JP2004095264A - Negative electrode for lithium ion secondary battery and lithium ion secondary battery manufactured by using the same - Google Patents

Negative electrode for lithium ion secondary battery and lithium ion secondary battery manufactured by using the same Download PDF

Info

Publication number
JP2004095264A
JP2004095264A JP2002252815A JP2002252815A JP2004095264A JP 2004095264 A JP2004095264 A JP 2004095264A JP 2002252815 A JP2002252815 A JP 2002252815A JP 2002252815 A JP2002252815 A JP 2002252815A JP 2004095264 A JP2004095264 A JP 2004095264A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium ion
ion secondary
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002252815A
Other languages
Japanese (ja)
Inventor
Yusuke Watarai
渡会 祐介
Kanji Hisayoshi
久芳 完治
Akio Mizuguchi
水口 暁夫
Shuhin Cho
張 守斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002252815A priority Critical patent/JP2004095264A/en
Publication of JP2004095264A publication Critical patent/JP2004095264A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery manufactured by using a negative electrode for the battery which is excellent in adhesiveness and electrical conductivity between a current collector and an active material layer, can improve a cycle capacity maintaining property, of which the adhesive layer is stable to an organic solvent in an electrolyte solution and excellent in long storage, and can restrain corrosion of the collector by strong acid such as hydrofluoric acid produced in the battery. <P>SOLUTION: An improved negative electrode for a lithium ion secondary battery in which a negative electrode active material layer 17 including both of a first binder and inorganic particles including at least one of element selected from among a group composed of Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi and In, is formed on a negative electrode current collector 16 has an adhesive layer 19 between the negative electrode current collector 16 and the negative electrode active material layer 17, and the adhesive layer 19 includes both of a second binder same as or different from a polymeric compound contained in the first binder and a conductive material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、密着層を有するリチウムイオン二次電池用負極及び該負極を用いて作製したリチウムイオン二次電池に関する。
【0002】
【従来の技術】
近年のビデオカメラやノート型パソコン等のポータブル機器の普及により薄型の電池に対する需要が高まっている。この薄型の電池として正極と負極を積層して形成されたリチウムイオン二次電池が知られている。この正極は、シート状の正極集電体の表面に正極活物質層を形成することにより作られ、負極は、シート状の負極集電体の表面に負極活物質層を形成することにより作られる。正極の活物質層と負極の活物質層の間には電解質層が介装される。この電池では、それぞれの活物質における電位差を電流として取出すための正極端子及び負極端子が正極集電体及び負極集電体に設けられ、このように積層されたものをパッケージで密閉することによりリチウムイオン二次電池が形成されている。このリチウムイオン二次電池ではパッケージから引出された正極端子及び負極端子を電池の端子として使用することにより所望の電気が得られるようになっている。
このような構造を有するリチウムイオン二次電池は電池電圧が高く、エネルギー密度も大きいため、非常に注目されている。このリチウムイオン二次電池の放電容量を更に増大させるためにはシート状の正極又は負極の面積を拡大させる必要がある。この正極又は負極の面積を単純に拡大するだけでは広い面積のために、その取扱いが困難になる不具合がある。この点を解消するために、拡大したシート状の正極又は負極を所望の大きさに折畳んだり、捲回したりすることも考えられる。しかし、シート状の正極又は負極を積層した状態で折畳みや捲回を行うと、折目部分における正極又は負極に撓みが生じ、その部分におけるシートが電解質層から剥離して電極と電解質界面の有効表面積が減少して放電容量が減少するとともに、電池内部に抵抗を生じさせて放電容量のサイクル特性を悪化させる不具合がある。また同様に、折目部分に撓みが生じることにより正極又は負極をそれぞれ形成している活物質層が集電体より剥離する問題もあった。更に、この電池は充電及び放電過程において、正極及び負極活物質中へのリチウムイオンの吸蔵、放出によって正極及び負極活物質層の膨張、収縮が起こり、これにより発生する応力により、活物質層が集電体より剥離する問題もあった。
【0003】
そこで上記諸問題を解決する技術として下記に示すように、活物質層の集電体からの剥離や密着性の低下を防止する技術がそれぞれ提案されている。
PCT国際公開番号WO00/56780号公報(以下、文献1という。)には、平均重合度20以上のポリビニルアルコール単位を有し、水酸基の一部又は全部が平均モル置換度0.3以上のオキシアルキレン含有基で置換された高分子化合物、該高分子化合物からなるバインダ樹脂、及び高いイオン導電性と高い粘着性を備えているイオン導電性高分子電解質用組成物並びに二次電池が提案されている。この発明では、固体高分子電解質の材料やバインダ樹脂の材料としてポリオキシアルキレン部分の導入割合を上げた高分子化合物を用いることで、イオン移動し易くして高分子電解質用ポリマーのイオン導電性を高めている。
PCT国際公開番号WO00/56797号公報(以下、文献2という。)には、イソシアネート化合物とポリオール化合物とを反応させて得られたポリウレタン化合物中のイソシアネート基の一部又は全部に双極子モーメントの大きな置換基を有するアルコール化合物の水酸基を反応させた高分子化合物、バインダ樹脂、イオン導電性高分子電解質用組成物並びに二次電池が提案されている。この発明では、双極子モーメントの大きな置換基をポリウレタン中に導入することにより、高い誘電率とイオン導電性塩を高濃度に溶解する能力を保持しながら、電極と電解質間の密着性を良好にして、電解質溶液並みの界面インピーダンスを得ている。
PCT国際公開番号WO00/56815号公報(以下、文献3という。)には、イソシアネート化合物とポリオール化合物とを反応させて得られたポリウレタン化合物中のイソシアネート基の一部又は全部に双極子モーメントの大きな置換基を有するアルコール化合物の水酸基を反応させた高分子化合物と、イオン導電性塩と、架橋可能な官能基を有する化合物とを主成分としたイオン導電性固体高分子用組成物、イオン導電性固体高分子電解質、バインダ樹脂及び二次電池が提案されている。
【0004】
PCT国際公開番号WO00/17949号公報(以下、文献4という。)には、リチウム二次電池の負極用電極材、該電極材を用いた電極構造体、該電極構造体を用いたリチウム二次電池、及び該電極構造体及び該リチウム二次電池の製造方法が提案されている。この発明では、電極材に非化学量論比組成の非晶質M・A・X合金(MはSi、Ge及びMgからなる群より選ばれた少なくとも一種の元素を示し、Aは遷移金属元素の中から選ばれる少なくとも一種の元素を示し、Xは、O、F、N、Ba、Sr、Ca、La、Ce、C、P、S、Se、Te、B、Bi、Sb、Al、In及びZnからなる群より選ばれる少なくとも一種の元素を示す。但し、Xは含有されていなくてもよく、合金の構成要素Mの含量はM/(M+A+X)=20〜80原子%である。)を含有する。このような合金を含有する電極材は優れた特性を有し、リチウム二次電池の負極活性物質として好適である。
【0005】
特開2000−299108号公報(以下、文献5という。)には、リチウムを含有する正極活物質を備えた正極と、リチウムのドープ・脱ドープが可能なケイ素化合物と炭素材料との混合物が結着剤中に分散されてなる負極活物質層を備えた負極と、正極と負極との間に介在される非水電解質とを備え、上記結着剤は、ガラス転位温度が−40℃以下である非水電解質電池が提案されている。この発明では、負極活物質中の結着剤として、ガラス転位温度が−40℃以下のものを用いているので、リチウムのドープ・脱ドープ時のケイ素化合物負極の体積変化を結着剤が吸収し、負極活物質層全体としての体積変化が抑制されて、サイクル劣化が抑えられる。
更に、特開平9−289022号公報(以下、文献6という。)には、リチウムイオンを吸蔵・放出可能な正極及び負極と、リチウムイオン導電性の非水電解質から構成され、正極又は負極の電極合剤中に水溶性ポリマーを含有した非水電解質二次電池が提案されている。この発明では、電極合剤中に水溶性ポリマーを含有することにより、集電体への結着性が良好であり、かつ溶媒が水であることから製造コストを削減でき、製造工程における人体への影響等も抑制できる。また比較的低温で乾燥可能であり、合剤やシート電極を構成する材料への熱的ダメージを最小限に留めることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、一般的に非水電解液を含む二次電池において、負極集電体と負極活物質層の接着は困難であり、文献4に示される負極用電極材では、例えば、Si、Ge、Al、Sn等の元素を含む負極活物質の場合には、高い充放電容量が得られるものの、充放電に伴う活物質の体積変化が大きく、活物質層と集電体の剥離が生じる問題点があった。また文献5に示される結着剤では、柔軟性が特徴であり、活物質の体積変化をある程度吸収することができるが、この種の結着剤では集電体との接着強度が十分とはいえなかった。また文献1〜4及び6等は活物質と集電体の接着を向上することを目指して、結着剤の改良を行っているが、これらの結着剤は化学安定性が一般的に電池に使われるポリエチレン、ポリフッ化ビニリデン等の樹脂より劣ったり、電解液がある環境において接着性が足りなくなるというような問題が残っている。
【0007】
本発明の第1の目的は、負極集電体と負極活物質層との密着性及び導電性に優れたリチウムイオン二次電池用負極を提供することにある。
本発明の第2の目的は、集電体と活物質層との密着性及び導電性に優れ、かつサイクル容量維持特性を向上し得るリチウムイオン二次電池を提供することにある。
本発明の第3の目的は、密着層が電解液中の有機溶媒に対して安定で長期保存性に優れるリチウムイオン二次電池を提供することにある。
本発明の第4の目的は、電池内に発生するフッ酸等の強酸による集電体の腐食を抑制し得るリチウムイオン二次電池を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように、負極集電体16の表面に第1結着剤と、Si、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi及びInからなる群より選ばれた少なくとも1種の元素を含む無機質粒子の双方をそれぞれ含む負極活物質層17が形成されたリチウムイオン二次電池用負極の改良であり、その特徴ある構成は、負極集電体16と負極活物質層17との間に密着層19を有し、密着層19が第1結着剤に含まれる高分子化合物と同一又は異なる高分子化合物を含む第2結着剤と導電性物質の双方をそれぞれ含むところにある。
請求項1に係る発明では、負極集電体16と負極活物質層17との間に第2結着剤と導電性物質の双方をそれぞれ含む密着層19を有することで、密着力を向上させているため、無機質粒子を含む負極活物質層の体積変化による剥離を防止する。
【0009】
請求項2に係る発明は、請求項1に係る発明であって、第2結着剤がフッ素含有樹脂22を変性物質23により変性させて得られる変性フッ素含有高分子化合物24を含む負極である。
請求項3に係る発明は、請求項2に係る発明であって、変性フッ素含有高分子化合物24がフッ素含有樹脂を幹重合体22とし、幹重合体22を変性物質23によりグラフト変性させて得られる高分子化合物である負極である。
請求項4に係る発明は、請求項3に係る発明であって、変性フッ素含有高分子化合物24を構成する幹重合体22が、ポリフッ化ビニリデン(以下、PVdFという。)、ポリフッ化ビニル(以下、PVFという。)、4フッ化エチレンポリマー、3フッ化エチレンポリマー、2フッ化エチレンポリマー、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(以下、VdF−HFP共重合体という。)、エチレン−4フッ化エチレン共重合体、4フッ化エチレン−6フッ化プロピレン共重合体、3フッ化塩化エチレンポリマー及びポリテトラフルオロエチレンからなる群より選ばれた少なくとも1種のフッ素含有樹脂を含む負極である。
請求項4に係る発明では、VdF−HFP共重合体、PVdFが電解液への耐久性が高いため好ましい。
【0010】
請求項5に係る発明は、請求項3に係る発明であって、変性フッ素含有高分子化合物24を構成する変性物質23が、アクリル酸、アクリル酸メチル、メタクリル酸及びメタクリル酸メチルの少なくとも1種である負極である。
請求項5に係る発明では、上記変性物質を用いることにより密着層は負極集電体と良好な密着性を得ることができる。
【0011】
請求項6に係る発明は、請求項3ないし5いずれか1項に係る発明であって、変性フッ素含有高分子化合物24を構成する幹重合体22がPVdF又はVdF−HFP共重合体のいずれか一方又は双方を含む混合物であって、変性物質23がアクリル酸である負極である。
請求項7に係る発明は、請求項1ないし6いずれか1項に係る発明であって、第1結着剤に含まれる高分子化合物21が、第2結着剤に含まれる変性フッ素含有高分子化合物24を構成するフッ素含有樹脂22に含まれる反復単位をその反復単位として含む負極である。
