is a problem that the size of each part such as is increased.
[0006]
The present inventors have previously found that a foamed molded product having a specific rib structure, which is a foamed plastic, exhibits high impact absorption performance (Japanese Patent Application No. 2002-157782 and the like). This method was effective as a shock absorbing member designed with a relatively small crushing allowance.
However, this shock absorbing member has a structure that is not suitable for a shock absorbing member that needs to secure a larger crushing margin in order to absorb larger shock energy.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and shows an allowable compression stress or less when an impact load is applied.By expanding a range of compressive strain, a shock absorption exhibiting a high shock absorption performance. An object is to provide a member.
[0008]
[Means for Solving the Problems]
In order to solve this problem, the present inventors have found that a structure combining a main rib and a sub-rib having a thickness different from that of the main rib is excellent in shock absorption, and completed the present invention.
[0009]
According to the present invention, a base having first and second surfaces, a main rib formed on the first surface of the base, and a main rib formed on the first surface of the base intersecting with the main rib At least one or more sub-ribs, wherein the thickness of at least one or more sub-ribs is within 100% of the thickness of the main ribs, and the thickness of at least one or more sub-ribs Thus, there is provided a shock absorbing member having different sizes.
The minor rib can intersect the main rib at right angles or at an angle.
The main rib (longitudinal rib) in the present invention determines the strength of dynamic and static compressive stress when an impact load is applied from above the main rib. On the other hand, the auxiliary ribs (lateral ribs) function to prevent the main ribs from falling down due to impact and change the thickness of the auxiliary ribs so that the main ribs have a plurality of different bending points in the thickness direction. .
With the secondary rib, the main rib has multiple bending points, so that the stress value decreases during the strain in the case of only the main rib and the stress in the latter half of the strain in the case of the lattice rib having a constant thickness. The rise can be prevented.
Therefore, the shock absorbing performance of the member constituting the shock absorbing member and the lattice rib structure described above work synergistically, and high shock absorbing performance can be exhibited.
Thereby, for example, even in a shock absorbing member having a thickness exceeding 50 mm, the compressive strain exhibits a constant stress value determined by the design of the main rib within a range of approximately 20 to 70%. Can be.
[0010]
Further, according to the present invention, there is provided an impact absorbing member having no base in the impact absorbing member.
[0011]
A grid-like configuration can be formed by at least two main ribs and at least one or more sub-ribs. In the grid-like configuration, the shape of the grid may be not only a square but also a triangle or the like, and may be partially missing.
In the present invention, not only the thickness of at least one or more sub-ribs can be changed, but also the thickness of at least one or more sub-ribs can be changed between a plurality of main ribs. The thickness can vary regularly (continuously, stepwise, alternating) or irregularly.
By changing the thickness of the sub ribs stepwise or continuously, the shock absorbing performance of the member constituting the shock absorbing member and the specific lattice rib structure work synergistically, and high shock absorbing performance can be exhibited. .
[0012]
According to the present invention, a combination of the above-described impact absorbing members can be provided.
Two or more shock absorbing members can be stacked or arranged side by side and combined.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the shock absorbing member of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view of a part of a shock absorbing member according to an embodiment of the present invention, and FIG. 2 is a plan view of the shock absorbing member 1 shown in FIG.
The shock absorbing member 1 includes a base 11, a main rib 12, and sub ribs 13, 14, and 15.
The base 11 is flat, has a first surface 111 and a second surface 112 facing each other, and further has a first end 113 and a second end 114 facing each other.
The main ribs 12 are formed on the first surface 111 of the base 11, and form a plurality of rows. The main ribs 12 are formed at equal intervals in parallel with the first surface 111 of the base 11, and extend substantially linearly from the first end 113 to the first end 114 of the base 11.
The sub ribs 13, 14 and 15 are formed on the first surface 111 of the base 11 so as to intersect the main rib 12 at right angles in a grid pattern.
The thicknesses t1, t2, t3 of the sub ribs 13, 14, 15 are smaller than the thickness t4 of the main rib 12, and are different from each other. The thicknesses t1, t2, t3 of the sub ribs 13, 14, 15 are continuously reduced. That is, t1 is 75% of the thickness of t4, t2 is 50% of the thickness of t4, and t3 is 25% of the thickness of t4.
