JP2004097870A - Adsorbent for removing sulfur compound and manufacturing method for hydrogen for fuel cell - Google Patents

Adsorbent for removing sulfur compound and manufacturing method for hydrogen for fuel cell Download PDF

Info

Publication number
JP2004097870A
JP2004097870A JP2002259768A JP2002259768A JP2004097870A JP 2004097870 A JP2004097870 A JP 2004097870A JP 2002259768 A JP2002259768 A JP 2002259768A JP 2002259768 A JP2002259768 A JP 2002259768A JP 2004097870 A JP2004097870 A JP 2004097870A
Authority
JP
Japan
Prior art keywords
adsorbent
hydrocarbon
containing gas
oxide
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002259768A
Other languages
Japanese (ja)
Other versions
JP4216548B2 (en
Inventor
Kozo Takatsu
高津 幸三
Takeji Takekoshi
竹越 岳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002259768A priority Critical patent/JP4216548B2/en
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to AU2003261728A priority patent/AU2003261728A1/en
Priority to CA2497899A priority patent/CA2497899C/en
Priority to EP03794097A priority patent/EP1550505A4/en
Priority to PCT/JP2003/010781 priority patent/WO2004022224A1/en
Priority to CNB038210339A priority patent/CN100469434C/en
Priority to KR1020057003716A priority patent/KR100973876B1/en
Priority to US10/526,397 priority patent/US7556872B2/en
Publication of JP2004097870A publication Critical patent/JP2004097870A/en
Application granted granted Critical
Publication of JP4216548B2 publication Critical patent/JP4216548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent for removing a sulfur compound, capable of efficiently removing a sulfur component in a hydrocarbon-containing gas up to a low concentration at room temperature. <P>SOLUTION: The adsorbent for removing the sulfur compound in the hydrocarbon-containing gas supports at least one component, which is selected from silver, silver oxide, copper and a copper oxide, on a carrier containing an oxide of a metal element of the group III. After this adsorbent is used to subject the sulfur compound in the hydrocarbon-containing gas to desulfurization treatment, the desulfurized hydrocarbon-containing gas is brought into contact with a partial oxidation catalyst, an autothermal modifying catalyst or a steam reforming catalyst to produce hydrogen for a fuel cell. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、硫黄化合物除去用吸着剤及び燃料電池用水素の製造方法に関し、さらに詳しくは、炭化水素含有ガス中の硫黄分を、室温においても低濃度まで効率よく除去し得る硫黄化合物除去用吸着剤、及び上記吸着剤を用いて脱硫処理した炭化水素含有ガスから、燃料電池用水素を効果的に製造する方法に関する。
【0002】
【従来の技術】
LPGや都市ガスなどを改質して燃料電池用水素を製造する場合、改質触媒の被毒を抑制するためには、ガス中の硫黄分を0.01ppm以下に低減させることが要求される。また、プロピレンやブテンなどは、石油化学製品の原料として使用する場合、やはり触媒の被毒を防ぐためには、硫黄分を0.01ppm以下に低減させることが要求される。
