JP2004091936A - Weft insertion apparatus of loom - Google Patents

Weft insertion apparatus of loom Download PDF

Info

Publication number
JP2004091936A
JP2004091936A JP2002251153A JP2002251153A JP2004091936A JP 2004091936 A JP2004091936 A JP 2004091936A JP 2002251153 A JP2002251153 A JP 2002251153A JP 2002251153 A JP2002251153 A JP 2002251153A JP 2004091936 A JP2004091936 A JP 2004091936A
Authority
JP
Japan
Prior art keywords
valve
sub
nozzle
fluid
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002251153A
Other languages
Japanese (ja)
Inventor
Tetsuya Obara
小原 徹也
Hideki Banba
伴場 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsudakoma Corp
Toray Industries Inc
Original Assignee
Tsudakoma Corp
Toray Industries Inc
Tsudakoma Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsudakoma Corp, Toray Industries Inc, Tsudakoma Industrial Co Ltd filed Critical Tsudakoma Corp
Priority to JP2002251153A priority Critical patent/JP2004091936A/en
Priority to EP03791191A priority patent/EP1536048A4/en
Priority to CNA03801761XA priority patent/CN1606637A/en
Priority to PCT/JP2003/009869 priority patent/WO2004020716A1/en
Priority to KR10-2004-7005924A priority patent/KR20040048975A/en
Publication of JP2004091936A publication Critical patent/JP2004091936A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/28Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed
    • D03D47/30Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed by gas jet
    • D03D47/3026Air supply systems
    • D03D47/306Construction or details of parts, e.g. valves, ducts
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/28Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed
    • D03D47/30Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed by gas jet
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D47/00Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
    • D03D47/28Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed
    • D03D47/30Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms wherein the weft itself is projected into the shed by gas jet
    • D03D47/3006Construction of the nozzles
    • D03D47/302Auxiliary nozzles