The impact load is applied to the impact absorbing member 1 from the direction of the arrow.
[0014]
FIG. 3 is a partial cross-sectional view of the shock absorbing member 1 along the line AA in FIG.
As shown in FIG. 3, the cross-sectional shape of the main rib 12 is a trapezoid, and the width w1 of the lower bottom 121 (the base on the base 11 side) of the trapezoid is the width of the upper bottom 122 (the tip of the main rib 12). It is larger than w2.
Furthermore, the relationship between the average width wa of the main rib 12 = (w1 + w2) / 2 and the total thickness t5 of the shock absorbing member 1 (the thickness from the upper bottom 121 of the main rib 12 to the second surface 112 of the base 11) , 0.05 × t5 ≦ wa ≦ 0.3 × t5, it is preferable to select the widths w1 and w2 and the total thickness t5.
If it is less than 0.05 times, the width of the main rib becomes too small, which not only makes foaming of the shock absorbing member 1 difficult, but also causes a sufficient compressive stress inside the shock absorbing member 1 when an impact load is applied. If it exceeds 0.3 times, the compressive impact load generated inside the shock absorbing member 1 becomes too large, and the required shock absorbing performance may not be sufficiently obtained.
[0015]
The thickness t4 of the main rib 12 is preferably set to 0.5 × t5 ≦ t4 ≦ 1.0 × t5 with respect to the total thickness t5 of the shock absorbing member. If it is less than 0.5 times, the shock absorption area is narrow and it is not economical. In general, if the upper limit is more than 0.9 times, the operation of the foam molding is hindered, and the productivity is impaired. However, the base 11 may be removed by post-processing or the like, or the base 11 may be partially missing. For shock absorption performance and economic reasons, it is particularly preferable that 0.7 × t3 ≦ t4 ≦ 0.9 × t3.
[0016]
The width w3 of the sub rib (FIG. 2) is not particularly limited as long as it can define the position where the main rib 3 falls down during compression, but is usually about 50% to 100% of the width wa of the main rib 12. Set.
[0017]
The main ribs 12 are inclined at an inclination angle α with respect to a perpendicular to the base 11. A tapered configuration in which the inclination angle α is in the range of 0 ° to 7 ° is preferable. More preferably, it is in the range of 3 ° to 5 °. When the inclination angle α is smaller than 0 °, mold release is not easy in the molding process of the foamed resin, and when the inclination angle α is larger than 7 °, the stress increase with respect to the compressive strain gradually increases, which is not preferable.
[0018]
The operation of the shock absorbing member 1 will be described.
When the impact absorbing member 1 is compressed by applying a vertical impact load to the main rib 12, as shown by the arrow in FIG. 1, the main rib 12 is formed by the thickness t1 of the sub rib 13 and the thickness of the sub rib 14. It is compressed while bending sequentially at the length t2 and the thickness t3 of the sub rib 15.
[0019]
Therefore, unlike the case where the main rib 12 does not have the sub rib, there is no stress drop during the strain, which is caused by the main rib 12 being bent or bent at an unspecified location due to the impact load. Further, even when the compressive strain increases, as in the case of a lattice rib having a constant thickness, the compressive stress does not increase sharply but changes within a range defined by the structure of the main rib 12. In the present embodiment, the impact energy can be effectively absorbed at a compression strain of about 70% or less at a specified compression stress or less.
[0020]
It should be noted that the figure showing the present embodiment shows a part of the shock absorbing member 1, and the number of the main ribs and the sub ribs should be appropriately determined according to the maximum compressive stress required in the field of use. Can be. In addition, the entire shape of the shock absorbing member 1 can be formed into various shapes according to the application.
In the present embodiment, the thickness of the sub rib continuously changes, but may be changed stepwise so that some have the same thickness and then some have different thicknesses. .
In the present embodiment, the thickness of the sub rib is 25% to 75% of the thickness of the main rib, but can be appropriately set within 100% of the thickness of the main rib. 5% or more.
[0021]
In the present embodiment, as shown in FIG. 3, the thickness of the sub-ribs 13 in the row in the direction of arrow A in FIG. 2 is the same, but sub-ribs having different thicknesses are provided between main ribs, Thus, a toothless configuration without auxiliary ribs can be obtained.