請求項7に係る発明では、第1結着剤中の高分子化合物が第2結着剤中の変性フッ素含有高分子化合物を構成するフッ素含有樹脂に含まれる反復単位をその反復単位として含むことで、負極活物質層と密着層との密着力がより強固になる。
【0012】
請求項8に係る発明は、請求項4又は6に係る発明であって、変性フッ素含有高分子化合物24の幹重合体22がフッ化ビニリデンであるとき、フッ化ビニリデンが変性フッ素含有高分子化合物24に95重量%〜60重量%の割合で含まれる負極である。
請求項9に係る発明は、請求項1又は2に係る発明であって、第2結着剤が密着層固形物全体に対して5〜40重量%の割合で含まれる負極である。
請求項10に係る発明は、請求項3に係る発明であって、変性フッ素含有高分子化合物24はフッ素含有樹脂22と変性物質23が放射線照射処理によってグラフト化される負極である。
請求項11に係る発明は、請求項10に係る発明であって、フッ素含有樹脂22への放射線照射処理はγ線照射によって行われ、フッ素含有樹脂のγ線の吸収線量が10〜90kGyである負極である。
【0013】
請求項12に係る発明は、請求項1に係る発明であって、無機質粒子がSi、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi及びInからなる群より選ばれた少なくとも1種の元素が単体、酸化物又は他の金属との合金、単体とリチウムとの合金、及びこれらの金属、リチウムを含む多元合金で構成される負極である。
請求項13に係る発明は、請求項1又は12に係る発明であって、無機質粒子の平均粒径が0.1〜50μmである負極である。
請求項14に係る発明は、請求項1、12又は13いずれか1項に係る発明であって、活物質層17に含まれる無機質粒子の割合が活物質層固形物全体の5〜95重量%である負極である。
【0014】
請求項15に係る発明は、請求項1ないし14いずれか1項に記載の負極14を用いて作製したリチウムイオン二次電池である。
【0015】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
本発明のリチウムイオン二次電池用負極は、図1に示すように、負極集電体16の表面に第1結着剤と、Si、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi及びInからなる群より選ばれた少なくとも1種の元素を含む無機質粒子の双方をそれぞれ含む負極活物質層17が形成されてなる。その特徴ある構成は、負極集電体16と負極活物質層17との間に密着層19を有し、密着層19が第1結着剤に含まれる高分子化合物と同一又は異なる高分子化合物を含む第2結着剤と導電性物質の双方をそれぞれ含むところにある。負極集電体16と負極活物質層17との間に第2結着剤と導電性物質の双方をそれぞれ含む密着層19を有することで、高い密着力が得られるため、無機質粒子を含む負極活物質層の体積変化を起因とする負極活物質層の負極集電体からの剥がれが抑制され、サイクル特性が向上する。
【0016】
密着層19に含まれる第2結着剤にはフッ素含有樹脂22を変性物質23により変性させて得られる変性フッ素含有高分子化合物24が含まれる。この変性フッ素含有高分子化合物24はフッ素含有樹脂を幹重合体22とし、幹重合体22を変性物質23によりグラフト変性させて得られる高分子化合物である。
ここで「変性」とは、性質が変わることを意味し、本明細書では、幹重合体である樹脂のところどころに変性物質が配列することにより、幹重合体である樹脂自身が持つ性質だけでなく、変性物質が持つ性質も併せ持ったり、両者にない性質を新たに持たせることを意味する。
【0017】
また変性フッ素含有高分子化合物は変性させたことで化学的に安定性が向上するため、電解液に対して溶解されることなく活物質層の集電体からの剥がれが抑制される。また同様の理由から密着層中に分散される導電性物質が崩落することなく保持されるため良好な電子伝導を維持し、長期保存性やサイクル特性に優れる。このように化学的に安定な層に集電体が被覆されるため、電池内部でフッ酸等が発生した場合でも密着層が保護層となり集電体の腐食を抑制できる。
変性フッ素含有高分子化合物は変性させたことで熱的に安定性が向上するため、電池が高温下におかれても電池内溶媒に溶解することがなく電池の劣化を抑制できる。また変性させたことで電気化学的にも安定性が向上するため、劣化することがなく安定した密着力と導電性を保つ。更に電解液が変性高分子化合物中に浸透するのが困難となるため、集電体への電解液の付着がなくなる。
【0018】
負極活物質層17や密着層19は電池内において化学的、電気化学的、熱的に安定性が要求されるため、負極活物質層17に用いられる第1結着剤や密着層19に用いられる第2結着剤に含まれる高分子化合物には、分子内にフッ素を含む化合物が用いられる。
図2に示すように、第1結着剤に含まれる高分子化合物21は、1種又は2種以上の所定の反復単位(図2中ではA、B)が順不同に配列されて構成される。なお図示しないが、この高分子化合物21は、1種又は2種以上の所定の反復単位が規則的に配列して構成されてもよい。この高分子化合物21は、第2結着剤中の変性フッ素含有高分子化合物24を構成するフッ素含有樹脂22に含まれる反復単位がその反復単位として含まれる。これによって、負極活物質層17と密着層19との密着力がより強固になる。本発明の幹重合体22を構成する基本単位として用いられる反復単位は、高分子化合物21中に50分子量%以上の割合で含まれるのが好ましい。60〜100分子量%の割合で含まれるのがより好ましい。
【0019】
幹重合体22のところどころに変性物質23を枝重合体として配列して変性させるには、グラフト重合を用いる。幹重合体22には、PVdF、PVF、4フッ化エチレンポリマー、3フッ化エチレンポリマー、2フッ化エチレンポリマー、VdF−HFP共重合体、エチレン−4フッ化エチレン共重合体、4フッ化エチレン−6フッ化プロピレン共重合体、3フッ化塩化エチレンポリマー及びポリテトラフルオロエチレンからなる群より選ばれた少なくとも1種のフッ素含有樹脂が含まれる。また変性物質23には、アクリル酸、アクリル酸メチル、メタクリル酸及びメタクリル酸メチルの少なくとも1種が挙げられる。これらの変性物質を用いることで、密着層は負極集電体と良好な密着性を得ることができる。
特に、幹重合体22をPVdF又はVdF−HFP共重合体のいずれか一方又は双方を含む混合物とし、変性物質23をアクリル酸とした変性フッ素含有高分子化合物24は、PVdF又はVdF−HFP共重合体のいずれか一方又は双方を含む混合物が負極活物質層と高い密着性を有し、アクリル酸が負極集電体材料と高い密着性を有するため、密着層中の第2結着剤に含まれる変性フッ素含有高分子化合物として優れた性質を有する。
【0020】
グラフト重合させる方法としては放射線法がある。放射線法では、幹重合体22となるフッ素含有樹脂と枝重合体となる変性物質とを混合して、混合物に放射線を連続的又は間欠的に放射することにより重合でき、変性物質とフッ素含有樹脂とを接触させる前にフッ素含有樹脂を予備放射することが好ましい。具体的には、フッ素含有樹脂に放射線を照射した後で、前記被照射物に変性物質を混合することにより、フッ素含有樹脂を幹重合体とし変性物質を枝重合体とした変性フッ素含有高分子化合物を得ることができる。グラフト重合に用いる放射線にはγ線を使用する。フッ素含有樹脂への吸収線量が1〜90kGyになるようにγ線を照射する。幹重合体となるフッ素含有樹脂に放射線を照射することにより片末端にラジカルが形成され、変性物質が重合し易くなる。
図3(a)に示すように、変性フッ素含有高分子化合物を構成する幹重合体22は、図2中の第1結着剤に含まれる高分子化合物21の繰返し単位Aを基本単位とする。幹重合体の基本単位は、図3(a)に示すように1種類でもよいし、図示しないが2種類以上の基本単位を用いてもよい。この基本単位は幹重合体中に50分子量%以上の割合で含まれることが好ましい。60〜100分子量%の割合で含まれるのがより好ましい。図3(b)に示すように、この幹重合体22に放射線を照射して基本単位Aの片末端のところどころにラジカル22aを形成する。図3(c)に示すように、ラジカルを形成した幹重合体22に変性物質23(図3中のC)を接触させることにより、ラジカル部分22aに変性物質23が配列して変性フッ素含有高分子化合物24が形成される。変性物質23は変性フッ素含有高分子化合物中に2〜50分子量%の割合で含まれることが好ましい。5〜30分子量%の割合で含まれるのがより好ましい。
グラフト重合は活性化した幹重合体となる樹脂が枝重合体となる変性物質と接触している時間の長さ、放射線による予備活性の程度、枝重合体となる変性物質が幹重合体となる樹脂を透過できるまでの程度、樹脂及び変性物質が接触しているときの温度等によりそれぞれ重合生成が異なる。変性物質が酸である場合、変性物質である化合物を含有する溶液をサンプリングして、アルカリにより滴定し、残留する酸化合物濃度を測定することにより、グラフト化の程度を観測することができる。得られた組成物中のグラフト化の割合は、最終重量の2〜50分子量%が望ましい。
【0021】
変性フッ素含有高分子化合物24の幹重合体22がフッ化ビニリデンであるとき、フッ化ビニリデンが変性フッ素含有高分子化合物24に95重量%〜60重量%の割合で含まれるのが好ましい。
第2結着剤は密着層19固形物全体に対して5〜40重量%の割合で含まれる。好ましくは密着層19固形物全体に対して10〜30重量%の割合である。下限値未満であると密着性が得られず、上限値を越えると導電性が悪くなる。
【0022】
負極活物質層17に含まれる無機質粒子はSi、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi及びInからなる群より選ばれた少なくとも1種の元素が単体、酸化物又は他の金属との合金、単体とリチウムとの合金、及びこれらの金属、リチウムを含む多元合金で構成される。この無機物粒子はリチウムを吸蔵・放出可能な機能を有する。Siをベースにした無機質粒子としては、Si単結晶、ポリシリコン、アモルファスシリコン、Ca、Fe、Ni、Co、Mn、Mg等と形成するSiシリサイド、シリコンオキシカーバイド、シリコンカーバイド等が挙げられる。この無機質粒子の平均粒径は0.1〜50μmである。好ましい平均粒径は0.2〜20μmである。活物質層17に含まれる無機質粒子の割合は活物質層固形物全体の5〜95重量%である。好ましくは活物質層固形物全体の10〜90重量%である。
【0023】
本発明のリチウムイオン二次電池は、図1に示すように、正極11と負極14と電解質18とを備える。正極11は、正極集電体12の表面に正極活物質層13が形成されて構成される。負極14は、負極集電体16の表面に第1結着剤と無機質粒子が含まれた負極活物質層17が形成されて構成される。負極集電体16と負極活物質層17との間には密着層19を有する。電解質18は、正極11の正極活物質層13と負極14の負極活物質層17との間に介装される。更に、密着層19には第1結着剤と同一又は異なる高分子化合物を含む第2結着剤と導電性物質の双方をそれぞれ含んだ構造を有する。
変性フッ素含有高分子化合物を含む第2結着剤が含有した密着層19は負極活物質層17への密着力が高くなる。また、変性フッ素含有高分子化合物は負極集電体との密着性が高い変性物質を枝重合体として配列させた化合物であるため、密着層19は負極集電体16への密着性が従来の結着剤を用いるより大幅に向上する。
【0024】
次に、本発明のリチウムイオンポリマー二次電池の製造手順を説明する。
先ず、前述した変性フッ素含有高分子化合物を密着層に用いる第2結着剤に含ませ、この第2結着剤を溶媒に溶解してポリマー溶液を作製し、ポリマー溶液中に導電性物質を分散させて密着層スラリーを調製する。導電性物質には粒径0.5〜30μm、黒鉛化度50%以上の炭素材が用いられる。第2結着剤と導電性物質との重量比(第3結着剤/導電性物質)が13/87〜50/50になるように混合して密着層のスラリーを調製する。溶媒にはジメチルアセトアミド、アセトン、ジメチルフォルムアミド、N−メチルピロリドン(以下、NMPという。)が用いられる。
次いで、シート状の正極及び負極集電体をそれぞれ用意する。負極集電体に調製した密着層スラリーをドクターブレード法により塗工及び乾燥し、乾燥後の密着層厚さが0.5〜30μmの密着層を有する負極集電体を形成する。乾燥後の負極の密着層厚さは1〜15μmが好ましい。シート状の正極集電体としてはAl箔が、負極集電体としてはCu箔がそれぞれ挙げられる。ここでドクターブレード法とは、キャリアフィルムやエンドレスベルト等のキャリア上に載せて運ばれるスリップの厚さをドクターブレードと呼ばれるナイフエッジとキャリアとの間隔を調整することによってシートの厚さを精密に制御する方法である。
【0025】
次に、正極活物質層、負極活物質層及び電解質層に必要な成分をそれぞれ混合して正極活物質層塗工用スラリー、負極活物質層塗工用スラリー及び電解質層塗工用スラリーをそれぞれ調製する。
得られた正極活物質層塗工用スラリーを正極集電体上にドクターブレード法により塗布して乾燥し、圧延することにより正極を形成する。また負極も同様にして、得られた負極活物質層塗工用スラリーを密着層を有する負極集電体上にドクターブレード法により塗布して乾燥し、圧延することにより負極を形成する。正極又は負極活物質層は乾燥後の厚さが、20〜250μmとなるように形成する。電解質層は得られた電解質層塗工用スラリーを剥離紙上に電解質層の乾燥厚さが10〜150μmとなるようにドクターブレード法により塗工及び乾燥し、剥離紙より剥がして形成する。また、電解質層塗工用スラリーを正極表面や負極表面に塗工及び乾燥して電解質層を形成してもよい。それぞれ形成した正極と電解質層と負極を順に積層し、積層物を熱圧着することにより、図1に示すように、シート状の電極体が形成される。
最後に、この電極体にNiからなる正極リード及び負極リードをそれぞれ正極集電体及び負極集電体に溶接し、開口部を有する袋状に加工したラミネートパッケージ材に収納し、減圧条件下で熱圧着により開口部を封止して、シート状のリチウムイオンポリマー二次電池が作製できる。
【0026】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、幹重合体としてPVdF粉末50gを、変性物質として15重量%アクリル酸水溶液260gをそれぞれ用意した。PVdF粉末をポリエチレン製パックに入れて真空パックし、PVdFへの吸収線量が50kGyとなるように60Coをγ線源としてγ線を照射した。γ線照射したPVdF粉末をポリエチレン製パックより取出して窒素雰囲気に移し、15重量%アクリル酸水溶液260g中にPVdF粉末を供給して80℃に保持し、アクリル酸水溶液と反応させた。反応中は反応溶液のサンプルを逐次採取し、この採取液に水酸化ナトリウムを用いて滴定を行い、PVdFと反応したアクリル酸量を算出した。アクリル酸の消耗量がPVdF重量の20.48%になった時点で反応を止めて、得られた固体状生成物を純水で洗浄して乾燥させ、変性フッ素含有高分子化合物を得た。得られた変性フッ素含有高分子化合物はアクリル酸グラフト化PVdF(Acrylic Acidgrafting PolyVinylidene Fluoride、以下、AA−g−PVdFという。)であり、この化合物中の変性物質割合は17重量%であった。
【0027】
次いで、得られた変性フッ素含有高分子化合物を2g採取し、このサンプルにNMP28gを添加し、攪拌してポリマー溶液とした。この溶液に比表面積150m/gの黒鉛粉末8g及びこの黒鉛粉末を分散させるための分散剤1.2gをそれぞれ添加し、更にNMP150gを加え、密着層スラリーを調製した。
次に、正極集電体として厚さ20μm、幅250mmのAl箔を用意した。また負極集電体として厚さ14μm、幅250mmのCu箔を用意し、このCu箔表面にそれぞれ調製した密着層スラリーをドクターブレード法により塗工及び乾燥し、乾燥後の密着層厚さを10±1μmの範囲内に制御した。
次に、表1に示される各成分をボールミルで2時間混合することにより、正極活物質層塗工用スラリー、負極活物質層塗工用スラリー及び電解質層塗工用スラリーをそれぞれ調製した。
【0028】
【表1】

