JP2004096915A - Method and apparatus for controlling synchronous motor - Google Patents

Method and apparatus for controlling synchronous motor Download PDF

Info

Publication number
JP2004096915A
JP2004096915A JP2002256262A JP2002256262A JP2004096915A JP 2004096915 A JP2004096915 A JP 2004096915A JP 2002256262 A JP2002256262 A JP 2002256262A JP 2002256262 A JP2002256262 A JP 2002256262A JP 2004096915 A JP2004096915 A JP 2004096915A
Authority
JP
Japan
Prior art keywords
control operation
self
current
command value
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002256262A
Other languages
Japanese (ja)
Other versions
JP3708511B2 (en
Inventor
Kazunori Sakanobe
坂廼邊 和憲
Koichi Arisawa
有澤 浩一
Masaaki Yabe
矢部 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002256262A priority Critical patent/JP3708511B2/en
Publication of JP2004096915A publication Critical patent/JP2004096915A/en
Application granted granted Critical
Publication of JP3708511B2 publication Critical patent/JP3708511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling a synchronous motor wherein transition from non-self-controlled operation to self-controlled operation is smoothly carried out without a position detecting circuit. <P>SOLUTION: The method for controlling a synchronous motor is such that virtual computation is carried out based on current information from the synchronous motor in non-self-controlled operation, and this computation is repeated until the phase angle error between a command value of self-controlled operation voltage and a command value of non-self-controlled operation voltage converges. The virtual computation is for adjusting an initial voltage command so that voltage is not interrupted in transition from non-self-controlled operation to self-controlled operation. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、位置センサを使用しない同期電動機の制御方法及び同期電動機の制御装置に関する。
【0002】
【従来の技術】
エアコン等に用いられる圧縮機のモータをインバータにより駆動する場合、悪条件(高温、高圧)により、回転子の位置を検出する位置センサの使用が困難である。
上記圧縮機のモータとしてブラシレスDCモータを使用する場合、電機子巻線に誘起される電圧信号に基づいて磁極位置を検知し、これによりモータの転流信号を生成する駆動方法(自制運転と称する)が一般的である。しかし、ブラシレスDCモータの停止時は、電機子巻線に電圧が誘起されないため、起動の際は、電機子巻線に回転磁界が発生する様な同期信号を加え、回転子を強制的に回転させる起動法(他制運転と称する)が用いられる。この他制運転により、ブラシレスDCモータの回転数が上昇して、電機子巻線に電圧が誘起される状態になると、その時点で自制運転に移行させている。
【0003】
ブラシレスDCモータが起動すると、他制運転から自制運転に移行させるわけであるが、この移行時に印加電圧が大きく変化してしまうと、モータの挙動が不安定となり運転ができなくなる。自制運転に移行した際の電圧が過小である場合、発生トルクが低下し、モータが停止するおそれがある。また、自制運転に移行した際の電圧が過大である場合、電流が過大となり、過電流によるインバータの保護動作により・モータの破損や半導体スイッチ素子の破損を招く。
【0004】
この問題を解決する方法が種々提案されている。例えば、特開平3−239186号公報には、他制運転から自制運転に移行させる際、自制運転開始時のモータ回転数を他制運転時のモータ回転数と同じあるいは低くなる様にしたブラシレスDCモータの制御装置が開示されている。
【0005】
また特開平9−131091号公報には、他制運転時に印加電圧と誘起電圧の位相差がゼロになった点で自制運転を開始するようにしたブラシレスDCモータの制御装置が開示されている。
【0006】
図10はこれら従来のDCブラシレスモータの制御装置の構成を示す図である。図において、1は直流電源、2は制御信号に基づき動作する複数のスイッチ素子を有し直流電源1より供給され直流電圧Vdcを交流電圧に変換するインバータ、3は固定子3aおよび永久磁石を有する回転子3bから構成され、インバータ2からの交流電圧によって動作するDCブラシレスモータ、4はDCブラシレスモータ3の端子電圧を検出して、DCブラシレスモータ3の回転子3bの位置を検出する位置検出回路、5は位置検出回路4から出力される位置信号を入力してインバータ2のスイッチ素子の制御信号を発生する制御回路である。
【0007】
次に動作について説明する。図11は、従来のモータ制御装置の端子電圧波形図である。まず駆動を開始する場合、制御回路5は他制運転すなわち予め定められた電圧指令値および周波数の時間変化パターンに基づく制御信号を出力する。ここで、制御信号は位置検出回路4での位置検出情報を得るべく、所定の通電休止期間を備えた信号パターンとなっている。インバータ2は、制御信号に基づきスイッチング素子を駆動し、DCブラシレスモータ3の固定子3aに交流電圧を与え、回転磁界を発生し、回転子3bを回転させる。回転子3bの速度上昇に伴い、位置検出回路4は誘起電圧のゼロクロス情報すなわち回転子位置情報が出力される。制御回路5はゼロクロス情報を監視し、自制運転に切替が可能であるか否かを判断し、自制運転可能となったら自制運転へと切り替える。自制運転時は、回転子位置情報から回転速度を求め、速度指令と回転速度の差分(速度偏差)を積分することにより電圧指令値を演算し、回転子位置に同期した交流電圧を発生すべく制御信号を発生し、インバータ2は制御信号に応じた交流電圧を発生することでDCブラシレスモータ3を駆動する。
【0008】
上記の動作により、他制運転から自制運転に移行した際の電圧および電流の跳躍を少なくし、起動の安定化が図っている。
【0009】
【特許文献1】
特開平3−239186号公報
【特許文献2】
特開平9−131091号公報
【0010】
【発明が解決しようとする課題】
上記特開平3−239186号公報および特開平9−131091号公報に示されたDCブラシレスモータの制御方法は、誘起電圧を検出する必要があるため、位置検出回路が必要であった。またインバータから発生する電圧は、所定の通電休止区間が必要であるため、電圧および電流の波形は高調波を多く含んだ矩形波状とする必要があり、振動・騒音・効率面で有利な正弦波状の電流波形とすることができなかった。
【0011】
この発明は上記のような問題点を解消するためになされたもので、位置検出回路がなくとも他制運転から自制運転へスムーズに移行することが可能な同期電動機の制御方法及び同期電動機の制御装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