FIG. 4 is a partial cross-sectional view of the shock absorbing member when the thickness of the sub rib 13 is reduced continuously in FIG.
As described above, the sub-ribs 13 include the portions 130, 131, and 132 having different thicknesses between the main ribs.
Further, the width of the sub rib may be the same or may be changed between the main ribs 12. Similarly, the width and thickness of the main rib can be changed for each main rib. When the thicknesses of the main ribs are different, the thickness of the sub-rib should be within 100% of the thickness of the adjacent main rib.
[0022]
As shown in FIG. 2, the lattice shape may be not only a quadrangle shape in which the main ribs 12 and the sub ribs 13, 14, 15 intersect at right angles, but also a polygonal shape such as a triangular shape or a hexagonal shape. These can exert the same effect by clearly separating the main rib 12 and the sub rib. However, a quadrangular shape is preferable because the manufacture of the mold and the design of the maximum stress value become complicated. Further, a part of the main rib and the sub rib may be missing.
[0023]
The cross-sectional shape of the main rib 12 is not limited to a trapezoid, and may be a rectangle, a triangle, a semicircle, or the like. Further, the width is not limited to the one that continuously changes, but may be one that changes stepwise along the direction in which the impact load acts. By doing so, there is an advantage that a decrease in stress due to rib breakage can be suppressed in response to an impact, and a sharp increase in stress can be suppressed even when the compressive strain increases.
Similarly, the sectional shape of the sub ribs 13, 14, 15 is not limited to a rectangle, but may be a trapezoid, a triangle, a semicircle, or the like.
[0024]
Various members can be used as the members constituting the base 11, the main ribs 12, and the sub-ribs 13, 14, and 15 of the shock absorbing member 1 depending on the intended use. Preferably, it is composed of a foamed thermoplastic resin.
Various materials can be used as the thermoplastic resin material used for the shock absorbing member 1. For example, polystyrene, and styrene, acrylonitrile, methacrylonitrile, α-methylstyrene, maleic anhydride, maleimide monomers such as phenylmaleimidocyclohexylmaleimide, acrylic acid, acrylic acid monomers such as acrylic acid esters, Styrene-based copolymers obtained by copolymerizing methacrylic monomers such as methacrylic acid and methacrylic esters, or homopolymers of methacrylic monomers, methacrylic monomers and acrylic monomers And olefin-based resins such as polyethylene and polypropylene.
[0025]
Among the above, styrene-based copolymers are preferred in terms of production cost, recyclability, foam moldability, and the like, and acrylonitrile-styrene copolymers having excellent heat resistance and oil resistance are preferred in terms of production cost and performance. . Further, by using such a material, the impact absorbing member of the present invention can be applied to a bumper, a ceiling, a door, a side collision pad, and the like of an automobile.
As the resin of the foamable acrylonitrile / styrene copolymer, for example, Hitachi Chemical Co., Ltd. (trade name: HIBEADS GR) can be used. Of course, other resins may be used as long as they satisfy the above-described requirements of the present invention and can be used as impact-absorbing members for automobiles.
[0026]
As the foaming agent of the thermoplastic resin used in the shock absorbing member of the present invention, a foaming agent generally used for producing an expandable styrene resin or the like can be used. The foaming agent is preferably a gas or a liquid at normal temperature and normal pressure, and is preferably a volatile organic compound that does not dissolve the thermoplastic resin. For example, aliphatic hydrocarbons such as butane, propane and pentane, and cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane are exemplified. If necessary, an organic solvent such as ethylbenzene, toluene, styrene, or xylene capable of dissolving or swelling the thermoplastic resin, epoxidized soybean oil, or vegetable oil may be used as the plasticizer.
[0027]
The impact-absorbing member of the present invention is obtained by first foaming the expandable thermoplastic resin particles containing the thermoplastic resin and the foaming agent to obtain expanded thermoplastic resin particles having a predetermined density, and then forming a metal having a predetermined shape. It is formed by filling and heating the mold.
The foamed thermoplastic resin obtained by primary foaming the thermoplastic resin must generate an appropriate compressive stress according to the use of the shock absorbing member when an impact load is applied.
If the compressive stress is too large, the repulsive force when the impact load acts becomes too large to absorb the impact sufficiently, and if it is too small, it cannot withstand the impact load and easily breaks. As a result, desired impact absorption performance cannot be obtained.