Figure 2004095264
【0029】
得られた負極活物質層塗工用スラリーを密着層を有するCu箔表面に負極活物質層の乾燥厚さが80μmとなるようにドクターブレード法により塗工及び乾燥し、圧延することにより負極を形成した。同様に、正極活物質層塗工用スラリーをAl箔表面に塗工及び乾燥し、圧延することにより正極を形成した。更に電解質層塗工用スラリーを乾燥厚さが50μmになるように上記正極にドクターブレード法により塗工し、電解質層を有する正極と負極を積層して熱圧着することにより、シート状の電極体を作製した。作製した電極体にNiからなる正極リード及び負極リードをそれぞれ正極集電体、負極集電体に溶接し、開口部を有する袋状に加工したラミネートパッケージ材に収納し、減圧条件下で開口部を熱圧着して封止し、シート状電池を作製した。
【0030】
<実施例2>
変性物質を構成する材料としてメタクリル酸を用いて合成を行い、得られたメタクリル酸グラフト化PVdF(Methacrylic Acid grafting PolyVinylidene Fluoride、以下、MA−g−PVdFという。)を変性フッ素含有高分子化合物として用いた以外は実施例1と同様にしてシート状電池を作製した。
<実施例3>
幹重合体を構成する材料としてVdF−HFP共重合体粉末を用いて合成を行い、得られたAA−g−VdF−HFPを変性フッ素含有高分子化合物として用いた以外は実施例1と同様にしてシート状電池を作製した。
【0031】
<実施例4>
PVdFへの吸収線量が70kGyとなるようにγ線を照射し、変性フッ素含有高分子化合物中の変性物質割合を20重量%として合成を行い、得られたAA−g−PVdFを変性フッ素含有高分子化合物として用いた以外は実施例1と同様にしてシート状電池を作製した。
<実施例5>
実施例1で得られた変性フッ素含有高分子化合物を4g採取して密着層スラリーを調製した以外は実施例1と同様にしてシート状電池を作製した。
【0032】
<比較例1>
負極活物質層とCu箔との間に密着層を設けず、負極活物質層の結着剤としてPVdFを用いた以外は実施例1と同様にしてシート状電池を作製した。
<比較例2>
負極活物質層の結着剤としてVdF−HFP共重合体を用いた以外は比較例1と同様にしてシート状電池を作製した。
<比較例3>
負極活物質層の結着剤としてPVdFとVdF−HFP共重合体が重合比1:1の割合で含まれる混合物を用いた以外は比較例1と同様にしてシート状電池を作製した。
【0033】
<比較評価>
実施例1〜5及び比較例1〜3でそれぞれ得られたシート状電池を用いて以下の評価試験を行った。
▲1▼ 電池の密着層に用いられる場合の電池のサイクル容量維持特性試験
得られたシート状の電池を充放電サイクル試験にかけ、最大充電電圧4V、充電電流0.5Aの条件で2.5時間の充電を行う充電工程と、0.5Aの定電流放電で放電電圧が最低放電電圧となる2.0Vまで放電を行う放電工程とを1サイクルとして充放電サイクルを繰返し、各サイクルの充放電容量をそれぞれ測定して、3サイクル目の放電容量保持率((3サイクル目の放電容量/初期放電容量)×100)を求めた。
【0034】
▲2▼ 密着層の集電体及び活物質層に対する密着性試験
得られたシート状の電池に対して上記評価試験▲1▼と同様の条件での充放電サイクルを10サイクル行った。その後、10サイクルの充放電を終えたシート状電池の収納パッケージを除去し、電池の正極と負極を引き剥がしてそれぞれを分離した。実施例1〜5の電池は、分離した負極の密着層をピンセットでつまんで引っ張ったときに、密着層が集電体から剥離するか否か、密着層が活物質層から剥離するか否かをそれぞれ確認した。また、比較例1〜3の電池は、分離した負極をピンセットでつまんで引っ張ったときに、負極活物質層と負極集電体とが剥離するか否かを確認した。
【0035】
上記評価試験▲1▼及び▲2▼における評価結果を表2にそれぞれ示す。
【0036】
なお、表2中の密着性評価における記号は、次の意味である。◎:密着が大変良好である。○:部分的な剥離がある。×:完全に剥離されている。
【0037】
【表2】
Figure 2004095264
【0038】
表2より明らかなように、評価試験▲1▼のサイクル容量維持特性試験では、比較例1〜3の電池の放電容量保持率は大幅に低下している。充放電によってSi粉末からなる活物質の膨張収縮が負極活物質と負極集電体の界面で発生する剥離を引起こす原因と考えられ、このような剥離が電池の活物質と集電体の間の電子の流れを止めてしまったので、3サイクル目の容量保持率を大幅に低下させたと考えられる。これに対して実施例1〜5の電池の放電容量保持率はそれぞれ高い値を示している。これは、実施例1〜5で得られた電池内の密着層に含まれる第2結着剤の接着特性が優れていたため、Si粉末からなる活物質の膨張収縮に起因する剥離を防止できたと考えられる。
また比較例1〜3の電池における評価試験▲2▼の10サイクル後における密着性試験では、負極集電体と負極活物質層とが完全に剥離してしまっていたが、実施例1〜5では、密着層は負極集電体から剥離し難く、負極集電体との接着が優れていることを示した。また、密着層は負極活物質層からも剥離し難く、活物質層との接着も優れていることを示した。
このように負極活物質層と負極集電体との間に密着層を設け、この密着層に導電性物質とともに変性フッ素含有高分子化合物を含む第2結着剤を含ませることによって、負極活物質層と負極集電体の接着を向上させ、無機質粒子を含む負極活物質層の体積変化に起因する剥離を防止することができることが判る。
【0039】
【発明の効果】
以上述べたように、本発明によれば、負極集電体の表面に第1結着剤と、Si、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi及びInからなる群より選ばれた少なくとも1種の元素を含む無機質粒子の双方をそれぞれ含む負極活物質層が形成されたリチウムイオン二次電池用負極の改良であり、その特徴ある構成は、負極集電体と負極活物質層との間に密着層を有し、密着層が第1結着剤に含まれる高分子化合物と同一又は異なる高分子化合物を含む第2結着剤と導電性物質の双方をそれぞれ含むところにある。第1結着剤と同一又は異なる高分子化合物を含む第2結着剤が含まれた密着層を負極活物質層と負極集電体との間に設けたことで、負極活物質層、負極集電体への密着力がそれぞれ高まるとともに、充放電に伴う無機質粒子を含む負極活物質層の体積変化による剥離を防止できる。また、第2結着剤に含まれる高分子化合物は負極集電体との密着性が高い変性物質を枝重合体として配列させた変性フッ素含有高分子化合物であるため、密着層は負極集電体への密着性が従来の結着剤を用いるより大幅に向上する。
【図面の簡単な説明】
【図1】本発明のリチウムイオン二次電池の電極体を示す部分断面構成図。
【図2】第1結着剤を構成する高分子化合物の模式図。
【図3】変性フッ素含有高分子化合物の合成を示す模式図。
【符号の説明】
11 正極
12 正極集電体
13 正極活物質層
14 負極
16 負極集電体
17 負極活物質層
18 電解質層
19 密着層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode for a lithium ion secondary battery having an adhesion layer, and a lithium ion secondary battery manufactured using the negative electrode.
[0002]
[Prior art]
With the spread of portable devices such as video cameras and notebook computers in recent years, demand for thin batteries has been increasing. As this thin battery, a lithium ion secondary battery formed by laminating a positive electrode and a negative electrode is known. The positive electrode is formed by forming a positive electrode active material layer on the surface of a sheet-shaped positive electrode current collector, and the negative electrode is formed by forming a negative electrode active material layer on the surface of a sheet-shaped negative electrode current collector. . An electrolyte layer is interposed between the positive electrode active material layer and the negative electrode active material layer. In this battery, a positive electrode terminal and a negative electrode terminal for taking out a potential difference in each active material as a current are provided on a positive electrode current collector and a negative electrode current collector, and the thus stacked ones are sealed in a package to make lithium. An ion secondary battery is formed. In this lithium ion secondary battery, desired electricity can be obtained by using the positive electrode terminal and the negative electrode terminal drawn out of the package as terminals of the battery.
Lithium ion secondary batteries having such a structure have attracted much attention because of their high battery voltage and high energy density. In order to further increase the discharge capacity of this lithium ion secondary battery, it is necessary to increase the area of the sheet-like positive electrode or negative electrode. If the area of the positive electrode or the negative electrode is simply enlarged, the handling becomes difficult due to the large area. In order to solve this problem, it is conceivable to fold or wind the enlarged sheet-like positive electrode or negative electrode to a desired size. However, when folding or winding is performed in a state where the sheet-like positive electrode or negative electrode is laminated, the positive electrode or the negative electrode at the fold portion is bent, and the sheet at that portion is peeled off from the electrolyte layer and the effective interface between the electrode and the electrolyte is formed. There is a problem that the surface area is reduced and the discharge capacity is reduced, and resistance is generated inside the battery to deteriorate the cycle characteristics of the discharge capacity. Similarly, there is also a problem that the active material layer forming the positive electrode or the negative electrode is separated from the current collector due to the bending at the fold portion. Further, in this battery, during the charging and discharging process, the positive and negative electrode active materials absorb and release lithium ions, which causes the positive and negative electrode active material layers to expand and contract. There was also a problem of peeling from the current collector.
[0003]
Therefore, as a technique for solving the above-mentioned problems, as described below, techniques for preventing the active material layer from peeling off from the current collector and reducing the adhesion have been proposed.
PCT International Publication No. WO 00/56780 (hereinafter referred to as Document 1) discloses an oxy group having a polyvinyl alcohol unit having an average degree of polymerization of 20 or more and a part or all of hydroxyl groups having an average degree of molar substitution of 0.3 or more. A polymer compound substituted with an alkylene-containing group, a binder resin comprising the polymer compound, and a composition for an ion-conductive polymer electrolyte having high ionic conductivity and high adhesiveness, and a secondary battery have been proposed. I have. In the present invention, by using a polymer compound in which the introduction ratio of a polyoxyalkylene moiety is increased as a material of a solid polymer electrolyte or a material of a binder resin, ion transfer is facilitated and the ionic conductivity of the polymer for a polymer electrolyte is improved. Is increasing.
PCT International Publication No. WO 00/56797 (hereinafter referred to as Reference 2) discloses that a part or all of the isocyanate groups in a polyurethane compound obtained by reacting an isocyanate compound and a polyol compound has a large dipole moment. A polymer compound obtained by reacting a hydroxyl group of an alcohol compound having a substituent, a binder resin, a composition for an ion-conductive polymer electrolyte, and a secondary battery have been proposed. In the present invention, by introducing a substituent having a large dipole moment into the polyurethane, the adhesion between the electrode and the electrolyte is improved while maintaining a high dielectric constant and the ability to dissolve the ionic conductive salt at a high concentration. As a result, an interface impedance comparable to that of the electrolyte solution is obtained.
PCT International Publication No. WO 00/56815 (hereinafter referred to as Reference 3) discloses that a part or all of the isocyanate groups in a polyurethane compound obtained by reacting an isocyanate compound with a polyol compound has a large dipole moment. A composition for an ionic conductive solid polymer, comprising a polymer compound obtained by reacting a hydroxyl group of an alcohol compound having a substituent, an ionic conductive salt, and a compound having a crosslinkable functional group as main components; Solid polymer electrolytes, binder resins, and secondary batteries have been proposed.
[0004]
PCT International Publication No. WO 00/17949 (hereinafter referred to as Document 4) discloses an electrode material for a negative electrode of a lithium secondary battery, an electrode structure using the electrode material, and a lithium secondary battery using the electrode structure. A battery, a method for manufacturing the electrode structure, and a method for manufacturing the lithium secondary battery have been proposed. In the present invention, an amorphous M.A.X alloy having a non-stoichiometric composition (M is at least one element selected from the group consisting of Si, Ge and Mg, and A is a transition metal element) X represents O, F, N, Ba, Sr, Ca, La, Ce, C, P, S, Se, Te, B, Bi, Sb, Al, In And at least one element selected from the group consisting of Zn and Zn. However, X may not be contained, and the content of the constituent element M of the alloy is M / (M + A + X) = 20 to 80 atomic%.) It contains. An electrode material containing such an alloy has excellent characteristics and is suitable as a negative electrode active material of a lithium secondary battery.
[0005]
Japanese Patent Application Laid-Open No. 2000-299108 (hereinafter referred to as Document 5) discloses a positive electrode provided with a positive electrode active material containing lithium, and a mixture of a silicon compound capable of doping and undoping lithium and a carbon material. A negative electrode having a negative electrode active material layer dispersed in a binder, and a non-aqueous electrolyte interposed between the positive electrode and the negative electrode, the binder has a glass transition temperature of −40 ° C. or lower. Certain non-aqueous electrolyte batteries have been proposed. In the present invention, the binder in the negative electrode active material has a glass transition temperature of −40 ° C. or less, so that the binder absorbs the volume change of the silicon compound negative electrode during lithium doping and undoping. However, a change in volume of the entire negative electrode active material layer is suppressed, and cycle deterioration is suppressed.
Further, Japanese Patent Application Laid-Open No. 9-289022 (hereinafter referred to as Document 6) discloses a positive electrode or a negative electrode comprising a positive electrode and a negative electrode capable of inserting and extracting lithium ions and a non-aqueous electrolyte having lithium ion conductivity. Non-aqueous electrolyte secondary batteries containing a water-soluble polymer in a mixture have been proposed. In the present invention, the water-soluble polymer is contained in the electrode mixture, so that the binding property to the current collector is good, and since the solvent is water, the production cost can be reduced. Can be suppressed. Further, drying can be performed at a relatively low temperature, and thermal damage to the mixture and the material constituting the sheet electrode can be minimized.
[0006]
[Problems to be solved by the invention]
However, in a secondary battery containing a non-aqueous electrolyte, it is generally difficult to bond the negative electrode current collector and the negative electrode active material layer. In the negative electrode material shown in Reference 4, for example, Si, Ge, Al In the case of a negative electrode active material containing elements such as Sn and Sn, although a high charge / discharge capacity can be obtained, the volume change of the active material due to charge / discharge is large, and the active material layer and the current collector may be separated. there were. The binder disclosed in Document 5 is characterized by flexibility and can absorb a change in volume of the active material to some extent. However, this type of binder does not have sufficient adhesive strength with the current collector. I couldn't say it. Literatures 1 to 4 and 6 and the like aim at improving the adhesion between the active material and the current collector, and improve the binder. However, these binders generally have a chemical stability of battery. However, there remain problems such as inferiority to a resin such as polyethylene and polyvinylidene fluoride used for the above, or insufficient adhesiveness in an environment in which an electrolytic solution is present.
[0007]
A first object of the present invention is to provide a negative electrode for a lithium ion secondary battery having excellent adhesion and conductivity between a negative electrode current collector and a negative electrode active material layer.
A second object of the present invention is to provide a lithium ion secondary battery which is excellent in adhesion and conductivity between a current collector and an active material layer, and which can improve cycle capacity maintenance characteristics.
A third object of the present invention is to provide a lithium ion secondary battery in which the adhesion layer is stable with respect to the organic solvent in the electrolyte and has excellent long-term storage properties.
A fourth object of the present invention is to provide a lithium ion secondary battery capable of suppressing corrosion of a current collector by a strong acid such as hydrofluoric acid generated in the battery.
[0008]
[Means for Solving the Problems]
As shown in FIG. 1, the invention according to claim 1 includes a first binder, Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, The present invention is an improvement of a negative electrode for a lithium ion secondary battery in which a negative electrode active material layer 17 including both inorganic particles containing at least one element selected from the group consisting of Bi and In is formed. An adhesive layer 19 between the anode current collector 16 and the anode active material layer 17, wherein the adhesion layer 19 is a second binder containing a polymer compound that is the same as or different from the polymer compound contained in the first binder. It contains both an adhesive and a conductive material.
In the invention according to claim 1, the adhesion is improved by having the adhesion layers 19 containing both the second binder and the conductive material between the anode current collector 16 and the anode active material layer 17. Accordingly, separation of the negative electrode active material layer containing inorganic particles due to a change in volume is prevented.
[0009]
The invention according to claim 2 is the invention according to claim 1, wherein the second binder is a negative electrode including a modified fluorine-containing polymer compound 24 obtained by modifying a fluorine-containing resin 22 with a modifying substance 23. .
The invention according to claim 3 is the invention according to claim 2, wherein the modified fluorine-containing polymer compound 24 is obtained by graft-modifying the fluorine-containing resin into the trunk polymer 22 and grafting the trunk polymer 22 with the modifying substance 23. The negative electrode is a polymer compound obtained.
The invention according to claim 4 is the invention according to claim 3, wherein the trunk polymer 22 constituting the modified fluorine-containing polymer compound 24 is polyvinylidene fluoride (hereinafter, referred to as PVdF), polyvinyl fluoride (hereinafter, polyvinyl fluoride). , PVF), tetrafluoroethylene polymer, trifluoride ethylene polymer, difluoroethylene polymer, vinylidene fluoride-hexafluoropropylene copolymer (hereinafter referred to as VdF-HFP copolymer), ethylene-4 The negative electrode contains at least one fluorine-containing resin selected from the group consisting of a fluorinated ethylene copolymer, a tetrafluoroethylene-6-fluoropropylene copolymer, a trifluorinated ethylene chloride polymer and polytetrafluoroethylene. .
In the invention according to claim 4, the VdF-HFP copolymer and PVdF are preferable because of their high durability to an electrolytic solution.
[0010]
The invention according to claim 5 is the invention according to claim 3, wherein the modified substance 23 constituting the modified fluorine-containing polymer compound 24 is at least one of acrylic acid, methyl acrylate, methacrylic acid, and methyl methacrylate. Is the negative electrode.
In the invention according to claim 5, by using the modified substance, the adhesion layer can obtain good adhesion with the negative electrode current collector.
[0011]
The invention according to claim 6 is the invention according to any one of claims 3 to 5, wherein the trunk polymer 22 constituting the modified fluorine-containing polymer compound 24 is any one of PVdF and VdF-HFP copolymer. A negative electrode, which is a mixture containing one or both of them and in which the modifying substance 23 is acrylic acid.
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the polymer compound 21 contained in the first binder is modified with the modified fluorine-containing polymer contained in the second binder. The negative electrode includes a repeating unit contained in the fluorine-containing resin 22 constituting the molecular compound 24 as the repeating unit.
In the invention according to claim 7, the polymer compound in the first binder contains a repeating unit contained in the fluorine-containing resin constituting the modified fluorine-containing polymer compound in the second binder as the repeating unit. As a result, the adhesion between the negative electrode active material layer and the adhesion layer becomes stronger.
[0012]
The invention according to claim 8 is the invention according to claim 4 or 6, wherein when the backbone polymer 22 of the modified fluorine-containing polymer compound 24 is vinylidene fluoride, the vinylidene fluoride is a modified fluorine-containing polymer compound 24 is a negative electrode contained in a proportion of 95% by weight to 60% by weight.
The ninth aspect of the present invention is the negative electrode according to the first or second aspect, wherein the second binder is contained at a ratio of 5 to 40% by weight based on the whole solid matter of the adhesive layer.
The invention according to claim 10 is the invention according to claim 3, wherein the modified fluorine-containing polymer compound 24 is a negative electrode in which the fluorine-containing resin 22 and the modified substance 23 are grafted by radiation irradiation treatment.
The invention according to claim 11 is the invention according to claim 10, wherein the radiation irradiation treatment on the fluorine-containing resin 22 is performed by γ-ray irradiation, and the absorbed dose of γ-ray of the fluorine-containing resin is 10 to 90 kGy. It is a negative electrode.
[0013]
The invention according to claim 12 is the invention according to claim 1, wherein the inorganic particles are selected from the group consisting of Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, and In. In addition, the negative electrode is composed of a simple substance, an alloy of an oxide or another metal, an alloy of a simple substance and lithium, and a multi-element alloy containing these metals and lithium.
A thirteenth aspect of the present invention is the negative electrode according to the first or twelfth aspect, wherein the average particle diameter of the inorganic particles is 0.1 to 50 μm.
The invention according to claim 14 is the invention according to any one of claims 1, 12 and 13, wherein the ratio of the inorganic particles contained in the active material layer 17 is 5 to 95% by weight of the entire solid material of the active material layer. Is the negative electrode.
[0014]
The invention according to claim 15 is a lithium ion secondary battery manufactured using the negative electrode 14 according to any one of claims 1 to 14.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the negative electrode for a lithium ion secondary battery of the present invention includes a first binder, Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, A negative electrode active material layer 17 including both inorganic particles including at least one element selected from the group consisting of Cd, Sb, Bi, and In is formed. The characteristic configuration has an adhesion layer 19 between the anode current collector 16 and the anode active material layer 17, and the adhesion layer 19 is the same or different from the polymer compound contained in the first binder. And both the second binder and the conductive material. Since the adhesive layer 19 containing both the second binder and the conductive material is provided between the negative electrode current collector 16 and the negative electrode active material layer 17, a high adhesive force can be obtained. Peeling of the negative electrode active material layer from the negative electrode current collector due to a change in volume of the active material layer is suppressed, and cycle characteristics are improved.
[0016]
The second binder contained in the adhesion layer 19 includes a modified fluorine-containing polymer compound 24 obtained by modifying the fluorine-containing resin 22 with a modifying substance 23. The modified fluorine-containing polymer compound 24 is a polymer compound obtained by using the fluorine-containing resin as the trunk polymer 22 and graft-modifying the trunk polymer 22 with the modifying substance 23.
Here, `` modified '' means that the property changes, and in this specification, the modified substance is arranged everywhere in the resin that is the trunk polymer, so that only the property of the resin itself that is the trunk polymer is obtained. In other words, it means that the properties of the denatured substance are combined, or new properties that are not present in both are added.
[0017]
Further, since the modified fluorine-containing polymer compound is chemically improved by the modification, the active material layer is prevented from peeling from the current collector without being dissolved in the electrolytic solution. Further, for the same reason, the conductive substance dispersed in the adhesive layer is maintained without collapsing, so that good electron conduction is maintained, and long-term storage properties and cycle characteristics are excellent. Since the current collector is coated on the chemically stable layer in this way, even when hydrofluoric acid or the like is generated inside the battery, the adhesion layer serves as a protective layer, thereby suppressing corrosion of the current collector.
Since the modified fluorine-containing polymer compound is thermally improved by the modification, the battery is not dissolved in the solvent in the battery even when the battery is kept at a high temperature, so that the deterioration of the battery can be suppressed. In addition, since the modification improves electrochemical stability, it maintains stable adhesion and conductivity without deterioration. Further, it becomes difficult for the electrolyte to penetrate into the modified polymer compound, so that the electrolyte does not adhere to the current collector.
[0018]
Since the negative electrode active material layer 17 and the adhesion layer 19 are required to be chemically, electrochemically, and thermally stable in the battery, they are used for the first binder and the adhesion layer 19 used for the negative electrode active material layer 17. As the polymer compound contained in the second binder to be obtained, a compound containing fluorine in the molecule is used.
As shown in FIG. 2, the polymer compound 21 contained in the first binder is constituted by arranging one or more kinds of predetermined repeating units (A and B in FIG. 2) in random order. . Although not shown, the polymer compound 21 may be configured by regularly arranging one or more kinds of predetermined repeating units. This polymer compound 21 contains, as the repeating unit, a repeating unit contained in the fluorine-containing resin 22 constituting the modified fluorine-containing polymer compound 24 in the second binder. Thereby, the adhesion between the negative electrode active material layer 17 and the adhesion layer 19 is further strengthened. The repeating unit used as a basic unit constituting the backbone polymer 22 of the present invention is preferably contained in the polymer compound 21 at a ratio of 50 molecular weight% or more. More preferably, it is contained at a ratio of 60 to 100 molecular weight%.
[0019]
Graft polymerization is used to arrange and modify the modified substance 23 as a branch polymer in some places of the backbone polymer 22. The trunk polymer 22 includes PVdF, PVF, tetrafluoroethylene polymer, trifluoride ethylene polymer, difluoroethylene polymer, VdF-HFP copolymer, ethylene-tetrafluoroethylene copolymer, and tetrafluoroethylene. At least one fluorine-containing resin selected from the group consisting of -6-fluoropropylene copolymer, trifluorinated ethylene polymer and polytetrafluoroethylene is included. The modified substance 23 includes at least one of acrylic acid, methyl acrylate, methacrylic acid, and methyl methacrylate. By using these modified substances, the adhesion layer can obtain good adhesion to the negative electrode current collector.
In particular, the modified fluorine-containing polymer compound 24 in which the trunk polymer 22 is a mixture containing one or both of PVdF and VdF-HFP copolymer, and the modified substance 23 is acrylic acid, is a PVdF or VdF-HFP copolymer. Since the mixture containing either one or both of the coalesced particles has high adhesion to the negative electrode active material layer and acrylic acid has high adhesion to the negative electrode current collector material, it is included in the second binder in the adhesion layer. It has excellent properties as a modified fluorine-containing polymer compound.
[0020]
As a method for graft polymerization, there is a radiation method. In the radiation method, the fluorine-containing resin to be the backbone polymer 22 and the modifying substance to be the branching polymer are mixed, and the mixture can be polymerized by continuously or intermittently emitting radiation to the mixture. It is preferable to pre-emit the fluorine-containing resin before contacting Specifically, after irradiating the fluorine-containing resin with radiation, a modified substance is mixed into the irradiated object, so that the fluorine-containing resin is a trunk polymer and the modified substance is a branched polymer. A compound can be obtained. Γ-rays are used for radiation used for graft polymerization. Irradiation with γ-rays is performed so that the absorbed dose to the fluorine-containing resin is 1 to 90 kGy. By irradiating the fluorine-containing resin serving as the backbone polymer with radiation, a radical is formed at one end, and the modified substance is easily polymerized.
As shown in FIG. 3A, the trunk polymer 22 constituting the modified fluorine-containing polymer compound has a repeating unit A of the polymer compound 21 contained in the first binder in FIG. 2 as a basic unit. . The basic unit of the backbone polymer may be one type as shown in FIG. 3A, or two or more types of basic units (not shown). This basic unit is preferably contained in the backbone polymer in a proportion of at least 50 molecular weight%. More preferably, it is contained at a ratio of 60 to 100 molecular weight%. As shown in FIG. 3B, the backbone polymer 22 is irradiated with radiation to form a radical 22a at one end of the basic unit A. As shown in FIG. 3 (c), by bringing the modified substance 23 (C in FIG. 3) into contact with the radical polymer-formed backbone polymer 22, the modified substance 23 is arranged in the radical portion 22a and the modified fluorine content A molecular compound 24 is formed. The modified substance 23 is preferably contained in the modified fluorine-containing polymer at a ratio of 2 to 50 molecular weight%. More preferably, it is contained at a ratio of 5 to 30 molecular weight%.
In graft polymerization, the length of time during which the activated base polymer resin is in contact with the modified substance that becomes a branch polymer, the degree of preliminary activity by radiation, and the modified substance that becomes a branched polymer becomes the backbone polymer Polymerization differs depending on the degree to which the resin can pass through, the temperature when the resin and the modified substance are in contact, and the like. When the denaturing substance is an acid, the degree of grafting can be observed by sampling a solution containing the compound as a denaturing substance, titrating the solution with an alkali, and measuring the concentration of the remaining acid compound. The proportion of grafting in the obtained composition is desirably 2 to 50 molecular weight% of the final weight.
[0021]
When the backbone polymer 22 of the modified fluorine-containing polymer compound 24 is vinylidene fluoride, the modified fluorine-containing polymer compound 24 preferably contains 95% by weight to 60% by weight of the modified fluorine-containing polymer compound 24.
The second binder is contained at a ratio of 5 to 40% by weight based on the whole solid matter of the adhesion layer 19. Preferably, the ratio is 10 to 30% by weight based on the whole solid matter of the adhesion layer 19. If the value is less than the lower limit, adhesion cannot be obtained, and if the value exceeds the upper limit, conductivity is deteriorated.
[0022]
The inorganic particles contained in the negative electrode active material layer 17 include at least one element selected from the group consisting of Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, and In alone, and oxidized. It is composed of an alloy with an object or another metal, an alloy of a simple substance and lithium, and a multi-element alloy containing these metals and lithium. These inorganic particles have a function of inserting and extracting lithium. Examples of the inorganic particles based on Si include Si single crystal, polysilicon, amorphous silicon, Si silicide formed with Ca, Fe, Ni, Co, Mn, Mg, and the like, silicon oxycarbide, silicon carbide, and the like. The average particle size of the inorganic particles is 0.1 to 50 μm. The preferred average particle size is 0.2 to 20 μm. The ratio of the inorganic particles contained in the active material layer 17 is 5 to 95% by weight of the whole solid of the active material layer. Preferably, it is 10 to 90% by weight of the whole solid of the active material layer.
[0023]
As shown in FIG. 1, the lithium ion secondary battery of the present invention includes a positive electrode 11, a negative electrode 14, and an electrolyte 18. The positive electrode 11 is configured by forming a positive electrode active material layer 13 on the surface of a positive electrode current collector 12. The negative electrode 14 is formed by forming a negative electrode active material layer 17 containing a first binder and inorganic particles on the surface of a negative electrode current collector 16. An adhesive layer 19 is provided between the negative electrode current collector 16 and the negative electrode active material layer 17. The electrolyte 18 is interposed between the cathode active material layer 13 of the cathode 11 and the anode active material layer 17 of the anode 14. Further, the adhesion layer 19 has a structure including both a second binder containing a polymer compound which is the same as or different from the first binder and a conductive substance.
The adhesion layer 19 containing the second binder containing the modified fluorine-containing polymer compound has a high adhesion to the negative electrode active material layer 17. Further, since the modified fluorine-containing polymer compound is a compound in which a modified substance having high adhesion to the negative electrode current collector is arranged as a branch polymer, the adhesion layer 19 has a conventional adhesion to the negative electrode current collector 16. Significant improvement over using a binder.
[0024]
Next, a procedure for manufacturing the lithium ion polymer secondary battery of the present invention will be described.
First, the modified fluorine-containing polymer compound described above is included in a second binder used for the adhesion layer, and the second binder is dissolved in a solvent to prepare a polymer solution. Disperse to prepare an adhesive layer slurry. As the conductive material, a carbon material having a particle size of 0.5 to 30 μm and a degree of graphitization of 50% or more is used. The slurry of the adhesion layer is prepared by mixing the second binder and the conductive substance so that the weight ratio (third binder / conductive substance) becomes 13/87 to 50/50. As the solvent, dimethylacetamide, acetone, dimethylformamide, and N-methylpyrrolidone (hereinafter, referred to as NMP) are used.
Next, a sheet-shaped positive electrode and a negative electrode current collector are prepared. The slurry for the adhesive layer prepared on the negative electrode current collector is applied by a doctor blade method and dried to form a negative electrode current collector having an adhesive layer having a thickness of 0.5 to 30 μm after drying. The thickness of the adhesive layer of the negative electrode after drying is preferably 1 to 15 μm. The sheet-shaped positive electrode current collector includes an Al foil, and the negative electrode current collector includes a Cu foil. Here, the doctor blade method precisely adjusts the sheet thickness by adjusting the distance between the knife edge called the doctor blade and the carrier by adjusting the thickness of the slip carried on a carrier such as a carrier film or endless belt. How to control.
[0025]
Next, the components required for the positive electrode active material layer, the negative electrode active material layer, and the electrolyte layer were respectively mixed, and the slurry for coating the positive electrode active material layer, the slurry for coating the negative electrode active material layer, and the slurry for coating the electrolyte layer were respectively formed. Prepare.
The obtained slurry for coating a positive electrode active material layer is coated on a positive electrode current collector by a doctor blade method, dried, and rolled to form a positive electrode. Similarly, the negative electrode is formed by applying the obtained slurry for coating the negative electrode active material layer on a negative electrode current collector having an adhesive layer by a doctor blade method, drying and rolling, and thereby forming a negative electrode. The positive electrode or negative electrode active material layer is formed so that the thickness after drying is 20 to 250 μm. The electrolyte layer is formed by applying and drying the obtained slurry for coating an electrolyte layer on release paper by a doctor blade method so that the dry thickness of the electrolyte layer becomes 10 to 150 μm, and peeling off the release paper. Further, the electrolyte layer coating slurry may be applied to the positive electrode surface or the negative electrode surface and dried to form the electrolyte layer. The formed positive electrode, electrolyte layer, and negative electrode are sequentially laminated, and the laminate is subjected to thermocompression bonding to form a sheet-like electrode body as shown in FIG.
Finally, the positive electrode lead and the negative electrode lead made of Ni were welded to the positive electrode current collector and the negative electrode current collector, respectively, and stored in a bag-shaped laminated package material having an opening, and the electrode body was placed under reduced pressure conditions. By sealing the opening by thermocompression bonding, a sheet-shaped lithium ion polymer secondary battery can be manufactured.
[0026]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, 50 g of PVdF powder was prepared as a trunk polymer, and 260 g of a 15% by weight aqueous solution of acrylic acid was prepared as a modifying substance. The PVdF powder is placed in a polyethylene pack and vacuum-packed so that the absorbed dose to PVdF becomes 50 kGy. 60 Irradiation was performed using Co as a γ-ray source. The gamma-irradiated PVdF powder was taken out from the polyethylene pack, transferred to a nitrogen atmosphere, supplied with PVdF powder in 260 g of a 15% by weight aqueous solution of acrylic acid, kept at 80 ° C., and reacted with the aqueous solution of acrylic acid. During the reaction, samples of the reaction solution were sequentially sampled, and the sampled solution was titrated with sodium hydroxide to calculate the amount of acrylic acid that had reacted with PVdF. When the consumption of acrylic acid reached 20.48% of the PVdF weight, the reaction was stopped, and the obtained solid product was washed with pure water and dried to obtain a modified fluorine-containing polymer compound. The obtained modified fluorine-containing polymer compound was acrylic acid grafted PVdF (Acrylic Acidgrafting Polyvinylidene Fluoride, hereinafter, referred to as AA-g-PVdF), and the ratio of the modified substance in this compound was 17% by weight.
[0027]
Next, 2 g of the obtained modified fluorine-containing polymer compound was collected, 28 g of NMP was added to the sample, and the mixture was stirred to obtain a polymer solution. Specific surface area 150m 2 / G of graphite powder of 1.2 g / g and 1.2 g of a dispersant for dispersing the graphite powder were added, and 150 g of NMP was further added to prepare an adhesive layer slurry.
Next, an Al foil having a thickness of 20 μm and a width of 250 mm was prepared as a positive electrode current collector. Further, a Cu foil having a thickness of 14 μm and a width of 250 mm was prepared as a negative electrode current collector, and the adhesive layer slurry prepared on the surface of the Cu foil was applied and dried by a doctor blade method. The control was performed within a range of ± 1 μm.
Next, the components shown in Table 1 were mixed with a ball mill for 2 hours to prepare a slurry for coating a positive electrode active material layer, a slurry for coating a negative electrode active material layer, and a slurry for coating an electrolyte layer.
[0028]
[Table 1]
Figure 2004095264
[0029]
The obtained negative electrode active material layer coating slurry is coated and dried by a doctor blade method such that the dry thickness of the negative electrode active material layer is 80 μm on the surface of the Cu foil having the adhesion layer, and the negative electrode is formed by rolling. Formed. Similarly, the positive electrode active material layer coating slurry was coated on the surface of the Al foil, dried, and rolled to form a positive electrode. Further, a slurry for coating an electrolyte layer is applied to the positive electrode by a doctor blade method so as to have a dry thickness of 50 μm, and a positive electrode having an electrolyte layer and a negative electrode are laminated and thermocompression-bonded to form a sheet-like electrode body. Was prepared. The positive electrode lead and the negative electrode lead made of Ni were welded to the positive electrode current collector and the negative electrode current collector, respectively, and housed in a bag-shaped laminated package material having an opening, and the opening was opened under reduced pressure conditions. Was sealed by thermocompression bonding to produce a sheet-shaped battery.
[0030]
<Example 2>
Synthesis is performed using methacrylic acid as a material constituting the modified substance, and the obtained methacrylic acid grafted PVdF (Methacrylic Acid Grafting PolyVinylidene Fluoride, hereinafter referred to as MA-g-PVdF) is used as the modified fluorine-containing polymer compound. A sheet-like battery was produced in the same manner as in Example 1 except for the difference.
<Example 3>
Synthesis was performed using VdF-HFP copolymer powder as a material constituting the backbone polymer, and the procedure was the same as in Example 1 except that the obtained AA-g-VdF-HFP was used as a modified fluorine-containing polymer compound. Thus, a sheet-shaped battery was produced.
[0031]
<Example 4>
Irradiation with γ-rays was performed so that the absorbed dose to PVdF became 70 kGy, synthesis was performed with the modified substance ratio in the modified fluorine-containing polymer compound being 20% by weight, and the obtained AA-g-PVdF was converted to a modified fluorine-containing polymer. A sheet-shaped battery was produced in the same manner as in Example 1 except that the battery was used as a molecular compound.
<Example 5>
A sheet-like battery was produced in the same manner as in Example 1 except that 4 g of the modified fluorine-containing polymer compound obtained in Example 1 was collected to prepare an adhesive layer slurry.
[0032]
<Comparative Example 1>
A sheet-shaped battery was produced in the same manner as in Example 1 except that no adhesion layer was provided between the negative electrode active material layer and the Cu foil, and PVdF was used as a binder for the negative electrode active material layer.
<Comparative Example 2>
A sheet-like battery was produced in the same manner as in Comparative Example 1, except that a VdF-HFP copolymer was used as a binder for the negative electrode active material layer.
<Comparative Example 3>
A sheet-like battery was produced in the same manner as in Comparative Example 1, except that a mixture containing PVdF and a VdF-HFP copolymer at a polymerization ratio of 1: 1 was used as a binder for the negative electrode active material layer.
[0033]
<Comparison evaluation>
The following evaluation tests were performed using the sheet batteries obtained in Examples 1 to 5 and Comparative Examples 1 to 3, respectively.
(1) Cycle capacity maintenance characteristics test of battery when used for adhesion layer of battery
The obtained sheet-shaped battery is subjected to a charge / discharge cycle test, a charging step of performing charging for 2.5 hours under the conditions of a maximum charging voltage of 4 V and a charging current of 0.5 A, and a discharging voltage of 0.5 A constant current discharging. The charge / discharge cycle is repeated with the discharge step of discharging to 2.0 V, which is the minimum discharge voltage, as one cycle, the charge / discharge capacity of each cycle is measured, and the discharge capacity retention rate of the third cycle ((the third cycle) Discharge capacity / initial discharge capacity) × 100).
[0034]
(2) Adhesion test of the adhesion layer to the current collector and active material layer
The obtained sheet-shaped battery was subjected to 10 charge / discharge cycles under the same conditions as in the evaluation test (1). Thereafter, the storage package of the sheet-shaped battery after the completion of 10 cycles of charging and discharging was removed, and the positive electrode and the negative electrode of the battery were separated by separating. In the batteries of Examples 1 to 5, the pinch layer of the separated negative electrode was pinched with a pair of tweezers, and when the pinch layer was pulled, whether or not the adhesion layer was separated from the current collector, whether or not the adhesion layer was separated from the active material layer. Was confirmed respectively. Also, in the batteries of Comparative Examples 1 to 3, it was confirmed whether or not the negative electrode active material layer and the negative electrode current collector were separated when the separated negative electrode was pinched with tweezers and pulled.
[0035]
Table 2 shows the evaluation results in the evaluation tests (1) and (2).
[0036]
The symbols in the adhesion evaluation in Table 2 have the following meanings. :: Very good adhesion. :: There is partial peeling. ×: Completely peeled.
[0037]
[Table 2]
Figure 2004095264
[0038]
As is clear from Table 2, in the cycle capacity maintenance characteristic test of the evaluation test (1), the discharge capacity retention rates of the batteries of Comparative Examples 1 to 3 are significantly reduced. The expansion and contraction of the active material composed of Si powder due to charge and discharge is considered to be the cause of the separation occurring at the interface between the negative electrode active material and the negative electrode current collector, and such separation occurs between the active material of the battery and the current collector. It is considered that since the flow of electrons was stopped, the capacity retention in the third cycle was significantly reduced. On the other hand, the discharge capacity retention rates of the batteries of Examples 1 to 5 show high values, respectively. This is because the adhesive properties of the second binder contained in the adhesive layers in the batteries obtained in Examples 1 to 5 were excellent, so that separation due to expansion and contraction of the active material made of Si powder could be prevented. Conceivable.
In the adhesion test after 10 cycles of the evaluation test (2) in the batteries of Comparative Examples 1 to 3, the negative electrode current collector and the negative electrode active material layer were completely peeled off. Showed that the adhesion layer was hard to peel off from the negative electrode current collector, indicating that the adhesion to the negative electrode current collector was excellent. In addition, the adhesion layer was hardly peeled off from the negative electrode active material layer, indicating that the adhesion to the active material layer was excellent.
Thus, by providing the adhesion layer between the negative electrode active material layer and the negative electrode current collector, and including the second binder containing the modified fluorine-containing polymer compound with the conductive material in the adhesion layer, It can be seen that the adhesion between the material layer and the negative electrode current collector can be improved, and separation due to the volume change of the negative electrode active material layer containing the inorganic particles can be prevented.
[0039]
【The invention's effect】
As described above, according to the present invention, the first binder and Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, and In are formed on the surface of the negative electrode current collector. An improvement of a negative electrode for a lithium ion secondary battery in which a negative electrode active material layer containing both of inorganic particles containing at least one element selected from the group consisting of: a negative electrode current collector And a negative electrode active material layer having an adhesion layer, wherein the adhesion layer contains both the second binder and the conductive material containing the same or different polymer compound as the polymer compound contained in the first binder. Each is included. By providing the adhesive layer containing the second binder containing the same or different polymer compound as the first binder between the anode active material layer and the anode current collector, the anode active material layer, the anode The adhesion to the current collector is increased, and peeling due to a change in volume of the negative electrode active material layer containing inorganic particles due to charge and discharge can be prevented. In addition, since the polymer compound contained in the second binder is a modified fluorine-containing polymer compound in which a modified substance having high adhesion to the negative electrode current collector is arranged as a branch polymer, the adhesion layer is formed of the negative electrode current collector. Adhesion to the body is greatly improved as compared with using a conventional binder.
[Brief description of the drawings]
FIG. 1 is a partial sectional configuration view showing an electrode body of a lithium ion secondary battery of the present invention.
FIG. 2 is a schematic view of a polymer compound constituting a first binder.
FIG. 3 is a schematic view showing the synthesis of a modified fluorine-containing polymer compound.
[Explanation of symbols]
11 Positive electrode
12 positive electrode current collector
13 Positive electrode active material layer
14 Negative electrode
16 Negative electrode current collector
17 Negative electrode active material layer
18 Electrolyte layer
19 Adhesion layer

Claims (15)

負極集電体(16)の表面に第1結着剤と、Si、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi及びInからなる群より選ばれた少なくとも1種の元素を含む無機質粒子の双方をそれぞれ含む負極活物質層(17)が形成されたリチウムイオン二次電池用負極において、
前記負極集電体(16)と前記負極活物質層(17)との間に密着層(19)を有し、
前記密着層(19)が前記第1結着剤に含まれる高分子化合物と同一又は異なる高分子化合物を含む第2結着剤と導電性物質の双方をそれぞれ含む
ことを特徴とするリチウムイオン二次電池用負極。
A first binder and at least one selected from the group consisting of Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi and In on the surface of the negative electrode current collector (16). In the negative electrode for a lithium ion secondary battery in which the negative electrode active material layer (17) containing both of the inorganic particles containing
An adhesive layer (19) between the negative electrode current collector (16) and the negative electrode active material layer (17);
The adhesion layer (19) contains both a second binder containing a polymer compound the same as or different from the polymer compound contained in the first binder and a conductive material, respectively. Negative electrode for secondary battery.
第2結着剤がフッ素含有樹脂(22)を変性物質(23)により変性させて得られる変性フッ素含有高分子化合物(24)を含む請求項1記載のリチウムイオン二次電池用負極。The negative electrode for a lithium ion secondary battery according to claim 1, wherein the second binder comprises a modified fluorine-containing polymer compound (24) obtained by modifying the fluorine-containing resin (22) with a modifying substance (23). 変性フッ素含有高分子化合物(24)がフッ素含有樹脂を幹重合体(22)とし、前記幹重合体(22)を変性物質(23)によりグラフト変性させて得られる高分子化合物である請求項2記載のリチウムイオン二次電池用負極。The modified fluorine-containing polymer compound (24) is a polymer compound obtained by using a fluorine-containing resin as a trunk polymer (22) and graft-modifying the trunk polymer (22) with a modifying substance (23). The negative electrode for a lithium ion secondary battery according to the above. 変性フッ素含有高分子化合物(24)を構成する幹重合体(22)が、ポリフッ化ビニリデン、ポリフッ化ビニル、4フッ化エチレンポリマー、3フッ化エチレンポリマー、2フッ化エチレンポリマー、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、エチレン−4フッ化エチレン共重合体、4フッ化エチレン−6フッ化プロピレン共重合体、3フッ化塩化エチレンポリマー及びポリテトラフルオロエチレンからなる群より選ばれた少なくとも1種のフッ素含有樹脂を含む請求項3記載のリチウムイオン二次電池用負極。When the backbone polymer (22) constituting the modified fluorine-containing polymer compound (24) is polyvinylidene fluoride, polyvinyl fluoride, tetrafluoroethylene polymer, trifluoride ethylene polymer, difluoroethylene polymer, vinylidene fluoride- At least one selected from the group consisting of a hexafluoropropylene copolymer, an ethylene-tetrafluoroethylene copolymer, a tetrafluoroethylene-hexafluoropropylene copolymer, a trifluoroethylene chloride polymer and polytetrafluoroethylene 4. The negative electrode for a lithium ion secondary battery according to claim 3, comprising a kind of fluorine-containing resin. 変性フッ素含有高分子化合物(24)を構成する変性物質(23)が、アクリル酸、アクリル酸メチル、メタクリル酸及びメタクリル酸メチルの少なくとも1種である請求項3記載のリチウムイオン二次電池用負極。The negative electrode for a lithium ion secondary battery according to claim 3, wherein the modified substance (23) constituting the modified fluorine-containing polymer compound (24) is at least one of acrylic acid, methyl acrylate, methacrylic acid, and methyl methacrylate. . 変性フッ素含有高分子化合物(24)を構成する幹重合体(22)がポリフッ化ビニリデン又はフッ化ビニリデン−ヘキサフルオロプロピレン共重合体のいずれか一方又は双方を含む混合物であって、変性物質(23)がアクリル酸である請求項3ないし5いずれか1項に記載のリチウムイオン二次電池用負極。The backbone polymer (22) constituting the modified fluorine-containing polymer compound (24) is a mixture containing one or both of polyvinylidene fluoride and a vinylidene fluoride-hexafluoropropylene copolymer, and the modified substance (23) 6.) The negative electrode for a lithium ion secondary battery according to claim 3, wherein is) acrylic acid. 第1結着剤に含まれる高分子化合物(21)が、第2結着剤に含まれる変性フッ素含有高分子化合物(24)を構成するフッ素含有樹脂(22)に含まれる反復単位をその反復単位として含む請求項1ないし6いずれか1項に記載のリチウムイオン二次電池用負極。The polymer compound (21) contained in the first binder is formed by repeating the repeating unit contained in the fluorine-containing resin (22) constituting the modified fluorine-containing polymer compound (24) contained in the second binder. The negative electrode for a lithium ion secondary battery according to any one of claims 1 to 6, wherein the negative electrode is contained as a unit. 変性フッ素含有高分子化合物(24)の幹重合体(22)がフッ化ビニリデンであるとき、前記フッ化ビニリデンが変性フッ素含有高分子化合物(24)に95重量%〜60重量%の割合で含まれる請求項4又は6記載のリチウムイオン二次電池用負極。When the backbone polymer (22) of the modified fluorine-containing polymer (24) is vinylidene fluoride, the vinylidene fluoride is contained in the modified fluorine-containing polymer (24) at a ratio of 95% by weight to 60% by weight. The negative electrode for a lithium ion secondary battery according to claim 4 or 6, wherein 第2結着剤が密着層固形物全体に対して5〜40重量%の割合で含まれる請求項1又は2記載のリチウムイオン二次電池用負極。3. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the second binder is contained in a ratio of 5 to 40% by weight based on the whole solid matter of the adhesive layer. 4. 変性フッ素含有高分子化合物(24)はフッ素含有樹脂(22)と変性物質(23)が放射線照射処理によってグラフト化される請求項3記載のリチウムイオン二次電池用負極。The negative electrode for a lithium ion secondary battery according to claim 3, wherein the modified fluorine-containing polymer compound (24) is obtained by grafting the fluorine-containing resin (22) and the modified substance (23) by radiation irradiation treatment. フッ素含有樹脂(22)への放射線照射処理はγ線照射によって行われ、前記フッ素含有樹脂のγ線の吸収線量が10〜90kGyである請求項10記載のリチウムイオン二次電池用負極。The negative electrode for a lithium ion secondary battery according to claim 10, wherein the irradiation of the fluorine-containing resin (22) with radiation is performed by γ-ray irradiation, and the γ-ray absorption dose of the fluorine-containing resin is 10 to 90 kGy. 無機質粒子はSi、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi及びInからなる群より選ばれた少なくとも1種の元素が単体、酸化物又は他の金属との合金、前記単体とリチウムとの合金、及びこれらの金属、リチウムを含む多元合金で構成される請求項1記載のリチウムイオン二次電池用負極。As the inorganic particles, at least one element selected from the group consisting of Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi and In is a simple substance, an oxide or an alloy with another metal. 2. The negative electrode for a lithium ion secondary battery according to claim 1, comprising an alloy of said simple substance and lithium, and a multi-component alloy containing these metals and lithium. 無機質粒子の平均粒径が0.1〜50μmである請求項1又は12記載のリチウムイオン二次電池用負極。The negative electrode for a lithium ion secondary battery according to claim 1, wherein the inorganic particles have an average particle size of 0.1 to 50 μm. 活物質層(17)に含まれる無機質粒子の割合が活物質層固形物全体の5〜95重量%である請求項1、12又は13いずれか1項に記載のリチウムイオン二次電池用負極。14. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the ratio of the inorganic particles contained in the active material layer (17) is 5 to 95% by weight of the entire solid material of the active material layer. 請求項1ないし14いずれか1項に記載の負極(14)を用いて作製したリチウムイオン二次電池。A lithium ion secondary battery produced using the negative electrode (14) according to any one of claims 1 to 14.
JP2002252815A 2002-08-30 2002-08-30 Negative electrode for lithium ion secondary battery and lithium ion secondary battery manufactured by using the same Withdrawn JP2004095264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252815A JP2004095264A (en) 2002-08-30 2002-08-30 Negative electrode for lithium ion secondary battery and lithium ion secondary battery manufactured by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002252815A JP2004095264A (en) 2002-08-30 2002-08-30 Negative electrode for lithium ion secondary battery and lithium ion secondary battery manufactured by using the same

Publications (1)

Publication Number Publication Date
JP2004095264A true JP2004095264A (en) 2004-03-25

Family

ID=32058996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252815A Withdrawn JP2004095264A (en) 2002-08-30 2002-08-30 Negative electrode for lithium ion secondary battery and lithium ion secondary battery manufactured by using the same

Country Status (1)

Country Link
JP (1) JP2004095264A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066633A (en) * 2005-08-30 2007-03-15 Sony Corp Current collector, negative electrode, and battery
JP2007123141A (en) * 2005-10-31 2007-05-17 Sony Corp Anode and battery
JP2008117574A (en) * 2006-11-01 2008-05-22 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and method for manufacturing negative electrode plate for same
JP2009252396A (en) * 2008-04-02 2009-10-29 Toyota Motor Corp Lithium secondary battery cathode and method for manufacturing the same
GB2470190A (en) * 2009-05-11 2010-11-17 Nexeon Ltd A binder for Lithium ion Rechargeable Battery Cells
WO2012101450A1 (en) 2011-01-27 2012-08-02 Nexeon Limited A binder for a secondary battery cell
US8384058B2 (en) 2002-11-05 2013-02-26 Nexeon Ltd. Structured silicon anode
WO2013061079A1 (en) 2011-10-26 2013-05-02 Nexeon Limited An electrode composition for a secondary battery cell
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
US8597831B2 (en) 2006-01-23 2013-12-03 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8642211B2 (en) 2007-07-17 2014-02-04 Nexeon Limited Electrode including silicon-comprising fibres and electrochemical cells including the same
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
JP2014229581A (en) * 2013-05-27 2014-12-08 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
JP2015537347A (en) * 2012-11-02 2015-12-24 ネクソン リミテッドNexeon Limited Device and device forming method
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
CN110521027A (en) * 2017-04-26 2019-11-29 松下知识产权经营株式会社 Anode of secondary cell and secondary cell
CN114888282A (en) * 2022-04-11 2022-08-12 华南理工大学 A 2 B 7 Fluorination modification method of hydrogen storage alloy, obtained fluorination modification hydrogen storage alloy and application of fluorination modification hydrogen storage alloy

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8384058B2 (en) 2002-11-05 2013-02-26 Nexeon Ltd. Structured silicon anode
JP2007066633A (en) * 2005-08-30 2007-03-15 Sony Corp Current collector, negative electrode, and battery
JP2007123141A (en) * 2005-10-31 2007-05-17 Sony Corp Anode and battery
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
US9583762B2 (en) 2006-01-23 2017-02-28 Nexeon Limited Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8597831B2 (en) 2006-01-23 2013-12-03 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
JP2008117574A (en) * 2006-11-01 2008-05-22 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and method for manufacturing negative electrode plate for same
US8257858B2 (en) 2006-11-01 2012-09-04 Panasonic Corporation Lithium ion secondary battery and method for forming negative electrode plate for lithium ion secondary battery
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
US8642211B2 (en) 2007-07-17 2014-02-04 Nexeon Limited Electrode including silicon-comprising fibres and electrochemical cells including the same
US8940437B2 (en) 2007-07-17 2015-01-27 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
JP2009252396A (en) * 2008-04-02 2009-10-29 Toyota Motor Corp Lithium secondary battery cathode and method for manufacturing the same
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9553304B2 (en) 2009-05-07 2017-01-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
GB2470190B (en) * 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
GB2470190A (en) * 2009-05-11 2010-11-17 Nexeon Ltd A binder for Lithium ion Rechargeable Battery Cells
US10050275B2 (en) 2009-05-11 2018-08-14 Nexeon Limited Binder for lithium ion rechargeable battery cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US9368836B2 (en) 2010-06-07 2016-06-14 Nexeon Ltd. Additive for lithium ion rechargeable battery cells
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
US9947920B2 (en) 2010-09-03 2018-04-17 Nexeon Limited Electroactive material
WO2012101450A1 (en) 2011-01-27 2012-08-02 Nexeon Limited A binder for a secondary battery cell
WO2013061079A1 (en) 2011-10-26 2013-05-02 Nexeon Limited An electrode composition for a secondary battery cell
JP2015537347A (en) * 2012-11-02 2015-12-24 ネクソン リミテッドNexeon Limited Device and device forming method
JP2014229581A (en) * 2013-05-27 2014-12-08 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN110521027A (en) * 2017-04-26 2019-11-29 松下知识产权经营株式会社 Anode of secondary cell and secondary cell
CN114888282A (en) * 2022-04-11 2022-08-12 华南理工大学 A 2 B 7 Fluorination modification method of hydrogen storage alloy, obtained fluorination modification hydrogen storage alloy and application of fluorination modification hydrogen storage alloy

Similar Documents

Publication Publication Date Title
JP2004095264A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery manufactured by using the same
US7351498B2 (en) Lithium ion polymer secondary battery its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
KR101690515B1 (en) Electrode assembly with improved flexural strength, a method for preparing the same and electro-chemical cell comprising the same
US8968928B2 (en) Primer for battery electrode
JP4637590B2 (en) Anode for lithium secondary battery and lithium secondary battery using the same
JP2017117784A (en) Separator including porous adhesive layer and electrochemical battery including the same
JP3982221B2 (en) Lithium ion polymer secondary battery and method for synthesizing binder used for adhesion layer of battery
JP4426154B2 (en) Method for producing electrode film and battery element including the electrode film
EP2760066B1 (en) Positive electrode material for lithium-ion secondary battery and lithium-ion secondary battery
CN1315202C (en) Electric cell
JP2004200011A (en) Cathode for lithium-ion secondary battery and lithium-ion secondary battery manufactured using the cathode
JP2017117788A (en) Secondary battery separator and lithium secondary battery including the same
JP2003257433A (en) Nonaqueous electrolyte secondary battery and binding agent
JP4942249B2 (en) Method for producing lithium ion secondary battery
JP2004200010A (en) Cathode material for nonaqueous electrolyte secondary battery, electrode structure manufactured using cathode material, and nonaqueous electrolyte secondary battery
JP3726899B2 (en) Lithium ion polymer secondary battery
KR101660091B1 (en) Positive electrode for lithium secondary battery and lithium secondary battery comprising the same
JP2003263987A (en) Binder for lithium ion polymer secondary cell
JP3618022B2 (en) Electric double layer capacitor and EL element
JP2003173781A (en) Paint for adhesive layer as well as electrode for secondary battery and secondary battery using them
JP2002025540A (en) Manufacturing method of nonaqueous electrolyte secondary battery and electrode plate for nonaqueous electrolyte secondary battery
JP7265062B2 (en) Positive electrode active material paint, positive electrode, and secondary battery
WO2023286553A1 (en) Fluoride ion-conductive polymer solid electrolyte and solid electrolyte material containing the same, and fluoride shuttle-type battery and manufacturing method therefor
CN114072964B (en) Separator for secondary battery and lithium secondary battery comprising same
JP4990441B2 (en) Sheet-like lithium secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101