この発明に係る同期電動機の制御方法は、固定子巻線の誘起電圧を検出することなく同期電動機を運転制御する同期電動機の制御方法において、予め決められた電圧・周波数指令による他制運転により同期電動機を駆動し、同期電動機に流れる他制運転電流を検出するステップと、検出した他制運転電流値を記憶装置に格納するステップと、記憶された他制運転電流値と、他制運転の電圧・周波数指令情報に基づき、自制運転時の自制運転電流指令値を演算するステップと、自制運転電流指令値に基づき自制運転電圧指令値を演算するステップと、自制運転電圧指令値と他制運転電圧指令値の位相角度誤差を演算するステップと、位相角度誤差が収束していない場合、位相角度誤差に基づき記憶された他制運転電流値を回転座標変換して現在の他制運転電流値として記憶装置に座標回転した他制運転電流値を格納し、この座標回転した他制運転電流値に基づいて自制運転電流指令値・自制運転電圧指令値・自制運転電圧指令値と他制運転時電圧指令値の位相角度誤差の演算を位相角度誤差が収束するまで繰り返すステップと、位相角度誤差が収束した場合、演算された自制運転電流指令値、記憶された座標回転した他制運転電流値及び位相角度誤差に基づき自制運転を開始するステップと、を備えたことを特徴とする。
【0013】
また、この発明に係る同期電動機の制御方法は、固定子巻線の誘起電圧を検出することなく同期電動機を運転制御する同期電動機の制御方法において、予め決められた電圧・周波数指令による他制運転により同期電動機を駆動し、同期電動機に流れる他制運転電流を検出するステップと、検出した他制運転電流値を記憶装置に格納するステップと、記憶された他制運転電流値と、他制運転の電圧・周波数指令情報に基づき、自制運転時の自制運転電流指令値を演算するステップと、自制運転電流指令値に基づき自制運転電圧指令値を演算するステップと、自制運転電圧指令値と他制運転電圧指令値の位相角度誤差を演算するステップと、位相角度誤差に基づき前記記憶された他制運転電流値を回転座標変換して現在の他制運転電流値として前記記憶装置に座標回転した他制運転電流値を格納するステップと、座標回転した他制運転電流値に基づいて自制運転電流指令値・自制運転電圧指令値・自制運転電圧指令値と他制運転電圧指令値の位相角度誤差の演算を所定回数繰り返すステップと、演算された自制運転電流指令値、記憶された座標回転した他制運転電流値及び位相角度誤差に基づき自制運転を開始するステップと、を備えたことを特徴とする。
【0014】
また、この発明に係る同期電動機の制御方法は、自制運転時の自制運転電流指令値を演算するステップでの電流指令を、発生する電圧の周波数で回転する回転座標系で表現される励磁電流指令又はトルク電流指令としたことを特徴とする。
【0015】
また、この発明に係る同期電動機の制御方法は、フィルタ値情報を用いて自制運転の電圧指令演算を行う場合は、フィルタ値を記憶された座標回転した他制運転電流値に置き換えて、自制運転に切り替えることを特徴とする。
【0016】
また、この発明に係る同期電動機の制御方法は、同期電動機に流れる電流検出に巻線型電流センサを用いると共に、他制運転から自制運転への切り替えは、巻線型電流センサの検出周波数下限よりも高い周波数で行うことを特徴とする。
【0017】
この発明に係る同期電動機の制御装置は、固定子巻線の誘起電圧を検出することなく同期電動機を運転制御する同期電動機の制御装置において、予め決められた電圧・周波数指令による他制運転により同期電動機を駆動し、同期電動機に流れる他制運転電流を検出する電流検出手段と、検出した他制運転電流値を格納する記憶装置と、記憶された他制運転電流値と、他制運転の電圧・周波数指令情報に基づき、自制運転時の自制運転電流指令値を演算する自制運転電流指令値演算手段と、自制運転電流指令値に基づき自制運転電圧指令値を演算する自制運転電圧指令値演算手段と、自制運転電圧指令値と他制運転電圧指令値の位相角度誤差を演算する位相角度誤差演算手段と、位相角度誤差が収束していない場合、位相角度誤差に基づき記憶された他制運転電流値を回転座標変換して現在の他制運転電流値として記憶装置に座標回転した他制運転電流値を格納し、この座標回転した他制運転電流値に基づいて自制運転電流指令値・自制運転電圧指令値・自制運転電圧指令値と他制運転時電圧指令値の位相角度誤差の演算を位相角度誤差が収束するまで繰り返す手段と、位相角度誤差が収束した場合、演算された自制運転電流指令値、記憶された座標回転した他制運転電流値及び位相角度誤差に基づき自制運転を開始する自制運転開始手段と、を備えたことを特徴とする。
【0018】
また、この発明に係る同期電動機の制御装置は、固定子巻線の誘起電圧を検出することなく同期電動機を運転制御する同期電動機の制御装置において、予め決められた電圧・周波数指令による他制運転により同期電動機を駆動し、同期電動機に流れる他制運転電流を検出する電流検出手段と、検出した他制運転電流値を格納する記憶装置と、記憶された他制運転電流値と、他制運転の電圧・周波数指令情報に基づき、自制運転時の自制運転電流指令値を演算する自制運転電流指令値演算手段と、自制運転電流指令値に基づき自制運転電圧指令値を演算する自制運転電圧指令値演算手段と、自制運転電圧指令値と他制運転電圧指令値の位相角度誤差を演算する位相角度誤差演算手段と、位相角度誤差に基づき記憶された他制運転電流値を回転座標変換して現在の他制運転電流値として記憶装置に座標回転した他制運転電流値を格納する手段と、座標回転した他制運転電流値に基づいて自制運転電流指令値・自制運転電圧指令値・自制運転電圧指令値と他制運転電圧指令値の位相角度誤差の演算を所定回数繰り返す手段と、演算された自制運転電流指令値、記憶された座標回転した他制運転電流値及び位相角度誤差に基づき自制運転を開始する自制運転開始手段と、を備えたことを特徴とする。
【0019】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。ここでは、同期電動機の一例として、DCブラシレスモータを用いて説明するが、本発明はDCブラシレスモータに限定されるものではなく、同期電動機であればよい。
【0020】
実施の形態1.
図1は実施の形態1を示す図で、DCブラシレスモータの制御装置の構成を示す図である。図において、1は直流電源、2は制御信号に基づき動作する複数のスイッチ素子を有し直流電源1より供給される直流電圧Vdcを交流電圧に変換するインバータ、3は複数の巻線を有する固定子3aおよび永久磁石を有するモータ回転子3bから構成されインバータ2からの交流電圧によって動作するDCブラシレスモータ、8a,8bはDCブラシレスモータ3の相電流を検出する電流検出回路、5は前記電流検出回路8a,8bから出力される電流情報を入力してインバータ2のスイッチ素子の制御信号を発生する制御回路である。
【0021】
図2は制御回路5の内部構成を示すブロック図である。図において、10はモータ起動の際の所定の電圧・位相の指令値を出力する他制運転演算手段、7は電流検出回路8a,8bの出力するモータ相電流情報に基づきDCブラシレスモータ3を所定周波数で同期運転させるための電圧および位相の指令値を演算する自制運転演算手段、9は電流検出回路8a,8bの出力するモータ相電流情報と、他制運転時の電圧・周波数情報を入力して自制運転演算手段7の電圧および位相を調整する自制電圧指令値調整手段、11は現在の運転状態を元に他制運転と自制運転とを切り替える選択手段、13a,13bは座標変換器、12は選択手段11により選択された電圧・位相の指令値に基づきインバータ2の各スイッチング素子の制御信号を作成する駆動制御手段である。
【0022】
次に動作について図3を用いて説明する。図3はモータ起動時の制御回路5の動作を示すフローチャートである。まず、外部より運転の指令が与えられると、選択手段11は他制運転を選択する。このとき他制運転演算手段10は予め定められた電圧指令値と位相の時間変化パターンVγ ,Vδ ,θを出力する。
【0023】
座標変換器13aは電圧指令を位相指令情報に基づき回転座標系から静止座標系V ,V ,V に変換して出力する。
【0024】
駆動制御手段12は、静止座標系の電圧指令をインバータ2のスイッチング素子の制御信号に変換して出力する。インバータ2は、制御信号に基づき電圧指令情報V ,V ,V に相当する電圧をDCブラシレスモータ3に印加する。この結果DCブラシレスモータ3の固定子3aには電流I,I,Iが流れると共に回転子3bが回転を始める(ステップ1)。
【0025】
電流検出回路8a,8bはDCブラシレスモータ3の固定子3aに流れる電流I,Iを検出し、制御回路5にその情報を出力する。制御回路5内では電流情報を座標変換器13bを通し直流化した電流値Iγ,Iδを演算する。自制電圧指令値調整手段9は、他制起動の開始時刻から電流値Iγ,Iδを監視し、その値が安定したか否かを確認し、電流情報の値が安定したら、確定値Iγ’,Iδ’として内部メモリに保存する(ステップ2)。
【0026】
次に自制電圧指令値調整手段9は、記憶された電流値と出力電圧振幅情報
【0027】
【数1】

Figure 2004096915
【0028】
を用いて、確定値Iγ’,Iδ’の電流の元でこの出力電圧振幅の電圧が発生される様な励磁電流指令値Iγ を計算により求める(ステップ3)。
【0029】
ここで、ステップ3の計算方法の一例について説明する。例えば自制運転演算手段が式(1)にて表される場合、電圧振幅が他制運転時と同一となるためには、式(2)を満足すればよい。式(1)、(2)よりVγ ,Vγ ,Vδ ,Vδ を消去すると、Iγ についての簡単な式すなわち式(3)にて表されることは明らかであるので、ステップ3の演算式は式(3)となる。
【0030】
【数2】
Figure 2004096915
【0031】
【数3】
Figure 2004096915
【0032】
【数4】
Figure 2004096915
【0033】
次に自制運転演算手段7を用いて自制出力電圧指令値Vγ ,Vδ を演算し(ステップ4)、さらに自制出力電圧指令値Vγ ,Vδ と現在(他制運転)の出力電圧指令値Vγ ,Vδ の位相差Δθを求める(ステップ5)。Δθは例えば式(4)にて計算する。
【0034】
【数5】
Figure 2004096915
【0035】
この位相差Δθが収束したかを判断する(ステップ6)。すなわち、Δθが前回計算したΔθと比べて変化が小さい場合は自制切り替えの際の電圧誤差が無くなったものと判断し、以下のステップに進む。Δθが前回計算したΔθと比べて変化がまだ大きい場合は、自制運転の電圧誤差があるものと判断し、Δθ分だけ電流値Iγ’,Iδ’を回転座標変換してIγ’’,Iδ’’を求め(ステップ7)、このIγ’’,Iδ’’を現在の電流値として再度ステップ3以降を繰り返し実施する。なお演算初回の場合は無条件に繰り返しとする。
【0036】
前記の繰り返し演算の結果Δθの変化が無視できる程度に小さくなったら、選択手段11は電圧指令および位相を自制運転演算手段7の出力情報Vγ ,Vδ ,θに切り替えて自制運転を開始を行う(ステップ9)。
【0037】
なお、自制運転演算手段7に電流のフィルタ値情報を用いる場合は、ステップ9の直前にフィルタ値に座標回転した電流値Iγ’’,Iδ’’を与えた後(ステップ8)、自制運転に切り替える。
【0038】
自制運転中は、自制運転演算手段7はDCブラシレスモータ3に流れる電流情報に基づきDCブラシレスモータ3の回転子3bの位置を推定しつつ、所定の周波数で運転するよう電圧指令及び位相を出力することで安定した運転を達成する。
【0039】
以上により、自制運転演算開始前後の電圧は連続値となるため、切り替え時の電圧変動がなく安定した起動性能が得られる。また、他制運転時の電流値情報を元に自制運転開始時の電圧値を演算するため、起動時の負荷トルクが異なる場合にも適応することができる。
【0040】
上記本実施の形態による方式で起動した場合の起動電流波形を図4に、また上記演算を行わずに起動した場合の起動電流波形を図5に示す。本実施の形態による方式(図4)では、他制運転時の負荷に応じた電圧が演算され自制開始時より印加されるため、モータに流れる電流は、増減なく安定したものとなる。一方、演算を行わない場合(図5)は、自制運転開始時の電圧が一定となるため、異なる負荷トルクの元では起動電圧が不整合となり、結果電流波形が乱れたものとなる。
【0041】
なお、上記実施の形態では、繰り返し演算の終了判定をΔθの大きさにより行うものとしたが、これに限るものではなく、たとえば繰り返しの演算回数によって判定しても良い。通常、繰り返しの演算回数が10〜30回で収束する。
【0042】
また、出力電圧の調整方法として励磁電流指令(モータ磁束と同相成分の電流指令)を操作するものとして説明したが、これに限るものではなく、トルク電流指令(モータ磁束と直交する成分の電流指令)を操作しても、電圧の調整は可能であり、同様の効果が得られることは明らかである。
【0043】
また、制御回路5内部の演算用電流情報としてフィルタ値を用いる場合は、自制運転切り替えの際同時にフィルタ値をIγ’’,Iδ’’に置換することにより、自制運転への切り替えによる電流値の急変がなく、より安定性の向上した装置が実現できる。
【0044】
実施の形態2.
次に電流検出回路8a,8bに巻線型電流センサを使用した場合について説明する。図6,7はそれぞれホール素子型電流センサ(以下DCCT)、巻線型電流センサ(以下ACCT)の構造図である。
【0045】
DCCTはコアに発生する磁束をホール素子により電圧に変換して電流情報を得るものである。構造部品としてホール素子とアンプを必要とするため、高価である。
【0046】
一方ACCTはコア磁束の時間変化によって二次巻線に誘起電圧を発生し二次巻線に直列に接続される負荷抵抗に発生する電圧として一次電流(モータ電流)情報を取り出すものであり、構造が簡単で安価である。
【0047】
図8はDCCT,ACCT両電流センサの周波数−ゲイン特性を示す。DCCTは直接磁束を検出するため、一次電流の周波数によらずゲインは一定となる。一方ACCTは、磁束の時間変化を利用して検出するため、一次電流の周波数が低くなるほど、出力ゲインが小さくなる特性となる。
【0048】
ここで、図4の如くの電流波形をACCTで検出した場合のセンサ出力波形を図9に示す。同図に示すように、起動から所定周波数に加速するまではACCT出力は正しい電流情報とならない。すなわち、実施の形態1で説明した自制運転は起動〜ACCTの特性で決まる所定の周波数までは自制運転が正しく動作できない。そこで、電流検出回路8a,8bにACCTを使用する場合は、実施の形態1の他制運転周波数をACCTの特性によって決まる検出可能な周波数の下限値以上とすると、電流が検出できない回転数で自制運転することがないため、良好な制御性を保持することができる。また、センサが安価であるため、装置のコストを抑制することができる。
【0049】
本願同様、起動時のACCTのセンサ特性劣化を回避する従来法としては、2001年度パワーエレクトロニクス研究会第16回専門講習会資料「エアコンのパワーエレクトロニクス最前線」にて示された方式があるが、同方式はACCTの二次巻き線を3端子とする必要があり、かつ差動増幅器を要することから本願発明よりもコスト的に不利であることを付け加えておく。
【0050】
【発明の効果】
この発明に係る同期電動機の制御方法は、他制運転中の同期電動機の電流情報により、他制運転から自制運転への切り替え時の電圧が連続するように自制運転の初期電圧指令を調整する仮想的な演算を行い、自制運転電圧指令値と他制運転電圧指令値の位相角度誤差が収束するまで繰り返して演算を行うことにより、他制運転から自制運転への切り替え時の電圧変動がなく安定した起動性能が得られる。
【0051】
また、この発明に係る同期電動機の制御方法は、座標回転した他制運転電流値に基づいて自制運転電流指令値・自制運転電圧指令値・自制運転電圧指令値と他制運転電圧指令値の位相角度誤差の演算を所定回数繰り返して、繰り返し演算の終了を判定することでも、他制運転から自制運転への切り替え時の電圧変動がなく安定した起動性能が得られる。
【0052】
また、この発明に係る同期電動機の制御方法は、自制運転時の自制運転電流指令値を演算するステップでの電流指令を、発生する電圧の周波数で回転する回転座標系で表現される励磁電流指令又はトルク電流指令としたことにより、同期電動機に流れる電流情報に基づき回転子の位置を推定しつつ、所定の周波数で運転するように電圧指令を出力する自制運転制御におけるアルゴリズムを流用でき、簡単な方法で安定した起動性能が得られる。
【0053】
また、この発明に係る同期電動機の制御方法は、フィルタ値情報を用いて自制運転の電圧指令演算を行う場合は、フィルタ値を記憶された座標回転した他制運転電流値に置き換えて自制運転に切り替えることにより、自制運転への切り替えによる電流値の急変がなく、より安定性が向上する。
【0054】
また、この発明に係る同期電動機の制御方法は、同期電動機に流れる電流検出に巻線型電流センサを用いると共に、他制運転から自制運転への切り替えは、巻線型電流センサの検出周波数下限よりも高い周波数で行うことにより、電流検出を安価に行うことができる。
【0055】
この発明に係る同期電動機の制御装置は、他制運転中の同期電動機の電流情報により、他制運転から自制運転への切り替え時の電圧が連続するように自制運転の初期電圧指令を調整する仮想的な演算を行い、自制運転電圧指令値と他制運転電圧指令値の位相角度誤差が収束するまで繰り返して演算を行うことにより、他制運転から自制運転への切り替え時の電圧変動がなく安定した起動性能が得られる。
【0056】
また、この発明に係る同期電動機の制御装置は、座標回転した他制運転電流値に基づいて自制運転電流指令値・自制運転電圧指令値・自制運転電圧指令値と他制運転電圧指令値の位相角度誤差の演算を所定回数繰り返して、繰り返し演算の終了を判定することでも、他制運転から自制運転への切り替え時の電圧変動がなく安定した起動性能が得られる。
【図面の簡単な説明】
【図1】実施の形態1を示す図で、DCブラシレスモータの制御装置の構成を示す図である。
【図2】実施の形態1を示す図で、制御回路の内部構成を示すブロック図である。
【図3】実施の形態1を示す図で、動作を示すフローチャート図である。
【図4】実施の形態1を示す図で、モータ起動電流を示す図である。
【図5】実施の形態1を示す図で、本発明における電圧演算を行わない場合のモータ起動電流を示す図である。
【図6】実施の形態2を示す図で、ホール素子型電流センサの構造図である。
【図7】実施の形態2を示す図で、巻線型電流センサの構造図である。
【図8】実施の形態2を示す図で、電流センサの周波数−ゲイン特性を示す図である。
【図9】実施の形態2を示す図で、巻線型電流センサを用いた際の起動時の出力波形を示す図である。
【図10】従来のDCブラシレスモータの制御装置の構成を示す図である。
【図11】従来のDCブラシレスモータの制御装置の端子電圧波形図である。
【符号の説明】
1 直流電源、2 インバータ、3 DCブラシレスモータ、3a 固定子、3b 回転子、5 制御回路、7 自制運転演算手段、8a,8b 電流検出回路、9 自制電圧指令値調整手段、10 他制運転演算手段、11 選択手段、12 駆動制御手段、13a,13b 座標変換器。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a synchronous motor control method and a synchronous motor control device that do not use a position sensor.
[0002]
[Prior art]
When a motor of a compressor used for an air conditioner or the like is driven by an inverter, it is difficult to use a position sensor that detects the position of the rotor due to bad conditions (high temperature, high pressure).
When a brushless DC motor is used as the motor of the compressor, a driving method (referred to as self-limiting operation) that detects a magnetic pole position based on a voltage signal induced in an armature winding and generates a commutation signal of the motor based on the detected magnetic pole position. ) Is common. However, when the brushless DC motor is stopped, no voltage is induced in the armature winding, so at the time of startup, a synchronization signal that generates a rotating magnetic field is applied to the armature winding to forcibly rotate the rotor. An activation method (referred to as another braking operation) is used. When the rotation speed of the brushless DC motor increases due to the other braking operation and a voltage is induced in the armature winding, the operation is shifted to the self-limiting operation at that time.
[0003]
When the brushless DC motor is started, the operation is shifted from the other control operation to the self-control operation. However, if the applied voltage changes greatly at this shift, the behavior of the motor becomes unstable and the operation becomes impossible. If the voltage at the time of shifting to the self-limiting operation is too small, the generated torque may decrease, and the motor may stop. Also, if the voltage at the time of shifting to the self-limiting operation is too large, the current becomes too large, and the protection operation of the inverter due to the overcurrent causes damage to the motor and semiconductor switch elements.
[0004]
Various methods for solving this problem have been proposed. For example, Japanese Patent Application Laid-Open No. 3-239186 discloses a brushless DC in which, when shifting from the self-control operation to the self-control operation, the motor speed at the start of the self-control operation is equal to or lower than the motor speed at the time of the other control operation. A control device for a motor is disclosed.
[0005]
Japanese Patent Application Laid-Open No. Hei 9-131091 discloses a control device for a brushless DC motor in which self-limiting operation is started when the phase difference between an applied voltage and an induced voltage becomes zero during another braking operation.
[0006]
FIG. 10 is a diagram showing a configuration of a control device for such a conventional DC brushless motor. In the figure, 1 is a DC power supply, 2 is an inverter that has a plurality of switch elements that operate based on control signals and converts a DC voltage Vdc supplied from the DC power supply 1 into an AC voltage, and 3 has a stator 3a and a permanent magnet. A DC brushless motor, which is composed of a rotor 3b and operates by an AC voltage from the inverter 2, and a position detection circuit 4 detects a terminal voltage of the DC brushless motor 3 and detects a position of the rotor 3b of the DC brushless motor 3. Numeral 5 denotes a control circuit which receives a position signal output from the position detection circuit 4 and generates a control signal for the switch element of the inverter 2.
[0007]
Next, the operation will be described. FIG. 11 is a terminal voltage waveform diagram of a conventional motor control device. First, when driving is started, the control circuit 5 outputs a control signal based on another braking operation, that is, a predetermined voltage command value and a time change pattern of the frequency. Here, the control signal has a signal pattern having a predetermined energization suspension period in order to obtain position detection information in the position detection circuit 4. The inverter 2 drives the switching element based on the control signal, applies an AC voltage to the stator 3a of the DC brushless motor 3, generates a rotating magnetic field, and rotates the rotor 3b. As the speed of the rotor 3b increases, the position detection circuit 4 outputs zero cross information of the induced voltage, that is, rotor position information. The control circuit 5 monitors the zero-cross information, determines whether or not it is possible to switch to the self-control operation, and switches to the self-control operation when the self-control operation becomes possible. At the time of self-sustained operation, to obtain the rotation speed from the rotor position information, calculate the voltage command value by integrating the difference between the speed command and the rotation speed (speed deviation), and generate an AC voltage synchronized with the rotor position. A control signal is generated, and the inverter 2 drives the DC brushless motor 3 by generating an AC voltage according to the control signal.
[0008]
By the above operation, the jump of the voltage and the current at the time of shifting from the other braking operation to the self-limiting operation is reduced, and the starting is stabilized.
[0009]
[Patent Document 1]
JP-A-3-239186 [Patent Document 2]
JP-A-9-131091
[Problems to be solved by the invention]
The control method of the DC brushless motor disclosed in JP-A-3-239186 and JP-A-9-131091 requires a position detection circuit because it is necessary to detect an induced voltage. Since the voltage generated from the inverter requires a predetermined energization stop interval, the voltage and current waveforms must be rectangular waveforms containing many harmonics, which is advantageous in terms of vibration, noise, and efficiency. Could not be obtained.
[0011]
The present invention has been made in order to solve the above-described problems, and a synchronous motor control method and a synchronous motor control method capable of smoothly shifting from other control operation to self-control operation without a position detection circuit. It is intended to provide a device.
[0012]
[Means for Solving the Problems]
A synchronous motor control method according to the present invention is a synchronous motor control method for controlling the operation of a synchronous motor without detecting an induced voltage of a stator winding, wherein the synchronous motor is controlled by a remote control operation based on a predetermined voltage / frequency command. A step of driving the motor and detecting the other braking operation current flowing through the synchronous motor; storing the detected other braking operation current value in a storage device; storing the stored other braking operation current value; A step of calculating a self-control operation current command value during self-control operation based on the frequency command information; a step of calculating a self-control operation voltage command value based on the self-control operation current command value; a self-control operation voltage command value and another control operation voltage Calculating the phase angle error of the command value, and, if the phase angle error has not converged, converting the other braking / operation current value stored based on the phase angle error to rotational coordinates. Storing the coordinated rotating current control value in the storage device as the variable braking current value, and based on the coordinated rotating variable braking current value, the self-limiting operation current command value, the self-limiting operation voltage command value, and the self-limiting operation voltage command value. And a step of repeating the calculation of the phase angle error of the voltage command value during braking operation until the phase angle error converges. If the phase angle error converges, the calculated self-limiting operation current command value, the stored coordinate rotation Starting self-sustaining operation based on the braking current value and the phase angle error.
[0013]
Further, the synchronous motor control method according to the present invention is the synchronous motor control method for controlling the synchronous motor operation without detecting the induced voltage of the stator winding, wherein the remote control operation is performed by a predetermined voltage / frequency command. Driving the synchronous motor to detect the other braking operation current flowing through the synchronous motor, storing the detected other braking operation current value in a storage device, storing the stored other braking operation current value, and the other braking operation Calculating a self-control operation current command value during self-control operation based on the voltage / frequency command information of the self-control operation, calculating a self-control operation voltage command value based on the self-control operation current command value, Calculating a phase angle error of the operating voltage command value, and converting the stored other braking operation current value into a rotational coordinate based on the phase angle error to obtain a current other braking operation current value. A step of storing a coordinated rotated other braking operation current value in a storage device, and a self-limiting operation current command value, a self-limiting operation voltage command value, a self-limiting operation voltage command value, and a other braking operation voltage based on the coordinate rotated other braking operation current value. A step of repeating the calculation of the phase angle error of the command value a predetermined number of times, and a step of starting the self-control operation based on the calculated self-control operation current command value, the stored coordinate-rotated other control current value and the phase angle error, It is characterized by having.
[0014]
Further, the control method of the synchronous motor according to the present invention is characterized in that the current command in the step of calculating the self-control operation current command value during the self-control operation is an excitation current command expressed in a rotating coordinate system rotating at the frequency of the generated voltage. Alternatively, a torque current command is used.
[0015]
Further, in the synchronous motor control method according to the present invention, when the voltage command calculation of the self-limiting operation is performed using the filter value information, the self-limiting operation is performed by replacing the filter value with the stored other-control current value having the coordinate rotated. Switching to.
[0016]
Further, the synchronous motor control method according to the present invention uses the wound-type current sensor for detecting the current flowing in the synchronous motor, and switching from the other braking operation to the self-limiting operation is higher than the detection frequency lower limit of the winding-type current sensor. It is characterized in that it is performed at a frequency.
[0017]
A synchronous motor control device according to the present invention is a synchronous motor control device for controlling the operation of a synchronous motor without detecting an induced voltage of a stator winding, the synchronous motor being controlled by a remote control operation based on a predetermined voltage / frequency command. Current detection means for driving the motor and detecting the other braking operation current flowing through the synchronous motor, a storage device for storing the detected other braking operation current value, the stored other braking operation current value, and the voltage of the other braking operation Self-control operation current command value calculation means for calculating a self-control operation current command value during self-control operation based on frequency command information, and self-control operation voltage command value calculation means for calculating a self-control operation voltage command value based on the self-control operation current command value A phase angle error calculating means for calculating a phase angle error between the self-control operation voltage command value and the other control operation voltage command value, and storing the phase angle error based on the phase angle error if the phase angle error does not converge. The rotation control current is converted to the current value of the other braking operation, and the current value of the rotation of the other braking operation is stored in the storage device as the current value of the other braking operation current. A means for repeating the calculation of the phase angle error between the current command value, the self-control operation voltage command value, the self-control operation voltage command value, and the voltage command value during the other control operation until the phase angle error converges. Self-control operation starting means for starting the self-control operation based on the obtained self-control operation current command value, the stored other-control operation current value rotated in the coordinate system, and the phase angle error.
[0018]
A synchronous motor control device according to the present invention is a synchronous motor control device for controlling the operation of a synchronous motor without detecting an induced voltage of a stator winding, wherein the remote control operation is performed by a predetermined voltage / frequency command. Current detecting means for driving the synchronous motor and detecting the other braking operation current flowing in the synchronous motor, a storage device for storing the detected other braking operation current value, the stored other braking operation current value, and the other braking operation Self-control operation current command value calculation means for calculating the self-control operation current command value during self-control operation based on the voltage / frequency command information, and the self-control operation voltage command value for calculating the self-control operation voltage command value based on the self-control operation current command value Calculating means, a phase angle error calculating means for calculating a phase angle error between the self-control operation voltage command value and the other control operation voltage command value, and a rotation control current value stored based on the phase angle error. Means for storing the coordinated-rotated remote control current value in a storage device as a converted and controlled current current value in a storage device, and a self-control operation current command value / self-control operation voltage command value based on the coordinate-rotated remote control current value Means for repeating the calculation of the phase angle error between the self-control operation voltage command value and the other control operation voltage command value a predetermined number of times, the calculated self-control operation current command value, the stored coordinate-rotated other control operation current value and the phase angle error And a self-control operation starting means for starting the self-control operation based on the control information.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, a DC brushless motor will be described as an example of a synchronous motor, but the present invention is not limited to a DC brushless motor, and any synchronous motor may be used.
[0020]
Embodiment 1 FIG.
FIG. 1 shows the first embodiment, and shows the configuration of a control device for a DC brushless motor. In the figure, 1 is a DC power supply, 2 is an inverter that has a plurality of switch elements that operate based on a control signal and converts a DC voltage Vdc supplied from the DC power supply 1 into an AC voltage, and 3 is a fixed that has a plurality of windings DC brushless motor, which is composed of a motor rotor 3b having a permanent magnet 3a and a permanent magnet and operated by an AC voltage from the inverter 2, 8a and 8b are current detection circuits for detecting a phase current of the DC brushless motor 3, and 5 is the current detection. This is a control circuit that receives current information output from the circuits 8a and 8b and generates a control signal for a switch element of the inverter 2.
[0021]
FIG. 2 is a block diagram showing the internal configuration of the control circuit 5. In the figure, reference numeral 10 denotes a random-operation calculating means for outputting a predetermined voltage / phase command value at the time of starting the motor, and 7 a predetermined DC brushless motor 3 based on the motor phase current information output from the current detection circuits 8a and 8b. Self-control operation calculating means 9 for calculating command values of voltage and phase for synchronizing operation at frequency, 9 inputs motor phase current information output from current detection circuits 8a and 8b, and voltage and frequency information at other control operations. Self-control voltage command value adjusting means for adjusting the voltage and phase of the self-control operation means 7 by means of the control means 11; selecting means for switching between the other control operation and the self-control operation based on the current operation state; 13a and 13b coordinate converters; Is a drive control means for creating a control signal for each switching element of the inverter 2 based on the voltage / phase command value selected by the selection means 11.
[0022]
Next, the operation will be described with reference to FIG. FIG. 3 is a flowchart showing the operation of the control circuit 5 when starting the motor. First, when an operation command is given from the outside, the selection means 11 selects another braking operation. In this case another braking operation calculating means 10 of the voltage command value and the phase of the predetermined time variation pattern V γ 1 *, V δ 1 *, and outputs the theta 1.
[0023]
Coordinate converter 13a is * rotating coordinate system from the stationary coordinate system V u based voltage command to the phase command information, V v *, and outputs the converted to V w *.
[0024]
The drive control unit 12 converts the voltage command of the stationary coordinate system into a control signal of a switching element of the inverter 2 and outputs the control signal. The inverter 2, the voltage command information V u * based on the control signal, V v *, and applies a voltage corresponding to V w * to the DC brushless motor 3. As a result, currents I u , I v , and I w flow through the stator 3a of the DC brushless motor 3, and the rotor 3b starts rotating (step 1).
[0025]
The current detection circuits 8a and 8b detect currents I u and I v flowing through the stator 3a of the DC brushless motor 3, and output the information to the control circuit 5. In the control circuit 5, current values I γ and I δ obtained by converting the current information into DC through the coordinate converter 13b are calculated. The self-control voltage command value adjusting means 9 monitors the current values I γ and I δ from the start time of the other control activation, confirms whether or not the values have stabilized, and when the value of the current information has stabilized, the determined value I γ ′, ′ are stored in the internal memory (step 2).
[0026]
Next, the self-control voltage command value adjusting means 9 stores the stored current value and output voltage amplitude information.
(Equation 1)
Figure 2004096915
[0028]
Is used to calculate an exciting current command value * such that a voltage having this output voltage amplitude is generated under the current of the definite values ′ and ′ (step 3).
[0029]
Here, an example of the calculation method in step 3 will be described. For example, when the self-limiting operation calculation means is represented by equation (1), it is sufficient that equation (2) is satisfied in order for the voltage amplitude to be the same as in the other-controlled operation. Equation (1) is expressed by (2) from V γ 1 *, V γ 2 *, V δ 1 *, when erasing the V [delta] 2 *, simple formula i.e. formula for I gamma * (3) It is clear that the operation expression of step 3 is expression (3).
[0030]
(Equation 2)
Figure 2004096915
[0031]
[Equation 3]
Figure 2004096915
[0032]
(Equation 4)
Figure 2004096915
[0033]
Then self-control operation calculating means 7 by using the self-control output voltage command value V gamma 2 *, it calculates the V [delta] 2 * (Step 4), further restraint output voltage command value V γ 2 *, V δ 2 * and the current ( other system operation) of the output voltage command value V γ 1 *, V δ 1 * of determining the phase difference [Delta] [theta] (step 5). Δθ is calculated by, for example, equation (4).
[0034]
(Equation 5)
Figure 2004096915
[0035]
It is determined whether the phase difference Δθ has converged (step 6). That is, when the change of Δθ is smaller than the previously calculated Δθ, it is determined that the voltage error at the time of self-control switching has disappeared, and the process proceeds to the following steps. If the change in Δθ is still larger than the previously calculated Δθ, it is determined that there is a voltage error in the self-limiting operation, and the current values I γ ′ and I δ ′ are converted into the rotational coordinates by Δθ and I γ ″ , I δ ″ are obtained (step 7), and the steps from step 3 are repeated again using these I γ ″, I δ ″ as the current values. In the case of the first calculation, it is unconditionally repeated.
[0036]
When the change in Δθ becomes negligible as a result of the repetitive calculation, the selecting means 11 switches the voltage command and the phase to the output information V γ 2 * , V δ 2 * , θ 2 of the self-control operation calculating means 7. Self-control operation is started (step 9).
[0037]
When the current filter value information is used for the self-control operation calculating means 7, the current values I γ ″ and I δ ″ that have been subjected to coordinate rotation are given to the filter values immediately before step 9 (step 8). Switch to driving.
[0038]
During the self-control operation, the self-control operation calculating means 7 outputs a voltage command and a phase so as to operate at a predetermined frequency while estimating the position of the rotor 3b of the DC brushless motor 3 based on current information flowing through the DC brushless motor 3. To achieve stable operation.
[0039]
As described above, since the voltage before and after the start of the self-limiting operation calculation is a continuous value, a stable start-up performance is obtained without voltage fluctuation at the time of switching. Further, since the voltage value at the time of starting the self-limiting operation is calculated based on the current value information at the time of the other braking operation, the present invention can be applied even when the load torque at the time of startup is different.
[0040]
FIG. 4 shows a starting current waveform in the case of starting by the method according to the present embodiment, and FIG. 5 shows a starting current waveform in the case of starting without performing the above calculation. In the method according to the present embodiment (FIG. 4), a voltage corresponding to the load during the braking control is calculated and applied from the start of the braking control, so that the current flowing through the motor is stable without increasing or decreasing. On the other hand, when the calculation is not performed (FIG. 5), the voltage at the start of the self-limiting operation is constant, so that the starting voltage is mismatched under different load torques, resulting in a distorted current waveform.
[0041]
In the above embodiment, the end of the repetitive operation is determined based on the magnitude of Δθ. However, the present invention is not limited to this. For example, the end may be determined based on the number of repetitive operations. Usually, the convergence is performed when the number of repetition operations is 10 to 30.
[0042]
Also, the method of adjusting the output voltage has been described as operating the excitation current command (current command having the same phase component as the motor flux). However, the present invention is not limited to this, and the torque current command (current command having a component orthogonal to the motor flux) is used. It is apparent that the voltage adjustment can be performed by operating ()), and the same effect can be obtained.
[0043]
In the case of using a filter value as the control circuit 5 inside the calculation current information, I gamma 'filter values simultaneously when restraint operation switching', I [delta] 'by substituting' current by switching to the self-control operation There is no sudden change in the value, and a more stable device can be realized.
[0044]
Embodiment 2 FIG.
Next, a case where a winding type current sensor is used for the current detection circuits 8a and 8b will be described. 6 and 7 are structural views of a Hall element type current sensor (hereinafter, DCCT) and a wound type current sensor (hereinafter, ACCT), respectively.
[0045]
The DCCT converts magnetic flux generated in a core into a voltage by a Hall element to obtain current information. It is expensive because it requires a Hall element and an amplifier as structural components.
[0046]
On the other hand, the ACCT generates an induced voltage in the secondary winding due to a time change of the core magnetic flux, and extracts primary current (motor current) information as a voltage generated in a load resistor connected in series to the secondary winding. But simple and inexpensive.
[0047]
FIG. 8 shows frequency-gain characteristics of both the DCCT and ACCT current sensors. Since DCCT directly detects magnetic flux, the gain is constant regardless of the frequency of the primary current. On the other hand, since ACCT detects a change in magnetic flux over time, the output gain decreases as the frequency of the primary current decreases.
[0048]
FIG. 9 shows a sensor output waveform when a current waveform as shown in FIG. 4 is detected by ACCT. As shown in the figure, the ACCT output does not become correct current information until it is accelerated to a predetermined frequency from the start. That is, in the self-control operation described in the first embodiment, the self-control operation cannot operate correctly up to a predetermined frequency determined by the characteristics of the ACCT. Therefore, when ACCT is used for the current detection circuits 8a and 8b, if the alternative operation frequency of the first embodiment is set to be equal to or higher than the lower limit value of a detectable frequency determined by the characteristics of ACCT, self-control is performed at a rotational speed at which current cannot be detected. Since there is no driving, good controllability can be maintained. Further, since the sensor is inexpensive, the cost of the device can be reduced.
[0049]
As in the present application, as a conventional method for avoiding the deterioration of the sensor characteristics of the ACCT at the time of startup, there is a method shown in the 2001 Power Electronics Research Group 16th Special Seminar Materials “Power Electronics for Air Conditioners”. This method requires that the secondary winding of the ACCT has three terminals and requires a differential amplifier, which is disadvantageous in cost compared to the present invention.
[0050]
【The invention's effect】
The synchronous motor control method according to the present invention adjusts the initial voltage command of the self-control operation such that the voltage at the time of switching from the other control operation to the self-control operation is continuous based on the current information of the synchronous motor during the other control operation. Calculation is repeated until the phase angle error between the self-control operation voltage command value and the other control operation voltage command value converges, and there is no voltage fluctuation when switching from the other control operation to the self-control operation. Start performance is obtained.
[0051]
Further, the synchronous motor control method according to the present invention may further comprise a self-control operation current command value, a self-control operation voltage command value, and a phase of the self-control operation voltage command value and the other control operation voltage command value based on the co-rotation other control operation current value. Even if the calculation of the angle error is repeated a predetermined number of times and the end of the repeated calculation is determined, stable start-up performance can be obtained without voltage fluctuation when switching from the other control operation to the self-control operation.
[0052]
Further, the control method of the synchronous motor according to the present invention is characterized in that the current command in the step of calculating the self-control operation current command value during the self-control operation is an excitation current command expressed in a rotating coordinate system rotating at the frequency of the generated voltage. Or, by using the torque current command, an algorithm in self-control operation control that outputs a voltage command to operate at a predetermined frequency while estimating the position of the rotor based on current information flowing through the synchronous motor can be used. The method provides stable start-up performance.
[0053]
Further, in the synchronous motor control method according to the present invention, when performing the voltage command calculation of the self-control operation using the filter value information, the filter value is replaced with the stored coordinate-rotated other control operation current value and the self-control operation is performed. By switching, there is no sudden change in the current value due to switching to self-limiting operation, and the stability is further improved.
[0054]
Further, the synchronous motor control method according to the present invention uses the wound-type current sensor for detecting the current flowing in the synchronous motor, and switching from the other braking operation to the self-limiting operation is higher than the detection frequency lower limit of the winding-type current sensor. By performing the detection at the frequency, the current detection can be performed at low cost.
[0055]
The synchronous motor control device according to the present invention adjusts the initial voltage command of the self-control operation such that the voltage at the time of switching from the other control operation to the self-control operation is continuous based on the current information of the synchronous motor during the other control operation. Calculation is repeated until the phase angle error between the self-control operation voltage command value and the other control operation voltage command value converges, and there is no voltage fluctuation when switching from the other control operation to the self-control operation. Start performance is obtained.
[0056]
Further, the control device for the synchronous motor according to the present invention is configured to control the self-control operation current command value, the self-control operation voltage command value, the self-control operation voltage command value, and the phase of the other control operation voltage command value based on the co-rotation other control operation current value. Even if the calculation of the angle error is repeated a predetermined number of times, and the end of the repeated calculation is determined, stable start-up performance can be obtained without voltage fluctuation at the time of switching from the other control operation to the self-control operation.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a first embodiment, and is a diagram illustrating a configuration of a control device of a DC brushless motor.
FIG. 2 is a diagram illustrating the first embodiment and is a block diagram illustrating an internal configuration of a control circuit;
FIG. 3 shows the first embodiment, and is a flowchart showing the operation.
FIG. 4 is a diagram illustrating the first embodiment and is a diagram illustrating a motor starting current;
FIG. 5 is a diagram illustrating the first embodiment and is a diagram illustrating a motor starting current when voltage calculation according to the present invention is not performed.
FIG. 6 shows the second embodiment and is a structural diagram of a Hall element type current sensor.
FIG. 7 shows the second embodiment and is a structural diagram of a wire-wound current sensor.
FIG. 8 is a diagram illustrating the second embodiment, and is a diagram illustrating frequency-gain characteristics of the current sensor.
FIG. 9 is a diagram illustrating the second embodiment, and is a diagram illustrating an output waveform at the time of startup when the wire-wound current sensor is used.
FIG. 10 is a diagram showing a configuration of a conventional DC brushless motor control device.
FIG. 11 is a terminal voltage waveform diagram of a conventional DC brushless motor control device.
[Explanation of symbols]
Reference Signs List 1 DC power supply, 2 inverters, 3 DC brushless motor, 3a stator, 3b rotor, 5 control circuit, 7 self-control operation calculation means, 8a, 8b current detection circuit, 9 self-control voltage command value adjustment means, 10 other control operation calculation Means, 11 selecting means, 12 drive control means, 13a, 13b coordinate converter.

Claims (7)

固定子巻線の誘起電圧を検出することなく同期電動機を運転制御する同期電動機の制御方法において、
予め決められた電圧・周波数指令による他制運転により同期電動機を駆動し、同期電動機に流れる他制運転電流を検出するステップと、
検出した他制運転電流値を記憶装置に格納するステップと、
前記記憶された他制運転電流値と、前記他制運転の電圧・周波数指令情報に基づき、自制運転時の自制運転電流指令値を演算するステップと、
前記自制運転電流指令値に基づき自制運転電圧指令値を演算するステップと、
前記自制運転電圧指令値と前記他制運転電圧指令値の位相角度誤差を演算するステップと、
前記位相角度誤差が収束していない場合、前記位相角度誤差に基づき前記記憶された他制運転電流値を回転座標変換して現在の他制運転電流値として前記記憶装置に座標回転した他制運転電流値を格納し、この座標回転した他制運転電流値に基づいて自制運転電流指令値・自制運転電圧指令値・自制運転電圧指令値と他制運転時電圧指令値の位相角度誤差の演算を位相角度誤差が収束するまで繰り返すステップと、
前記位相角度誤差が収束した場合、前記演算された自制運転電流指令値、前記記憶された座標回転した他制運転電流値及び前記位相角度誤差に基づき自制運転を開始するステップと、
を備えたことを特徴とする同期電動機の制御方法。
In a synchronous motor control method for controlling the operation of a synchronous motor without detecting an induced voltage of a stator winding,
Driving the synchronous motor by another control operation according to a predetermined voltage / frequency command, and detecting another control operation current flowing through the synchronous motor;
Storing the detected other braking current value in a storage device;
Calculating the self-control operation current command value during self-control operation based on the stored other control operation current value and the voltage / frequency command information of the other control operation;
Calculating a self-control operation voltage command value based on the self-control operation current command value;
Calculating a phase angle error between the self-control operation voltage command value and the other control operation voltage command value,
If the phase angle error has not converged, the other braking operation in which the stored other braking operation current value is subjected to rotational coordinate conversion based on the phase angle error and the coordinate rotation is performed in the storage device as the current other braking operation current value. The current value is stored, and the phase angle error between the self-control operation current command value, the self-control operation voltage command value, the self-control operation voltage command value, and the voltage command value during the other control operation is calculated based on the other control operation current value rotated by this coordinate. Repeating until the phase angle error converges;
When the phase angle error converges, starting the self-control operation based on the calculated self-control operation current command value, the stored coordinate-rotated remote control current value and the phase angle error,
A method for controlling a synchronous motor, comprising:
固定子巻線の誘起電圧を検出することなく同期電動機を運転制御する同期電動機の制御方法において、
予め決められた電圧・周波数指令による他制運転により同期電動機を駆動し、同期電動機に流れる他制運転電流を検出するステップと、
検出した他制運転電流値を記憶装置に格納するステップと、
前記記憶された他制運転電流値と、前記他制運転の電圧・周波数指令情報に基づき、自制運転時の自制運転電流指令値を演算するステップと、
前記自制運転電流指令値に基づき自制運転電圧指令値を演算するステップと、
前記自制運転電圧指令値と前記他制運転電圧指令値の位相角度誤差を演算するステップと、
前記位相角度誤差に基づき前記記憶された他制運転電流値を回転座標変換して現在の他制運転電流値として前記記憶装置に座標回転した他制運転電流値を格納するステップと、
前記座標回転した他制運転電流値に基づいて自制運転電流指令値・自制運転電圧指令値・自制運転電圧指令値と他制運転電圧指令値の位相角度誤差の演算を所定回数繰り返すステップと、
前記演算された自制運転電流指令値、前記記憶された座標回転した他制運転電流値及び前記位相角度誤差に基づき自制運転を開始するステップと、
を備えたことを特徴とする同期電動機の制御方法。
In a synchronous motor control method for controlling the operation of a synchronous motor without detecting an induced voltage of a stator winding,
Driving the synchronous motor by another control operation according to a predetermined voltage / frequency command, and detecting another control operation current flowing through the synchronous motor;
Storing the detected other braking current value in a storage device;
Calculating the self-control operation current command value during self-control operation based on the stored other control operation current value and the voltage / frequency command information of the other control operation;
Calculating a self-control operation voltage command value based on the self-control operation current command value;
Calculating a phase angle error between the self-control operation voltage command value and the other control operation voltage command value,
A step of converting the stored other braking operation current value into a rotational coordinate based on the phase angle error and storing the coordinate rotated other braking operation current value in the storage device as a current other braking operation current value;
A step of repeating a predetermined number of times of calculating the phase angle error between the self-control operation current command value, the self-control operation voltage command value, the self-control operation voltage command value and the other control operation voltage command value based on the coordinate-rotated other control current value,
Starting the self-control operation based on the calculated self-control operation current command value, the stored coordinate-rotated remote control current value and the phase angle error,
A method for controlling a synchronous motor, comprising:
自制運転時の自制運転電流指令値を演算するステップでの電流指令を、発生する電圧の周波数で回転する回転座標系で表現される励磁電流指令又はトルク電流指令としたことを特徴とする請求項1又は請求項2記載の同期電動機の制御方法。The current command in the step of calculating the self-control operation current command value during the self-control operation is an excitation current command or a torque current command expressed by a rotating coordinate system that rotates at a frequency of a generated voltage. 3. The method for controlling a synchronous motor according to claim 1. フィルタ値情報を用いて自制運転の電圧指令演算を行う場合は、フィルタ値を前記記憶された座標回転した他制運転電流値に置き換えて、自制運転に切り替えることを特徴とする請求項1又は請求項2記載の同期電動機の制御方法。The voltage command calculation of the self-control operation using the filter value information, the filter value is replaced with the stored other-control current value whose coordinate has been rotated, and the self-control operation is switched to the self-control operation. Item 3. The method for controlling a synchronous motor according to Item 2. 同期電動機に流れる電流検出に巻線型電流センサを用いると共に、他制運転から自制運転への切り替えは、前記巻線型電流センサの検出周波数下限よりも高い周波数で行うことを特徴とする請求項1又は請求項2記載の同期電動機の制御方法。The winding type current sensor is used for detecting the current flowing through the synchronous motor, and switching from the other control operation to the self-limiting operation is performed at a frequency higher than a lower detection frequency of the winding type current sensor. A method for controlling a synchronous motor according to claim 2. 固定子巻線の誘起電圧を検出することなく同期電動機を運転制御する同期電動機の制御装置において、
予め決められた電圧・周波数指令による他制運転により同期電動機を駆動し、同期電動機に流れる他制運転電流を検出する電流検出手段と、
検出した他制運転電流値を格納する記憶装置と、
前記記憶された他制運転電流値と、前記他制運転の電圧・周波数指令情報に基づき、自制運転時の自制運転電流指令値を演算する自制運転電流指令値演算手段と、
前記自制運転電流指令値に基づき自制運転電圧指令値を演算する自制運転電圧指令値演算手段と、
前記自制運転電圧指令値と前記他制運転電圧指令値の位相角度誤差を演算する位相角度誤差演算手段と、
前記位相角度誤差が収束していない場合、前記位相角度誤差に基づき前記記憶された他制運転電流値を回転座標変換して現在の他制運転電流値として前記記憶装置に座標回転した他制運転電流値を格納し、この座標回転した他制運転電流値に基づいて自制運転電流指令値・自制運転電圧指令値・自制運転電圧指令値と他制運転時電圧指令値の位相角度誤差の演算を位相角度誤差が収束するまで繰り返す手段と、
前記位相角度誤差が収束した場合、前記演算された自制運転電流指令値、前記記憶された座標回転した他制運転電流値及び前記位相角度誤差に基づき自制運転を開始する自制運転開始手段と、
を備えたことを特徴とする同期電動機の制御装置。
In a synchronous motor control device that controls the operation of the synchronous motor without detecting the induced voltage of the stator winding,
Current detection means for driving the synchronous motor by another braking operation according to a predetermined voltage / frequency command, and detecting another braking current flowing through the synchronous motor,
A storage device for storing the detected other braking operation current value;
Self-control operation current command value calculation means for calculating a self-control operation current command value during self-control operation based on the stored other control operation current value and the voltage / frequency command information of the other control operation,
Self-control operation voltage command value calculating means for calculating a self-control operation voltage command value based on the self-control operation current command value,
A phase angle error calculating means for calculating a phase angle error between the self-control operation voltage command value and the other control voltage command value,
If the phase angle error has not converged, the other braking operation in which the stored other braking operation current value is subjected to rotational coordinate conversion based on the phase angle error and the coordinate rotation is performed in the storage device as the current other braking operation current value. The current value is stored, and the phase angle error between the self-control operation current command value, the self-control operation voltage command value, the self-control operation voltage command value, and the voltage command value during the other control operation is calculated based on the other control operation current value rotated by this coordinate. Means for repeating until the phase angle error converges;
When the phase angle error converges, the calculated self-control operation current command value, self-control operation start means for starting self-control operation based on the stored coordinate-rotated remote control current value and the phase angle error,
A control device for a synchronous motor, comprising:
固定子巻線の誘起電圧を検出することなく同期電動機を運転制御する同期電動機の制御装置において、
予め決められた電圧・周波数指令による他制運転により同期電動機を駆動し、同期電動機に流れる他制運転電流を検出する電流検出手段と、
検出した他制運転電流値を格納する記憶装置と、
前記記憶された他制運転電流値と、前記他制運転の電圧・周波数指令情報に基づき、自制運転時の自制運転電流指令値を演算する自制運転電流指令値演算手段と、
前記自制運転電流指令値に基づき自制運転電圧指令値を演算する自制運転電圧指令値演算手段と、
前記自制運転電圧指令値と前記他制運転電圧指令値の位相角度誤差を演算する位相角度誤差演算手段と、
前記位相角度誤差に基づき前記記憶された他制運転電流値を回転座標変換して現在の他制運転電流値として前記記憶装置に座標回転した他制運転電流値を格納する手段と、
前記座標回転した他制運転電流値に基づいて自制運転電流指令値・自制運転電圧指令値・自制運転電圧指令値と他制運転電圧指令値の位相角度誤差の演算を所定回数繰り返す手段と、
前記演算された自制運転電流指令値、前記記憶された座標回転した他制運転電流値及び前記位相角度誤差に基づき自制運転を開始する自制運転開始手段と、
を備えたことを特徴とする同期電動機の制御装置。
In a synchronous motor control device that controls the operation of the synchronous motor without detecting the induced voltage of the stator winding,
Current detection means for driving the synchronous motor by another braking operation according to a predetermined voltage / frequency command, and detecting another braking current flowing through the synchronous motor,
A storage device for storing the detected other braking operation current value;
Self-control operation current command value calculation means for calculating a self-control operation current command value during self-control operation based on the stored other control operation current value and the voltage / frequency command information of the other control operation,
Self-control operation voltage command value calculating means for calculating a self-control operation voltage command value based on the self-control operation current command value,
A phase angle error calculating means for calculating a phase angle error between the self-control operation voltage command value and the other control voltage command value,
A means for storing the other braking operation current value that has been coordinate-rotated in the storage device as the current other braking operation current value by performing a rotational coordinate conversion on the stored other braking operation current value based on the phase angle error,
Means for repeating a predetermined number of times of calculating the phase angle error between the self-control operation current command value, the self-control operation voltage command value, the self-control operation voltage command value and the other control operation voltage command value based on the coordinate-rotated other control operation current value,
Self-control operation starting means for starting the self-control operation based on the calculated self-control operation current command value, the stored coordinate-rotated remote control operation current value and the phase angle error,
A control device for a synchronous motor, comprising:
JP2002256262A 2002-09-02 2002-09-02 Synchronous motor control method and synchronous motor control apparatus Expired - Lifetime JP3708511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256262A JP3708511B2 (en) 2002-09-02 2002-09-02 Synchronous motor control method and synchronous motor control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256262A JP3708511B2 (en) 2002-09-02 2002-09-02 Synchronous motor control method and synchronous motor control apparatus

Publications (2)

Publication Number Publication Date
JP2004096915A true JP2004096915A (en) 2004-03-25
JP3708511B2 JP3708511B2 (en) 2005-10-19

Family

ID=32061539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256262A Expired - Lifetime JP3708511B2 (en) 2002-09-02 2002-09-02 Synchronous motor control method and synchronous motor control apparatus

Country Status (1)

Country Link
JP (1) JP3708511B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199871A (en) * 2007-01-18 2008-08-28 Denso Corp Method and device for controlling synchronous motor
EP2063194A1 (en) * 2007-11-20 2009-05-27 LG Electronics Inc. Motor controller of air conditioner
CN113541558A (en) * 2021-07-30 2021-10-22 东风商用车有限公司 Motor initial position identification method, device, equipment and readable storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11837982B2 (en) 2021-04-28 2023-12-05 Panasonic Intellectual Property Management Co., Ltd. Rotary machine control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199871A (en) * 2007-01-18 2008-08-28 Denso Corp Method and device for controlling synchronous motor
EP2063194A1 (en) * 2007-11-20 2009-05-27 LG Electronics Inc. Motor controller of air conditioner
CN113541558A (en) * 2021-07-30 2021-10-22 东风商用车有限公司 Motor initial position identification method, device, equipment and readable storage medium

Also Published As

Publication number Publication date
JP3708511B2 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
JP3888082B2 (en) Motor device and control method thereof
EP1121753B1 (en) Method and device for controlling a brushless electric motor
JP4959460B2 (en) Motor starting device and motor starting method
JP3204644B2 (en) Driving device and driving method for electric motor
JP3840416B2 (en) Turbine generator
US7332884B2 (en) Electric motor control strategies
US6362581B1 (en) Device and method for starting a brushless motor
JP2003111469A (en) Control method and controller of motor
JP2002305890A (en) Drive-control device for motor for pump
JP4791319B2 (en) Inverter device, compressor drive device and refrigeration / air-conditioning device
JP3672761B2 (en) Synchronous motor drive
JPH1028395A (en) Position detector for dc brushless motor
JP2004096915A (en) Method and apparatus for controlling synchronous motor
JP3515047B2 (en) DC brushless motor device
WO1991008611A1 (en) Drive control method for variable reluctance type motor
JP3577245B2 (en) Motor start control device
JP2008220035A (en) Brushless motor starter
JP3283377B2 (en) DC motor synchronous starter
JPH09327194A (en) Control method for brushless motor
JP2009124801A (en) Driving method for brushless dc motor
JP2000253691A (en) Apparatus and method for controlling brushless motor
Shi et al. Sensorless Control Method for Wound-Field Doubly Salient Starter/Generator with Two-section Interlaced-Rotor Structure
JPH1032993A (en) Sensorless control method for permanent-magnet field-system synchronous motor
JP2013013293A (en) Motor activation controller and motor activation control method
JP2002186274A (en) Brushless dc motor controller

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20031216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040519

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050803

R150 Certificate of patent or registration of utility model

Ref document number: 3708511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term