[0028]
When the impact absorbing member of the present invention is applied to an automobile, the range of the compressive stress is 0.01 to 2.5 MPa when the compressive strain measured according to the method specified in JIS-Z0235 is 0.5. Is preferably within the range.
This is because when the compressive strain becomes 0.5, if the compressive stress is less than 0.01 MPa, the compressive stress is too small, and it is not possible to obtain a sufficient shock absorbing performance. If it is too high, the compressive stress is too large, and the repulsive force against the impact load becomes large, so that it is difficult to absorb the impact, and there is a problem that the impact absorbing performance is reduced.
In the above range, the more preferable range of the compressive stress is 0.05 to 2.0 MPa, and the more preferable range of the compressive stress is 0.1 to 1.5 MPa.
[0029]
The density of the foamed thermoplastic resin constituting the impact absorbing member of the present invention is preferably 0.02 g / ml to 0.2 g / ml or less. If the density is less than 0.02 g / ml, it may be difficult to obtain physical properties to achieve the required stress. If the density is more than 0.2 g / ml, not only the stress value becomes high, but also the Weight reduction may be difficult. More preferably, it is 0.04 g / ml to 0.1 g / ml.
[0030]
FIG. 5 is a perspective view showing one embodiment of the combination of the shock absorbing members of the present invention.
In this embodiment, two shock absorbing members 1 shown in FIG. 1 are prepared, and each of them is combined on the second surface 112 of the base 11 in the direction in which an impact load is applied.
As described above, by stacking a plurality of shock absorbing members in the direction in which the shock load acts, it is possible to obtain a shock absorbing member exhibiting a large shock absorbing performance against a larger shock load.
In this embodiment, when used in applications where the crushing allowance is large, even if the compression strain fluctuates greatly, the impact can be absorbed at a compression stress equal to or less than the compression stress set in advance in the design of the main rib 12, so that a greater impact energy can be absorbed. .
[0031]
In the shock absorbing member of the present invention, the shock absorbing performance of the foamed resin and the specific lattice rib structure work synergistically, and high shock absorbing performance can be exhibited.
Further, since the main rib has several kinds of different bending points in the thickness direction, even if the compressive strain increases, the compressive stress does not increase rapidly, so that the impact energy can be effectively absorbed.
INDUSTRIAL APPLICABILITY The impact absorbing member of the present invention can be applied to bumpers, ceilings, doors, side impact pads, and the like of automobiles.
[0032]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[0033]
Example 1
As the expanded thermoplastic resin particles, an expandable acrylonitrile-styrene copolymer resin (HIBEADS GR, manufactured by Hitachi Chemical Co., Ltd.) was used. This resin was pre-foamed to a bulk density of 0.0556 g / ml (expansion number: 18 times) using a batch-type foaming machine for foamed polystyrene (foaming machine manufactured by Hitachi Chemical Technoplant Co., Ltd .: HBP-500LW), followed by molding. Until 18 hours, it was stored in a well-ventilated silo.
Subsequently, a predetermined mold is set on a molding machine for styrofoam (Moldex 10VS, manufactured by Hitachi Chemical Co., Ltd.), the mold is clamped, and then a step of filling the foamed particles is performed with steam having a gauge pressure of 0.08 MPa. After heating for 2 seconds, a water cooling step and a vacuum cooling step were performed to obtain an impact absorbing member.
FIG. 6 is a perspective view of the shock absorbing member manufactured in Example 1.
The shock absorbing member 2 has six main ribs 12 on the base 11, and one row each of the sub ribs 21 and the sub ribs 22. The sub ribs 21 have the same thickness as the main ribs 12, and the sub ribs 32 have the same thickness. Has a thickness of 50% of the main rib 12.
[0034]
Example 2
An impact absorbing member having a sub-rib having a thickness of 75% of the main rib 12 instead of the sub-rib 22 was prepared in the same manner as in Example 1 except that the mold was replaced.
[0035]
Example 3
An impact absorbing member was produced in the same manner as in Example 1 except that the mold was replaced.
FIG. 7 is a perspective view of the shock absorbing member manufactured in the third embodiment.