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Looms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further reduce the amount of a consumed compressed fluid of a weft insertion apparatus of a loom. <P>SOLUTION: The weft insertion apparatus of the loom comprises one or more subnozzle apparatuses provided with subnozzles and a solenoid valve connected through a pipe in a 1:1 relationship so that the compressed fluid can be made to flow. The weft insertion apparatus is characterized as follows. The effective cross-sectional area of a fluid passage from a fluid outlet of a fluid supply source to the end on the subnozzle side of the pipe, the effective cross-sectional area of the fluid passage from an input port of the solenoid valve to an output port of the solenoid valve, the inner volume of the fluid passage from the lateral end of a valve element of a valve seat opening in the solenoid valve to the input end of the subnozzles and the inner volume of the fourth fluid passage in the interior of the solenoid valve from the lateral end of the valve element of the valve seat opening in the solenoid valve to the output port of the solenoid valve are regulated within specific ranges. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、サブノズルと電磁開閉弁とがパイプを介して1対1の関係に接続された1以上のサブノズル装置を含む、織機の緯入れ装置に関する。
【0002】
【従来の技術】
従来の織機の緯入れ装置として、例えば、特開平10−204750号公報に記載の技術や特開昭57−210043号公報に記載の技術が知られている。
【0003】
これらによれば、織機の緯入れ装置は、サブノズルと電磁開閉弁とがパイプを介して1対1の関係に連通された1以上のサブノズル装置と、電磁開閉弁に圧縮流体を供給する流体供給源と含む。
【0004】
これら従来技術は、各サブノズルに対応する電磁開閉弁を個別的に制御可能に設けられ、さらに、圧縮流体の噴射時間及び圧縮流体の噴射タイミングを個別的に設定することにより、圧縮流体の消費量を抑えようとするものである。
【0005】
【発明が解決しようとする課題】
しかし、上記従来技術は各サブノズルの噴射時間及びタイミングを制御して圧縮流体の消費量を低減し得るものの、今日の省エネルギー時代においては、さらなる圧縮流体の消費量の低減が求められている。
【0006】
【課題を解決するための手段】
本願発明者らは、織機の緯入れ時においては、それぞれのサブノズル装置の流体流路の有効断面積や内容積を所定の範囲内に設定することで、比較的容易に圧縮流体の消費量が低減することを知見し、以下の技術を発明した。
【0007】
本発明に係るいずれの緯入れ装置も、サブノズルと電磁開閉弁とがパイプを介して1対1の関係に接続された1以上のサブノズル装置を含む。
【0008】
本発明に係る第1の緯入れ装置は、さらに、前記サブノズル装置の電磁開閉弁に圧縮流体を供給する流体供給源とを含み、前記流体供給源の流体出口から前記パイプのサブノズル側の端部まで流体流路の有効断面積は2.5mm以上3.5mm以下である。
【0009】
本発明に係る第2の緯入れ装置においては、前記電磁開閉弁の入力ポートから前記電磁開閉弁の出力ポートまでの流体流路の有効断面積は5mm以上15mm以下である。
【0010】
本発明に係る第3の緯入れ装置においては、前記電磁開閉弁の弁座開口の弁体側端部から前記サブノズルの入力端まで流体流路の内容積は2000mm以上3000mm以下である。なお、ここで言う「内容積」は、上記した区間の流体流路の内側の容積であることはいうまでもない。
【0011】
本発明に係る第4の緯入れ装置においては、前記電磁開閉弁の弁座開口の弁体側端部から前記電磁開閉弁の出力ポートまでの前記電磁開閉弁内部の流体流路の内容積は600mm以下である。
【0012】
本発明に係る第5の緯入れ装置は、さらに、前記サブノズル装置の電磁開閉弁に圧縮流体を供給する流体供給源を含み、前記流体供給源の流体出口から前記パイプのサブノズル側の端部まで流体流路の有効断面積は2.5mm以上3.5mm以下であり、前記電磁開閉弁の弁座開口の弁体側端部から前記サブノズルの入力端まで流体流路の内容積は2000mm以上3000mm以下である。
【0013】
本発明に係る第6の緯入れ装置においては、前記電磁開閉弁の入力ポートから前記電磁開閉弁の出力ポートまで流体流路の有効断面積は5mm以上15mm以下であり、前記電磁開閉弁の弁座開口の弁体側端部から前記電磁開閉弁の出力ポートまでの前記電磁開閉弁内部の流体流路の内容積は600mm以下である。
【0014】
【作用及び効果】
発明者等が行った実験の結果、圧縮流体が流動する前記流体流路の有効断面積及び内容積が圧縮流体の消費量に密接な関係があることが判明した。
【0015】
圧縮流体が流動する前記流体流路の有効断面積及び内容積を第1から第6の緯入れ装置のような値とすることにより、緯糸が反緯入れ側に到達するように、サブノズルから噴出する圧縮流体の圧力及び噴出時間を適正に保ちつつ圧縮流体の消費量が減少する。
【0016】
特に、サブノズルと電磁開閉弁とがパイプを介して1対1の関係に接続された1以上のサブノズル装置を設けることにより、緯糸飛走に対応した最小限の噴射期間の設定が可能となり、かつ、流体流路の圧縮流体の抵抗が抑えられるので、圧縮流体の消費量がさらに減少する。
【0017】
また、第3から第6の緯入れ装置によれば、流体流路の内容積を上記第3から第6の値にしたので、前記同様、緯糸飛走に対応した最小限の噴射期間の設定が可能となるとともに、サブノズルから噴射する圧縮流体の噴射終了後の残圧排気量(換言すれば、無駄吹き量)が減少する結果、圧縮流体の消費量を節約することができる。
【0018】
【発明の実施の形態】
図1及び図2を参照するに、織機の緯入れ装置10は、例えば緯入れ用流体として圧縮空気を用いる空気噴射式織機に用いられている。
【0019】
図1に示すように、空気噴射式織機において、給糸体12に巻かれている緯糸14は、測長貯留装置16に所定長さ分に測長され、係止ピン装置18により係止されて貯留されており、先端部をメインノズル20に通されている。
【0020】
メインノズル20に通されている緯糸14は、係止ピン装置18により所定期間解舒されて、メインノズル20から圧縮空気と共に噴出され、複数のサブノズル22から噴出される圧縮空気により、経糸24の開口内に緯入れされる。
【0021】
解舒センサ32は、解舒された緯糸14が解舒センサ32のセンサ領域を横切った回数をカウントし、所定回数に達したときに再び係止ピン装置18により緯糸14を係止し、所定長さ分の緯糸14を緯入れする。
【0022】
緯入れされた緯糸14は、筬26により織布28の織前に筬打ちされ、カッタ30により切断されて、メインノズル20を経て測長貯留装置16に連なる緯糸部分から切断される。
【0023】
図2に示すように、空気噴射式織機に用いる緯入れ装置10は、1以上のサブノズル装置34と、圧縮空気をサブノズル装置34に供給する流体供給源36とを含む。
【0024】
サブノズル装置34は、サブノズル22と電磁開閉弁38とを、サブノズル側パイプ40を介して1対1の関係に接続しており、また、流体供給源36からの圧縮空気を電磁開閉弁38に受ける。
【0025】
流体供給源は、電磁開閉弁38に対して圧縮空気を供給するものを指し、換言すれば、電磁開閉弁38の上流にあるものを指す。本図では、流体供給源は36を指し、例えばエアータンクのようなタンク42がそれに対応する。圧縮空気は、コンプレッサーのような圧力源44から圧力レギュレーター46を介してタンク42に供給される。流体供給源36としてのタンク42には、圧縮空気が流出する流体出口48を電磁開閉弁38と同数だけ備えている。
【0026】
流体供給源36の流体出口48は、タンク42に取り付けられたタンク側パイプ50により形成されている。タンク側パイプ50は、電磁開閉弁38の入力ポート52に挿入されている入力側コネクタ54を介して気密に連結(連通)されている。
【0027】
しかし、タンク側パイプ50は無くてもよく、この場合、電磁開閉弁38は直接的にタンク42に取り付けられる。
【0028】
電磁開閉弁38の出力ポート56には、内部の圧縮空気をサブノズル側パイプ40に流出させる出力側コネクタ58が挿入される。
【0029】
電磁開閉弁38は、概略、電磁開閉弁本体60と、環状の励磁コイル62と、励磁コイル62の励磁・非励磁により上下動される鉄芯64と、鉄芯64の下端に組み付けられた弁体66と、弁体66を下方に付勢する圧縮スプリング68と、弁体66と対向する弁座70とを含む。
【0030】
入力ポート52と出力ポート56とは、電磁開閉弁本体60の内部に形成されている弁体66の弁座開口72を介して連通されている。圧縮スプリング68は、励磁コイル62に励磁電流が供給されていない(励磁電流がOFF)ときに、弁体66が弁座開口72の弁体側端部に当接して弁座開口72を塞ぐように、配置されている。
【0031】
励磁コイル62は、鉄芯64の上端部を収容可能なドーナッツ形状を有している。この励磁コイル62は、励磁電流が供給される(励磁電流がON)と、励磁される。これにより、鉄芯64が上方向に引き上げられるから、圧縮スプリング68が圧縮されて、弁体66が励磁コイル62側に引き上げられる。その結果、弁座開口72が開放される。
【0032】
励磁コイル62は、励磁電流が供給されなくなると、非励磁状態になる。これにより、弁体66は、再び圧縮スプリング68の付勢力により、弁座70側に移動されて、弁座70に押圧され、弁座開口72をその弁体側端部において塞ぐ。
【0033】
サブノズル22は、先端に圧縮空気を噴出するための噴出穴22aが設けられている。サブノズル22は、サブノズル側パイプ40を介して電磁開閉弁38に連通されている。電磁開閉弁38の出力ポート56からの圧縮空気は、サブノズル側パイプ40を介してサブノズル22の入力端22bに供給される。
【0034】
サブノズル22の入力端22bには、サブノズル側パイプ40に気密に結合されたサブノズル側コネクタ74が気密に取り付けられている。サブノズル支持体76は、サブノズル22を組み付けた状態で、筬26と一体に運動するリードホルダ(図示せず)にボルトのような適宜な取付具により堅固に組み付けられている。
【0035】
以上の緯入れ装置10において、圧縮空気が流動する第1から第4の流体流路K1〜K4の有効断面積及び内容積と、圧縮空気の消費量との関係について調べた。
【0036】
第1の流体流路K1は、流体供給源36の流体出口48からサブノズル側パイプ40のサブノズル22側の端部である入力端22bまでの流体流路、第2の流体流路K2は電磁開閉弁38の入力ポート52から電磁開閉弁38の出力ポート56までの流体流路より詳しくは、入力側コネクタ54及び出力側コネクタ58が挿入されている区間を除く流体流路、第3の流体流路K3は電磁開閉弁38の弁座開口72の弁体側端部からサブノズル22の入力端22bまでの流体流路、第4の流体流路K4は電磁開閉弁38の弁座開口72の弁体側端部から電磁開閉弁38の出力ポート56までの流体流路(ただし、出力側コネクタ58が挿入されている区間は除く流体流路)である。
【0037】
また、以下の実施例1〜4において、サブノズル22の噴出穴22aの直径はすべて1.5mmとした。
【0038】
(実施例1:第1の緯入れ装置)
【0039】
流体供給源36の流体出口48からサブノズル22の入力端22bまでの第1の流体流路K1の有効断面積を種々に変化させたときの圧縮空気の流量、第1の流体流路K1の圧力差すなわち圧力損失を測定した。実験条件及び測定方法は以下の通りとした。
【0040】
(実験1−1:圧縮空気の流量)
【0041】
[実験条件]試験体として、緯入れ装置10の圧縮空気の流量及び圧力損失を測定するために、異なる有効断面積を有する種々の第1の流体流路K1を備えた複数の緯入れ装置10を製作した。
【0042】
各第1の流体流路K1の有効断面積に対する緯入れ装置10は、サブノズル側パイプ40の長さ及び内径、又は、電磁開閉弁38を変更したものを2種類用意した。
【0043】
圧力レギュレーター46の圧縮空気の圧力値は、本実験1−1を通して、一定の値(0.5MPa)とし、途中で変更しなかった。
【0044】
[測定方法]圧縮空気の流量は、圧力レギュレーター46と流体供給源36との間に設けた流量計78を用いて、それぞれ、2種類の試験体について測定し、この2つの試験体から得られる圧縮空気の流量の平均値を、その第1の流体流路K1の有効断面積に対する圧縮空気の流量とした。
【0045】
流体供給源36の内部圧力を測定するタンク側圧力センサ80を設けた。
【0046】
ここで、「有効断面積」とは、JISの空気圧及び油圧用語の「バルブの有効断面積」と同意義であり、その定義によれば「バルブの実流量に基づき、圧力の抵抗を等価のオリフィスに換算した計算上の断面積であって、空気圧弁の流れの性能の表示値として用いられる」とされている。
【0047】
従って、第1の流体流路K1の有効断面積は、流体供給源36に連通されたサブノズル装置34のサブノズル22の噴出穴22aからチョーク流れの状態で圧縮空気を放出したときの流れの性能を表す表示値であり、摩擦や縮流のない理想的な絞りの断面積である。
【0048】
[実験結果]図3に圧縮空気の流量の測定結果を線101で示す。その結果、第1の流体流路K1の有効断面積が大きくなるほど、圧縮空気の流量は増加した。換言すると、圧縮空気の供給圧力はいずれも同じなので、第1の流体流路K1の有効断面積が大きくなるほど、圧縮空気は流れやすくなる。
【0049】
(実験1−2:圧縮空気の圧力損失)
【0050】
[実験条件]試験体及び圧力レギュレーター46からの圧縮空気の圧力値は、実験1−1で用いた試験体及び値を、それぞれ、使用した。
【0051】
[測定方法]圧力損失を測定するために、流体供給源36の内部圧力を測定するタンク側圧力センサ80を設け、サブノズル側パイプ40のサブノズル側端部付近にノズル側圧力センサ82を設けた。圧力損失は、タンク側圧力センサ80の測定圧力値からノズル側圧力センサ82の測定圧力値を引いた圧力差とし、2種の試験体から得られる圧力差の平均値を第1の流体流路K1の有効断面積に対する圧力損失とした。
【0052】
[実験結果]図3に圧力損失の測定結果を線102で示す。その結果、第1の流体流路K1の有効断面積が大きくなるにつれて圧力差は減少した。つまり、実験1−1の実験結果と併せて考察するに、第1の流体流路K1の有効断面積が大きくなるほど、サブノズル22に効率よく圧縮空気を送り込むことができる。換言すれば、第1の流体流路K1の有効断面積が大きくなるほど、流体供給源36の内部流体を圧縮する圧力を小さくすることができ、圧力レギュレーター46の設定圧力を低圧化することができる。
【0053】
(実験1−3:圧縮空気の消費量)
【0054】
[実験条件]緯入れ装置10の圧力流体の消費量を測定するために、上記実験1−1で用いた第1の流体流路K1の有効断面積を有する試験体を各サブノズル毎に製作し、各試験体を織機に取り付けて、実際に製織を行った。圧力レギュレーター46からの圧縮空気の圧力は、第1の流体流路K1の有効断面積が同一の2つの試験体に対し、緯入れに適正な噴射がサブノズル22から得られる最適値に設定した。
【0055】
織機の設定値は、緯糸14の種類をポリエステル84dtex、織物幅を170cm、織機の主軸の回転数を800rpmとした。
【0056】
[測定方法]織機の稼働時の全ての試験体が消費する圧縮空気の合計消費量を測定した。
【0057】
[実験結果]図3に空気消費量の測定結果を線103で示す。その結果、第1の流体流路K1の有効断面積が3.5mmにおいて、圧縮空気の消費量は最小になり、第1の流体流路K1の有効断面積がそれより増加又は減少すると圧縮空気の消費量が増加した。
【0058】
第1の流体流路K1の有効断面積が3.5mmを超えると圧縮空気の消費量が増加する理由として、電磁開閉弁38やサブノズル側パイプ40の内容積が増加し、サブノズル22の圧縮空気の噴射終了時の残圧排気量が増えるから、と考えられる。
【0059】
第1の流体流路K1の有効断面積が3.5mmを超えると、電磁開閉弁38がより大型化し、電磁開閉弁38を配置するスペースの制約や電磁開閉弁38のコストがかさむなど問題も生じるので、第1の流体流路K1の有効断面積は3.5mm以下が好ましい。
【0060】
第1の流体流路K1の有効断面積は、第1の流体流路K1の各部品の各断面積によって決定される。従って、サブノズル側パイプ40の内径及び長さは、サブノズル側パイプ40の材質や第1の流体流路K1の配置位置などに制約される。さらに、サブノズル側パイプ40の内径及び長さは第1の流体流路K1の圧力損失に影響するので、第1の流体流路K1の有効断面積はサブノズル側パイプ40の内径及び長さに依存する。設計的な観点から検討した結果、第1の流体流路K1の有効断面積の下限値は2.5mmであった。
【0061】
本実験中に得られたデータの一例を示すと、第1の流体流路K1の有効断面積が6.6mm、第2の流体流路K2の有効断面積が3.6mmのときの圧縮空気の消費量は、35.7Nm/Hであった。これに対し、本件発明に含まれる、第1の流体流路K1の有効断面積が10mm、第2の流体流路K2の有効断面積が3.2mmのときの圧縮空気の消費量は、32.9Nm/Hであった。この2つの圧縮空気の消費量を比べると、前者に対して後者は8.5%低減されていることがわかる。
【0062】
[実施例1のまとめ]実験1−1、1−2及び1−3の結果から、流体供給源36の流体出口48からサブノズル側パイプ40のサブノズル22の入力端22bまでの第1の流体流路K1の有効断面積は、2.5mm以上3.5mm以下にすることが好ましいことが確認された。
【0063】
(実施例2:第2の織機の緯入れ装置)
【0064】
実験1−1、1−2及び1−3で求めた第1の流体流路K1の有効断面積の範囲(図3のx軸)について、式(1)を用いて、電磁開閉弁38の入力ポート52から電磁開閉弁38の出力ポート56までの第2の流体流路K2の有効断面積に換算する。式(1)は式(2)に変形することができる。
【0065】
【数1】