前記LPG中には、硫黄化合物として、一般にメチルメルカプタンや硫化カルボニル(COS)などに加えて、着臭剤として添加されたジメチルサルファイド(DMS)、t−ブチルメルカプタン(TBM)、メチルエチルサルファイドなどが含まれている。このようなLPGなどの燃料ガス中の硫黄分を吸着除去するための各種吸着剤が知られている。しかしながら、これらの吸着剤は、150〜300℃程度では高い脱硫性能を示すものがあるが、常温での脱硫性能については、必ずしも充分に満足し得るものではないのが実状であった。
【0003】
例えば、疎水性ゼオライトにAg,Cu、Zn、Fe、Co、Niなどをイオン交換により担持させた脱硫剤(例えば特許文献1参照)や、Y型ゼオライト、β型ゼオライト又はX型ゼオライトにAg又はCuを担持した脱硫剤(例えば、特許文献2参照)が開示されている。しかしながら、これらの脱硫剤は、メルカプタン類やサルファイド類を室温において効率的に吸着除去し得るものの、硫化カルボニルをほとんど吸着しないことがわかった。
また、銅−亜鉛系脱硫剤が開示されている(例えば、特許文献3参照)。しかしながら、この脱硫剤においては、150℃以上の温度ではCOSを含む各種硫黄化合物を吸着除去できるが、100℃以下の低い温度では、硫黄化合物に対する吸着性能が低い。さらに、アルミナなどの多孔質担体に銅を担持した脱硫剤が開示されている(例えば、特許文献4参照)。この脱硫剤は100℃以下の温度でも使用できるとしているが、その吸着性能については十分に満足し得るものではない。
【0004】
【特許文献1】
特開2001−286753号公報
【特許文献2】
特開2001−305123号公報
【特許文献3】
特開平2−302496号公報(第2頁)
【特許文献4】
特開2001−123188号公報(第3頁)
【0005】
【発明が解決しようとする課題】
本発明は、このような状況下で、炭化水素含有ガス中の硫黄分を、室温においても低濃度まで効率よく除去し得る硫黄化合物除去用吸着剤、及び上記吸着剤を用いて脱硫処理した炭化水素含有ガスから、燃料電池用水素を効果的に製造する方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の金属酸化物を含む担体に、ある種の金属やその酸化物を担持したものが、硫黄化合物除去用吸着剤としてその目的に適合し得ること、そしてこの吸着剤を用いて脱硫処理した炭化水素含有ガスを改質処理することにより、燃料電池用水素が効果的に得られることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1)周期表第3族に属する金属元素の酸化物を含む担体に、銀及びその酸化物並びに銅及びその酸化物の中から選ばれる少なくとも一種を担持させてなる、炭化水素含有ガス中の硫黄化合物除去用吸着剤、
(2)周期表第3族に属する金属元素の酸化物が、La、Ce、Sc、Y、Nd、Pr、Sm、Gd及びYbの中から選ばれる少なくとも一種の金属の酸化物である上記(1)の炭化水素含有ガス中の硫黄化合物除去用吸着剤、
(3)周期表第3族に属する金属元素の酸化物が、La、Yb、Y及びCeの中から選ばれる少なくとも一種の金属の酸化物である上記(2)の炭化水素含有ガス中の硫黄化合物除去用吸着剤、
(4)炭化水素含有ガスが、LPG、都市ガス、天然ガス、又はエタン、エチレン、プロパン、プロピレン及びブタンの中から選ばれる少なくとも一種を含むガスである上記(1)〜(3)の炭化水素含有ガス中の硫黄化合物除去用吸着剤、
(5)銀及びその酸化物並びに銅及びその酸化物の中から選ばれる少なくとも一種の担持量が、金属として、吸着剤全量に基づき1〜50質量%である上記(1)〜(4)の炭化水素含有ガス中の硫黄化合物除去用吸着剤、
(6)銀及びその酸化物並びに銅及びその酸化物の中から選ばれる少なくとも一種の担持量が、金属として、吸着剤全量に基づき3〜30質量%である請求項5記載の炭化水素含有ガス中の硫黄化合物除去用吸着剤、
(7)周期表第3族に属する金属元素の酸化物の含有量が5〜99質量%である上記(1)〜(6)の炭化水素含有ガス中の硫黄化合物除去用吸着剤、
(8)上記(1)〜(7)の吸着剤を用いて、炭化水素含有ガス中の硫黄化合物を脱硫処理したのち、脱硫処理炭化水素含有ガスを部分酸化触媒、オートサーマル改質触媒又は水蒸気改質触媒と接触させることを特徴とする燃料電池用水素の製造方法、及び
(9)部分酸化触媒、オートサーマル改質触媒又は水蒸気改質触媒がルテニウム系又はニッケル系触媒である上記(8)の燃料電池用水素の製造方法、
を提供するものである。
【0007】
【発明の実施の形態】
本発明の硫黄化合物吸着剤は、周期表第3族に属する金属元素の酸化物を含む担体に、活性金属種を担持させたものであり、そして該活性金属種として、銀及びその酸化物並びに銅及びその酸化物の中から選ばれる少なくとも一種が用いられる。
当該吸着剤においては、前記活性金属種の含有量は、金属(銀及び/又は銅)として、1〜50質量%の範囲が好ましい。この活性金属種の含有量が1質量%未満では十分な脱硫性能が発揮されないおそれがあり、一方50質量%を超えると担体の割合が少なくなって、吸着剤の機械的強度や脱硫性能が低下する原因となる。該活性金属種のより好ましい含有量は、金属として3〜30質量%の範囲である。
一方、当該吸着剤における担体としては、周期表第3族に属する金属元素の酸化物単独からなるものであってもよく、耐火性多孔質担体に、周期表第3族に属する金属元素の酸化物を含有させたものであってもよいが、当該吸着剤中の上記周期表第3族に属する金属元素の酸化物の含有量は、5〜99質量%の範囲が好ましい。この含有量が上記範囲を逸脱すると十分な脱硫性能が発揮されない場合がある。周期表第3族に属する金属元素の酸化物のより好ましい含有量は10〜97質量%の範囲である。
【0008】
前記周期表第3族に属する金属元素の酸化物としては、例えばLa、Ce、Sc、Y、Nd、Pr、Sm、Gd及びYbの中から選ばれる金属の酸化物を好ましく挙げることができる。これらの金属の酸化物は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよいが、これらの中で、La、Ce、Y、Ybの酸化物がより好ましく、特にLa、Ceの酸化物が好適である。
