JP2004095565A - Gasket for laminated fuel cell - Google Patents

Gasket for laminated fuel cell Download PDF

Info

Publication number
JP2004095565A
JP2004095565A JP2003428699A JP2003428699A JP2004095565A JP 2004095565 A JP2004095565 A JP 2004095565A JP 2003428699 A JP2003428699 A JP 2003428699A JP 2003428699 A JP2003428699 A JP 2003428699A JP 2004095565 A JP2004095565 A JP 2004095565A
Authority
JP
Japan
Prior art keywords
sealing material
fuel cell
sealing
gasket
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003428699A
Other languages
Japanese (ja)
Other versions
JP2004095565A5 (en
Inventor
Yasuyori Sasaki
佐々木 康順
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2003428699A priority Critical patent/JP2004095565A/en
Publication of JP2004095565A publication Critical patent/JP2004095565A/en
Publication of JP2004095565A5 publication Critical patent/JP2004095565A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gasket for a laminated fuel cell which has excellent adhesiveness to a laminated fuel cell component such as porous carbon for forming a carbon electrode, and reduces a thickness. <P>SOLUTION: The gasket for the laminated fuel cell impregnates a seal material in a gap part of a seal part of a sealed object having the gap part to integrate the seal material. The gasket for the laminated fuel cell is vulcanized while being integrated with the sealed object without coating a liquid seal material or mounting an O-ring in assembling as conducted conventionally. Therefore, secure sealing of the sealed object can be achieved and the thickness of the seal part can be reduced. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、積層型燃料電池用ガスケットに関する。更に詳しくは、カーボン電極を形成する多孔質カーボンに対する接着性にすぐれた積層型燃料電池用ガスケットに関する。 The present invention relates to a gasket for a stacked fuel cell. More specifically, the present invention relates to a gasket for a stacked fuel cell having excellent adhesion to porous carbon forming a carbon electrode.

 燃料電池は、燃料極および酸素極表面上に白金系触媒を超微粒子状でコーティングし、例えば燃料の水素と酸素とを電極表面で電極反応させて発電する装置であり、通常の燃焼反応とは異なる反応で発電する装置である。 A fuel cell is a device in which a platinum-based catalyst is coated in the form of ultrafine particles on the surfaces of a fuel electrode and an oxygen electrode, for example, an electrode reaction is caused between hydrogen and oxygen of the fuel on the electrode surface to generate electric power. It is a device that generates power by different reactions.

 それに用いられる電極としては、電子伝導性にすぐれ、電気化学的に安定でかつリン酸等の電解質で変質しない材料、例えば無定形炭素あるいはグラファイトの粉体あるいは繊維が好適に用いられている。カーボン電極は、電極反応で燃料水素のイオン化に伴って電子を受け取り、これが電流および電圧となるので、要求される高い電子伝導性を満足させるばかりではなく、このイオン化を効率良く進める役割をも果している。 電極 As the electrode used therefor, a material that has excellent electron conductivity, is electrochemically stable, and is not deteriorated by an electrolyte such as phosphoric acid, for example, amorphous carbon or graphite powder or fiber is suitably used. The carbon electrode receives electrons with the ionization of fuel hydrogen in the electrode reaction, which becomes current and voltage, so that it not only satisfies the required high electron conductivity but also plays a role in promoting this ionization efficiently. I have.

 この電極反応は、燃料との気−固相接触反応であることから、表面積を可能な限り大きくしたいという要求もある。このことは、材料の構造面からみると多孔質化して、気体との接触面積を大きくすることを意味するが、高導電性のカーボンは剛性が高く脆いので、多孔質化(約40〜70%の多孔度)と共に材料強度は低下するようになり、この点はカーボンの種類を選択することにより、それの適性化を図っている。 電極 Since this electrode reaction is a gas-solid contact reaction with fuel, there is also a demand to increase the surface area as much as possible. This means that the material becomes porous when viewed from the structural aspect of the material, and the contact area with the gas is increased.However, since highly conductive carbon has high rigidity and is brittle, it is made porous (about 40 to 70). % Porosity), the material strength decreases, and in this regard, by selecting the type of carbon, the suitability of the material is achieved.

 また、気−固相接触反応であるので、触媒が液体の電解質や生成水等と接触すると、燃料ガスの液体中の拡散律速反応となり、直接燃料気体と接触する場合と比べて、その反応速度は著しく遅くなる。 In addition, since it is a gas-solid phase contact reaction, when the catalyst comes into contact with a liquid electrolyte or product water, the reaction becomes a diffusion-limited reaction of the fuel gas in the liquid, and the reaction speed is higher than when the catalyst is directly contacted with the fuel gas. Is significantly slower.

 このような点から、通常用いられているカーボン材料は、グラファイト化度の高いカーボン繊維の短繊維またはグラファイト微粒子をポリテトラフルオロエチレン(PTFE)等の撥水性にすぐれた樹脂で固めた材料、あるいはカーボン繊維の織布にPTFE等の水性ディスパージョンで撥水処理した材料などが主であり、いずれも液体に濡れないように処理されている。 From such a point, a carbon material which is usually used is a material obtained by solidifying short fibers of graphite fibers having a high degree of graphitization or fine graphite particles with a resin having excellent water repellency such as polytetrafluoroethylene (PTFE), or The main material is a water-repellent material such as PTFE or the like on a woven cloth of carbon fiber, and all of them are treated so as not to be wet by the liquid.