The shock absorbing member 3 has the same configuration of the main ribs 12 and the sub ribs 21 as in the first embodiment, except that sub ribs 31 are provided on the same row instead of the sub ribs 22. The sub-ribs 31 were alternately changed between the main ribs 12 to have a thickness of 75% of the main ribs 12 and a thickness of 50% of the main ribs 12.
[0036]
Comparative Example 1
An impact absorbing member was produced in the same manner as in Example 1 except that the mold was replaced.
FIG. 8 is a perspective view of the shock absorbing member manufactured in Comparative Example 1.
The shock absorbing member 4 has the same configuration as that of the first embodiment except that the sub rib 22 is not provided.
[0037]
Comparative Example 2
An impact absorbing member was produced in the same manner as in Example 1 except that the mold was replaced.
FIG. 9 is a perspective view of the shock absorbing member manufactured in Comparative Example 2.
The shock absorbing member 5 has the same configuration as that of the first embodiment except that the sub-rib 22 is replaced with the sub-rib 51 having the same thickness as the main rib 12.
Table 1 shows dimensions and physical properties of the shock absorbing members manufactured in each of the examples and the comparative examples.
[0038]
[Table 1]
Figure 2004098774
[0039]
Evaluation Example An impact load test was performed on the obtained shock absorbing member as a specimen having a length of 140 mm × a width of 140 mm × a thickness of 70 mm. In the impact load test, a weight that has a plane wider than the specimen and whose mass can be varied is dropped at a specified speed perpendicular to the surface of the specimen, and the acceleration (G value) generated by the weight and the thickness change of the specimen Was measured to evaluate the shock absorbing performance of the shock absorbing member. The weight was 5 kg and the drop height was 1.3 m.
FIG. 10 is a diagram showing the relationship between the compressive strain and the compressive load of each shock absorbing member.
From these results, it was confirmed that the compressive load of the shock absorbing members of Comparative Examples 1 and 2 greatly fluctuated due to the compressive strain, and the shock absorbing member of the present invention exhibited a greater change in the compressive strain than the comparative example. It was confirmed that even when the change in the compressive load was small and the compressive strain was large, a stable value was exhibited.
That is, it is suggested that when an impact load is applied, the compressive stress changes between a predetermined dynamic compression strain and a predetermined value or less, so that higher shock absorbing performance can be exhibited.
Therefore, it was shown that the shock absorbing member of the present invention has a shock absorbing performance suitable for an automobile shock absorbing material.
[0040]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, when an impact load acts, the shock absorption member which exhibits the high impact absorption performance by expanding the range of the compression strain which shows the allowable compression stress or less can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view of a part of a shock absorbing member according to an embodiment of the present invention.
FIG. 2 is a plan view of the shock absorbing member of FIG.
FIG. 3 is a partial cross-sectional view of the shock absorbing member along AA in FIG. 2;
FIG. 4 is a partial cross-sectional view of the shock absorbing member in FIG. 3 in which the thickness of a sub rib is changed.
FIG. 5 is a perspective view showing a combination of the shock absorbing members 1;
FIG. 6 is a perspective view of the shock absorbing member manufactured in Example 1.
FIG. 7 is a perspective view of a shock absorbing member manufactured in Example 3.
FIG. 8 is a perspective view of a shock absorbing member manufactured in Comparative Example 1.
FIG. 9 is a perspective view of a shock absorbing member manufactured in Comparative Example 2.
FIG. 10 is a diagram showing the relationship between the compressive strain and the compressive load of the shock absorbing members of Examples 1 to 3 and Comparative Examples 1 and 2.
[Explanation of symbols]
1, 2, 3 Shock absorbing member 11 Base 12 Main ribs 13, 14, 15, 21, 22, 31, 32 Sub rib 111 First surface 112 Second surface 122 Upper bottom (tip of main rib)
t1, t2, t3 Thickness of sub ribs t4 Thickness of main ribs t5 Total thickness w1 of shock absorbing member Width of bottom bottom of main ribs (width of main ribs)
w2 Width of main rib top and bottom (width of main rib)

Claims (11)

第1及び第2の面を有する基部と、
前記基部の第1の面の上に形成される主リブと、
前記主リブと交わって、前記基部の第1の面の上に形成される、少なくとも1つ以上の副リブとを具備し、
前記少なくとも1つ以上の副リブの厚さが前記主リブの厚さの100%以内であって、さらに、前記少なくとも1つ以上の副リブの厚さが異なる衝撃吸収部材。
A base having first and second surfaces;
A main rib formed on a first surface of the base;
Intersecting with the main rib, formed on the first surface of the base, at least one or more sub-ribs,
A shock absorbing member, wherein the thickness of the at least one or more sub-ribs is within 100% of the thickness of the main rib, and the thickness of the at least one or more sub-ribs is different.