当該吸着剤において、担体として、耐火性多孔質担体に前記周期表第3族に属する金属元素の酸化物を含有させたものを用いる場合には、該耐火性多孔質担体としては、例えばシリカ、アルミナ、シリカ−アルミナ、チタニア、ジルコニア、ゼオライト、マグネシア、珪藻土、白土及び粘土などの中から選ばれる少なくとも一種を用いることができる。
本発明において、周期表第3族に属する金属元素の酸化物単独からなる担体を調製するには、例えば周期表第3族に属する金属元素源、具体的には該金属元素の硝酸塩などを含む水溶液とアルカリ水溶液とを接触させて沈殿を生成させ、次いで該沈殿をろ取、水洗し、50〜200℃程度の温度で乾燥したのち、250〜500℃程度の温度で焼成処理すればよい。
【0009】
また、耐火性多孔質担体に、周期表第3族に属する金属元素の酸化物を含有させるには、従来公知の方法、例えばポアフィリング法、浸漬法、蒸発乾固法などを用いることができる。この際、乾燥温度は、通常50〜200℃程度であり、焼成温度は、通常250〜500℃程度である。
このようにして調製された担体に、銀や銅の活性金属種を担持させる方法としては、上記と同様に従来公知の方法、例えばポアフィリング法、浸漬法、蒸発乾固法などを採用することができる。この際、乾燥温度は、通常50〜200℃程度であり、また焼成温度は、通常250〜500℃程度である。
このようにして得られた本発明の吸着剤は、LPG、都市ガス、天然ガス、又はエタン、エチレン、プロパン、プロピレン及びブタンの中から選ばれる少なくとも一種を含むガスなどの炭化水素含有ガス中の硫黄化合物に対し、優れた脱硫性能を示す。例えばメルカプタン類、サルファイド類、COSなど、ガス中に含まれるあらゆる硫黄化合物に対し、常温でも優れた吸着性能を示す。
【0010】
本発明の吸着剤が適用される炭化水素含有ガス中の硫黄化合物の濃度としては、0.001〜10,000容量ppmが好ましく、特に0.1〜100容量ppmが好ましい。また、脱硫条件としては、通常温度は−50〜350℃の範囲で選ばれ、GHSV(ガス時空間速度)は100〜1,000,000h−1の範囲で選ばれる。
次に、本発明の燃料電池用水素の製造方法においては、前述の本発明の吸着剤を用いて、炭化水素含有ガス中の硫黄化合物を脱硫処理したのち、脱硫処理炭化水素含有ガスを部分酸化触媒、オートサーマル改質触媒又は水蒸気改質触媒と接触させることにより、水素を製造する。
この方法においては、脱硫処理炭化水素含有ガス中の硫黄化合物の濃度は、各改質触媒の寿命の点から、0.2容量ppm以下が好ましく、特に0.05容量ppm以下が好ましい。
また、部分酸化触媒、オートサーマル改質触媒および水蒸気改質触媒としては、ニッケル系又はルテニウム系触媒が好適である。また、部分酸化法、オートサーマル改質法及び水蒸気改質法としては、特に制限はなく従来公知の方法を適用することができる。
【0011】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
実施例1
硝酸セリウム30質量%水溶液を、約50℃に保持した1モル/リットル濃度の水酸化ナトリウム水溶液に攪拌しながら滴下し、沈殿を生成させた。次いで、生成した沈殿をろ取し、十分に水洗したのち、120℃で乾燥後、400℃で焼成処理し、酸化セリウムを得た。
次に、この酸化セリウムに42質量%濃度の硝酸銀水溶液を含浸させ、乾燥したのち、400℃で焼成処理することにより、吸着剤を得た。この吸着剤中のAgの含有量は10質量%であった。
【0012】
実施例2
実施例1において、硝酸銀水溶液の代わりに硝酸銅水溶液を用いた以外は、実施例1と同様に吸着剤を調製した。この吸着剤中のCuの含有量は10質量%であった。
実施例3
実施例1において、Agの含有量を20質量%とした以外は、実施例1と同様にして吸着剤を調製した。
実施例4
実施例1において、Agの含有量を5質量%とした以外は、実施例1と同様にして吸着剤を調製した。
【0013】
実施例5
実施例1において、硝酸セリウム水溶液の代わりに硝酸ランタン水溶液を用いた以外は、実施例1と同様にして吸着剤を調製した。この吸着剤中のAgの含有量は10質量%であった。
実施例6
実施例1において、硝酸セリウム水溶液の代わりに硝酸イッテルビウム水溶液を用いた以外は、実施例1と同様にして吸着剤を調製した。この吸着剤中のAgの含有量は10質量%であった。
実施例7
実施例1において、硝酸セリウム水溶液の代わりに硝酸イットリウム水溶液を用いた以外は、実施例1と同様にして吸着剤を調製した。この吸着剤中のAgの含有量は10質量%であった。
【0014】
実施例8
アルミナに硝酸セリウム51質量%水溶液を含浸させ、乾燥後、400℃で焼成処理し、CeOとして20質量%を含有する担体を得た。次いで、この担体に19質量%濃度の硝酸銀水溶液を含浸させ、乾燥したのち、400℃で焼成処理することにより、吸着剤を得た。この吸着剤中の酸化セリウムの含有量はCeOとして18質量%、Agの含有量は10質量%であった。
比較例1
β型ゼオライト(東ソー社製、商品名「HSZ−930NHA」)をAgイオンと交換したのち、500℃で焼成することにより、Ag交換β型ゼオライトからなる吸着剤を得た。この吸着剤中のAgの含有量は6.5質量%であった。
比較例2
市販のCuZnAl触媒(ズードケミー社製、触媒「G−132B」)を吸着剤とした。
比較例3
市販のAg/Al触媒(ズードケミー社製、触媒「T−2552」)を吸着剤とした。
比較例4
実施例1で調製した酸化セリウム(Ag未担持)を吸着剤とした。
【0015】
試験例1
実施例1〜8及び比較例1〜4の各吸着剤を0.5〜1mmに成型し、吸着剤1cmを内径9mmの脱硫管に充填した。常圧で吸着剤温度を20℃とし、COS、ジメチルサルファイド(DMS)、t−ブチルメルカプタン(TBM)及びジメチルジサルファイド(DMDS)を各10volppm(合計40volppm)含むプロパンガスを、常圧、GHSV(ガス時空間速度)30,000h−1の条件で流通させた。
脱硫管出口ガスの各硫黄化合物濃度をSCD(化学発光硫黄検出器)ガスクロマトグラフィーにより、1時間毎に測定した。第1表に、各硫黄化合物濃度が0.1volppmを超える時間を示した。
【0016】
【表1】