 更に、燃料電池においては、発電効率、装置の寿命や安定性の面から、流体の漏れをシールすることが求められている。特に、電極端部では、多孔質部を通してのガスまたは電解液等の透過(漏れ)は、ポアゼイユ流れやクヌーセン流れで示されるような通常の溶解・拡散過程の濃度勾配に基く拡散流れと比べて著しく大きいことも問題である。 Furthermore, in fuel cells, it is required to seal fluid leakage from the viewpoints of power generation efficiency, device life and stability. In particular, at the electrode end, the permeation (leakage) of gas or electrolyte through the porous part is compared with the diffusion flow based on the concentration gradient of the ordinary dissolution / diffusion process as shown by Poiseuille flow or Knudsen flow. Significantly large is also a problem.

 また、燃料電池は、一辺が約10〜50cm、厚みが約0.1〜数mmの電極やセパレータ等のシートを数100枚重ねた構造をとっており、各シートは薄くてしわになったりあるいはカーボンシートにうねりがあることなどから、位置ずれやシール面圧の不均一化などによるシール部からの漏れがしばしば問題となっている。また、これらの積層作業性の悪さも、大きな問題となっている。 In addition, the fuel cell has a structure in which several hundred sheets of electrodes and separators each having a side of about 10 to 50 cm and a thickness of about 0.1 to several mm are stacked, and each sheet is thin and wrinkled or carbon Due to the undulation of the sheet, leakage from the seal portion due to misalignment or uneven sealing surface pressure often poses a problem. In addition, poor laminating workability is also a major problem.

 実用段階にあるリン酸形燃料電池の構成部品のシールには、一般にPTFE製のシール材が使用されている。PTFEは、200℃、濃リン酸電解質下というような過酷な条件下で使用されるリン酸形燃料電池のシール材として使用可能であるものの、樹脂材料であるので硬く、加工性が悪いなどの欠点がみられる。 PTFE PTFE sealing material is generally used to seal the components of the phosphoric acid fuel cell in the practical stage. PTFE can be used as a sealing material for phosphoric acid type fuel cells used under severe conditions such as under 200 ° C and concentrated phosphoric acid electrolyte.However, since it is a resin material, it is hard and has poor processability. There are drawbacks.

 このため、PTFEを用いたシール材の場合には、熱的、化学的には耐え得るものの、カーボン電極を形成する多孔質カーボンの表面凹凸を完全にシールすることができず、若干の燃料ガスのリークを容認するか、あるいは電極表面をPTFEの水性ディスパージョン等でコーティングして平らにし、焼成してからPTFEシール材を加圧してシールする方法などがとられている。従って、積層型燃料電池の組立工程には、手間がかかるばかりではなく、シールが不安定であり、また薄肉化できないなどの問題を抱えている。
特公昭58−78372号公報 特開昭59−68171号公報
For this reason, in the case of a sealing material using PTFE, although it can withstand both heat and chemical, the surface irregularities of the porous carbon forming the carbon electrode cannot be completely sealed, and some fuel gas Or a method in which the surface of the electrode is coated with an aqueous dispersion of PTFE, etc., flattened, fired, and then sealed by pressing a PTFE sealing material. Therefore, the assembly process of the stacked fuel cell is not only time-consuming, but also has problems such as unstable seals and inability to reduce the thickness.
JP-B-58-78372 JP-A-59-68171

 また、シリコーン系やエポキシ系の液状シール材を用いた場合には、耐熱性や耐薬品性の面で、特にリン酸やアルカリ液が電解液の場合には、長期シールの信頼性の点で使用できないという問題がある。 In addition, when a silicone-based or epoxy-based liquid sealing material is used, heat resistance and chemical resistance are considered. There is a problem that it cannot be used.

 本発明の目的は、カーボン電極を形成する多孔質カーボン等の積層型燃料電池構成部品などに対する接着性にすぐれ、薄肉化可能な積層型燃料電池用ガスケットを提供することにある。 目的 An object of the present invention is to provide a gasket for a laminated fuel cell which has excellent adhesiveness to a laminated fuel cell component such as porous carbon forming a carbon electrode and can be made thinner.

 かかる本発明の目的は、空隙部を有するシール対象物のシール部の空隙部分にシール材料を含浸せしめ、シール材料を一体化させた積層型燃料電池用ガスケットによって達成される。 The object of the present invention is attained by a gasket for a laminated fuel cell in which a sealing material is impregnated in a gap portion of a sealing portion of an object to be sealed having a gap portion, and the sealing material is integrated.