Figure 2004091936
【0066】
【数2】
Figure 2004091936
【0067】
ここで、
【外1】
Figure 2004091936
は緯入れ装置10の全体の有効断面積、S,S,…,Sはサブノズル側パイプ40やコネクタ54,58,74の有効断面積、Sは電磁開閉弁38の有効断面積をそれぞれ示す。なお、電磁開閉弁38の有効断面積Sには、コネクタ54,58が挿入される区間の有効断面積は含まれない。
【0068】
図4に式(2)の計算結果を示す。図4において、線104は圧力損失、線105は圧縮空気の流量をそれぞれ示す。図4から、圧縮空気の流量が大きく、かつ圧縮空気の圧力損失の少ない範囲は、電磁開閉弁38の有効断面積Sを5mm以上で15mm以下に設定することが好ましいことが分かる。
【0069】
(実施例3:第3の織機の緯入れ装置)
【0070】
電磁開閉弁38の弁座開口72からサブノズル22の入力端22bまでの第3の流体流路K3の内容積を種々に変化させたときのサブノズル噴射装置の圧縮空気の残圧排気時間及び圧縮空気の消費量を測定した。実験条件及び測定方法は以下の通りとした。
【0071】
(実験3−1:残圧排気時間)
【0072】
[実験条件]試験体としては、緯入れ装置10の圧縮空気の流量及び圧力損失を測定するために、異なる内容積を有する種々の第3の流体流路K3を備えた複数の緯入れ装置10を製作した。
【0073】
それぞれの第3の流体流路K3の内容積に対する緯入れ装置10は、サブノズル側パイプ40の長さ及び内径、あるいは、電磁開閉弁38を変更した2種類用意した。
【0074】
圧力レギュレーター46の供給圧力の設定値は、本実験3−1を通して一定の値(0.5MPa)とし、途中で変更しなかった。
【0075】
[測定方法]本実験3−1では、サブノズル装置34の内容積を種々に変更したときのサブノズル装置34の噴射終了後の残圧排気時間を測定した。
【0076】
残圧排気時間は、電磁開閉弁38の信号とノズル側圧力センサ82の信号を記憶する記憶装置を使用し、それらの測定値から残圧排気時間を算出した。
【0077】
残圧排気時間は、電磁開閉弁38に閉出力(励磁コイル62への通電の中止、すなわち、励磁電流がOFF)が指令されてから、ノズル側圧力センサ82の値が閉出力の指令前の最大圧力の50%の圧力に低下するまでの時間とした(図5参照)。そして、第3の流体流路K3の内容積が同じ試験体の残圧排気時間をそれぞれ測定し、第3の流体流路K3の内容積が同じ試験体の残圧排気時間の平均した値をその内容積に対する残圧排気時間とした。
【0078】
[実験結果]図6に線106で、第3の流体流路K3の内容積と測定された残圧排気時間の関係を示す。
【0079】
第3の流体流路K3の内容積が大きくなるほど、残圧排気に要する時間も長くなった。その理由は、第3の流体流路K3の内容積が大きくなるほどその流体流路内に残存している圧縮空気の排気量も増加する、と考えられる。従って、第3の流体流路K3の内容積が小さいほど、圧縮空気の消費量が小さい。換言すると、流体流路K3内に残っている圧縮空気がサブノズル22から噴射する残圧噴射量(圧縮気体の噴射終了後の残圧排気量)が減少する。
【0080】
(実験3−2:圧縮空気の消費量)
【0081】
[実験条件]緯入れ装置10の圧縮空気の消費量を測定するために、上記実験3−1の第3の流体流路K3の内容積を有する試験体を製作し、それぞれの試験体を織機に取り付けて、実際に製織を行った。圧力レギュレーター46からの圧縮空気の圧力は、第3の流体流路K3の内容積が同一の2つの試験体に対し、緯入れに適正な噴射がサブノズル22から得られる最適値に設定した。
【0082】
織機の設定値は、緯糸の種類をポリエステル84dtex、織物幅を337cm、織機の主軸の回転数を750rpmとした。
【0083】
[測定方法]圧縮空気の消費量を測定するために、実験1−3と同様に織機運転中の全サブノズルの圧縮空気の消費量を測定した。その測定された消費量の合計を圧縮空気の消費量とした。
【0084】
[実験結果]図6に線107で、第3の流体流路K3の内容積と測定された圧縮空気の消費量の関係を示す。
【0085】
第3の流体流路K3の内容積が3000mmを超えると圧縮空気の消費量が急激に増加することが認められる。第3の流体流路K3の内容積以外の要素(例えば、有効断面積)が少なからず影響しているものと推認される。
【0086】
本実験中に得られたデータの一例を示すと、第3の流体流路K3の内容積が3100mm、第4の流体流路K4の内容積が1000mmのときの圧縮空気の消費量は65.8Nm/Hであった。これに対し、本件発明に含まれる、第3の流体流路K3の内容積が2500mm、第4の流体流路K4の内容積が520mmのときの圧縮空気の消費量は59.5Nm/Hであった。この二つの圧縮空気の消費量を比べると前者に対して後者は10.5%低減されていることがわかる。
【0087】
[実施例3のまとめ]実験3−1及び3−2の結果から、図6に示されているように、第3の流体流路K3の内容積が小さいほど、圧縮空気の消費量が小さく、3000mm以下であることが望ましい。
【0088】
第3の流体流路K3の内容積を小さくするためには、サブノズル側パイプ40の内径寸法を小さくすることになるが、サブノズル側パイプ40の強度的な制限や、サブノズル側パイプ40の圧力損失の問題から、サブノズル側パイプ40の内径寸法の下限が存在する。発明者等の検討の結果、第3の流体流路K3の内容積の下限は2000mmとなった。
【0089】
従って、電磁開閉弁38の弁座開口72の弁体側端部からサブノズル22の入力端22bまでの第3の流体流路K3の内容積は、2000mm以上3000mm以下に設定することが好ましいことが分かる。
【0090】
(実施例4:第4の織機の緯入れ装置)
【0091】
電磁開閉弁38の弁座開口72から電磁開閉弁38の出力ポート56までの第4の流体流路K4は第3の流体流路K3の一部である。そこで、第3の流体流路K3の内容積からサブノズル側パイプ40やコネクタ58,74の内容積を除くと電磁開閉弁38の弁座開口72の弁体側端部から出力ポート56までの内容積が得られる。つまり、実験3−1及び実験3−2で求めた第3の流体流路K3の内容積の範囲(図6のx軸)について、式(3)を用いて、電磁開閉弁38の弁座開口72の弁体側端部から電磁開閉弁38の出力ポート56までの第4の流体流路K4の内容積に換算する。
【0092】
【数3】
Figure 2004091936
【0093】
ここで、
【外2】
Figure 2004091936
は電磁開閉弁38の弁座開口72の弁体側端部からサブノズル22の入力端22bまでの第3の流体流路K3の内容積、V,V,…,Vはサブノズル側パイプ40やコネクタ58,74の内容積、Vは電磁開閉弁38の弁座開口72の弁体側端部から出力ポート56までの内容積を示す。なお、電磁開閉弁38の内容積Vには、出力側コネクタ58が挿入される区間の内容積は含まれない。
【0094】
図7に式(3)により得られた電磁開閉弁38の弁座開口72の弁体側端部から電磁開閉弁38の出力ポート56までの内容積に対する圧縮空気の消費量を線108で示す。第4の流体流路K4の内容積Vは600mm以下が適正範囲と認められる。
【0095】
(第5の緯入れ装置)
【0096】
上記求められた、第1の流体流路K1の有効断面積及び第3の流体流路K3の内容積を共に満足する緯入れ装置や電磁開閉弁を構成しても、圧縮空気の消費量が低減することは言うまでもない。
【0097】
(第6の緯入れ装置)
【0098】
同様に、上記求められた、第2の流体流路K2の有効断面積及び第4の流体流路K4の内容積を共に満足する緯入れ装置や電磁開閉弁を構成しても、圧縮空気の消費量が低減することは言うまでもない。
【0099】
(その他の緯入れ装置)
【0100】
同様に、上記求められた、第1及び第2の流体流路K1,K2の有効断面積、及び、第3及び第4の流体流路K3,K4の内容積を共に満足する緯入れ装置や電磁開閉弁を構成しても、圧縮空気の消費量が低減することは言うまでもない。
【0101】
上述の緯入れ装置は、圧縮空気の他に、圧縮空気と同様の性質を有する圧縮流体にも適用ができ、その結果、圧縮流体の消費量が低減することは言うまでもない。
【0102】
本発明は、上記実施例に限定されず、その趣旨を逸脱しない限り、種々変更することができる。
【図面の簡単な説明】
【図1】本発明に係る織機の緯入れ装置の主要部模式図である。
【図2】図1に示す織機の緯入れ装置のサブノズル装置及び流体供給源の主要部拡大模式図である。
【図3】流体供給源より圧縮空気が流出する流体出口からサブノズル側パイプのサブノズル側の端部までの第1の流体流路の有効断面積に対する圧縮空気の流量、圧縮損失及び消費量の関係を示す図である。
【図4】電磁開閉弁の入力ポートから電磁開閉弁の出力ポートまでの第2の流体流路の有効断面積に対する圧縮空気の流量及び圧縮損失の関係を示す図である。
【図5】電磁開閉弁の圧力波形を説明するための図である。
【図6】電磁開閉弁の弁座開口の弁体側端部からサブノズルの入力端までの第3の流体流路の内容積に対する圧縮空気の流量及び残圧排気時間の関係を示す図である。
【図7】電磁開閉弁の弁座開口の弁体側端部から電磁開閉弁の出力ポートまでの電磁開閉弁内部である第4の流体流路の内容積に対する圧縮空気の消費量の関係を示す図である。
【符号の説明】
10 織機の緯入れ装置
22 サブノズル
34 サブノズル装置
36 流体供給源
38 電磁開閉弁
40 サブノズル側パイプ
42 タンク
44 圧力源
46 圧力レギュレーター
48 タンクの流体出口
50 タンク側パイプ
52 電磁開閉弁の入力ポート
54 入力側コネクタ
56 電磁開閉弁の出力ポート
58 出力側コネクタ
60 電磁開閉弁本体
70 弁座
72 弁座開口
74 サブノズル側コネクタ
78 流量計
80 タンク側圧力センサ
82 ノズル側圧力センサ
K1,K2,K3,K4 第1、第2、第3、第4の流体流路[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a weft insertion device for a loom including one or more sub nozzle devices in which a sub nozzle and an electromagnetic on-off valve are connected in a one-to-one relationship via a pipe.
[0002]
[Prior art]
As a conventional weft insertion device for a loom, for example, a technology described in JP-A-10-204750 and a technology described in JP-A-57-210043 are known.
[0003]
According to these, the weft insertion device of the loom includes at least one sub-nozzle device in which a sub-nozzle and an electromagnetic on-off valve are communicated in a one-to-one relationship via a pipe, and a fluid supply for supplying a compressed fluid to the electromagnetic on-off valve. Including source.
[0004]
In these prior arts, the electromagnetic on / off valve corresponding to each sub-nozzle is provided so as to be individually controllable, and further, by individually setting the injection time of the compressed fluid and the injection timing of the compressed fluid, the consumption of the compressed fluid is reduced. It is to try to suppress.
[0005]
[Problems to be solved by the invention]
However, although the above-described prior art can control the injection time and timing of each sub-nozzle to reduce the consumption of the compressed fluid, in today's energy-saving era, further reduction in the consumption of the compressed fluid is required.
[0006]
[Means for Solving the Problems]
The present inventors set the effective cross-sectional area and the internal volume of the fluid flow path of each sub-nozzle device within a predetermined range during weft insertion of the loom, so that the consumption of the compressed fluid can be relatively easily reduced. The following technology was invented after finding out that it was reduced.
[0007]
Any weft insertion device according to the present invention includes one or more sub-nozzle devices in which a sub-nozzle and an electromagnetic on-off valve are connected in a one-to-one relationship via a pipe.
[0008]
The first weft insertion device according to the present invention further includes a fluid supply source for supplying a compressed fluid to the electromagnetic on-off valve of the sub-nozzle device, and a sub-nozzle-side end of the pipe from a fluid outlet of the fluid supply source. The effective cross-sectional area of the fluid channel up to 2.5 mm 2 3.5mm 2 It is as follows.
[0009]
In the second weft insertion device according to the present invention, the effective cross-sectional area of the fluid flow path from the input port of the solenoid on-off valve to the output port of the solenoid on-off valve is 5 mm. 2 More than 15mm 2 It is as follows.
[0010]
In the third weft insertion device according to the present invention, the internal volume of the fluid flow path from the end of the valve seat opening of the solenoid on-off valve to the input end of the sub-nozzle is 2000 mm. 3 More than 3000mm 3 It is as follows. It is needless to say that the “internal volume” here is the volume inside the fluid flow path in the above section.
[0011]
In the fourth weft insertion device according to the present invention, the internal volume of the fluid flow path inside the electromagnetic on-off valve from the valve body side end of the valve seat opening of the electromagnetic on-off valve to the output port of the electromagnetic on-off valve is 600 mm. 3 It is as follows.
[0012]
The fifth weft insertion device according to the present invention further includes a fluid supply source that supplies a compressed fluid to the electromagnetic on-off valve of the sub-nozzle device, from a fluid outlet of the fluid supply source to an end of the pipe on the sub-nozzle side. Effective cross section of fluid channel is 2.5mm 2 3.5mm 2 The internal volume of the fluid flow path from the valve body side end of the valve opening of the electromagnetic on-off valve to the input end of the sub-nozzle is 2000 mm 3 More than 3000mm 3 It is as follows.
[0013]
In the sixth weft insertion device according to the present invention, the effective cross-sectional area of the fluid flow path from the input port of the solenoid on-off valve to the output port of the solenoid on-off valve is 5 mm. 2 More than 15mm 2 The internal volume of the fluid flow path inside the electromagnetic on-off valve from the valve body side end of the valve seat opening of the electromagnetic on-off valve to the output port of the electromagnetic on-off valve is 600 mm 3 It is as follows.
[0014]
[Action and effect]
As a result of experiments conducted by the inventors, it has been found that the effective cross-sectional area and the internal volume of the fluid flow passage through which the compressed fluid flows have a close relationship with the consumption of the compressed fluid.
[0015]
By setting the effective cross-sectional area and the internal volume of the fluid flow path through which the compressed fluid flows to values similar to those of the first to sixth weft insertion devices, the sub-nozzles are ejected from the sub-nozzles so that the weft reaches the anti-weft insertion side. Compressed fluid consumption is reduced while appropriately maintaining the pressure and ejection time of the compressed fluid.
[0016]
In particular, by providing at least one sub-nozzle device in which the sub-nozzle and the electromagnetic on-off valve are connected in a one-to-one relationship via a pipe, it is possible to set a minimum injection period corresponding to weft flight, and Since the resistance of the compressed fluid in the fluid flow path is suppressed, the consumption of the compressed fluid is further reduced.