Figure 2004097870
【0017】
第1表から明らかなように、本発明の吸着剤(実施例1〜8)は、炭化水素含有ガス中の硫黄化合物を、常温において効率よく吸着除去し得ることが分かる。
【0018】
【発明の効果】
本発明によれば、炭化水素含有ガス中の硫黄分を、室温においても低濃度まで効率よく除去し得る硫黄化合物除去用吸着剤、及び上記吸着剤を用いて脱硫処理した炭化水素含有ガスから、燃料電池用水素を効果的に製造する方法を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an adsorbent for removing sulfur compounds and a method for producing hydrogen for a fuel cell, and more particularly, to an adsorbent for removing sulfur compounds that can efficiently remove a sulfur content in a hydrocarbon-containing gas to a low concentration even at room temperature. The present invention relates to a method for effectively producing hydrogen for fuel cells from a hydrocarbon-containing gas desulfurized using the adsorbent and the adsorbent.
[0002]
[Prior art]
When producing hydrogen for fuel cells by reforming LPG or city gas, it is necessary to reduce the sulfur content in the gas to 0.01 ppm or less in order to suppress poisoning of the reforming catalyst. . In addition, when propylene, butene, or the like is used as a raw material for petrochemical products, it is required to reduce the sulfur content to 0.01 ppm or less in order to prevent poisoning of the catalyst.
In the LPG, dimethyl sulfide (DMS), t-butyl mercaptan (TBM), methyl ethyl sulfide and the like added as an odorant are generally added as sulfur compounds in addition to methyl mercaptan and carbonyl sulfide (COS). include. Various adsorbents for adsorbing and removing sulfur in fuel gas such as LPG are known. However, although some of these adsorbents show high desulfurization performance at about 150 to 300 ° C., the actual situation is that the desulfurization performance at room temperature is not always sufficiently satisfactory.
[0003]
For example, a desulfurizing agent in which Ag, Cu, Zn, Fe, Co, Ni, or the like is supported on a hydrophobic zeolite by ion exchange (for example, see Patent Document 1), or Ag or Y on a zeolite, a β zeolite, or an X zeolite A desulfurizing agent supporting Cu (for example, see Patent Document 2) is disclosed. However, it has been found that these desulfurizing agents can efficiently adsorb and remove mercaptans and sulfides at room temperature, but hardly adsorb carbonyl sulfide.
Further, a copper-zinc-based desulfurizing agent is disclosed (for example, see Patent Document 3). However, this desulfurizing agent can adsorb and remove various sulfur compounds including COS at a temperature of 150 ° C. or higher, but has low adsorption performance for sulfur compounds at a low temperature of 100 ° C. or lower. Furthermore, a desulfurizing agent in which copper is supported on a porous carrier such as alumina is disclosed (for example, see Patent Document 4). Although it is stated that this desulfurizing agent can be used at a temperature of 100 ° C. or less, its adsorption performance is not sufficiently satisfactory.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-286753 [Patent Document 2]
JP 2001-305123 A [Patent Document 3]
JP-A-2-302496 (page 2)
[Patent Document 4]
JP 2001-123188 A (page 3)
[0005]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a sulfur compound removing adsorbent capable of efficiently removing a sulfur content in a hydrocarbon-containing gas to a low concentration even at room temperature, and a carbon desulfurized using the adsorbent. It is an object of the present invention to provide a method for effectively producing hydrogen for a fuel cell from a hydrogen-containing gas.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to achieve the above object, and as a result, a carrier containing a specific metal oxide and a certain metal or its oxide supported on a carrier containing a specific metal oxide are adsorbents for removing sulfur compounds. The present inventors have found that hydrogen for fuel cells can be effectively obtained by reforming a hydrocarbon-containing gas desulfurized using this adsorbent. The present invention has been completed based on such findings.
That is, the present invention
(1) A carrier containing an oxide of a metal element belonging to Group 3 of the periodic table, on a carrier containing at least one selected from silver and its oxides and copper and its oxides. Adsorbent for removing sulfur compounds,
(2) The oxide of a metal element belonging to Group 3 of the periodic table is an oxide of at least one metal selected from La, Ce, Sc, Y, Nd, Pr, Sm, Gd, and Yb. 1) an adsorbent for removing sulfur compounds in a hydrocarbon-containing gas,
(3) The sulfur in the hydrocarbon-containing gas of (2) above, wherein the oxide of the metal element belonging to Group 3 of the periodic table is an oxide of at least one metal selected from La, Yb, Y and Ce. Adsorbent for compound removal,
(4) The hydrocarbon according to the above (1) to (3), wherein the hydrocarbon-containing gas is LPG, city gas, natural gas, or a gas containing at least one selected from ethane, ethylene, propane, propylene and butane. Adsorbent for removing sulfur compounds in the contained gas,
(5) The metal of the above (1) to (4), wherein the amount of at least one selected from silver and its oxides and copper and its oxides is 1 to 50% by mass as a metal based on the total amount of the adsorbent. Adsorbent for removing sulfur compounds in hydrocarbon-containing gas,
(6) The hydrocarbon-containing gas according to claim 5, wherein the carried amount of at least one selected from silver and its oxides and copper and its oxides is 3 to 30% by mass as the metal based on the total amount of the adsorbent. Adsorbent for removing sulfur compounds in