 本発明に係る積層型燃料電池用ガスケットは、従来行われていた如く、組立時に液状シール材を塗布したり、Oリングを装着したりすることなく、シール対象物と一体化された状態で加硫され、そのためシール対象物の確実なシールを可能とし、またシール部の薄肉化をも可能とする。 The gasket for a laminated fuel cell according to the present invention, as conventionally performed, does not need to be coated with a liquid sealing material at the time of assembling or to be fitted with an O-ring, and is integrated with the object to be sealed. Therefore, the sealing object can be securely sealed, and the thickness of the sealing portion can be reduced.

 このようなシール対象物としては、積層型燃料電池の構成部品である多孔質カーボン電極板、高分子固体電解質膜、セパレータ、冷却板、モジュール、マニホールド等が挙げられ、好ましくは多孔質カーボン電極に適用される。そして、電極面方向では、材料の座屈強度以下の接触面圧でシールすることが可能となる。また、シール材料がシール対象物のシール部の空隙部分に入り込んだ状態で加硫が行われているので、物理的に完全なる接着が行われており、従来のシールが接触面圧でシールしなければならなかったために生じた電極の座屈破壊やシール材の厚肉化の問題もなく、燃料電池ユニットの製造が容易となる。 Examples of such an object to be sealed include a porous carbon electrode plate, a solid polymer electrolyte membrane, a separator, a cooling plate, a module, and a manifold, which are components of a stacked fuel cell. Applied. Then, in the electrode surface direction, sealing can be performed with a contact surface pressure equal to or lower than the buckling strength of the material. In addition, since the vulcanization is performed in a state in which the sealing material has entered the gap portion of the sealing portion of the object to be sealed, complete perfect bonding is performed, and the conventional seal seals with the contact surface pressure. The fuel cell unit can be easily manufactured without problems such as buckling of the electrode and increase in the thickness of the sealing material caused by the necessity.

 さらに、本発明に係るガスケットで用いられるシール材料は、好ましくはゴム状弾性体であるので、接触面方向に多少のうねりがあっても低圧で面接触することができ、また多孔質カーボン電極の空隙部に浸透して、多孔質部の流体の漏れをシールすると共に、他部材、例えば延伸多孔質PTFEシート等との接合も可能である。 Furthermore, the sealing material used in the gasket according to the present invention is preferably a rubber-like elastic body, so that even if there is some undulation in the contact surface direction, surface contact can be made at low pressure, and the porous carbon electrode It can penetrate into the voids to seal the leakage of the fluid in the porous portion, and can be joined to another member, for example, an expanded porous PTFE sheet.

 特に、シール材料として105ポアズ以下、好ましくは104ポアズ以下の粘度(室温)を有する液状パーフルオロゴムまたはこれとPTFE微粉末との混合物を用いた場合には、耐熱性および耐薬品性にすぐれているので、特にリン酸形燃料電池等のガスおよび液(電解液または反応生成物の水)のシールに適している。リン酸形燃料電池は、200℃付近で濃リン酸を電解質として使用しているので、通常のシール材料では劣化が激しくて使用できず、そのため耐熱性、耐薬品性にすぐれたPTFEがシール材料として従来使用されている。しかるに、多孔質カーボン電極の強度が不足しているため低面圧(0.5MPa程度)でのシールを必要としているが、このような低面圧でシールするにはPTFEは硬すぎる材料であり、更に使用温度である200℃でのクリープも大きいことからシールの信頼性に欠けるものがあり、間隙部から燃料ガスが漏れて発電効率の低下や安全性の面から装置の運転を停止させる原因ともなっていたが、上記シール材料を使用した場合には、もはやそのようなこともない。 In particular, when a liquid perfluoro rubber having a viscosity (room temperature) of 10 5 poise or less, preferably 10 4 poise or less or a mixture of this and a PTFE fine powder is used as the sealing material, heat resistance and chemical resistance are reduced. Since it is excellent, it is particularly suitable for sealing gas and liquid (electrolyte or water of a reaction product) such as a phosphoric acid type fuel cell. Phosphoric acid fuel cells use concentrated phosphoric acid as the electrolyte at around 200 ° C, so they cannot be used with ordinary sealing materials because they are severely degraded. Therefore, PTFE, which has excellent heat resistance and chemical resistance, is used as the sealing material. It is conventionally used as However, because the strength of the porous carbon electrode is insufficient, sealing at a low surface pressure (about 0.5 MPa) is required, but PTFE is a material that is too hard to seal at such low surface pressure, Furthermore, since the creep at the operating temperature of 200 ° C is large, the reliability of the seal may be lacking, and fuel gas may leak from the gap, which may cause a decrease in power generation efficiency or stop the operation of the equipment from the viewpoint of safety. However, this is no longer the case when the above-mentioned sealing material is used.

 このようなシール材料は、電極面および電極端部のシール以外にも、セパレータ、単電池を数個単位で一体化したモジュール、発電を伴う発熱を除去する冷却板等も対象として使用することができる。 In addition to sealing the electrode surface and the electrode end, such a sealing material may also be used for a separator, a module in which several cells are integrated in units, a cooling plate for removing heat generated by power generation, and the like. it can.

 空隙部を有するシール対象物としては、多孔質カーボン電極板、高分子固体電解質膜、セパレータ、冷却板、モジュール、マニホールド等の積層型燃料電池構成部品が挙げられる。 (5) Examples of the sealing target having a void include laminated fuel cell components such as a porous carbon electrode plate, a polymer solid electrolyte membrane, a separator, a cooling plate, a module, and a manifold.

 シール材料としては、液状のゴムまたは樹脂、好ましくは液状パーフルオロゴムが用いられる。液状パーフルオロゴムとしては、105ポアズ以下、好ましくは104ポアズ以下の粘度(室温)を有するものが用いられ、例えば2液混合タイプの熱硬化性液状パーフルオロゴムが用いられる。実際には、市販品である信越化学製品SIFEL3500等がそのまま用いられる。 As a sealing material, liquid rubber or resin, preferably liquid perfluoro rubber is used. As the liquid perfluoro rubber, one having a viscosity (room temperature) of 10 5 poise or less, preferably 10 4 poise or less is used. For example, a two-liquid type thermosetting liquid perfluoro rubber is used. In practice, a commercially available product such as Shin-Etsu Chemical's SIFEL3500 is used as it is.

 2液混合タイプの場合には、そのゴム成分の方が上記粘度を有するものが用いられ、これはシール対象物への含浸性や成形性の観点からこのような粘度範囲のものが用いられる。また、PTFE微粉末と共に用いられる場合には、PTFE微粉末は他の物質との混合時に強いせん断力や圧縮力が加わると、粒子同志の融着が起きて流動性が著しく悪化し、また不安定な流動挙動を示すため、このような事態を防止するため、前記の如き低粘度の液状パーフルオロゴムが用いられる。 In the case of the two-liquid mixing type, the rubber component having the above viscosity is used, which has such a viscosity range from the viewpoint of impregnation into the sealing object and moldability. When used together with PTFE fine powder, if a strong shearing force or compressive force is applied when mixing the PTFE fine powder with other substances, the particles will fuse together and the fluidity will be significantly deteriorated. In order to exhibit a stable flow behavior and to prevent such a situation, the liquid perfluoro rubber having a low viscosity as described above is used.

 かかる液状パーフルオロゴムには、PTFE微粉末を添加して用いることが好ましく、その混合割合は液状パーフルオロゴムとの合計量に対して約95重量%以下、好ましくは約10〜40重量%である。その混合方法としては、これら両者を混合機等で機械的に混合する方法、PTFEの水性ディスパージョンと液状パーフルオロゴムとを混合した後水性媒体を除去する方法、液状パーフルオロゴムの[I]液(硬化剤)に予め所定量のPTFE微粉末をニーダで混合しておき、これに[I]液と等重量の[II]液(ゴム成分)を添加する方法等によって行われる。 Such liquid perfluoro rubber is preferably used by adding PTFE fine powder, and its mixing ratio is about 95% by weight or less, preferably about 10 to 40% by weight based on the total amount of the liquid perfluoro rubber. is there. Examples of the mixing method include a method of mechanically mixing the two with a mixer or the like, a method of mixing an aqueous dispersion of PTFE and a liquid perfluoro rubber and then removing the aqueous medium, and a method of mixing the liquid perfluoro rubber [I]. This is performed by, for example, mixing a predetermined amount of PTFE fine powder with a liquid (curing agent) in a kneader, and adding an equal weight of the liquid [II] (the rubber component) to the liquid [I].

 シール材料は、空隙部を有するシール対象物と一体化、好ましくは加硫一体化してガスケットを形成させる。 (4) The sealing material is integrated with, preferably vulcanized and integrated with, a sealing object having a gap to form a gasket.

 加硫一体化の方法としては、例えば液状パーフルオロゴム(混合物)をナイフコータのようなコーティング治具を用いて、所定のシール材厚みになるように調節しながらコーティングして加硫する方法、ゴムの型加硫成形でシール対象物をインサートしておき、圧縮成形、トランスファー成形、射出成形等の方法で加硫する方法、液状パーフルオロゴムの[I]液と[II]液とを混合しながら射出・加硫する反応射出成形(リム成形)方法など、任意の方法で行なうことができる。 As a method of vulcanization integration, for example, a method in which a liquid perfluoro rubber (mixture) is coated and vulcanized while adjusting to a predetermined sealing material thickness using a coating jig such as a knife coater, a rubber, The object to be sealed is inserted in the vulcanization molding of the mold, and vulcanization is performed by a method such as compression molding, transfer molding, or injection molding. The liquid [I] liquid and the liquid [II] liquid perfluoro rubber are mixed. It can be carried out by any method such as a reaction injection molding (rim molding) method in which injection and vulcanization are performed.

 具体的には、多孔質カーボン表面に空隙部のあるシール対象物を一体化させる場合には、シール対象物のシール部の空隙部分の体積分をシール材体積分に加えた量の液状パーフルオロゴム(混合物)をコーティングした後、シール材の膜厚相当の厚さに調整して加硫する方法、射出成形法等でシール対象物をインサートしておき、シール対象物のシール部の空隙部分の体積分をシール材体積分に加えた量を注入し、シール材膜厚相当の厚さに調節して加硫する方法等が用いられる。 Specifically, when a sealing object having a void portion is integrated on the surface of the porous carbon, the volume of the liquid perfluoropolymer is obtained by adding the volume of the void portion of the sealing portion of the sealing object to the sealing material volume. After coating the rubber (mixture), insert the sealing object by a method such as vulcanizing by adjusting the thickness to the film thickness of the sealing material, injection molding method, etc., and the gap part of the sealing part of the sealing object A method of injecting an amount obtained by adding the volume of the sealing material to the volume of the sealing material, adjusting the thickness to a thickness equivalent to the thickness of the sealing material, and vulcanizing is used.

 そのシール部は、主としてシール対象物の端面や他のシール材との接合面乃至その周囲面などである。 シ ー ル The seal portion is mainly the end face of the object to be sealed, the joint face with another seal material or the peripheral face thereof.

 次に、実施例について本発明を説明する。 Next, the present invention will be described with reference to examples.

 参考例
 液状パーフルオロゴム:信越化学製品SIFEL3500
            2液混合タイプ熱硬化性液状ゴム
            [I]液の粘度約1200ポアズ (硬化剤)
            [II]液の粘度約7000ポアズ (ゴム成分)
     PTFE微粒子:ダイキン製品モールディングパウダー
Reference example Liquid perfluoro rubber: Shin-Etsu Chemical SIFEL3500
Two-part mixed type thermosetting liquid rubber [I] Liquid viscosity about 1200 poise (curing agent)
[II] Viscosity of liquid about 7000 poise (rubber component)
PTFE fine particles: Daikin product molding powder

 上記液状パーフルオロゴムの[I]液に、予め所定量(組成物中0,10,20,30または50重量%)のPTFE微粉末をニーダで混合しておき、次いで[I]液と等重量の[II]液を加えて混合した。 A predetermined amount (0, 10, 20, 30, or 50% by weight of the composition) of PTFE fine powder is previously mixed with the liquid [I] liquid of the liquid perfluoro rubber using a kneader, and then mixed with the liquid [I]. Weight [II] solution was added and mixed.

 混合された組成物について、次の各項目の測定を行った。
 接触角:組成物を150℃で30分間プレス加硫し、厚さ1mmのシート状としたもの
     について、燃料水素ガスの電気化学的反応を阻害する水をはじく目安
     として、また電解質等の溶解、拡散過程による透過漏れを少くすると
     共にシール面圧の低い部分からの隙間漏れに対する抗力の目安として
     、協和界面化学製接触角計を用いて測定(単位:度)
 ガス透過係数:組成物を150℃、30分間の条件下でプレス加硫し、得られた
        厚さ1mmの加硫シートについて、ガス透過試験装置を用いて、
        25℃で窒素ガスについて測定(単位:cm3/cm2・秒・Pa)
 硬さ(JIS A) : 組成物を150℃、30分間の条件下でプレス加硫し、JIS K-6253
        に準拠して測定
The following items were measured for the mixed composition.
Contact angle: The composition was press-vulcanized at 150 ° C for 30 minutes to form a 1 mm thick sheet, which was used as a measure to repel water that inhibits the electrochemical reaction of fuel hydrogen gas, and to dissolve electrolytes, etc. Measured using a Kyowa Interface Chemical contact angle meter (unit: degrees) to reduce permeation leakage due to the diffusion process and to measure the resistance to gap leakage from parts with low seal surface pressure.
Gas permeability coefficient: The composition was press-vulcanized at 150 ° C for 30 minutes, and the obtained vulcanized sheet having a thickness of 1 mm was measured using a gas permeation test apparatus.
Measured for nitrogen gas at 25 ° C (unit: cm 3 / cm 2 · second · Pa)
Hardness (JIS A): The composition is press-vulcanized at 150 ° C for 30 minutes, JIS K-6253
Measured according to

 測定結果は、液状パーフルオロゴムに添加されたPTFE微粉末の重量比と共に、次の表に示される。
                 表
   No.  PTFE微粉末(重量%)   接触角  ガス透過係数   硬さ
   1       0       40   0.96×10-13   50
   2      10       65   0.20×10-13   55
   3      20       80   0.07×10-13   63
   4      30       90   0.05×10-13   78
   5      50       95   0.05×10-13   90
The measurement results are shown in the following table together with the weight ratio of the PTFE fine powder added to the liquid perfluoro rubber.
Table No. PTFE fine powder (% by weight) Contact angle Gas permeability coefficient Hardness 10 40 0.96 × 10 -13 50
2 10 65 0.20 × 10 -13 55
3 20 80 0.07 × 10 -13 63
4 30 90 0.05 × 10 -13 78
5 50 95 0.05 × 10 -13 90

 実施例1
 炭素繊維チョップ(呉羽化学製品M201;平均繊維長130μm、平均繊維径12.5μm)に、PTFE水性ディスパージョン(三井・デュポンフロロケミカル製品テフロン(登録商標)30-J)を10重量%含浸させ、50℃で乾燥した後400℃でプレス成形し、厚さ0.5mmの多孔質カーボンシート(多孔度55%)を得た。
Example 1
A carbon fiber chop (Kureha Chemical M201; average fiber length 130 μm, average fiber diameter 12.5 μm) is impregnated with 10% by weight of a PTFE aqueous dispersion (Mitsui / Dupont Fluorochemical product Teflon (registered trademark) 30-J) by 50%. After drying at 400 ° C., press forming was performed at 400 ° C. to obtain a porous carbon sheet (porosity 55%) having a thickness of 0.5 mm.

 この多孔質カーボンシートを浅い円筒形金型外枠の底面に装置し、その周囲に液状パーフルオロゴム(SIFEL 3500)の[I]液と[II]液との等量混合物(参考例のNo.1)をリング状にコーティングした後、金型外枠内周面に取付けたリング状の金型可動盤を用いて、多孔質カーボンシートと液状パーフルオロゴムの全体厚みを0.8mmに調節した後、150℃の高温槽中で30分間加硫した。 This porous carbon sheet was installed on the bottom of a shallow cylindrical mold outer frame, and an equal mixture of liquid [I] liquid and liquid [II] liquid perfluoro rubber (SIFEL 3500) (No. After coating .1) in a ring shape, the entire thickness of the porous carbon sheet and liquid perfluoro rubber was adjusted to 0.8 mm using a ring-shaped mold movable plate attached to the inner peripheral surface of the mold outer frame. Then, it was vulcanized in a high-temperature bath at 150 ° C. for 30 minutes.

 加硫後、加硫カーボンシートの全体厚さを測定すると0.75mmであり、また一体化したものの接合状態を調べたところ、カーボンシートの破壊となり、十分なる接合強度を有することが確められた。更に、ガスケット状シール部をカットして、その断面部を顕微鏡観察すると、液状パーフルオロゴムの加硫物が多孔質カーボンシートの空隙部をほぼ完全に埋めていることが確認された。なお、設定膜厚0.3mmに対して、形成されたガスケット状シール部の厚さは0.25mmであった。 After vulcanization, the total thickness of the vulcanized carbon sheet was measured to be 0.75 mm, and when the joined state of the integrated body was examined, the carbon sheet was broken and it was confirmed that the sheet had sufficient joint strength. . Further, when the gasket-shaped seal portion was cut and the cross-section thereof was observed with a microscope, it was confirmed that the vulcanized liquid perfluoro rubber almost completely filled the voids of the porous carbon sheet. In addition, the thickness of the formed gasket-shaped seal portion was 0.25 mm with respect to the set film thickness of 0.3 mm.

 実施例2
 実施例1において、参考例のNo.1の代りに、No.3の配合物が用いられた。加硫後の一体化されたカーボンシートは、全体厚みが0.83mmで、また接合状態はカーボンシートの破壊となり、十分なる接合強度を示した。
Example 2
In Example 1, the formulation of No. 3 was used instead of No. 1 of the reference example. The integrated carbon sheet after vulcanization had a total thickness of 0.83 mm, and the joined state was a breakage of the carbon sheet, indicating a sufficient joint strength.

 実施例3
 実施例1において、参考例のNo.1の代りに、No.5の配合物が用いられた。加硫後の一体化されたカーボンシートは、全体厚みが0.85mmで、また接合状態はカーボンシートの破壊となり、十分なる接合強度を示した。
Example 3
In Example 1, No. 5 formulation was used instead of No. 1 of Reference Example. The integrated carbon sheet after vulcanization had a total thickness of 0.85 mm, and the bonded state was a breakage of the carbon sheet, indicating a sufficient bonding strength.

 実施例4
 PTFEファインパウダー(ダイキン製品ポリフロンF103)に、それに対して20重量%のソルベントナフサを20重量%含浸させ、150℃でペースト押出しし、その後室温条件下で200%延伸し、340℃で10分間焼成して、PTFEのシート状延伸多孔質体(厚さ0.35mm、多孔度62%)を得た。得られた延伸多孔質PTFEシートは、皮革状で柔軟性に富み、加圧によって多孔質部は容易に潰れる性質があり、液体シール性を発揮する。
Example 4
PTFE fine powder (Daikin product polyflon F103) is impregnated with 20% by weight of solvent naphtha at 20% by weight, extruded at 150 ° C, and then extruded at 150 ° C, stretched 200% at room temperature, and baked at 340 ° C for 10 minutes Thus, a sheet-shaped expanded porous body of PTFE (thickness 0.35 mm, porosity 62%) was obtained. The obtained expanded porous PTFE sheet is leather-like and highly flexible, and has a property that the porous portion is easily crushed by pressurization and exhibits liquid sealing properties.

 この延伸多孔質PTFEシートに、液状パーフルオロゴム(SIFEL 3500)の[I]液と[II]液との等量混合物(参考例のNo.1)をシート重量に対して20重量%含浸させ、これに実施例1の厚さ0.5mmの多孔質カーボンシートを接合した後、実施例1と同様の手法により0.7mmの厚さに設定して装着し、150℃で30分間加硫した。 This expanded porous PTFE sheet is impregnated with an equal mixture of liquid [I] liquid and liquid [II] liquid of liquid perfluoro rubber (SIFEL 3500) (Reference Example No. 1) at 20% by weight based on the sheet weight. Then, the porous carbon sheet having a thickness of 0.5 mm of Example 1 was joined thereto, and then set to a thickness of 0.7 mm by the same method as in Example 1, and then vulcanized at 150 ° C. for 30 minutes.

 加硫した一体化物について、実施例2と同様に接着破壊試験を実施したが、多孔質部の破壊がみられ、接合強度は十分であることが確められた。
The vulcanized integrated product was subjected to an adhesive failure test in the same manner as in Example 2, but it was confirmed that the porous portion was broken and the bonding strength was sufficient.

Claims (8)

 空隙部を有するシール対象物のシール部の空隙部分にシール材料を含浸せしめ、シール材料を一体化させた積層型燃料電池用ガスケット。 積 層 A gasket for a laminated fuel cell in which a sealing material is impregnated into a gap portion of a sealing portion of a sealing object having a gap portion, and the sealing material is integrated.  空隙部を有するシール対象物に、シール材体積分にシール対象物のシール部の空隙部分に相当する体積分を加えたシール材料を一体化させた積層型燃料電池用ガスケット。 (4) A gasket for a laminated fuel cell in which a sealing material having a void portion and a sealing material obtained by adding a volume corresponding to a void portion of a sealing portion of the sealing material to a sealing material volume are integrated with a sealing material.  空隙部を有するシール対象物に、シール材体積分にシール対象物のシール部の空隙部分に相当する体積分を加えたシール材料を加硫一体化させた積層型燃料電池用ガスケット。 (4) A gasket for a laminated fuel cell in which a sealing material obtained by adding a sealing material volume to a sealing material volume and a volume corresponding to a gap portion of the sealing portion of the sealing material is vulcanized and integrated into a sealing object having a void portion.  空隙部を有するシール対象物が多孔質カーボンシートである請求項1、2または3記載の積層型燃料電池用ガスケット。 4. The gasket for a laminated fuel cell according to claim 1, wherein the object to be sealed having a void is a porous carbon sheet.  シール材料が液状のゴムまたは樹脂である請求項1、2または3記載の積層型燃料電池用ガスケット。 4. The gasket for a laminated fuel cell according to claim 1, wherein the sealing material is a liquid rubber or resin.  液状のゴム材料が105ポアズ(室温)以下の粘度を有する液状パーフルオロゴムである請求項5記載の積層型燃料電池用ガスケット。 6. The gasket for a laminated fuel cell according to claim 5, wherein the liquid rubber material is a liquid perfluoro rubber having a viscosity of 105 poise (room temperature) or less.  シール材料を含浸させた延伸多孔質PTFEシートと多孔質カーボンシートとを加硫一体化させた積層型燃料電池用シール材。 積 層 Laminated fuel cell sealing material in which a stretched porous PTFE sheet impregnated with a sealing material and a porous carbon sheet are vulcanized and integrated.  空隙部を有するシール対象物にシール材料を所定のシール材厚みになるようにコーティングした後、または空隙部を有するシール対象物をインサートした金型内にシール材料を注入した後、圧縮成形、トランスファー成形または射出成形することにより加硫一体化させることを特徴とする積層型燃料電池用ガスケットの製造法。
After coating the sealing material having a gap with a sealing material to a predetermined sealing material thickness, or after injecting the sealing material into a mold in which the sealing object having a gap is inserted, compression molding, transfer A method for producing a gasket for a laminated fuel cell, comprising vulcanizing and integrating by molding or injection molding.
JP2003428699A 2003-12-25 2003-12-25 Gasket for laminated fuel cell Pending JP2004095565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428699A JP2004095565A (en) 2003-12-25 2003-12-25 Gasket for laminated fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428699A JP2004095565A (en) 2003-12-25 2003-12-25 Gasket for laminated fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18097698A Division JP3620294B2 (en) 1998-06-26 1998-06-26 Sealing material for stacked fuel cell

Publications (2)

Publication Number Publication Date
JP2004095565A true JP2004095565A (en) 2004-03-25
JP2004095565A5 JP2004095565A5 (en) 2005-05-26

Family

ID=32064831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428699A Pending JP2004095565A (en) 2003-12-25 2003-12-25 Gasket for laminated fuel cell

Country Status (1)