[0017]
According to the third to sixth weft insertion devices, the internal volume of the fluid flow path is set to the third to sixth values, so that the minimum injection period corresponding to the weft flight is set as described above. Is reduced, and the residual pressure exhaust amount (in other words, the waste blowing amount) after the end of the injection of the compressed fluid injected from the sub-nozzle is reduced, so that the consumption of the compressed fluid can be reduced.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Referring to FIGS. 1 and 2, a weft insertion device 10 of a loom is used, for example, in an air jet loom using compressed air as a weft insertion fluid.
[0019]
As shown in FIG. 1, in the air jet loom, the weft 14 wound around the yarn feeder 12 is measured by a length measuring storage device 16 for a predetermined length and locked by a locking pin device 18. The tip is passed through the main nozzle 20.
[0020]
The weft 14 passed through the main nozzle 20 is unwound for a predetermined period by the locking pin device 18, is ejected from the main nozzle 20 together with the compressed air, and is compressed by the compressed air ejected from the plurality of sub-nozzles 22. It is inserted into the opening.
[0021]
The unwinding sensor 32 counts the number of times that the unwound weft 14 has crossed the sensor area of the unwinding sensor 32, and when the number of times has reached a predetermined number, locks the weft 14 again by the locking pin device 18, and The weft 14 for the length is inserted.
[0022]
The inserted weft 14 is beaten by the reed 26 before the weaving of the woven fabric 28, cut by the cutter 30, and cut from the weft portion connected to the length measuring and storing device 16 via the main nozzle 20.
[0023]
As shown in FIG. 2, the weft insertion device 10 used in the air-jet loom includes one or more sub-nozzle devices 34 and a fluid supply source 36 that supplies compressed air to the sub-nozzle devices 34.
[0024]
The sub-nozzle device 34 connects the sub-nozzle 22 and the electromagnetic on-off valve 38 in a one-to-one relationship via a sub-nozzle-side pipe 40, and receives compressed air from the fluid supply source 36 to the electromagnetic on-off valve 38. .
[0025]
The fluid supply source refers to a source that supplies compressed air to the solenoid on-off valve 38, in other words, a fluid supply source upstream of the solenoid on-off valve 38. In this figure, the fluid supply source points to 36, for example a tank 42 such as an air tank. Compressed air is supplied to the tank 42 from a pressure source 44, such as a compressor, via a pressure regulator 46. The tank 42 as the fluid supply source 36 has the same number of fluid outlets 48 from which the compressed air flows out as the electromagnetic on-off valves 38.
[0026]
The fluid outlet 48 of the fluid supply source 36 is formed by a tank-side pipe 50 attached to the tank 42. The tank-side pipe 50 is air-tightly connected (communicated) via an input-side connector 54 inserted into an input port 52 of the electromagnetic on-off valve 38.
[0027]
However, the tank-side pipe 50 may not be provided, and in this case, the solenoid on-off valve 38 is directly attached to the tank 42.
[0028]
The output port 56 of the solenoid on-off valve 38 is provided with an output connector 58 for discharging the internal compressed air to the sub-nozzle pipe 40.
[0029]
The electromagnetic on-off valve 38 includes an electromagnetic on-off valve main body 60, an annular exciting coil 62, an iron core 64 that is moved up and down by excitation and non-excitation of the excitation coil 62, and a valve mounted on a lower end of the iron core 64. It includes a body 66, a compression spring 68 that urges the valve body 66 downward, and a valve seat 70 that faces the valve body 66.
[0030]
The input port 52 and the output port 56 communicate with each other through a valve seat opening 72 of a valve body 66 formed inside the electromagnetic on-off valve main body 60. The compression spring 68 is configured so that when the exciting current is not supplied to the exciting coil 62 (the exciting current is OFF), the valve body 66 contacts the valve body side end of the valve seat opening 72 to close the valve seat opening 72. , Is located.
[0031]
The excitation coil 62 has a donut shape that can accommodate the upper end of the iron core 64. When the exciting current is supplied (the exciting current is turned on), the exciting coil 62 is excited. As a result, the iron core 64 is pulled upward, so that the compression spring 68 is compressed, and the valve body 66 is pulled up to the exciting coil 62 side. As a result, the valve seat opening 72 is opened.
[0032]
When the exciting current is no longer supplied, the exciting coil 62 enters a non-excited state. As a result, the valve body 66 is again moved to the valve seat 70 side by the urging force of the compression spring 68 and pressed by the valve seat 70 to close the valve seat opening 72 at the valve body side end.
[0033]
The sub-nozzle 22 has an ejection hole 22a for ejecting compressed air at the tip. The sub-nozzle 22 is connected to an electromagnetic on-off valve 38 via a sub-nozzle side pipe 40. The compressed air from the output port 56 of the solenoid on-off valve 38 is supplied to the input end 22 b of the sub-nozzle 22 via the sub-nozzle side pipe 40.
[0034]
A sub-nozzle-side connector 74 air-tightly connected to the sub-nozzle-side pipe 40 is air-tightly attached to the input end 22b of the sub-nozzle 22. The sub-nozzle support 76 is firmly attached to a reed holder (not shown) that moves integrally with the reed 26 with an appropriate attachment tool such as a bolt in a state where the sub-nozzle 22 is attached.
[0035]
In the above weft insertion device 10, the relationship between the effective cross-sectional area and the internal volume of the first to fourth fluid flow paths K1 to K4 through which the compressed air flows and the consumption of the compressed air was examined.
[0036]
The first fluid flow path K1 is a fluid flow path from the fluid outlet 48 of the fluid supply source 36 to the input end 22b which is the end of the sub-nozzle pipe 40 on the side of the sub-nozzle 22, and the second fluid flow path K2 is an electromagnetic switch. More specifically, the fluid flow path from the input port 52 of the valve 38 to the output port 56 of the solenoid on-off valve 38 except for the section where the input side connector 54 and the output side connector 58 are inserted, The path K3 is a fluid flow path from the valve body side end of the valve seat opening 72 of the electromagnetic on-off valve 38 to the input end 22b of the sub nozzle 22, and the fourth fluid flow path K4 is the valve body side of the valve seat opening 72 of the electromagnetic on-off valve 38. It is a fluid flow path from the end to the output port 56 of the electromagnetic on-off valve 38 (however, a fluid flow path excluding a section where the output side connector 58 is inserted).
[0037]
In the following Examples 1 to 4, the diameters of the ejection holes 22a of the sub-nozzles 22 were all 1.5 mm.
[0038]
(Example 1: First weft insertion device)
[0039]
The flow rate of the compressed air and the pressure of the first fluid flow path K1 when the effective cross-sectional area of the first fluid flow path K1 from the fluid outlet 48 of the fluid supply source 36 to the input end 22b of the sub-nozzle 22 is variously changed. The difference or pressure drop was measured. The experimental conditions and measurement method were as follows.
[0040]
(Experiment 1-1: Flow rate of compressed air)
[0041]
[Experimental Conditions] As a test body, a plurality of weft insertion devices 10 having various first fluid flow paths K1 having different effective cross-sectional areas in order to measure the flow rate and pressure loss of the compressed air of the weft insertion device 10. Was produced.
[0042]
As the weft insertion device 10 for the effective cross-sectional area of each first fluid flow path K1, two types in which the length and inner diameter of the sub-nozzle side pipe 40 or the electromagnetic on-off valve 38 are changed are prepared.
[0043]
The pressure value of the compressed air of the pressure regulator 46 was set to a constant value (0.5 MPa) throughout the experiment 1-1, and was not changed on the way.
[0044]
[Measurement Method] The flow rate of the compressed air is obtained for each of two types of test pieces using a flow meter 78 provided between the pressure regulator 46 and the fluid supply source 36, and obtained from the two test pieces. The average value of the flow rate of the compressed air was defined as the flow rate of the compressed air with respect to the effective sectional area of the first fluid flow path K1.
[0045]
A tank-side pressure sensor 80 for measuring the internal pressure of the fluid supply source 36 was provided.
[0046]
Here, the “effective area” has the same meaning as the “effective area of the valve” in the pneumatic and hydraulic terms of JIS, and according to the definition, “based on the actual flow rate of the valve, the resistance of pressure is equivalent. It is a calculated cross-sectional area converted into an orifice and used as a display value of the flow performance of the pneumatic valve. "
[0047]
Therefore, the effective cross-sectional area of the first fluid flow path K1 depends on the flow performance when the compressed air is discharged in a choke flow state from the ejection hole 22a of the sub-nozzle 22 of the sub-nozzle device 34 connected to the fluid supply source 36. This is a display value that represents the ideal cross-sectional area of the throttle without friction or contraction.
[0048]
[Experimental Result] FIG. 3 shows a measurement result of the flow rate of the compressed air by a line 101. As a result, the flow rate of the compressed air increased as the effective sectional area of the first fluid flow path K1 increased. In other words, since the supply pressure of the compressed air is the same, the compressed air flows more easily as the effective sectional area of the first fluid flow path K1 increases.
[0049]
(Experiment 1-2: Pressure loss of compressed air)
[0050]
[Experimental conditions] The pressure value of the compressed air from the test body and the pressure regulator 46 was the same as the test body and the value used in Experiment 1-1.
[0051]
[Measurement Method] In order to measure the pressure loss, a tank-side pressure sensor 80 for measuring the internal pressure of the fluid supply source 36 was provided, and a nozzle-side pressure sensor 82 was provided near the sub-nozzle-side end of the sub-nozzle-side pipe 40. The pressure loss is defined as a pressure difference obtained by subtracting the measured pressure value of the nozzle-side pressure sensor 82 from the measured pressure value of the tank-side pressure sensor 80, and the average value of the pressure differences obtained from the two types of test specimens as the first fluid flow path. The pressure loss for the effective area of K1 was defined as the pressure loss.
[0052]
[Experimental Result] FIG. As a result, the pressure difference decreased as the effective sectional area of the first fluid channel K1 increased. That is, considering the experimental results of Experiment 1-1, the compressed air can be more efficiently sent to the sub-nozzle 22 as the effective cross-sectional area of the first fluid flow path K1 increases. In other words, as the effective sectional area of the first fluid flow path K1 increases, the pressure for compressing the internal fluid of the fluid supply source 36 can be reduced, and the set pressure of the pressure regulator 46 can be reduced. .
[0053]
(Experiment 1-3: Consumption of compressed air)
[0054]
[Experiment conditions] In order to measure the consumption of the pressurized fluid of the weft insertion device 10, a test body having an effective cross-sectional area of the first fluid flow path K1 used in the above Experiment 1-1 was manufactured for each sub-nozzle. Each test piece was attached to a loom and weaving was actually performed. The pressure of the compressed air from the pressure regulator 46 was set to an optimal value at which an appropriate injection for weft insertion was obtained from the sub-nozzle 22 for two test specimens having the same effective sectional area of the first fluid flow path K1.
[0055]
The setting values of the loom were such that the type of the weft 14 was polyester 84 dtex, the fabric width was 170 cm, and the rotation speed of the main shaft of the loom was 800 rpm.
[0056]
[Measurement Method] The total amount of compressed air consumed by all the test specimens during operation of the loom was measured.
[0057]
[Experimental Result] FIG. 3 shows the measurement result of the air consumption by a line 103. As a result, the effective sectional area of the first fluid channel K1 is 3.5 mm 2 In, the consumption of the compressed air was minimized, and the consumption of the compressed air was increased when the effective sectional area of the first fluid flow path K1 was increased or decreased.
[0058]
The effective cross-sectional area of the first fluid flow path K1 is 3.5 mm 2 The reason for this is that the compressed air consumption increases when the pressure exceeds the above, because the internal volumes of the solenoid on-off valve 38 and the sub-nozzle side pipe 40 increase, and the residual pressure exhaust amount at the end of the compressed air injection of the sub-nozzle 22 increases. Can be
[0059]
The effective cross-sectional area of the first fluid flow path K1 is 3.5 mm 2 Is exceeded, the size of the electromagnetic on-off valve 38 becomes larger, and there are problems such as restrictions on the space for disposing the electromagnetic on-off valve 38 and an increase in the cost of the electromagnetic on-off valve 38. Therefore, the effective sectional area of the first fluid flow path K1 is 3.5mm 2 The following is preferred.
[0060]
The effective cross-sectional area of the first fluid flow path K1 is determined by each cross-sectional area of each component of the first fluid flow path K1. Therefore, the inner diameter and length of the sub-nozzle-side pipe 40 are restricted by the material of the sub-nozzle-side pipe 40 and the arrangement position of the first fluid flow path K1. Furthermore, since the inner diameter and length of the sub-nozzle side pipe 40 affect the pressure loss of the first fluid flow path K1, the effective sectional area of the first fluid flow path K1 depends on the inner diameter and length of the sub-nozzle side pipe 40. I do. As a result of examination from a design point of view, the lower limit value of the effective sectional area of the first fluid flow path K1 is 2.5 mm. 2 Met.
[0061]
As an example of the data obtained during this experiment, the effective cross-sectional area of the first fluid channel K1 is 6.6 mm. 2 , The effective sectional area of the second fluid flow path K2 is 3.6 mm 2 , The consumption of compressed air is 35.7 Nm 3 / H. On the other hand, the effective sectional area of the first fluid channel K1 included in the present invention is 10 mm. 2 , The effective cross-sectional area of the second fluid flow path K2 is 3.2 mm 2 , The consumption of compressed air is 32.9 Nm 3 / H. Comparing the two consumptions of compressed air, it can be seen that the latter is reduced by 8.5% with respect to the former.
[0062]
[Summary of Embodiment 1] From the results of Experiments 1-1, 1-2 and 1-3, the first fluid flow from the fluid outlet 48 of the fluid supply source 36 to the input end 22b of the sub-nozzle 22 of the sub-nozzle side pipe 40 is shown. The effective area of the road K1 is 2.5mm 2 3.5mm 2 It has been confirmed that the following is preferable.
[0063]
(Example 2: Weft insertion device of second loom)
[0064]
The range of the effective cross-sectional area of the first fluid flow path K1 (x-axis in FIG. 3) obtained in Experiments 1-1, 1-2, and 1-3 is calculated by using the equation (1) to determine The effective area of the second fluid flow path K2 from the input port 52 to the output port 56 of the solenoid on-off valve 38 is converted. Equation (1) can be transformed into equation (2).
[0065]
(Equation 1)
Figure 2004091936
[0066]
(Equation 2)
Figure 2004091936
[0067]
here,
[Outside 1]
Figure 2004091936
Is the overall effective area of the weft insertion device 10, S 1 , S 2 , ..., S n Is the effective sectional area of the sub-nozzle side pipe 40 and connectors 54, 58, 74, S x Indicates the effective sectional area of the solenoid on-off valve 38. The effective sectional area S of the solenoid valve 38 x Does not include the effective area of the section where the connectors 54 and 58 are inserted.
[0068]
FIG. 4 shows the calculation result of Expression (2). In FIG. 4, a line 104 indicates the pressure loss, and a line 105 indicates the flow rate of the compressed air. From FIG. 4, the range where the flow rate of the compressed air is large and the pressure loss of the compressed air is small is determined by the effective sectional area S of the solenoid on-off valve 38. x Is 5 mm 2 More than 15mm 2 It is understood that the following settings are preferable.
[0069]
(Example 3: Weft insertion device of third loom)
[0070]
Residual pressure exhaust time of compressed air and compressed air of the sub-nozzle injection device when the internal volume of the third fluid flow path K3 from the valve seat opening 72 of the electromagnetic on-off valve 38 to the input end 22b of the sub-nozzle 22 is variously changed Was measured. The experimental conditions and measurement method were as follows.
[0071]
(Experiment 3-1: Residual pressure exhaust time)
[0072]
[Experiment conditions] As a test body, in order to measure the flow rate and pressure loss of the compressed air of the weft insertion device 10, a plurality of weft insertion devices 10 having various third fluid flow paths K3 having different internal volumes were used. Was produced.
[0073]
As the weft insertion device 10 for the internal volume of each third fluid flow path K3, two types were prepared in which the length and inner diameter of the sub-nozzle side pipe 40 or the electromagnetic on-off valve 38 were changed.
[0074]
The set value of the supply pressure of the pressure regulator 46 was set to a constant value (0.5 MPa) throughout the experiment 3-1 and was not changed on the way.
[0075]
[Measurement Method] In this experiment 3-1, the residual pressure evacuation time after the end of injection of the sub-nozzle device 34 when the internal volume of the sub-nozzle device 34 was variously changed was measured.
[0076]
The residual pressure exhaust time was calculated from the measured values using a storage device that stores the signal of the electromagnetic on-off valve 38 and the signal of the nozzle side pressure sensor 82.
[0077]
The residual pressure exhaust time is from the time when the closed output (the stop of energization to the exciting coil 62, that is, the exciting current is turned off) is commanded to the electromagnetic on-off valve 38 to the time when the value of the nozzle side pressure sensor 82 is before the command for the closed output. The time until the pressure was reduced to 50% of the maximum pressure was set (see FIG. 5). Then, the residual pressure pumping times of the test pieces having the same internal volume of the third fluid flow path K3 are measured, and the average value of the residual pressure pumping times of the test pieces having the same internal volume of the third fluid flow path K3 is calculated. The residual pressure exhaust time relative to the internal volume was set.
[0078]
[Experimental Result] FIG. 6 shows the relationship between the internal volume of the third fluid flow path K3 and the measured residual pressure exhaust time by a line 106.
[0079]
As the internal volume of the third fluid flow path K3 increases, the time required for exhausting the residual pressure also increases. It is considered that the reason is that the larger the internal volume of the third fluid channel K3, the larger the amount of compressed air remaining in the third fluid channel K3. Therefore, the consumption of the compressed air is smaller as the inner volume of the third fluid flow path K3 is smaller. In other words, the residual pressure injection amount (the residual pressure exhaust amount after the completion of the compressed gas injection) in which the compressed air remaining in the fluid flow path K3 is injected from the sub nozzle 22 decreases.
[0080]
(Experiment 3-2: Consumption of compressed air)
[0081]
[Experiment conditions] In order to measure the consumption of compressed air of the weft insertion device 10, test specimens having the internal volume of the third fluid flow path K3 of Experiment 3-1 were manufactured, and each of the test specimens was loomed. And weaving was actually performed. The pressure of the compressed air from the pressure regulator 46 was set to an optimum value at which the appropriate injection for weft insertion was obtained from the sub-nozzle 22 for two test specimens having the same internal volume of the third fluid flow path K3.
[0082]
The setting values of the loom were such that the type of weft was polyester 84 dtex, the fabric width was 337 cm, and the rotation speed of the main shaft of the loom was 750 rpm.
[0083]
[Measurement Method] In order to measure the consumption of the compressed air, the consumption of the compressed air of all the sub-nozzles during the operation of the loom was measured in the same manner as in Experiment 1-3. The sum of the measured consumption was defined as the consumption of compressed air.
[0084]
[Experimental Result] FIG. 6 shows the relationship between the internal volume of the third fluid flow path K3 and the measured consumption of the compressed air with a line 107.
[0085]
The inner volume of the third fluid channel K3 is 3000 mm 3 It is recognized that the consumption of the compressed air sharply increases when the pressure exceeds. It is presumed that factors other than the internal volume of the third fluid flow path K3 (for example, the effective cross-sectional area) have a considerable influence.
[0086]
As an example of the data obtained during this experiment, the inner volume of the third fluid channel K3 is 3100 mm 3 The inner volume of the fourth fluid flow path K4 is 1000 mm 3 Consumption of compressed air at 65.8 Nm 3 / H. On the other hand, the inner volume of the third fluid channel K3 included in the present invention is 2500 mm. 3 The inner volume of the fourth fluid channel K4 is 520 mm 3 , The consumption of compressed air is 59.5 Nm 3 / H. Comparing the two consumptions of compressed air, it can be seen that the latter is reduced by 10.5% with respect to the former.
[0087]
[Summary of Embodiment 3] From the results of Experiments 3-1 and 3-2, as shown in FIG. 6, the smaller the internal volume of the third fluid channel K3, the smaller the consumption of compressed air. 3000mm 3 It is desirable that:
[0088]
In order to reduce the internal volume of the third fluid flow path K3, the inner diameter of the sub-nozzle side pipe 40 must be reduced. Therefore, there is a lower limit of the inner diameter of the sub-nozzle side pipe 40. As a result of studies by the inventors, the lower limit of the internal volume of the third fluid flow path K3 is 2000 mm. 3 It became.
[0089]
Therefore, the internal volume of the third fluid flow path K3 from the valve body side end of the valve seat opening 72 of the electromagnetic on-off valve 38 to the input end 22b of the sub nozzle 22 is 2000 mm. 3 More than 3000mm 3 It is understood that the following settings are preferable.
[0090]
(Example 4: Weft insertion device of fourth loom)
[0091]
The fourth fluid flow path K4 from the valve seat opening 72 of the electromagnetic on-off valve 38 to the output port 56 of the electromagnetic on-off valve 38 is a part of the third fluid flow path K3. Therefore, if the internal volumes of the sub nozzle side pipe 40 and the connectors 58 and 74 are excluded from the internal volume of the third fluid flow path K3, the internal volume from the valve body end of the valve seat opening 72 of the electromagnetic on-off valve 38 to the output port 56 is obtained. Is obtained. That is, for the range of the internal volume of the third fluid flow path K3 (x-axis in FIG. 6) obtained in Experiments 3-1 and 3-2, the valve seat of the electromagnetic on-off valve 38 is calculated using Expression (3). The internal volume of the fourth fluid flow path K4 from the end of the opening 72 on the valve body side to the output port 56 of the solenoid on-off valve 38 is converted.
[0092]
[Equation 3]
Figure 2004091936
[0093]
here,
[Outside 2]
Figure 2004091936
Is the internal volume of the third fluid flow path K3 from the valve body side end of the valve seat opening 72 of the electromagnetic on-off valve 38 to the input end 22b of the sub-nozzle 22; 1 , V 2 , ..., V n Is the internal volume of the sub-nozzle side pipe 40 and connectors 58 and 74, x Represents the internal volume from the valve-side end of the valve seat opening 72 of the electromagnetic on-off valve 38 to the output port 56. Note that the internal volume V of the solenoid on-off valve 38 x Does not include the internal volume of the section into which the output-side connector 58 is inserted.
[0094]
FIG. 7 shows the consumption of the compressed air with respect to the internal volume from the valve body end of the valve seat opening 72 of the solenoid on-off valve 38 obtained by the equation (3) to the output port 56 of the solenoid on-off valve 38 by a line 108. Inner volume V of fourth fluid flow path K4 x Is 600mm 3 The following are considered appropriate ranges.
[0095]
(Fifth weft insertion device)
[0096]
Even if a weft insertion device or an electromagnetic on-off valve that satisfies both the effective cross-sectional area of the first fluid flow path K1 and the internal volume of the third fluid flow path K3 determined above, the consumption of compressed air is reduced. Needless to say, it is reduced.
[0097]
(Sixth weft insertion device)
[0098]
Similarly, even if a weft insertion device or an electromagnetic on-off valve that satisfies both the effective cross-sectional area of the second fluid flow path K2 and the inner volume of the fourth fluid flow path K4 determined above is used, It goes without saying that the consumption is reduced.
[0099]
(Other weft insertion devices)
[0100]
Similarly, a weft insertion device that satisfies both the effective cross-sectional areas of the first and second fluid flow paths K1 and K2 and the inner volumes of the third and fourth fluid flow paths K3 and K4. It goes without saying that even if the electromagnetic on-off valve is configured, the consumption of compressed air is reduced.
[0101]
The weft insertion device described above can be applied not only to compressed air but also to a compressed fluid having the same properties as compressed air. As a result, it goes without saying that the consumption of the compressed fluid is reduced.
[0102]
The present invention is not limited to the above embodiments, and can be variously modified without departing from the gist thereof.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a main part of a weft insertion device for a loom according to the present invention.
2 is an enlarged schematic diagram of a main part of a sub-nozzle device and a fluid supply source of the weft insertion device of the loom shown in FIG.
FIG. 3 is a relationship between a flow rate of compressed air, a compression loss, and a consumption amount with respect to an effective cross-sectional area of a first fluid flow path from a fluid outlet from which compressed air flows out from a fluid supply source to an end of the sub-nozzle pipe on the sub-nozzle side. FIG.
FIG. 4 is a diagram showing a relationship between a flow rate of compressed air and a compression loss with respect to an effective cross-sectional area of a second fluid flow path from an input port of an electromagnetic on-off valve to an output port of the electromagnetic on-off valve.
FIG. 5 is a diagram for explaining a pressure waveform of an electromagnetic on-off valve.
FIG. 6 is a diagram showing a relationship between a flow rate of compressed air and a residual pressure exhaust time with respect to an internal volume of a third fluid flow path from an end of a valve seat opening of a solenoid valve to an input end of a sub-nozzle.
FIG. 7 shows the relationship between the consumption of compressed air and the internal volume of a fourth fluid flow path inside the electromagnetic on-off valve from the valve body side end of the valve seat opening of the electromagnetic on-off valve to the output port of the electromagnetic on-off valve. FIG.
[Explanation of symbols]
10 Weft insertion device of loom
22 sub nozzle
34 Sub-nozzle device
36 Fluid supply source
38 Solenoid on-off valve
40 Sub nozzle side pipe
42 tanks
44 pressure source
46 Pressure regulator
48 Fluid outlet of tank
50 Tank side pipe
52 Input port of solenoid on-off valve
54 Input connector
56 Output port of solenoid on-off valve
58 Output connector
60 Electromagnetic valve
70 valve seat
72 Valve seat opening
74 Sub nozzle side connector
78 flow meter
80 Tank side pressure sensor
82 Nozzle side pressure sensor
K1, K2, K3, K4 First, second, third, fourth fluid flow paths

Claims (6)

サブノズルと電磁開閉弁とがパイプを介して1対1の関係に連通された1以上のサブノズル装置と、
前記電磁開閉弁に圧縮流体を供給する流体供給源とを含み、
前記流体供給源の流体出口から前記パイプのサブノズル側の端部までの流体流路の有効断面積は2.5mm以上3.5mm以下である、織機の緯入れ装置。
One or more sub-nozzle devices in which a sub-nozzle and an electromagnetic on-off valve are communicated in a one-to-one relationship via a pipe;
A fluid supply source for supplying a compressed fluid to the solenoid on-off valve,
The effective cross-sectional area of the fluid flow path from the fluid outlet of the fluid supply source to the end of the sub-nozzle side of the pipe is 2.5 mm 2 or more 3.5 mm 2 or less, weft insertion device of a loom.
サブノズルと電磁開閉弁とがパイプを介して1対1の関係に連通された1以上のサブノズル装置を含み、
前記電磁開閉弁の入力ポートから前記電磁開閉弁の出力ポートまでの流体流路の有効断面積は5mm以上15mm以下である、織機の緯入れ装置。
A sub-nozzle and one or more sub-nozzle devices in which the electromagnetic on-off valve is communicated in a one-to-one relationship via a pipe;
The effective cross-sectional area of the fluid flow path from the input port of the solenoid valve to the output port of the solenoid valve is 5 mm 2 or more 15 mm 2 or less, weft insertion device of a loom.
サブノズルと電磁開閉弁とがパイプを介して1対1の関係に連通された1以上のサブノズル装置を含み、
前記電磁開閉弁の弁座開口の弁体側端部から前記サブノズルの入力端までの流体流路の内容積は、2000mm以上3000mm以下である、織機の緯入れ装置。
A sub-nozzle and one or more sub-nozzle devices in which the electromagnetic on-off valve is communicated in a one-to-one relationship via a pipe;
The internal volume of the fluid flow path from the valve body side end portion of the valve seat opening of the solenoid valve to the input of the sub-nozzle is, 2000 mm 3 or more 3000 mm 3 or less, weft insertion device of a loom.
サブノズルと電磁開閉弁とがパイプを介して1対1の関係に連通された1以上のサブノズル装置を含み、
前記電磁開閉弁の弁座開口の弁体側端部から前記電磁開閉弁の出力ポートまでの流体流路の内容積は600mm以下である、織機の緯入れ装置。
A sub-nozzle and one or more sub-nozzle devices in which the electromagnetic on-off valve is communicated in a one-to-one relationship via a pipe;
A weft insertion device for a loom, wherein an inner volume of a fluid flow path from an end of a valve seat opening of a valve seat opening of the electromagnetic on-off valve to an output port of the electromagnetic on-off valve is 600 mm 3 or less.
サブノズルと電磁開閉弁とがパイプを介して1対1の関係に連通された1以上のサブノズル装置と、
前記電磁開閉弁に圧縮流体を供給する流体供給源とを含み、
前記流体供給源の流体出口から前記パイプのサブノズル側の端部までの流体流路の有効断面積は2.5mm以上3.5mm以下であり、
前記電磁開閉弁の弁座開口の弁体側端部から前記サブノズルの入力端までの流体流路の内容積は2000mm以上3000mm以下である、織機の緯入れ装置。
One or more sub-nozzle devices in which a sub-nozzle and an electromagnetic on-off valve are communicated in a one-to-one relationship via a pipe;
A fluid supply source for supplying a compressed fluid to the solenoid on-off valve,
The effective cross-sectional area of the fluid flow path from the fluid outlet of the fluid supply source to the end of the sub-nozzle side of the pipe is at 2.5 mm 2 or more 3.5 mm 2 or less,
The internal volume of the fluid flow path from the valve body side end portion of the valve seat opening of the solenoid valve to the input of the sub-nozzle is 2000 mm 3 or more 3000 mm 3 or less, weft insertion device of a loom.
サブノズルと電磁開閉弁とがパイプを介して1対1の関係に連通された1以上のサブノズル装置を含み、
前記電磁開閉弁の入力ポートから前記電磁開閉弁の出力ポートまでの流体流路の有効断面積は、5mm以上15mm以下であり、
前記電磁開閉弁の弁座開口の弁体側端部から前記電磁開閉弁の出力ポートまでの流体流路の内容積は600mm以下である、織機の緯入れ装置。
A sub-nozzle and one or more sub-nozzle devices in which the electromagnetic on-off valve is communicated in a one-to-one relationship via a pipe;
The effective cross-sectional area of the fluid flow path from the input port of the solenoid on-off valve to the output port of the solenoid on-off valve is 5 mm 2 or more and 15 mm 2 or less,
A weft insertion device for a loom, wherein an inner volume of a fluid flow path from an end of a valve seat opening of a valve seat opening of the electromagnetic on-off valve to an output port of the electromagnetic on-off valve is 600 mm 3 or less.
JP2002251153A 2002-08-29 2002-08-29 Weft insertion apparatus of loom Pending JP2004091936A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002251153A JP2004091936A (en) 2002-08-29 2002-08-29 Weft insertion apparatus of loom
EP03791191A EP1536048A4 (en) 2002-08-29 2003-08-04 Picking device of weaving machine
CNA03801761XA CN1606637A (en) 2002-08-29 2003-08-04 Picking device of weaving machine
PCT/JP2003/009869 WO2004020716A1 (en) 2002-08-29 2003-08-04 Picking device of weaving machine
KR10-2004-7005924A KR20040048975A (en) 2002-08-29 2003-08-04 Picking Device of Weaving Machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251153A JP2004091936A (en) 2002-08-29 2002-08-29 Weft insertion apparatus of loom

Publications (1)

Publication Number Publication Date
JP2004091936A true JP2004091936A (en) 2004-03-25

Family

ID=31972667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251153A Pending JP2004091936A (en) 2002-08-29 2002-08-29 Weft insertion apparatus of loom

Country Status (5)

Country Link
EP (1) EP1536048A4 (en)
JP (1) JP2004091936A (en)
KR (1) KR20040048975A (en)
CN (1) CN1606637A (en)
WO (1) WO2004020716A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264061A (en) * 2009-05-14 2010-11-25 Fujifilm Corp Internal pressure detector and method for detecting pressure of expansion and contraction member, and endoscope apparatus
JP2020084341A (en) * 2018-11-19 2020-06-04 株式会社豊田自動織機 Air jet loom

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2965438D1 (en) * 1979-08-08 1983-07-07 Sulzer Ag Nozzle arrangement for a jet loom
JPH05222648A (en) * 1992-02-07 1993-08-31 Asahi Chem Ind Co Ltd Weft-inserting device of air jet loom
BE1006981A3 (en) * 1993-04-06 1995-02-07 Picanol Nv INSERTION SYSTEM FOR WEAVING MACHINES.
JPH06306737A (en) * 1993-04-19 1994-11-01 Toyota Autom Loom Works Ltd Weft-insertion controlling apparatus for jet loom
JPH1094769A (en) * 1996-09-20 1998-04-14 Smc Corp Blowing device bvr compressed air
JP3533861B2 (en) * 1997-01-13 2004-05-31 株式会社豊田自動織機 Method and apparatus for setting weft insertion timing in jet loom
JP2000096390A (en) * 1998-09-10 2000-04-04 Toyota Autom Loom Works Ltd Air-jetting device in weaving machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264061A (en) * 2009-05-14 2010-11-25 Fujifilm Corp Internal pressure detector and method for detecting pressure of expansion and contraction member, and endoscope apparatus
JP2020084341A (en) * 2018-11-19 2020-06-04 株式会社豊田自動織機 Air jet loom

Also Published As

Publication number Publication date
CN1606637A (en) 2005-04-13
EP1536048A4 (en) 2008-04-30
KR20040048975A (en) 2004-06-10
WO2004020716A1 (en) 2004-03-11
EP1536048A1 (en) 2005-06-01

Similar Documents

Publication Publication Date Title
CN103181013B (en) Fuel system
JP5309003B2 (en) Tack-in method and apparatus in a loom
US9073176B2 (en) Method for shot-peening and a shot-peening machine
CS214855B2 (en) Insertion appliance for pneumatic jet loom
EP1731645A2 (en) Air feeding and control device for the pneumatic transporting of the weft in air-jet weaving machines
JP2004091936A (en) Weft insertion apparatus of loom
US4102361A (en) Fluid supplying and discharging apparatus for shuttleless weaving loom
JP4675732B2 (en) Weft insertion device in air jet loom
JP5276262B2 (en) Weft insertion method and weft insertion device in water jet loom
JP4950791B2 (en) Ice water slurry generator
JP2012117201A (en) Weft insertion device in jet loom
EP2610378B1 (en) Auxiliary nozzle of air jet loom
CN111197195B (en) Air jet loom
US5746256A (en) Method and apparatus for a controlled pneumatic removal of a faulty weft thread in an air jet loom
US4102362A (en) Shuttleless loom
CN220945896U (en) Glaze feeding mechanism and glaze spraying equipment
TW201629287A (en) Needle of jetting nozzle for water jet loom
JP2010144270A (en) Air-feeding device in air-jet loom
JPH0949148A (en) Weft inserting control device in jet loom
EP3964613A1 (en) Weft insertion device of air jet loom
CN110102443A (en) Decompressor and dispensing controller with it
JPH10165844A (en) Air jetting system
JPH05222648A (en) Weft-inserting device of air jet loom
US20080044302A1 (en) Electromagnetic fuel pump
JP7489003B2 (en) Air jet weaving machine weft insertion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306