(7) The adsorbent for removing a sulfur compound in a hydrocarbon-containing gas according to (1) to (6), wherein the content of the oxide of the metal element belonging to Group 3 of the periodic table is 5 to 99% by mass;
(8) After the sulfur compounds in the hydrocarbon-containing gas are desulfurized using the adsorbents of the above (1) to (7), the desulfurized hydrocarbon-containing gas is subjected to a partial oxidation catalyst, an autothermal reforming catalyst, or steam. (9) The method for producing hydrogen for a fuel cell, which is brought into contact with a reforming catalyst, and (9) the above (8), wherein the partial oxidation catalyst, the autothermal reforming catalyst or the steam reforming catalyst is a ruthenium-based or nickel-based catalyst. Method for producing hydrogen for fuel cells,
Is provided.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The sulfur compound adsorbent of the present invention is obtained by supporting an active metal species on a support containing an oxide of a metal element belonging to Group 3 of the periodic table. As the active metal species, silver and its oxide and At least one selected from copper and its oxides is used.
In the adsorbent, the content of the active metal species is preferably in a range of 1 to 50% by mass as a metal (silver and / or copper). When the content of the active metal species is less than 1% by mass, sufficient desulfurization performance may not be exhibited. On the other hand, when the content exceeds 50% by mass, the ratio of the carrier decreases, and the mechanical strength and desulfurization performance of the adsorbent decrease. Cause you to A more preferred content of the active metal species is in the range of 3 to 30% by mass as a metal.
On the other hand, the carrier in the adsorbent may be composed of an oxide of a metal element belonging to Group 3 of the periodic table alone. However, the content of the oxide of the metal element belonging to Group 3 of the periodic table in the adsorbent is preferably in the range of 5 to 99% by mass. If this content is outside the above range, sufficient desulfurization performance may not be exhibited. The more preferable content of the oxide of the metal element belonging to Group 3 of the periodic table is in the range of 10 to 97% by mass.
[0008]
As the oxide of the metal element belonging to Group 3 of the periodic table, for example, an oxide of a metal selected from La, Ce, Sc, Y, Nd, Pr, Sm, Gd and Yb can be preferably exemplified. These metal oxides may be used alone or in combination of two or more. Among them, La, Ce, Y, and Yb oxides are more preferable, and in particular, La is preferable. , Ce oxides are preferred.
In the adsorbent, when using a refractory porous carrier containing an oxide of a metal element belonging to Group 3 of the periodic table as the carrier, the refractory porous carrier may be, for example, silica, At least one selected from alumina, silica-alumina, titania, zirconia, zeolite, magnesia, diatomaceous earth, clay, clay and the like can be used.
In the present invention, in order to prepare a carrier composed of an oxide of a metal element belonging to Group 3 of the periodic table alone, for example, a source of a metal element belonging to Group 3 of the periodic table, specifically, a nitrate of the metal element, and the like are included. An aqueous solution and an alkaline aqueous solution are brought into contact with each other to form a precipitate, and then the precipitate is collected by filtration, washed with water, dried at a temperature of about 50 to 200 ° C, and then calcined at a temperature of about 250 to 500 ° C.
[0009]
In addition, in order to make the refractory porous carrier contain an oxide of a metal element belonging to Group 3 of the periodic table, a conventionally known method such as a pore filling method, an immersion method, and an evaporation to dryness method can be used. . At this time, the drying temperature is usually about 50 to 200 ° C, and the firing temperature is usually about 250 to 500 ° C.
As a method for supporting the active metal species of silver or copper on the carrier prepared in this manner, a conventionally known method, such as a pore filling method, an immersion method, an evaporation to dryness method, or the like may be employed as described above. Can be. At this time, the drying temperature is usually about 50 to 200 ° C, and the firing temperature is usually about 250 to 500 ° C.
The adsorbent of the present invention obtained in this manner can be used in a hydrocarbon-containing gas such as LPG, city gas, natural gas, or a gas containing at least one selected from ethane, ethylene, propane, propylene and butane. Shows excellent desulfurization performance for sulfur compounds. For example, it exhibits excellent adsorption performance at room temperature to all sulfur compounds contained in gas, such as mercaptans, sulfides, and COS.
[0010]
The concentration of the sulfur compound in the hydrocarbon-containing gas to which the adsorbent of the present invention is applied is preferably 0.001 to 10,000 ppm by volume, particularly preferably 0.1 to 100 ppm by volume. As the desulfurization conditions, the temperature is usually selected in the range of -50 to 350C, and the GHSV (gas hourly space velocity) is selected in the range of 100 to 1,000,000 h- 1 .
Next, in the method for producing hydrogen for a fuel cell of the present invention, after the sulfur compound in the hydrocarbon-containing gas is desulfurized using the adsorbent of the present invention, the desulfurized hydrocarbon-containing gas is partially oxidized. Hydrogen is produced by contact with a catalyst, an autothermal reforming catalyst or a steam reforming catalyst.
In this method, the concentration of the sulfur compound in the desulfurized hydrocarbon-containing gas is preferably 0.2 ppm by volume or less, particularly preferably 0.05 ppm by volume or less, from the viewpoint of the life of each reforming catalyst.
As the partial oxidation catalyst, the autothermal reforming catalyst and the steam reforming catalyst, nickel-based or ruthenium-based catalysts are suitable. The partial oxidation method, the autothermal reforming method and the steam reforming method are not particularly limited, and conventionally known methods can be applied.
[0011]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
A 30% by mass aqueous cerium nitrate solution was added dropwise to a 1 mol / liter aqueous sodium hydroxide solution kept at about 50 ° C. while stirring to form a precipitate. Next, the generated precipitate was collected by filtration, sufficiently washed with water, dried at 120 ° C., and calcined at 400 ° C. to obtain cerium oxide.
Next, the cerium oxide was impregnated with an aqueous solution of silver nitrate having a concentration of 42% by mass, dried, and calcined at 400 ° C. to obtain an adsorbent. The content of Ag in this adsorbent was 10% by mass.
[0012]
Example 2
An adsorbent was prepared in the same manner as in Example 1, except that an aqueous copper nitrate solution was used instead of the aqueous silver nitrate solution. The content of Cu in this adsorbent was 10% by mass.
Example 3
An adsorbent was prepared in the same manner as in Example 1, except that the Ag content was changed to 20% by mass.
Example 4
An adsorbent was prepared in the same manner as in Example 1, except that the Ag content was changed to 5% by mass.
[0013]
Example 5
An adsorbent was prepared in the same manner as in Example 1 except that a lanthanum nitrate aqueous solution was used instead of the cerium nitrate aqueous solution. The content of Ag in this adsorbent was 10% by mass.
Example 6
An adsorbent was prepared in the same manner as in Example 1, except that an aqueous ytterbium nitrate solution was used instead of the aqueous cerium nitrate solution. The content of Ag in this adsorbent was 10% by mass.
Example 7
An adsorbent was prepared in the same manner as in Example 1 except that an aqueous solution of yttrium nitrate was used instead of the aqueous solution of cerium nitrate. The content of Ag in this adsorbent was 10% by mass.
[0014]
Example 8
Alumina was impregnated with a 51% by mass aqueous solution of cerium nitrate, dried, and calcined at 400 ° C. to obtain a carrier containing 20% by mass as CeO 2 . Next, the carrier was impregnated with a 19% by mass aqueous solution of silver nitrate, dried, and calcined at 400 ° C. to obtain an adsorbent. The content of cerium oxide in this adsorbent was 18% by mass as CeO 2 , and the content of Ag was 10% by mass.
Comparative Example 1
After exchanging the β-type zeolite (trade name “HSZ-930NHA” manufactured by Tosoh Corporation) with Ag ions, it was calcined at 500 ° C. to obtain an adsorbent composed of the Ag-exchanged β-type zeolite. The Ag content in this adsorbent was 6.5% by mass.
Comparative Example 2
A commercially available CuZnAl catalyst (manufactured by Sudo Chemie, catalyst "G-132B") was used as the adsorbent.
Comparative Example 3
A commercially available Ag / Al 2 O 3 catalyst (catalyst “T-2552” manufactured by Sudochemie) was used as the adsorbent.
Comparative Example 4
Cerium oxide (not carrying Ag) prepared in Example 1 was used as an adsorbent.
[0015]
Test example 1
Each of the adsorbents of Examples 1 to 8 and Comparative Examples 1 to 4 was molded to a size of 0.5 to 1 mm, and 1 cm 3 of the adsorbent was filled in a desulfurization tube having an inner diameter of 9 mm. At normal pressure, the adsorbent temperature is set to 20 ° C., and propane gas containing 10 vol ppm (40 vol ppm in total) of COS, dimethyl sulfide (DMS), t-butyl mercaptan (TBM), and dimethyl disulfide (DMDS) at normal pressure and GHSV ( It was circulated under the condition of (gas hourly space velocity) 30,000 h −1 .
The concentration of each sulfur compound in the gas at the outlet of the desulfurization tube was measured every hour by SCD (chemiluminescence sulfur detector) gas chromatography. Table 1 shows the time when the concentration of each sulfur compound exceeded 0.1 volppm.
[0016]
[Table 1]
Figure 2004097870
[0017]
As is clear from Table 1, it can be seen that the adsorbent of the present invention (Examples 1 to 8) can efficiently adsorb and remove sulfur compounds in a hydrocarbon-containing gas at ordinary temperature.
[0018]
【The invention's effect】
According to the present invention, a sulfur component in a hydrocarbon-containing gas, a sulfur compound removal adsorbent capable of efficiently removing even a low concentration even at room temperature, and a hydrocarbon-containing gas desulfurized using the adsorbent, A method for effectively producing hydrogen for a fuel cell can be provided.

Claims (9)

周期表第3族に属する金属元素の酸化物を含む担体に、銀及びその酸化物並びに銅及びその酸化物の中から選ばれる少なくとも一種を担持させてなる、炭化水素含有ガス中の硫黄化合物除去用吸着剤。Removal of sulfur compounds in a hydrocarbon-containing gas, wherein a carrier containing an oxide of a metal element belonging to Group 3 of the periodic table carries at least one selected from silver and its oxides and copper and its oxides. For adsorbent. 周期表第3族に属する金属元素の酸化物が、La、Ce、Sc、Y、Nd、Pr、Sm、Gd及びYbの中から選ばれる少なくとも一種の金属の酸化物である請求項1記載の炭化水素含有ガス中の硫黄化合物除去用吸着剤。The oxide according to claim 1, wherein the oxide of the metal element belonging to Group 3 of the periodic table is an oxide of at least one metal selected from La, Ce, Sc, Y, Nd, Pr, Sm, Gd and Yb. Adsorbent for removing sulfur compounds in hydrocarbon-containing gas. 周期表第3族に属する金属元素の酸化物が、La、Yb、Y及びCeの中から選ばれる少なくとも一種の金属の酸化物である請求項2記載の炭化水素含有ガス中の硫黄化合物除去用吸着剤。The oxide for removing a sulfur compound in a hydrocarbon-containing gas according to claim 2, wherein the oxide of the metal element belonging to Group 3 of the periodic table is an oxide of at least one metal selected from La, Yb, Y, and Ce. Sorbent. 炭化水素含有ガスが、LPG、都市ガス、天然ガス、又はエタン、エチレン、プロパン、プロピレン及びブタンの中から選ばれる少なくとも一種を含むガスである請求項1〜3のいずれかに記載の炭化水素含有ガス中の硫黄化合物除去用吸着剤。The hydrocarbon-containing gas according to any one of claims 1 to 3, wherein the hydrocarbon-containing gas is LPG, city gas, natural gas, or a gas containing at least one selected from ethane, ethylene, propane, propylene, and butane. Adsorbent for removing sulfur compounds in gas. 銀及びその酸化物並びに銅及びその酸化物の中から選ばれる少なくとも一種の担持量が、金属として、吸着剤全量に基づき1〜50質量%である請求項1〜4のいずれかに記載の炭化水素含有ガス中の硫黄化合物除去用吸着剤。The carbonization according to any one of claims 1 to 4, wherein a loading amount of at least one selected from silver and its oxides and copper and its oxides is 1 to 50% by mass as a metal based on the total amount of the adsorbent. Adsorbent for removing sulfur compounds in hydrogen-containing gas. 銀及びその酸化物並びに銅及びその酸化物の中から選ばれる少なくとも一種の担持量が、金属として、吸着剤全量に基づき3〜30質量%である請求項5記載の炭化水素含有ガス中の硫黄化合物除去用吸着剤。The sulfur in the hydrocarbon-containing gas according to claim 5, wherein the amount of at least one selected from silver and its oxides and copper and its oxides is 3 to 30% by mass as the metal based on the total amount of the adsorbent. Adsorbent for removing compounds. 周期表第3族に属する金属元素の酸化物の含有量が5〜99質量%である請求項1〜6のいずれかに記載の炭化水素含有ガス中の硫黄化合物除去用吸着剤。The adsorbent for removing sulfur compounds in a hydrocarbon-containing gas according to any one of claims 1 to 6, wherein the content of the oxide of the metal element belonging to Group 3 of the periodic table is 5 to 99% by mass. 請求項1〜7のいずれかに記載の吸着剤を用いて、炭化水素含有ガス中の硫黄化合物を脱硫処理したのち、脱硫処理炭化水素含有ガスを部分酸化触媒、オートサーマル改質触媒又は水蒸気改質触媒と接触させることを特徴とする燃料電池用水素の製造方法。After desulfurizing a sulfur compound in a hydrocarbon-containing gas using the adsorbent according to any one of claims 1 to 7, the desulfurized hydrocarbon-containing gas is subjected to partial oxidation catalyst, autothermal reforming catalyst or steam reforming. A method for producing hydrogen for a fuel cell, comprising contacting with a porous catalyst. 部分酸化触媒、オートサーマル改質触媒又は水蒸気改質触媒がルテニウム系又はニッケル系触媒である請求項8記載の燃料電池用水素の製造方法。The method for producing hydrogen for a fuel cell according to claim 8, wherein the partial oxidation catalyst, the autothermal reforming catalyst, or the steam reforming catalyst is a ruthenium-based or nickel-based catalyst.
JP2002259768A 2002-09-05 2002-09-05 Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cell Expired - Fee Related JP4216548B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002259768A JP4216548B2 (en) 2002-09-05 2002-09-05 Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cell
CA2497899A CA2497899C (en) 2002-09-05 2003-08-26 Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
EP03794097A EP1550505A4 (en) 2002-09-05 2003-08-26 Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
PCT/JP2003/010781 WO2004022224A1 (en) 2002-09-05 2003-08-26 Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
AU2003261728A AU2003261728A1 (en) 2002-09-05 2003-08-26 Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
CNB038210339A CN100469434C (en) 2002-09-05 2003-08-26 Adsorbent for removing sulfur compounds, method for producing hydrogen, and fuel cell system
KR1020057003716A KR100973876B1 (en) 2002-09-05 2003-08-26 Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
US10/526,397 US7556872B2 (en) 2002-09-05 2003-08-26 Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259768A JP4216548B2 (en) 2002-09-05 2002-09-05 Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cell

Publications (2)

Publication Number Publication Date
JP2004097870A true JP2004097870A (en) 2004-04-02
JP4216548B2 JP4216548B2 (en) 2009-01-28

Family

ID=32260667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259768A Expired - Fee Related JP4216548B2 (en) 2002-09-05 2002-09-05 Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cell

Country Status (1)

Country Link
JP (1) JP4216548B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044965A (en) * 2004-08-02 2006-02-16 Idemitsu Kosan Co Ltd Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044965A (en) * 2004-08-02 2006-02-16 Idemitsu Kosan Co Ltd Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound

Also Published As

Publication number Publication date
JP4216548B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP5220265B2 (en) Method for removing sulfur compounds from hydrocarbon-containing gas
DK2438145T3 (en) METHOD OF SULFURING A FUEL FLOW
US8308848B1 (en) High temperature gas desulfurization sorbents
US20060283780A1 (en) Desulfurization system and method for desulfurizing a fuel stream
KR100973876B1 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
KR20070019428A (en) Desulfurizing agent for removing organic sulfides, method of preparing thereof and method for removing organic sulfur compounds using the same
JP4722429B2 (en) Method for producing metal-supported zeolite molding and adsorbent for removing sulfur compound containing the zeolite
JP4452097B2 (en) Method for producing cerium oxide molded body
JP2006501065A (en) Catalyst adsorbent for sulfur compound removal for fuel cells
JP3742284B2 (en) Adsorbent for sulfur compounds in fuel gas and method for removing the same
JP3483827B2 (en) Lifetime determination method for sulfur compound adsorbent in fuel gas
JP2004168648A (en) Metal ion-exchange zeolite, its manufacturing method, and adsorbent containing the metal ion-exchange zeolite for removing sulfur compound
JP4079743B2 (en) Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell
JP2018108927A (en) Metal-supported zeolite molded body, production method of metal-supported zeolite molded body, absorbent for removing sulfur compound, production method of hydrogen, and fuel cell system
JP4216548B2 (en) Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cell
JP6317909B2 (en) Metal-supported zeolite molded body, metal-supported zeolite molded body manufacturing method, sulfur compound removing adsorbent, hydrogen manufacturing method, and fuel cell system
JP2005007383A (en) Adsorbent for removing sulfur compound and method for producing hydrogen for fuel cell
JP2004305869A (en) Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell
JP3926170B2 (en) Method for removing sulfur compounds
JP4779620B2 (en) How to use room temperature NOx adsorbent
JP4961102B2 (en) Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite
JP4722454B2 (en) Method for producing adsorbent for removing sulfur compound, adsorbent for removing sulfur compound, and method for removing sulfur compound
JPH02302496A (en) Desulfurizing method of town gas
JP2013199533A (en) Method for producing desulfurized gaseous fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141114

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees