JP2004097098A - Greening equipment - Google Patents

Greening equipment Download PDF

Info

Publication number
JP2004097098A
JP2004097098A JP2002263785A JP2002263785A JP2004097098A JP 2004097098 A JP2004097098 A JP 2004097098A JP 2002263785 A JP2002263785 A JP 2002263785A JP 2002263785 A JP2002263785 A JP 2002263785A JP 2004097098 A JP2004097098 A JP 2004097098A
Authority
JP
Japan
Prior art keywords
soil
hydrogen donor
water
passing
draining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002263785A
Other languages
Japanese (ja)
Inventor
Koichiro Murasawa
村澤 浩一郎
Hitoshi Komoda
薦田 等
Mitsuhiro Tsuchiya
土谷 光弘
Masaru Makino
牧野 勝
Kazumi Nomura
納村 和美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002263785A priority Critical patent/JP2004097098A/en
Publication of JP2004097098A publication Critical patent/JP2004097098A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/254Roof garden systems; Roof coverings with high solar reflectance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/32Roof garden systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Cultivation Of Plants (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide rooftop greening equipment having such a mechanism that nitrogen-containing effluent is exposed to a hydrogen donor solid and insoluble to water at normal temperatures to cause a biological denitrification and discharged after the resultant nitrogen component is expelled into the air. <P>SOLUTION: The rooftop greening equipment comprises a base soil for vegetation, a means for discharging rainwater or sprinkled water after passed through the soil and the hydrogen donor solid and insoluble to water at normal temperatures. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ビル等の屋上やバルコニ−等の屋外に主に設置される緑化設備に関する。
【0002】
【従来の技術】
従来の緑化設備はでは、雨水や散水された水は土壌通過後に土壌下の排水路を通して排水として排出されるのが一般的である。
【0003】
また、本発明に直接は関連しないものの排水の有効利用の観点から、屋上に設置された屋上緑化装設備からの排水をビルの中水道として再利用する試みが公知である。
【0004】
【特許文献1】
特開平10−4804号公報
【特許文献2】
特開平8−228618号公報
【0005】
【発明が解決しようとする課題】
一般に、上記の緑化設備の基盤土壌には植物成長に欠かせない窒素成分が含まれている。この窒素成分は植物成長に必須元素であるものの、植物が吸収できる以上に過剰に土壌に与えられた窒素成分は降雨や人為的散水により容易に土壌から流出し、排水中の窒素濃度を高めることになる。
【0006】
即ち、従来の屋上緑化設備では、これら窒素濃度の高い排水は雨水とともに排出され、下水または河川放流されるために、水の富栄養化の原因物質である窒素汚染による河川、海、湖等の汚染の一原因となっている。
【0007】
また、特許文献2に開示されている排水の再利用によって、窒素濃度の高い水をただちには環境に排出しない方法は、基本的にポンプなどの機器が必須であり、大掛かりな工事を伴うという課題のほか、何らかの原因で環境に排出される虞もある。
【0008】
本発明はこれら従来の課題を効果的に解決するものであり、窒素を含んだ排水を常温で固体かつ水に不溶の水素供与体に接触させることで生物学的脱窒を起こして窒素成分そのものを大気中へ逃がした後排出する屋上緑化設備を提供することを目的とする。
【0009】
【課題を解決するための手段】
これら従来の課題を解決するために本発明者らは鋭意研究の結果、以下の手段を用いることが本発明の課題を効果的に解決し得ることを見出し、本発明を完結するに至った。
【0010】
本発明第1の緑化設備は、土壌と、常温で固体かつ水に不溶の水素供与体と、前記土壌内を通過後の水を排水する手段とから構成される。
【0011】
また本発明第2の緑化設備は、土壌と、前記土壌内を通過後の土壌を排水する手段と、前記排水する手段の下流側に設けた常温で固体かつ水に不溶の水素供与体とからなる。
【0012】
また、本発明第3の緑化設備は、土壌と、前記土壌内を通過後の土壌を排水する手段と、前記排水する排水路と、この排水路の途中に設けた常温で固体かつ水に不溶の水素供与体とからなる。
【0013】
また、本発明第4の緑化設備は、土壌と、前記土壌を通過した水を排水する手段と、前記土壌と前記排水する手段との間に設けられた水素供与体とからなる。
【0014】
また本発明第5の緑化設備は、基盤と前記基盤にもうけられ土壌を保持する土壌保持部と、前記土壌保持部の土壌中に添加された常温で固体かつ水に不溶の水素供与体とからなる。
【0015】
また、本発明第6の緑化設備は、土壌と、前記土壌を通過した水を排水する手段と、前記土壌に添加された水素供与体とからなる。
【0016】
また、本発明第7の緑化設備は、第3の設備において水素供与体と土壌とが層状をなすように構成される。
また、本発明第8の緑化設備は、第3の設備において、水素供与体は土壌に略均一に添加されてなる。
【0017】
また、本発明第9の緑化設備は、土壌と、常温で固体かつ水に不溶の水素供与体と、前記土壌内を通過後の水を排水する手段とからなり、前記水は、前記基盤土壌内を通過後に前記水素供与体に接触するものである。
【0018】
また、本発明第10の緑化設備は、土壌と、前記土壌に添加された常温で固体かつ水に不溶の水素供与体と、前記土壌内を通過後の水を排水する手段とからなり、前記水は前記土壌内を通過中に前記水素供与体と接触するものである。
【0019】
また、本発明第11の緑化設備は、土壌と、常温で固体かつ水に不溶の水素供与体と、前記土壌内を通過後の水を排水する手段とからなり、前記水に含まれる窒素が、前記基盤土壌内を通過後に前記水素供与体に接触し窒素ガス化するものである。
【0020】
また、本発明第12の緑化設備は、土壌と、前記土壌に添加された常温で固体かつ水に不溶の水素供与体と、前記土壌内を通過後の水を排水する手段とからなり、前記水に含まれる窒素は前記土壌内を通過中に前記水素供与体と接触し窒素ガス化するものである。
【0021】
また、本発明においては、水素供与体として炭素数10以上の飽和脂肪酸または炭素数12以上のアルコールまたは炭素数10以上の飽和脂肪酸と炭素数12以上のアルコールのエステルを主成分とするものを用いることができる。
【0022】
また、本発明においては、水素供与体は硫黄とアルカリ供給剤から構成することができる。
また、本発明において、水素供与体は生分解性樹脂から構成することができる。
【0023】
【発明の実施の形態】
本実施の形態の最大の特長は、排水から効果的に脱窒を行わせるために、常温で固体であり且つ水に不溶な水素供与体を選択することで、この水素供与体を排水が通過すれば足りる構成とした点にあり、さらに該水素供与体としての条件を満たすべく、水素供与体として特定物質を選択した点にある。
【0024】
本実施の形態によって、水が水素供与体に接っすることで、排水中の窒素は水素供与体に接触し、この水素供与体周辺で、水素を供与されることで増殖した脱窒菌の働き(脱窒反応)で、窒素ガスに変化することで、土壌から大気中へ放出されることとなる。
【0025】
通常脱窒反応は、嫌気雰囲気で起こる反応であるが、本発明選択した水素供与体は水中でも固体状態を保つため、液体−固体界面に生物膜が効果的に形成され、この生物膜内部の嫌気領域を利用して脱窒反応が起こるものである。
【0026】
ここで本実施の形態の水素供与体は脱窒菌の担体としての役目と、脱窒反応の水素供与体(電子供与体、炭素源とも言われる。)としての役目を同時に果たすこととなる。
【0027】
さらには、水素供与体が水に不溶であるために、長時間その場に止まり水素を供与し続けることができるためにメンテナンスフリーであり、設備や機器類を使用しない。
【0028】
本実施の形態に用いる水素供与体の第一の具体例としては、炭素数10以上の飽和脂肪酸または炭素数12以上のアルコールまたは炭素数10以上の飽和脂肪酸と炭素数12以上のアルコールのエステルである。
【0029】
炭素数が10もしくは12未満では、融点が常温以下に存在する場合があるため、土壌中で容易に移動し目的とする部位に止まらなくなるために好ましくなく、不飽和結合の存在はたとえ炭素数が10もしくは12以上であっても融点の低下を一般的に招くため好ましくない。
【0030】
以上の要件を満たす脂肪酸としては、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、リグノセリン酸、ベヘニン酸、およびこれら脂肪酸の混合物、塩、水素添加品などが例示される。
【0031】
混合物としては、単体脂肪酸を人為的に混合してもよく、また牛脂脂肪酸、ヤシ油脂肪酸などの天然混合物でもよい。
【0032】
また、上記の要件を満たすアルコールとしては、ラウリルアルコール、ミリスチルアルコール、ステアリルアルコール、セチルアルコール、ベヘニルアルコール、およびこれらアルコールの混合物、塩などが例示される。
【0033】
混合物としては、単体アルコールを人為的に混合してもよく、また天然混合物でもよい。
【0034】
また、上記用件を満たすエステルとしてはミリスチン酸ミリスチル、パルミチン酸セチル、ステアリン酸ステアリル、ステアリン酸メチル、ステアリン酸ブチル、ステアリン酸コレステリル、ステアリン酸バチル、ベヘニン酸オクチルドデシル、ベヘニン酸ベヘニル、およびこれらエステルの混合物や脂肪酸が2塩基酸であるフタル酸ジステアリル、ソルビタンモノミリスチレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、ソリビタンモノベヘネート、ポリオキシエチレンソルビタンモノステアレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、セスキステアリン酸ソルビタン、トリステアリン酸ソルビタン、ヘキサステアリン酸ポリオキシエチレンソルビット、およびこれらエステルの混合物やポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンベヘニルエーテル、グリセリンセチルエーテル、グリセリンステアリルエーテル、ポリオキシエチレンポリオキシプロピレンセチルエーテル、ポリオキシエチレンポリオキシプロピレンデシルテトラデシルエーテル、ポリオキシエチレンオクチルフェニルエーテルなどのエーテル類が例示される
本実施の形態に用いる水素供与体の第二の具体例としては、硫黄とアルカリ供給剤の組み合わせである。
【0035】
硫黄は硫黄細菌と呼ばれる微生物に対して水素供与を行う。この硫黄細菌は独立栄養菌であるため、炭素源を必要とせず硫黄を用いて増殖可能な微生物であり、水中の窒素を窒素ガスとして空気中へ放出するとともに、反応生成物として硫酸を作り出す。生成する硫酸は強い酸性を示すため、共存させるアルカリ供給剤で中和することが必須である。そこで反応の際に生成する硫酸によるPH低下を共存させるアルカリ供給剤で中和することで土壌のPHを著しく変化させることなく脱窒反応が起こることができる。
【0036】
アルカリ供給剤としては、脱窒菌の菌体合成に必須な炭素源の供給も兼ねることができる炭酸カルシウムを主成分としたものが好ましく、代表例としては炭酸カルシウム原石、貝殻類、サンゴ類、石灰岩類などが例示される。
【0037】
本発明に用いる第三の具体例としては生分解性樹脂であり、より好ましくは生分解性の優れたエステル結合を有する生分解性樹脂である。
【0038】
具体的な例としては、乳酸重合体、ヒドロキシ酪酸とヒドロキシ吉草酸の共重合体、ポリオール類と脂肪族ジカルボン酸との縮合重合物、ポリ(ε−カプロラクトン)などが例示される。
【0039】
生分解樹脂が本発明の属する技術分野に添加されると、加水分解によりカルボン酸とアルコールが生成する。
【0040】
生成したカルボン酸とアルコールは、本発明に用いる第一の水素供与体と本質的に同じ物質であり、前記本発明の第一の水素供与体と同じ機構で水中の窒素を除去するものである。
【0041】
【実施例】
次に実施例によって本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(実施例1)
本実施例の構成を図1に示す。図1において1は緑化設備の基盤土壌、2は基盤土壌の上に植えられた植栽、3は本実施例で用いる水素供与体を充填したカラム、4は排水路であり、図中の矢印は水の流れを示している。本実施例では、排水路4の途中にカラム3が設けられているが、この水素供与体を充填したカラムは、排水路4の最下流側に設けてもよい。
まず、雨水や人為的散水により植栽2に与えられた水分は、基盤土壌1内を通過する際に根から植栽に吸収されるが、余剰水分は排水路4を通じて排出される。
【0042】
一方、予め植栽2の肥料として与えられた窒素(通常は硫酸アンモニウムや尿素など)は、余剰水分とともに排水路4へ流出する。
【0043】
次に、この余剰水分は排水路を通じて水素供与体が充填されたカラム3中に流れ込み、水素供与体と接触する。すると、この余剰水分中に含まれる窒素は、この水素供与体の周囲にて増殖した脱窒菌とのあいだで生物学的脱窒反応を起し、窒素ガスに変化して大気中に放出されるため、排水中の窒素濃度は大幅に低下する。
(実施例2)
本実施例の構成を図2に示す。図2において1は緑化設備の基盤土壌、2は基盤土壌1に植えられた植栽、4は基盤土壌を通過した水の排水路、5は植木鉢状の形をした、土壌保持手段としての集水トレンチで、この集水トレンチ5の周囲には水を通さない基盤として、不透材料のコンクリート8により構成されている。このコンクリート8は集水トレンチ5の全体を覆うことなく、一部を覆い、集水トレンチの壁にあいた微小な穴から水がしみでることを妨げないようになっている。
【0044】
この集水トレンチ5には、基盤土壌1と水素供与体とが混合されたものが充填されている。水素供与体は基盤土壌に均一に混合されていることが望ましい。混合の仕方として、水素供与体を添加する形態は、集水トレンチ5内の基盤土壌1に添加して撹拌するなどして万遍なく添加する方法のみならず、水素供与体を添加した層と添加しない層が交互に存在する方法(多層で添加する方法)なども好ましい。
【0045】
多層の場合は、各層で異なる水素供与体を用いることが可能である。
【0046】
水素供与体の添加量は、土の乾燥重量に対して0.1〜5重量%で充分効果を発するが、土壌の保水率、施肥量、降雨量などの諸条件で任意に選択可能である。なお、図中の矢印は水の流れを示している。
【0047】
本実施例によれば、雨水や人為的散水により植栽2に与えられた水分は、基盤土壌1を通過時に根から植栽2に吸収されるが、余剰水分は集水トレンチ5で集められ排水路4を通じて排出される。
【0048】
一方、基盤土壌1中に水素供与体を混合しない場合は、予め植栽の肥料として与えられた窒素(通常は硫酸アンモニウムや尿素など)は、余剰水分とともに排水路4へ流出してしまうが、本実施例によれば、余剰水分中に含まれる窒素は集水トレンチ内に存在する水素供与体と接触することで生物学的脱窒反応により窒素ガスとして大気中に放出されるため、排水中の窒素濃度は大幅に低下する。
(実施例3)
本実施例の構成を図3に示す。図3において1は緑化設備の基盤土壌、2は基盤土壌1に植えられる植栽、4は排水路、6は本発明で用いる水素供与体からなる層であり、図中の矢印は水の流れを示している。本実施の形態では、水素供与体は基盤土壌1と排水路4との間に配置されている。また、水素供与体と基盤土壌1とは層構造をなしている。
【0049】
まず、雨水や人為的散水により植栽2に与えられた水分は、土壌を通過時に根から植栽に吸収され、余剰水分は本発明で用いる水素供与体からなる層6を通過後、排水路4を通じて排出される。
【0050】
一方、予め植栽の肥料として与えられた窒素(通常は硫酸アンモニウムや尿素など)は、水素供与体からなる層6を通過することで、水素供与体と接触し生物学的脱窒反応により窒素ガスとして大気中に放出されるため、排水中の窒素濃度は大幅に低下する。
(実施例
本実施例の構成を図4に示す。図4において2は植栽、4は排水路、7は本発明で用いる水素供与体を予め添加した土壌であり、図中の矢印は水の流れを示している。
【0051】
水と水素供与体の接触効率を高めるために、添加する水素供与体と土壌7とはできるだけ均一に混合されていることが好ましい。
【0052】
添加する形態は、全体の土壌に万遍なく添加する方法(一層に添加する方法)のみならず、水素供与体を添加した層と添加しない層が交互に存在する方法(多層で添加する方法)などが好ましい。
【0053】
多層の場合は、各層で異なる水素供与体を用いることが可能である。
【0054】
水素供与体の添加量は、土の乾燥重量に対して0.1〜5重量%で充分効果を発するが、土壌の保水率、施肥量、降雨量などの諸条件で任意に選択可能である。
【0055】
本実施例によれば、雨水や人為的散水により植栽2に与えられた水分は、土壌7を通過時に根から植栽に吸収され、余剰水分は本発明で用いる水素供与体と接触しながら土壌中を通過後、排水路4を通じて排出される。
【0056】
一方、予め植栽の肥料として与えられた窒素(通常は硫酸アンモニウムや尿素など)は、土壌中に添加された水素供与体と接触し生物学的脱窒反応により窒素ガスとして大気中に放出されるため、排水中の窒素濃度は大幅に低下する。
【0057】
なお、本発明に用いる水素供与体は単独使用、複数種の混合のどちらでもよく、水素供与体と排水を接触させる部位は複数種または多段でもよいことは言うまでもない。
【0058】
また、上記実施例1から実施例4に使用する水素供与体について、各々の実施例で特に使用する水素供与体の特定はしていないが、発明の実施の形態の欄に記載した水素供与体のうちのどれを使用しても良いし、混合して使用しても構わない。
【0059】
本実施例によれば、土壌中を通過した水に含まれる窒素は、土壌を通過した後に水素供与体に触れることにより、または、土壌に添加された水供与体に触れることにより、その濃度が低下する。
【0060】
【発明の効果】
以上のように、本発明の屋上緑化設備は、排水中の窒素濃度を大幅に低下させることができ、系内に特定の水素供与体を設置するだけで高価が得られ、設備や機器を必要としない。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す緑化設備の概略図
【図2】本発明の第2の実施例を示す緑化設備の概略図
【図3】本発明の第3の実施例を示す緑化設備の概略図
【図4】本発明の第4の実施例を示す緑化設備の概略図
【符号の説明】
1  基盤土壌
2  植栽
3  水素供与体を充填したカラム
4  排水炉
5  集水トレンチ
6  水素供与体からなる層
7  水素供与体を予め添加した土壌
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a greening facility mainly installed on a rooftop of a building or the like or outdoors such as a balcony.
[0002]
[Prior art]
In a conventional greening facility, rainwater and sprinkled water are generally discharged as drainage through a drainage channel under the soil after passing through the soil.
[0003]
Although not directly related to the present invention, from the viewpoint of effective use of wastewater, an attempt to reuse wastewater from rooftop greening equipment installed on the roof as a central water supply of a building is known.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 10-4804 [Patent Document 2]
JP-A-8-228618 [0005]
[Problems to be solved by the invention]
Generally, the base soil of the above-mentioned revegetation facilities contains nitrogen components which are indispensable for plant growth. Although this nitrogen component is an essential element for plant growth, the nitrogen component given to the soil in excess of that which can be absorbed by the plant can easily flow out of the soil by rainfall or artificial watering, increasing the nitrogen concentration in the wastewater. become.
[0006]
That is, in the conventional rooftop greening equipment, the wastewater having a high nitrogen concentration is discharged together with the rainwater and discharged into the sewage or river, so that rivers, seas, lakes, etc. due to nitrogen pollution which is a substance causing eutrophication of water are discharged. It is a cause of pollution.
[0007]
In addition, the method of not immediately discharging high-nitrogen-concentration water to the environment by reusing wastewater disclosed in Patent Document 2 basically requires equipment such as a pump and involves large-scale construction. In addition, there is a possibility that it is discharged into the environment for some reason.
[0008]
The present invention effectively solves these conventional problems, and causes biological denitrification by bringing nitrogen-containing wastewater into contact with a solid and water-insoluble hydrogen donor at room temperature to cause nitrogen components themselves. It is intended to provide a rooftop greening facility for discharging greenhouses into the atmosphere after discharge.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve these conventional problems, and as a result, have found that the use of the following means can effectively solve the problems of the present invention, and have completed the present invention.
[0010]
The first revegetation facility of the present invention comprises soil, a hydrogen donor which is solid and insoluble in water at normal temperature, and means for draining water after passing through the soil.
[0011]
Further, the second greening equipment of the present invention comprises: a soil; a means for draining the soil after passing through the soil; and a hydrogen donor which is solid and insoluble in water at normal temperature and provided at a downstream side of the means for draining. Become.
[0012]
Further, the third greening equipment of the present invention comprises a soil, a means for draining the soil after passing through the soil, the drainage channel for draining, and a solid and water-insoluble at normal temperature provided in the middle of the drainage channel. And a hydrogen donor.
[0013]
Further, the fourth planting facility of the present invention comprises soil, means for draining water passing through the soil, and a hydrogen donor provided between the soil and the means for draining.
[0014]
Further, the fifth greening equipment of the present invention comprises a base, a soil holding unit provided on the base and holding soil, and a hydrogen donor which is solid and insoluble in water at normal temperature added to the soil of the soil holding unit. Become.
[0015]
Further, the sixth greening facility of the present invention comprises soil, means for draining water passing through the soil, and a hydrogen donor added to the soil.
[0016]
Further, the seventh greening facility of the present invention is configured such that the hydrogen donor and the soil form a layer in the third facility.
In the eighth greening facility of the present invention, in the third facility, the hydrogen donor is substantially uniformly added to the soil.
[0017]
Further, the ninth greening facility of the present invention comprises soil, a hydrogen donor which is solid and insoluble in water at normal temperature, and means for draining water after passing through the soil, wherein the water is the base soil. After passing through the inside, it comes into contact with the hydrogen donor.
[0018]
Further, the tenth greening equipment of the present invention comprises soil, a hydrogen donor solid and insoluble in water at normal temperature added to the soil, and means for draining water after passing through the soil, Water comes into contact with the hydrogen donor during passage through the soil.
[0019]
Further, the eleventh greening facility of the present invention comprises soil, a hydrogen donor which is solid and insoluble in water at normal temperature, and means for draining water after passing through the soil, and nitrogen contained in the water is , After passing through the base soil, comes into contact with the hydrogen donor and is gasified with nitrogen.
[0020]
Further, the twelfth greening equipment of the present invention comprises soil, a hydrogen donor which is solid and insoluble in water at normal temperature added to the soil, and means for draining water after passing through the soil, Nitrogen contained in the water comes into contact with the hydrogen donor while passing through the soil and gasifies with nitrogen.
[0021]
Further, in the present invention, a hydrogen donor having a main component of a saturated fatty acid having 10 or more carbon atoms or an alcohol having 12 or more carbon atoms or an ester of a saturated fatty acid having 10 or more carbon atoms and an alcohol having 12 or more carbon atoms is used as the hydrogen donor. be able to.
[0022]
In the present invention, the hydrogen donor can be composed of sulfur and an alkali supply agent.
In the present invention, the hydrogen donor can be composed of a biodegradable resin.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
The greatest feature of this embodiment is that, in order to effectively denitrify the wastewater, the wastewater passes through the hydrogen donor by selecting a hydrogen donor that is solid at room temperature and insoluble in water. The point is that a specific substance is selected as the hydrogen donor in order to satisfy the conditions as the hydrogen donor.
[0024]
According to this embodiment, when water comes into contact with the hydrogen donor, nitrogen in the wastewater comes into contact with the hydrogen donor, and around the hydrogen donor, the action of the denitrifying bacteria grown by being donated with hydrogen is performed. By (denitrification reaction), it is released from soil to the atmosphere by changing to nitrogen gas.
[0025]
Normally, the denitrification reaction is a reaction that takes place in an anaerobic atmosphere.However, the hydrogen donor selected in the present invention keeps a solid state even in water, so that a biofilm is effectively formed at the liquid-solid interface, A denitrification reaction occurs in the anaerobic region.
[0026]
Here, the hydrogen donor of the present embodiment simultaneously functions as a carrier for the denitrifying bacteria and as a hydrogen donor (also referred to as an electron donor or a carbon source) for the denitrification reaction.
[0027]
Further, since the hydrogen donor is insoluble in water, the hydrogen donor can stay there for a long time and continue to supply hydrogen, so that it is maintenance-free and does not use equipment or equipment.
[0028]
As a first specific example of the hydrogen donor used in the present embodiment, a saturated fatty acid having 10 or more carbon atoms or an alcohol having 12 or more carbon atoms or an ester of a saturated fatty acid having 10 or more carbon atoms and an alcohol having 12 or more carbon atoms is used. is there.
[0029]
If the number of carbon atoms is less than 10 or 12, the melting point may be below room temperature, so that it is not preferable because it easily moves in soil and does not stop at the intended site. If it is 10 or 12 or more, the melting point is generally lowered, which is not preferable.
[0030]
Examples of the fatty acids satisfying the above requirements include decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, lignoceric acid, behenic acid, and mixtures, salts, and hydrogenated products of these fatty acids.
[0031]
As the mixture, a simple fatty acid may be artificially mixed, or a natural mixture such as tallow fatty acid and coconut oil fatty acid may be used.
[0032]
Examples of the alcohol satisfying the above requirements include lauryl alcohol, myristyl alcohol, stearyl alcohol, cetyl alcohol, behenyl alcohol, and mixtures and salts of these alcohols.
[0033]
As the mixture, a simple alcohol may be artificially mixed, or a natural mixture may be used.
[0034]
Esters satisfying the above requirements include myristyl myristate, cetyl palmitate, stearyl stearate, methyl stearate, butyl stearate, cholesteryl stearate, batyl stearate, octyl dodecyl behenate, behenyl behenate, and these esters. Or distearyl phthalate in which the fatty acid is a dibasic acid, sorbitan monomyristylate, sorbitan monopalmitate, sorbitan monostearate, sorbitan distearate, sorbitan tristearate, solivitan monobehenate, polyoxyethylene Sorbitan monostearate, polyethylene glycol monostearate, polyethylene glycol distearate, sorbitan sesquistearate, sorbitan tristearate, hex Polyoxyethylene sorbitol stearate, and mixtures of these esters, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene behenyl ether, glycerin cetyl ether, glycerin stearyl ether, polyoxyethylene polyoxy Ethers such as propylene cetyl ether, polyoxyethylene polyoxypropylene decyl tetradecyl ether, and polyoxyethylene octyl phenyl ether are exemplified.Second specific examples of the hydrogen donor used in this embodiment include sulfur and alkali. It is a combination of supply agents.
[0035]
Sulfur supplies hydrogen to microorganisms called sulfur bacteria. Since this sulfur bacterium is an autotrophic bacterium, it is a microorganism that can grow using sulfur without requiring a carbon source, releases nitrogen in water into the air as nitrogen gas, and produces sulfuric acid as a reaction product. Since the generated sulfuric acid shows a strong acidity, it is essential to neutralize with a coexisting alkali supply agent. Then, by neutralizing with an alkali supply agent that coexists with a decrease in pH due to sulfuric acid generated during the reaction, a denitrification reaction can occur without significantly changing soil pH.
[0036]
As the alkali supply agent, those containing calcium carbonate as a main component, which can also serve as a supply of a carbon source essential for cell synthesis of denitrifying bacteria, are preferable.Typical examples are raw calcium carbonate, shells, corals, and limestone. And the like.
[0037]
A third specific example used in the present invention is a biodegradable resin, more preferably a biodegradable resin having an ester bond having excellent biodegradability.
[0038]
Specific examples include lactic acid polymers, copolymers of hydroxybutyric acid and hydroxyvaleric acid, condensation polymers of polyols and aliphatic dicarboxylic acids, and poly (ε-caprolactone).
[0039]
When a biodegradable resin is added to the technical field to which the present invention belongs, carboxylic acid and alcohol are generated by hydrolysis.
[0040]
The produced carboxylic acid and alcohol are essentially the same substance as the first hydrogen donor used in the present invention, and remove nitrogen in water by the same mechanism as the first hydrogen donor of the present invention. .
[0041]
【Example】
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
(Example 1)
FIG. 1 shows the configuration of this embodiment. In FIG. 1, 1 is a base soil of a greening facility, 2 is a planting planted on the base soil, 3 is a column filled with a hydrogen donor used in the present embodiment, 4 is a drainage channel, and an arrow in the figure. Indicates the flow of water. In this embodiment, the column 3 is provided in the middle of the drainage channel 4, but the column filled with the hydrogen donor may be provided at the most downstream side of the drainage channel 4.
First, the water given to the planting 2 by rainwater or artificial watering is absorbed by the planting from the roots when passing through the base soil 1, but excess water is discharged through the drainage channel 4.
[0042]
On the other hand, nitrogen (usually ammonium sulfate, urea, or the like) previously given as a fertilizer for planting 2 flows out into the drainage channel 4 together with excess water.
[0043]
Next, the excess water flows into the column 3 filled with the hydrogen donor through the drainage channel, and comes into contact with the hydrogen donor. Then, the nitrogen contained in the excess water causes a biological denitrification reaction with the denitrifying bacteria grown around the hydrogen donor, and is converted into nitrogen gas and released into the atmosphere. As a result, the nitrogen concentration in the wastewater drops significantly.
(Example 2)
FIG. 2 shows the configuration of this embodiment. In FIG. 2, 1 is a base soil of a greening facility, 2 is a planting planted on the base soil 1, 4 is a drainage channel for water passing through the base soil, and 5 is a plant pot-shaped collection as a soil holding means. The water trench is made of an impermeable concrete 8 as a base that does not allow water to pass around the water collecting trench 5. The concrete 8 does not cover the water collecting trench 5 but partially covers the water collecting trench 5 so as not to prevent water from seeping out from a minute hole formed in the wall of the water collecting trench.
[0044]
The water collecting trench 5 is filled with a mixture of the base soil 1 and a hydrogen donor. It is desirable that the hydrogen donor be uniformly mixed with the base soil. As a method of mixing, the form in which the hydrogen donor is added is not only a method of adding the hydrogen donor uniformly to the base soil 1 in the water collecting trench 5 and stirring the mixture, but also a method of adding the hydrogen donor. A method in which layers not to be added are alternately present (a method of adding in layers) is also preferable.
[0045]
In the case of multiple layers, it is possible to use different hydrogen donors in each layer.
[0046]
The addition amount of the hydrogen donor is sufficiently effective when it is 0.1 to 5% by weight based on the dry weight of the soil, but can be arbitrarily selected depending on various conditions such as the water retention rate of the soil, the amount of fertilization, and the amount of rainfall. . The arrows in the figure indicate the flow of water.
[0047]
According to the present embodiment, the water given to the planting 2 by rainwater or artificial watering is absorbed by the planting 2 from the roots when passing through the base soil 1, but excess water is collected by the water collecting trench 5. It is discharged through the drain 4.
[0048]
On the other hand, when the hydrogen donor is not mixed into the base soil 1, nitrogen (usually ammonium sulfate, urea, etc.) given in advance as a fertilizer for planting flows out into the drainage channel 4 with excess water. According to the embodiment, the nitrogen contained in the excess water is released into the atmosphere as nitrogen gas by a biological denitrification reaction by contact with the hydrogen donor present in the water collecting trench, Nitrogen concentration drops significantly.
(Example 3)
FIG. 3 shows the configuration of this embodiment. In FIG. 3, reference numeral 1 denotes a base soil of a greening facility, 2 denotes planting planted on the base soil 1, 4 denotes a drainage channel, 6 denotes a layer made of a hydrogen donor used in the present invention, and an arrow in the figure denotes a flow of water. Is shown. In the present embodiment, the hydrogen donor is disposed between the base soil 1 and the drain 4. Further, the hydrogen donor and the base soil 1 have a layered structure.
[0049]
First, the water given to the planting 2 by rainwater or artificial watering is absorbed by the planting from the roots when passing through the soil, and excess water is passed through the layer 6 composed of the hydrogen donor used in the present invention, and then drained. Emitted through 4.
[0050]
On the other hand, nitrogen (usually ammonium sulfate, urea, etc.) previously given as a fertilizer for planting passes through a layer 6 composed of a hydrogen donor, and comes into contact with the hydrogen donor, thereby producing nitrogen gas by a biological denitrification reaction. As it is released into the atmosphere, the nitrogen concentration in the wastewater drops significantly.
(Example 4 )
FIG. 4 shows the configuration of this embodiment. In FIG. 4, 2 indicates planting, 4 indicates a drainage channel, 7 indicates soil to which a hydrogen donor used in the present invention has been added in advance, and arrows in the figure indicate the flow of water.
[0051]
In order to increase the contact efficiency between water and the hydrogen donor, the hydrogen donor to be added and the soil 7 are preferably mixed as uniformly as possible.
[0052]
The form to be added is not only a method of uniformly adding to the whole soil (a method of adding one layer), but also a method of alternately providing a layer to which a hydrogen donor is added and a layer to which no hydrogen donor is added (a method of adding in multiple layers). Are preferred.
[0053]
In the case of multiple layers, it is possible to use different hydrogen donors in each layer.
[0054]
The addition amount of the hydrogen donor is sufficiently effective when it is 0.1 to 5% by weight based on the dry weight of the soil, but can be arbitrarily selected depending on various conditions such as the water retention rate of the soil, the amount of fertilization, and the amount of rainfall. .
[0055]
According to the present embodiment, the water given to the plant 2 by rainwater or artificial watering is absorbed by the plant from the root when passing through the soil 7, and the excess water contacts the hydrogen donor used in the present invention while contacting the hydrogen donor. After passing through the soil, it is discharged through the drain channel 4.
[0056]
On the other hand, nitrogen (usually ammonium sulfate or urea) given as a fertilizer for planting in advance comes into contact with a hydrogen donor added to the soil and is released into the atmosphere as nitrogen gas by a biological denitrification reaction. As a result, the nitrogen concentration in the wastewater drops significantly.
[0057]
The hydrogen donor used in the present invention may be used alone or as a mixture of a plurality of types, and it goes without saying that a plurality of or multiple stages may be contacted with the hydrogen donor and the wastewater.
[0058]
With respect to the hydrogen donors used in Examples 1 to 4, the hydrogen donors used in each example are not particularly specified, but the hydrogen donors described in the column of the embodiments of the invention are not specified. Any of these may be used, or a mixture of them may be used.
[0059]
According to the present embodiment, the concentration of nitrogen contained in water passed through the soil is reduced by touching a hydrogen donor after passing through the soil or by touching a water donor added to the soil. descend.
[0060]
【The invention's effect】
As described above, the rooftop greening equipment of the present invention can greatly reduce the nitrogen concentration in the wastewater, and can be expensive only by installing a specific hydrogen donor in the system, requiring equipment and equipment. And not.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a greening facility showing a first embodiment of the present invention. FIG. 2 is a schematic diagram of a greening facility showing a second embodiment of the present invention. FIG. 3 is a third embodiment of the present invention. FIG. 4 is a schematic diagram of a greening facility showing a fourth embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Base soil 2 Planting 3 Column filled with hydrogen donor 4 Drainage furnace 5 Water collecting trench 6 Layer composed of hydrogen donor 7 Soil to which hydrogen donor was previously added

Claims (15)

土壌と、常温で固体かつ水に不溶の水素供与体と、前記土壌内を通過後の水を排水する手段とからなる緑化設備。A greening facility comprising soil, a hydrogen donor which is solid and insoluble in water at normal temperature, and means for draining water after passing through the soil. 土壌と、前記土壌内を通過後の土壌を排水する手段と、前記排水する手段の下流側に設けた常温で固体かつ水に不溶の水素供与体とからなる緑化設備。A revegetation facility comprising: soil; means for draining the soil after passing through the soil; and a hydrogen donor which is solid and insoluble in water at normal temperature and is provided downstream of the means for draining. 土壌と、前記土壌内を通過後の土壌を排水する手段と、前記排水する排水路と、この排水路の途中に設けた常温で固体かつ水に不溶の水素供与体とからなる緑化設備。A greening facility comprising soil, a means for draining the soil after passing through the soil, the drainage channel for draining, and a hydrogen donor which is solid and insoluble in water at normal temperature provided in the middle of the drainage channel. 土壌と、前記土壌を通過した水を排水する手段と、前記土壌と前記排水する手段との間に設けられた水素供与体とからなる緑化設備。A planting plant comprising soil, a unit for draining water passing through the soil, and a hydrogen donor provided between the soil and the unit for draining. 基盤と前記基盤にもうけられ土壌を保持する土壌保持部と、前記土壌保持部の土壌中に添加された常温で固体かつ水に不溶の水素供与体とからなる緑化設備。A planting plant comprising: a base; a soil holding unit provided on the base for holding soil; and a hydrogen donor which is solid and water-insoluble at room temperature and added to the soil of the soil holding unit. 土壌と、前記土壌を通過した水を排水する手段と、前記土壌に添加された水素供与体とからなる緑化設備。A planting plant comprising soil, a means for draining water passing through the soil, and a hydrogen donor added to the soil. 水素供与体と土壌とが層状をなす請求項3記載の緑化設備。The greening facility according to claim 3, wherein the hydrogen donor and the soil form a layer. 水素供与体は土壌に略均一に添加されてなる請求項3記載の緑化設備。4. The plant according to claim 3, wherein the hydrogen donor is substantially uniformly added to the soil. 土壌と、常温で固体かつ水に不溶の水素供与体と、前記土壌内を通過後の水を排水する手段とからなり、前記水は、前記基盤土壌内を通過後に前記水素供与体に接触する緑化設備。Soil, a hydrogen donor which is solid and insoluble in water at normal temperature, and means for draining water after passing through the soil, wherein the water comes into contact with the hydrogen donor after passing through the base soil Greening equipment. 土壌と、前記土壌に添加された常温で固体かつ水に不溶の水素供与体と、前記土壌内を通過後の水を排水する手段とからなり、前記水は前記土壌内を通過中に前記水素供与体と接触する緑化設備。Soil, a hydrogen donor added to the soil at room temperature that is solid and insoluble in water, and means for draining water after passing through the soil, wherein the water contains the hydrogen during passage through the soil. Greening equipment that comes in contact with the donor. 土壌と、常温で固体かつ水に不溶の水素供与体と、前記土壌内を通過後の水を排水する手段とからなり、前記水に含まれる窒素が、前記基盤土壌内を通過後に前記水素供与体に接触し窒素ガス化する緑化設備。Soil, a hydrogen donor which is solid and insoluble in water at normal temperature, and means for draining water after passing through the soil, the nitrogen contained in the water is provided with the hydrogen donor after passing through the base soil. Greening equipment that comes into contact with the body and turns into nitrogen gas. 土壌と、前記土壌に添加された常温で固体かつ水に不溶の水素供与体と、前記土壌内を通過後の水を排水する手段とからなり、前記水に含まれる窒素は前記土壌内を通過中に前記水素供与体と接触し窒素ガス化する緑化設備。Soil, a hydrogen donor which is solid and insoluble in water at normal temperature added to the soil, and means for draining water after passing through the soil, and nitrogen contained in the water passes through the soil. A greening facility in which nitrogen gas is generated by contact with the hydrogen donor. 水素供与体が炭素数10以上の飽和脂肪酸または炭素数12以上のアルコールまたは炭素数10以上の飽和脂肪酸と炭素数12以上のアルコールのエステルを主成分とする請求項1から12いずれかに記載の緑化設備。The hydrogen donor according to any one of claims 1 to 12, wherein the hydrogen donor is mainly composed of a saturated fatty acid having 10 or more carbon atoms, an alcohol having 12 or more carbon atoms, or an ester of a saturated fatty acid having 10 or more carbon atoms and an alcohol having 12 or more carbon atoms. Greening equipment. 水素供与体が硫黄とアルカリ供給剤から構成される請求項1から12いずれかに記載の緑化設備。13. The plant according to claim 1, wherein the hydrogen donor comprises sulfur and an alkali supply agent. 水素供与体が生分解性樹脂から構成される請求項1から12いずれかに記載の緑化設備。The planting plant according to any one of claims 1 to 12, wherein the hydrogen donor comprises a biodegradable resin.
JP2002263785A 2002-09-10 2002-09-10 Greening equipment Pending JP2004097098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263785A JP2004097098A (en) 2002-09-10 2002-09-10 Greening equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263785A JP2004097098A (en) 2002-09-10 2002-09-10 Greening equipment

Publications (1)

Publication Number Publication Date
JP2004097098A true JP2004097098A (en) 2004-04-02

Family

ID=32263412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263785A Pending JP2004097098A (en) 2002-09-10 2002-09-10 Greening equipment

Country Status (1)

Country Link
JP (1) JP2004097098A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104594446A (en) * 2015-01-22 2015-05-06 浙江大学 Initial runoff collection, purification and recycling system and initial runoff collection, purification and recycling method thereof
CN107278679A (en) * 2017-08-03 2017-10-24 周鹏飞 A kind of outside vertical surface of building Intelligent vertical greening system and its method of work
CN111264227A (en) * 2020-02-26 2020-06-12 杭州林润建设有限公司 Roof greening structure and construction method thereof
CN109914707B (en) * 2019-03-25 2020-11-27 西安建筑科技大学 Modularized micro-ecological filter bed type green roof and drainage and sludge discharge method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104594446A (en) * 2015-01-22 2015-05-06 浙江大学 Initial runoff collection, purification and recycling system and initial runoff collection, purification and recycling method thereof
CN107278679A (en) * 2017-08-03 2017-10-24 周鹏飞 A kind of outside vertical surface of building Intelligent vertical greening system and its method of work
CN109914707B (en) * 2019-03-25 2020-11-27 西安建筑科技大学 Modularized micro-ecological filter bed type green roof and drainage and sludge discharge method
CN111264227A (en) * 2020-02-26 2020-06-12 杭州林润建设有限公司 Roof greening structure and construction method thereof

Similar Documents

Publication Publication Date Title
CN106754514B (en) A kind of sustainable dredging removes the microbial bacterial agent preparation method of black and odorous water
Ndegwa et al. A review of ammonia emission mitigation techniques for concentrated animal feeding operations
JP3302227B2 (en) Wastewater treatment device and wastewater treatment method
Sukias et al. Algal abundance, organic matter, and physico‐chemical characteristics of dairy farm facultative ponds: Implications for treatment performance
CN105544461A (en) Water purification type ecological bank protection overflow system
Boyd et al. Feasibility of retention structures, settling basins, and best management practices in effluent regulation for Alabama channel catfish farming
Zhang et al. Assessment of plants radial oxygen loss for nutrients and organic matter removal in full-scale constructed wetlands treating municipal effluents
CN205296070U (en) Water purification type ecological embankment cross flow system
CN107892393A (en) A kind of phytomicroorganism coupled mode pond pool ecology corridor water purification system and application process
JP2004097098A (en) Greening equipment
CN207933136U (en) A kind of microorganism remediation water body system
JP2018007646A (en) Nutrient circulation system, soil conditioner, and nutrient circulation method
Schipper et al. Mitigating nonpoint-source nitrate pollution by riparian-zone denitrification
Kaufman Chemical pollution of ground waters
CN205803123U (en) Floating-island type biomembrane phycomycete depurator
Porges et al. Waste stabilization ponds: use, function, and biota
CN101781062A (en) Blocking-proofing fast infiltration system
CN209143839U (en) It is a kind of for repairing the integrated chinampa biological bed of black and odorous water
US11623876B2 (en) PhAGR basin
CN110845004B (en) Method for enhancing biological degradation of triclosan in nitration system by using surfactant
CN207738518U (en) A kind of plant-microorganism coupled mode pond pool ecology corridor water purification system
Hedaoo et al. Biological wastewater treatment
CN206033382U (en) Undercurrent constructed wetland structure with training wall
CN108925396A (en) A kind of road flower nursery special environment protection contains soil material
CN204508922U (en) A kind of porous water distribution constructed wetland bed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110