Country Link
JP (1) JP2004095565A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099982A (en) * 2004-09-28 2006-04-13 Nok Corp Component part for fuel cell
JP2006252889A (en) * 2005-03-09 2006-09-21 Mitsubishi Materials Corp Fuel cell gas diffusion layer member and manufacturing method of same
JP2008047437A (en) * 2006-08-17 2008-02-28 Hitachi Ltd Molded part having seal structure, and its seal structure formation method
JP2008147103A (en) * 2006-12-13 2008-06-26 Nok Corp Manufacturing method for fuel-cell sealing structure
JP2011225633A (en) * 2010-04-15 2011-11-10 Kurabe Industrial Co Ltd Ptfe porous body, insulated wire and cable
KR20160145782A (en) * 2014-04-23 2016-12-20 가부시키가이샤 도요다 지도숏키 Power storage device
KR20170010763A (en) * 2014-04-23 2017-02-01 가부시키가이샤 도요다 지도숏키 Power storage device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200467A (en) * 1984-03-23 1985-10-09 Hitachi Ltd Method of assembling fuel cell
US5176966A (en) * 1990-11-19 1993-01-05 Ballard Power Systems Inc. Fuel cell membrane electrode and seal assembly
JPH0813179A (en) * 1994-07-01 1996-01-16 Japan Gore Tex Inc Seal and reinforcing film material for electrochemical device
JPH08148170A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Sealing method for solid polymeric fuel cell
JPH09263640A (en) * 1996-03-27 1997-10-07 Shin Etsu Chem Co Ltd Room temperature-curable composition
JPH1074530A (en) * 1996-08-30 1998-03-17 Aisin Takaoka Ltd Fuel cell and separator for fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200467A (en) * 1984-03-23 1985-10-09 Hitachi Ltd Method of assembling fuel cell
US5176966A (en) * 1990-11-19 1993-01-05 Ballard Power Systems Inc. Fuel cell membrane electrode and seal assembly
JPH0813179A (en) * 1994-07-01 1996-01-16 Japan Gore Tex Inc Seal and reinforcing film material for electrochemical device
JPH08148170A (en) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd Sealing method for solid polymeric fuel cell
JPH09263640A (en) * 1996-03-27 1997-10-07 Shin Etsu Chem Co Ltd Room temperature-curable composition
JPH1074530A (en) * 1996-08-30 1998-03-17 Aisin Takaoka Ltd Fuel cell and separator for fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006099982A (en) * 2004-09-28 2006-04-13 Nok Corp Component part for fuel cell
JP2006252889A (en) * 2005-03-09 2006-09-21 Mitsubishi Materials Corp Fuel cell gas diffusion layer member and manufacturing method of same
JP2008047437A (en) * 2006-08-17 2008-02-28 Hitachi Ltd Molded part having seal structure, and its seal structure formation method
JP2008147103A (en) * 2006-12-13 2008-06-26 Nok Corp Manufacturing method for fuel-cell sealing structure
JP2011225633A (en) * 2010-04-15 2011-11-10 Kurabe Industrial Co Ltd Ptfe porous body, insulated wire and cable
KR20160145782A (en) * 2014-04-23 2016-12-20 가부시키가이샤 도요다 지도숏키 Power storage device
KR20170010763A (en) * 2014-04-23 2017-02-01 가부시키가이샤 도요다 지도숏키 Power storage device
KR101887494B1 (en) * 2014-04-23 2018-08-10 가부시키가이샤 도요다 지도숏키 Power storage device
KR101895365B1 (en) * 2014-04-23 2018-09-05 가부시키가이샤 도요다 지도숏키 Lithium ion secondary battery
US10340501B2 (en) 2014-04-23 2019-07-02 Kabushiki Kaisha Toyota Jidoshokki Electrical energy storage device

Similar Documents

Publication Publication Date Title
US6337120B1 (en) Gasket for layer-built fuel cells and method for making the same
JP4484369B2 (en) Fuel cell with seal between individual membrane assembly and plate assembly
JP4870350B2 (en) Fuel cell membrane electrode assembly with sealing surface
US20070087245A1 (en) Multilayer polyelectrolyte membranes for fuel cells
US20110294033A1 (en) Unitized electrochemical cell sub-assembly and the method of making the same
JP2005347256A (en) New sealant for electrochemical battery component
US20070210475A1 (en) Sealing arrangement for fuel cells
US20050123819A1 (en) Fuel cell and method for manufacture thereof
JP2009514144A (en) Membrane electrode assembly for electrochemical devices
JP2005516350A (en) Integrated membrane electrode assembly and method for manufacturing the same
TW200304244A (en) Improved mold for compression molding in the preparation of a unitized membrane electrode assembly
CA2497369A1 (en) Fluoroelastomer gasket compositions
JP2007317391A (en) Electrode for fuel cell and manufacturing method of same, membrane-electrode assembly and manufacturing method of same, and solid polymer fuel cell
KR100599716B1 (en) Fuel cell and method for preparating the same
JP3620294B2 (en) Sealing material for stacked fuel cell
JPH08148170A (en) Sealing method for solid polymeric fuel cell
US8722277B2 (en) Fuel cell and method for manufacturing same
US20040096723A1 (en) Fuel cell gasket
JP2004095565A (en) Gasket for laminated fuel cell
JP2008146928A (en) Gas diffusing electrode for fuel cell and its manufacturing method
CN113454820A (en) Method for gluing two plates together for use in a fuel cell, in particular for gluing bipolar plates in a fuel cell
JP2005532666A (en) Elastomer separator plate and manufacturing method
JP4512316B2 (en) Adhesive composition
JP2006054058A (en) Separator
JP2005276847A (en) Polymer solid electrolyte-electrode junction

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525