請求項1の衝撃吸収部材において、前記基部が無い衝撃吸収部材。2. The shock absorbing member according to claim 1, wherein the base is not provided. 前記基部、前記主リブ及び前記副リブが、発泡熱可塑性樹脂からなる請求項1又は2に記載の衝撃吸収部材。The impact absorbing member according to claim 1, wherein the base, the main rib, and the sub rib are made of a foamed thermoplastic resin. 少なくとも2つの主リブと、少なくとも1つ以上の副リブにより、格子状構成が形成されている請求項1〜3のいずれか一項に記載の衝撃吸収部材。The shock absorbing member according to any one of claims 1 to 3, wherein a lattice-like configuration is formed by at least two main ribs and at least one or more sub ribs. 少なくとも1つ以上の副リブの厚さが、複数の主リブ間で、異なる請求項1〜4のいずれか一項に記載の衝撃吸収部材。The shock absorbing member according to any one of claims 1 to 4, wherein the thickness of at least one or more sub-ribs differs between the plurality of main ribs. 前記複数の副リブの厚さが、連続的又は段階的に変化する請求項1〜5のいずれか一項に記載の衝撃吸収部材。The shock absorbing member according to claim 1, wherein the thickness of the plurality of sub ribs changes continuously or stepwise. 前記主リブの平均幅が、前記衝撃吸収部材の全厚の、0.05倍〜0.3倍である請求項1〜6のいずれか一項に記載の衝撃吸収部材。The shock absorbing member according to any one of claims 1 to 6, wherein an average width of the main rib is 0.05 to 0.3 times a total thickness of the shock absorbing member. 前記主リブの幅が、前記基部側から前記主リブの先端側までテーパ状に減少し、前記基部に対する垂線から前記主リブまでの傾斜角度αが、0°≦α≦7°である請求項1〜7のいずれか一項に記載の衝撃吸収部材。The width of the main rib is tapered from the base side to the tip end side of the main rib, and an inclination angle α from a perpendicular to the base to the main rib is 0 ° ≦ α ≦ 7 °. The shock absorbing member according to any one of claims 1 to 7. 前記発泡熱可塑性樹脂の密度が、0.02g/ml〜0.2g/mlである請求項1〜8のいずれか一項に記載の衝撃吸収部材。The impact absorbing member according to any one of claims 1 to 8, wherein the foamed thermoplastic resin has a density of 0.02 g / ml to 0.2 g / ml. 前記発泡熱可塑性樹脂が、スチレン系共重合体である請求項1〜9のいずれか一項に記載の衝撃吸収部材。The shock absorbing member according to any one of claims 1 to 9, wherein the foamed thermoplastic resin is a styrene-based copolymer. 複数の、請求項1〜10のいずれか一項に記載の衝撃吸収部材の組み合わせ。A plurality of combinations of the shock absorbing members according to any one of claims 1 to 10.
JP2002261084A 2002-09-06 2002-09-06 Shock absorbing member Expired - Fee Related JP4082145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261084A JP4082145B2 (en) 2002-09-06 2002-09-06 Shock absorbing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261084A JP4082145B2 (en) 2002-09-06 2002-09-06 Shock absorbing member

Publications (2)

Publication Number Publication Date
JP2004098774A true JP2004098774A (en) 2004-04-02
JP4082145B2 JP4082145B2 (en) 2008-04-30

Family

ID=32261554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261084A Expired - Fee Related JP4082145B2 (en) 2002-09-06 2002-09-06 Shock absorbing member

Country Status (1)

Country Link
JP (1) JP4082145B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001373A (en) * 2005-06-22 2007-01-11 Hayashi Telempu Co Ltd Shock absorber
JP2007297032A (en) * 2006-04-07 2007-11-15 Hitachi Chem Co Ltd Impact absorption member
JP2008151312A (en) * 2006-12-20 2008-07-03 Hitachi Chem Co Ltd Impact absorbing member
JP2012197078A (en) * 2006-04-07 2012-10-18 Jsp Corp Impact absorption member
JP2013126800A (en) * 2011-12-16 2013-06-27 Jsp Corp Impact absorbing member for vehicle
JP2013208936A (en) * 2012-03-30 2013-10-10 Fuji Heavy Ind Ltd Impact absorber
JP2013212730A (en) * 2012-03-30 2013-10-17 Fuji Heavy Ind Ltd Vehicle
WO2013187490A1 (en) * 2012-06-14 2013-12-19 株式会社ニフコ Load-transmitting member and structure for attaching load-transmitting member to vehicle door
WO2015045808A1 (en) * 2013-09-26 2015-04-02 キョーラク株式会社 Impact-energy-absorbing body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001373A (en) * 2005-06-22 2007-01-11 Hayashi Telempu Co Ltd Shock absorber
JP2007297032A (en) * 2006-04-07 2007-11-15 Hitachi Chem Co Ltd Impact absorption member
JP2012197078A (en) * 2006-04-07 2012-10-18 Jsp Corp Impact absorption member
JP2008151312A (en) * 2006-12-20 2008-07-03 Hitachi Chem Co Ltd Impact absorbing member
JP2013126800A (en) * 2011-12-16 2013-06-27 Jsp Corp Impact absorbing member for vehicle
JP2013212730A (en) * 2012-03-30 2013-10-17 Fuji Heavy Ind Ltd Vehicle
JP2013208936A (en) * 2012-03-30 2013-10-10 Fuji Heavy Ind Ltd Impact absorber
WO2013187490A1 (en) * 2012-06-14 2013-12-19 株式会社ニフコ Load-transmitting member and structure for attaching load-transmitting member to vehicle door
JPWO2013187490A1 (en) * 2012-06-14 2016-02-08 株式会社ニフコ Load transmission member and load transmission member mounting structure to automobile door
US9321331B2 (en) 2012-06-14 2016-04-26 Nifco, Inc. Load-transmitting member and vehicle door attachment structure thereof
WO2015045808A1 (en) * 2013-09-26 2015-04-02 キョーラク株式会社 Impact-energy-absorbing body
JPWO2015045808A1 (en) * 2013-09-26 2017-03-09 キョーラク株式会社 Impact energy absorber
US10006515B2 (en) 2013-09-26 2018-06-26 Kyoraku Co., Ltd. Impact energy absorber

Also Published As

Publication number Publication date
JP4082145B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
JP4970790B2 (en) Bumper core material and bumper structure
US8701891B2 (en) Energy dissipation structure with support pillar for packaging fragile articles
KR20030031983A (en) Composite energy absorber
CA2584822A1 (en) Impact-absorbing members for dynamic impact applications
JP4082145B2 (en) Shock absorbing member
JP5190190B2 (en) Shock absorbing member
JP2003127796A (en) Shock absorbing floor spacer for automobile
US8511473B1 (en) Energy dissapation structure for packaging fragile articles
WO2015163311A1 (en) Shock absorbing member
KR100614287B1 (en) Shock absorbing pad for vehicle
JP4082095B2 (en) Shock absorbing member
JP2004360790A (en) Energy absorbing member
US7131617B2 (en) Modified spring system end cap for packaging fragile articles within shipping cartons
JP4951164B2 (en) Shock absorbing member
EP1348884A1 (en) Formable energy absorber utilizing a foam stabilized corrugated ribbon
JP5329698B2 (en) Shock absorbing member
JP2005083399A (en) Shock absorbing member
JP2007022371A (en) Shock absorber
JP5933248B2 (en) Shock absorbing member for vehicle
JP2002333047A (en) Shock absorbing material for automobile
JP2009040294A (en) Impact absorption member
JP5073302B2 (en) Lower limb shock absorption pad
JP4576311B2 (en) Shock absorber for vehicles
JP4021929B2 (en) Shock-absorbing automotive floor spacer
JP4106967B2 (en) Buffer protrusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R151 Written notification of patent or utility model registration

Ref document number: 4082145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees