JP2004091901A - Method for detecting abnormality of burner of continuous annealing furnace - Google Patents

Method for detecting abnormality of burner of continuous annealing furnace Download PDF

Info

Publication number
JP2004091901A
JP2004091901A JP2002258119A JP2002258119A JP2004091901A JP 2004091901 A JP2004091901 A JP 2004091901A JP 2002258119 A JP2002258119 A JP 2002258119A JP 2002258119 A JP2002258119 A JP 2002258119A JP 2004091901 A JP2004091901 A JP 2004091901A
Authority
JP
Japan
Prior art keywords
burner
furnace
abnormality
value
characteristic value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002258119A
Other languages
Japanese (ja)
Other versions
JP4159028B2 (en
Inventor
Takaatsu Tanaka
田中 孝篤
Seiji Sugiyama
杉山 誠司
Nobuhiro Fukumoto
福本 信博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002258119A priority Critical patent/JP4159028B2/en
Publication of JP2004091901A publication Critical patent/JP2004091901A/en
Application granted granted Critical
Publication of JP4159028B2 publication Critical patent/JP4159028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To correctly detect any abnormality such as plugging of foreign matters in an early stage for each of a large number of burners of an oxygen free furnace in a continuous annealing furnace having a reducing furnace next to the oxygen free furnace. <P>SOLUTION: The emissivity ε of a steel strip on a reducing furnace outlet side is measured, the PQ characteristic value is obtained from the relationship between the pressure P and the flow rate Q before burners of fuel gas and air for each burner disposed in an oxygen free furnace, and abnormality is determined if the emissivity ε and the PQ characteristic value exceed respective set values. If ε is ≥ 0.5, and the absolute value of the deviation from the standard value of the PQ characteristic value is ≥ 5%, it is determined to be abnormality caused by defective plating adhesion. Considerable effects are expected in a variety of aspects such as prevention of generation of defective plating adhesiveness of a plated product and degradation of surface property of an annealed product, improvement of the manufacture yield, productivity and product reliability, and facilitation of examination and repair of a large number of burners installed in the oxygen free furnace. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、鋼帯の連続焼鈍炉において、鋼帯表面の酸化被膜生成による表面性状劣化原因やメッキ密着性不良の発生原因となるバーナー異常を検出するための方法に関するものである。
【0002】
【従来の技術】
鋼帯の焼鈍は、通常、直火加熱方式の無酸化炉に続いて還元炉を設けた連続焼鈍炉により行われる。この方式の無酸化炉では、バーナーに導入する空気量を、COG等の燃料ガスの完全燃焼に必要な量よりも少なくしている。すなわち空気比1.0未満で燃焼させて鋼帯を加熱する。この無酸化炉の雰囲気では、鋼帯に僅かな酸化被膜が生成するので、続いて10%程度の水素ガスを含む雰囲気の還元炉で加熱し、この酸化被膜を還元する。
【0003】
無酸化炉では多数のバーナーを設けて鋼帯の両面から加熱している。通常は3ゾーン程度のバーナー群に分割し、ゾーン毎に燃料ガスおよび空気の流量を調整して空気比を制御している。
この多数のバーナーのうち1本でも異常が発生すると、焼鈍後の鋼帯表面に異常部分が生じる場合がある。例えば、あるバーナーの燃料ガス吐出孔に異物が詰まって空気比の高い燃焼になると、そのバーナーで加熱された部位は酸化被膜が厚くなって、還元炉で還元しきれなくなる。また、そのバーナーが属するゾーンの個々のバーナーに流れる燃料ガス量が変動し、圧力バランスが崩れてゾーン全体あるいは無酸化炉全体の燃焼制御に異常をきたす。
【0004】
連続焼鈍後にスキンパス圧延を行って薄板製品を製造する場合、このようなバーナー異常によって製品に白濁などの表面性状劣化が生じる。また連続焼鈍炉に続いてメッキ設備を設けた溶融メッキラインでは、焼鈍後の酸化被膜の厚い部位ではメッキ密着性が不良となる。このメッキ密着性不良は目視ではわからず、製品加工時にメッキ剥離などのトラブルとなって現れる。
【0005】
このため従来の溶融メッキラインでは、メッキ後の製品からサンプルを切り出して加工試験を行い、密着性が悪くなった時点で無酸化炉のバーナーを点検し、バーナー異常を見つけて補修等の対策を実施していた。
このような従来法では、メッキ密着性不良の予測が困難なために多量の不合格材を製造することになり、製造歩留まりを低下させていた。またバーナーの点検や補修が突発的に発生するため、当初の生産計画に対する調整が困難となり、生産性を悪化させていた。さらに、バーナー異常がどのバーナーで生じたかを特定するために各ゾーンの全バーナーを点検する必要があり、点検整備のためのライン休止が長期化することも余儀なくされていた。
【0006】
また特開平3−82717号公報および特開平4−99822号公報には、無酸化炉で生成した酸化被膜の厚さを還元炉の前(無酸化炉の後)で鋼帯の放射率によって測定し、被膜厚さに応じた対策を行って鋼帯の表面性状劣化やメッキ密着性不良を防止することが開示されている。前者の対策は無酸化炉バーナーの空気比低下などであり、後者の対策は無酸化炉の後段で10%以上の水素を含む還元ガスを鋼帯に吹き付けることである。
【0007】
【発明が解決しようとする課題】
上記各公報の技術では、無酸化炉のバーナーに異物詰まりなどのバーナー異常が生じた場合、その異常バーナーがどのバーナーかを特定することができないので、上記それぞれの対策を講じても、十分な解決には至らないという問題があった。
【0008】
そこで本発明が解決しようとする課題は、無酸化炉に続いて還元炉を設けた鋼帯の連続焼鈍炉において、無酸化炉に配設されている多数のバーナーの個々について、異物詰まりなどのバーナー異常を早期に的確に検出可能にすることである。これにより、異常バーナーを予測し、異常発生前に補修等を施すことで、メッキ密着性不良や鋼帯表面性状の劣化を防止することも可能にする。
【0009】
【課題を解決するための手段】
上記課題を解決するための本発明は、無酸化炉に続いて還元炉を設けた鋼帯の連続焼鈍炉において、還元炉出側の鋼帯の放射率εを測定し、かつ無酸化炉に配置された個々のバーナーについて燃料ガスと空気のバーナー前圧Pと流量Qの関係からPQ特性値を求め、放射率εおよびPQ特性値があらかじめ定めた設定値を超えた場合を異常と判定することを特徴とする連続焼鈍炉のバーナー異常検出方法である。
そして、前記εが0.5以上で、かつ前記PQ特性値の標準値からのずれの絶対値が5%以上の場合を、メッキ密着性不良原因の異常と判定することができる。
【0010】
【発明の実施の形態】
本発明法を横型連続焼鈍炉に適用した場合の例を図1に示す。鋼帯1は予熱炉2、無酸化炉3、還元炉4を通過する間に加熱され、冷却帯5で冷却されて、焼鈍される。本発明法では、還元炉4の出側で鋼帯1の放射率εを測定する。本例では還元炉4と冷却帯5の間に放射温度計7を設置してεを測定する。このεによって、還元炉4出側における鋼帯酸化被膜の厚さを推定することができる。そして本発明法では、さらに無酸化炉3に配設された個々のバーナー6についてPQ特性値を求め、εおよびPQ特性値からバーナー異常を検出する。
なお本発明法は、横型炉に限らず縦型炉にも適用できる。
【0011】
本例では無酸化炉3のバーナー6は3ゾーンのバーナー群に分割され、第1ゾーンには4本、第2ゾーンには8本、第3ゾーンには8本のバーナー6が見られる。なおバーナー6は、鋼帯1をはさんで無酸化炉3の反対側にも同様に配設されている。
【0012】
PQ特性値は、燃料ガスと空気のバーナー前圧Pと流量Qの関係から求める。バーナー6の具体例を示すと図3のようになっており、燃料ガス導入管14からバーナー本体19に導入された燃料ガスは、ガスノズル18先端の燃料ガス吐出孔16から吐出される。空気導入管15からバーナー本体19に導入された空気は、ガスノズル18先端部の狭隘な空気噴出部17から噴出されて、前記吐出された燃料ガスと混合し、燃焼筒20から火炎が吹き出される。
バーナー異常の主な原因は、燃料ガス吐出孔16、空気噴出部17等への異物詰まりである。異物としては、配管内の錆、腐食生成物、ごみ、燃料ガス中のタール等がある。
【0013】
図3の例において、燃料ガス導入管14に接続される圧力計21により燃料ガスのバーナー前圧が測定され、空気導入管15に接続される圧力計22により空気のバーナー前圧が測定される。測定時にはコック23,24を開放する。圧力計21,22としてはマノメーター等を使用することができる。なお各導入管14,15における圧力計21,22の接続位置は、バーナー本体19までの間に流量を調整するためのコックやバルブのない位置とする。
【0014】
また燃料ガス導入管14に取り付けたオリフィス25により燃料ガスの流量が測定され、空気導入管15に取り付けたオリフィス26により空気の流量が測定される。なお個々のバーナー6にオリフィス25,26を取り付けていない場合は、各ゾーンに流れている燃料ガスと空気の流量を、そのゾーンのバーナー本数で割った値をバーナー1本当りの流量とすることができる。この場合、事前に各バーナー本体19を清掃して詰まり等がないようにしておく。
【0015】
PQ特性値は、このPとQの関係を数値化したものであり、対象のバーナーが正常な場合のPとQの関係を式や図により予め求めておき、適正範囲のPにおけるQの範囲を標準値とし、該標準値からのQのずれの割合で示すことができる。また適正範囲のQにおけるPの範囲を標準値とし、該標準値からのPのずれの割合で示すこともできる。
例えば、バーナーが正常な場合のPとQの関係が図7の実線であって、これが破線あるいは一点鎖線のようにずれた場合、(q−q )/qの絶対値、あるいは(q−q )/qの絶対値をPQ特性値とすることができる。
【0016】
連続焼鈍炉の操業に際しては、無酸化炉3のバーナー6を全て清掃し、所定の空気比となる所要量の燃料ガスおよび空気をゾーン毎に流して、個々のバーナー前圧Pが均一になるように、バーナー前のコックで調整する。個々のバーナー前圧Pが均一になれば、各ゾーンで流している燃料ガスおよび空気の量をゾーンのバーナー本数で割り、これを各バーナーの流量Qとすることができる。
【0017】
操業中は、還元炉4出側で鋼帯1の放射率εを常時測定することにより、焼鈍後の酸化被膜厚さを間接的に監視する。被膜厚さが厚くなって、εがあらかじめ定めた設定値を超えたとき、あるいは超えそうになったとき、指令装置8の指令によって無酸化炉3の全バーナー6の個々についてPQ特性値を求める。
そして、εが設定値を超え、かつPQ特性値があらかじめ定めた設定値を超えたバーナーをバーナー異常と判定する。
【0018】
放射率εを還元炉4出側で測定する理由は、無酸化炉出側では酸化被膜が全体的に厚くて評価および判断がし難く、還元炉出側では酸化被膜が極めて薄い状態のところへ、バーナー異常により生成し還元しきれなかった酸化被膜が現れるので、放射率εにより容易に異常状態が判定可能となるからである。
放射温度計7としては、二色温度計あるいはトレース温度計と呼ばれるもの等を採用することができる。
【0019】
溶融メッキラインは、図2の例に示すように、連続焼鈍炉の冷却帯5の出側にメッキ設備を設けている。本例ではスナウト9により鋼帯1をメッキポット10に浸漬してシンクロール8を転回し溶融金属を付着させ、メッキ量調整器11により付着量を調整したのち、合金化炉12で鋼とメッキ金属との合金相を形成し、冷却器13で冷却する。
【0020】
このような溶融メッキラインに本発明法を適用する場合、放射率εが0.5以上で、かつPQ特性値の標準値からのずれの絶対値が5%以上の場合を、メッキ密着性不良の原因となるバーナー異常と判定することができる。放射率εが0.5以上でも上記ずれの絶対値が5%未満であれば、バーナー異常ではなく、バーナー以外の原因、例えば焼鈍前の鋼帯の汚れなどが考えられるので、酸洗および洗浄設備など、入側設備のチェック等を行う。また放射率εが0.5未満で上記ずれの絶対値が5%以上のときは、バーナー異常によるメッキ密着性不良は未だ発生していないが、発生しやすい状態ので、様子をみながら操業する。
【0021】
実験結果によれば、放射率εと酸化被膜の厚さとの関係は図8のようにばらつきが大きく、PQ値の標準値からのずれの絶対値と酸化被膜厚さとの関係も図9のようにばらつきが大きかった。
また、還元炉出側の鋼帯の放射率εとメッキ密着性試験結果の関係は図4のとおり、無酸化炉バーナーのPQ特性値の標準値からのずれの絶対値とメッキ密着性試験結果の関係は図5のとおりであった。
しかし、上記ずれの絶対値と放射率εの双方とメッキ密着性との関係をみると、図6のように、本発明法におけるメッキ密着性不良原因のバーナー異常判定基準が明瞭に示される。
【0022】
本発明法を適用して鋼帯の表面性状劣化やメッキ密着性不良の発生を防止するには、還元炉出側の鋼帯の放射率が予め定めた設定値に近づきはじめたとき、個々のバーナーのPQ特性値を求める。そして、該PQ特性値が予め定めた設定値に近づきはじめたバーナーをバーナー異常のおそれありとして、点検し補修あるいは交換すればよい。
【0023】
【実施例】
図1および図2に示すような溶融亜鉛メッキラインにおいて、無酸化炉3ではCOGガスを燃料ガスとし、空気比(導入空気量/完全燃焼に必要な空気量)を0.96に制御して、図3のようなバーナーで加熱した。還元炉4では水素ガス10%の還元性雰囲気で加熱した。放射温度計にはトレース温度計を使用した。
【0024】
無酸化炉3のバーナー本数は、第1ゾーンが8本、第2ゾーンおよび第3ゾーンがそれぞれ16本である。図1は炉の片側を示しているので、それぞれ4本、8本、8本となっている。
COG量は、第1ゾーンが626Nm/H 、第2ゾーンが1,250Nm/H 、第3ゾーンが1,750Nm/H である。
空気量は、第1ゾーンが2,775Nm/H 、第2ゾーンが5,545Nm/H 、第3ゾーンが7,760Nm/H である。なおCOGの理論空気量は4.62である。
【0025】
第3ゾーンの16本のバーナーについて、バーナー清掃後の正常状態でのバーナー前圧Pと流量Qの関係は表1のとおりであった。また正常状態における放射温度計7による放射率εの測定例を示すと、0.20,0.29,0.30であった。
【0026】
【表1】

Figure 2004091901
【0027】
操業中、放射率εの測定値が0.6となった異常状態で、第3ゾーンの個々のバーナーについて空気とCOGのバーナー前圧Pおよび流量Qを求めた。
空気のバーナー前圧Paは66mmHOであった。第3ゾーンの空気量は2128Nm/H であり、これから1本あたりの空気流量Qaは133Nm/H となるので、表1の(2)式から得られる正常値と変わらず、空気については異常なしと判断した。
【0028】
COGのバーナー前圧Pcは48mmHOであった。第3ゾーンのCOG量は480Nm/H であり、これから1本あたりのCOGQcは30Nm/H となるので、表1の(1)式から得られる正常値32Nm/H からずれている。ずれの割合は7%となり、異常と判断した。本例では燃料ガス噴出孔16の詰まりによってガスのバーナー前圧が高くなったと推定された。
【0029】
また、図6に示すような本発明法から得られるメッキ密着性不良原因のバーナー異常判定基準に基づいて、放射率εを常時測定し、εが高くなって0.5に近づきはじめたときに各バーナーのPQ特性値を求め、標準値からのずれの絶対値が大きくなって5%に近づきはじめたバーナーを点検補修することで、メッキ製品の密着性不良発生を防止することができた。
【0030】
【発明の効果】
本発明法により、溶融メッキ鋼帯のメッキ密着性不良発生や連続焼鈍鋼帯板の表面性状劣化を防止でき、製造歩留まりを約0.8%向上させることができる。またバーナー大修繕作業が解消される結果、生産性を約0.5%向上させることができる。その他、製品信頼性の向上、無酸化炉に多数設置されたバーナーの点検補修の容易化、等、多方面で顕著な効果をもたらすことができる。
【図面の簡単な説明】
【図1】本発明法を適用した連続焼鈍炉の例を示す説明図である。
【図2】本発明法の対象となる溶融メッキラインの例を示す部分説明図である。
【図3】本発明法の対象となるバーナーの例を示す一部切り欠き図である。
【図4】放射率εとメッキ密着性の関係を示すグラフである。
【図5】PQ特性値のずれとメッキ密着性の関係を示すグラフである。
【図6】本発明法におけるメッキ密着性不良原因のバーナー異常の判定基準を示す説明図である。
【図7】バーナーのPQ特性の説明図である。
【図8】放射率εと酸化被膜厚さの関係を示すグラフである。
【図9】PQ特性値のずれと酸化被膜厚さの関係を示すグラフである。
【符号の説明】
1:鋼帯
2:予熱炉
3:無酸化炉
4:還元炉
5:冷却帯
6:バーナー
7:放射温度計
8:シンクロール
9:スナウト
10:メッキポット
11:メッキ量調整器
12:合金化炉
13:冷却器
14:燃料ガス導入管
15:空気導入管
16:燃料ガス吐出孔
17:空気噴出部
18:ガスノズル
19:バーナー本体
20:燃焼筒
21,22:圧力計
23,24:コック
25,26:オリフィス[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for detecting a burner abnormality which causes deterioration of surface properties due to formation of an oxide film on the surface of a steel strip and causes poor plating adhesion in a continuous annealing furnace for the steel strip.
[0002]
[Prior art]
The annealing of the steel strip is usually performed by a continuous annealing furnace provided with a non-oxidizing furnace of a direct flame heating type and a reducing furnace. In this type of non-oxidizing furnace, the amount of air introduced into the burner is smaller than that required for complete combustion of fuel gas such as COG. That is, the steel strip is heated by burning at an air ratio of less than 1.0. In the atmosphere of the non-oxidizing furnace, a slight oxide film is formed on the steel strip. Therefore, the steel strip is subsequently heated in a reducing furnace in an atmosphere containing about 10% hydrogen gas to reduce the oxide film.
[0003]
In the non-oxidizing furnace, a large number of burners are provided to heat the steel strip from both sides. Usually, the burner group is divided into about three zones, and the air ratio is controlled by adjusting the flow rates of the fuel gas and the air for each zone.
If an abnormality occurs in at least one of the many burners, an abnormal portion may occur on the surface of the steel strip after annealing. For example, when a fuel gas discharge hole of a burner is clogged with foreign matter and combustion is performed with a high air ratio, a portion heated by the burner becomes thicker in an oxide film and cannot be completely reduced in a reduction furnace. Also, the amount of fuel gas flowing through each burner in the zone to which the burner belongs fluctuates, and the pressure balance is lost, resulting in abnormal combustion control of the entire zone or the non-oxidizing furnace.
[0004]
When a thin sheet product is manufactured by performing skin pass rolling after continuous annealing, such a burner abnormality causes deterioration of surface properties such as cloudiness of the product. Further, in a hot-dip plating line provided with plating equipment following a continuous annealing furnace, plating adhesion becomes poor at a portion where the oxide film after the annealing is thick. This poor plating adhesion cannot be visually recognized, and appears as troubles such as peeling of plating during product processing.
[0005]
For this reason, in the conventional hot-dip galvanizing line, a sample is cut out from the product after plating and a processing test is performed. Had been implemented.
In such a conventional method, it is difficult to predict poor plating adhesion, so that a large number of rejected materials are manufactured, and the manufacturing yield is reduced. In addition, since the inspection and repair of the burner occur suddenly, it is difficult to adjust the initial production plan, thereby deteriorating productivity. Further, it is necessary to inspect all the burners in each zone in order to determine which burner caused the burner abnormality, and the line stoppage for inspection and maintenance had to be prolonged.
[0006]
Further, JP-A-3-82717 and JP-A-4-99822 describe that the thickness of an oxide film formed in an oxidation-free furnace is measured by the emissivity of a steel strip before a reduction furnace (after the oxidation-free furnace). However, it is disclosed that measures are taken in accordance with the film thickness to prevent deterioration in the surface properties of the steel strip and poor plating adhesion. The former measure is to lower the air ratio of the non-oxidizing furnace burner, and the latter measure is to blow a reducing gas containing 10% or more of hydrogen into the steel strip in the latter stage of the non-oxidizing furnace.
[0007]
[Problems to be solved by the invention]
According to the technology disclosed in each of the above publications, when a burner abnormality such as clogging of foreign matter occurs in the burner of the non-oxidizing furnace, it is not possible to specify which burner is the abnormal burner. There was a problem that it could not be solved.
[0008]
Therefore, the problem to be solved by the present invention is that, in a continuous annealing furnace for a steel strip provided with a reduction furnace following the non-oxidation furnace, for each of a large number of burners provided in the non-oxidation furnace, foreign matter clogging or the like has occurred. An object of the present invention is to enable early and accurate detection of burner abnormality. Thus, by predicting the abnormal burner and performing repair or the like before the occurrence of the abnormality, it is possible to prevent poor plating adhesion and deterioration of the steel strip surface property.
[0009]
[Means for Solving the Problems]
The present invention for solving the above-mentioned problem is to measure the emissivity ε of the steel strip on the exit side of the reduction furnace in a continuous annealing furnace of a steel strip provided with a reduction furnace following the non-oxidation furnace, and A PQ characteristic value is determined from the relationship between the burner pre-pressure P of the fuel gas and air and the flow rate Q for each of the arranged burners, and a case where the emissivity ε and the PQ characteristic value exceed predetermined set values is determined to be abnormal. This is a method for detecting a burner abnormality in a continuous annealing furnace.
When the value of ε is 0.5 or more and the absolute value of the deviation of the PQ characteristic value from the standard value is 5% or more, it can be determined that the plating adhesion defect is abnormal.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an example in which the method of the present invention is applied to a horizontal continuous annealing furnace. The steel strip 1 is heated while passing through the preheating furnace 2, the non-oxidizing furnace 3, and the reducing furnace 4, is cooled in the cooling zone 5, and is annealed. In the method of the present invention, the emissivity ε of the steel strip 1 is measured at the outlet side of the reduction furnace 4. In this example, a radiation thermometer 7 is installed between the reduction furnace 4 and the cooling zone 5 to measure ε. From this ε, the thickness of the steel strip oxide film on the exit side of the reduction furnace 4 can be estimated. Then, in the method of the present invention, the PQ characteristic value is obtained for each burner 6 disposed in the non-oxidizing furnace 3 and the abnormality of the burner is detected from ε and the PQ characteristic value.
The method of the present invention can be applied not only to a horizontal furnace but also to a vertical furnace.
[0011]
In this example, the burners 6 of the non-oxidizing furnace 3 are divided into three zone burner groups, four in the first zone, eight in the second zone, and eight in the third zone. The burner 6 is similarly arranged on the opposite side of the non-oxidizing furnace 3 with the steel strip 1 interposed therebetween.
[0012]
The PQ characteristic value is obtained from the relationship between the burner pre-pressure P of the fuel gas and the air and the flow rate Q. FIG. 3 shows a specific example of the burner 6. The fuel gas introduced into the burner main body 19 from the fuel gas introduction pipe 14 is discharged from the fuel gas discharge hole 16 at the tip of the gas nozzle 18. The air introduced into the burner main body 19 from the air introduction pipe 15 is blown out from a narrow air blowing portion 17 at the tip of the gas nozzle 18, mixes with the discharged fuel gas, and the flame is blown out from the combustion tube 20. .
The main cause of the burner abnormality is clogging of foreign matter in the fuel gas discharge hole 16, the air ejection portion 17, and the like. The foreign substances include rust in pipes, corrosion products, dust, tar in fuel gas, and the like.
[0013]
In the example of FIG. 3, the pre-burner pressure of the fuel gas is measured by the pressure gauge 21 connected to the fuel gas introduction pipe 14, and the pre-burner pressure of the air is measured by the pressure gauge 22 connected to the air introduction pipe 15. . During the measurement, the cocks 23 and 24 are opened. As the pressure gauges 21 and 22, a manometer or the like can be used. The connection positions of the pressure gauges 21 and 22 in each of the introduction pipes 14 and 15 are positions where there is no cock or valve for adjusting the flow rate up to the burner main body 19.
[0014]
The flow rate of the fuel gas is measured by an orifice 25 attached to the fuel gas introduction pipe 14, and the flow rate of the air is measured by an orifice 26 attached to the air introduction pipe 15. When the orifices 25 and 26 are not attached to each burner 6, the value obtained by dividing the flow rate of the fuel gas and air flowing in each zone by the number of burners in the zone is used as the flow rate per burner. Can be. In this case, each burner main body 19 is cleaned in advance to prevent clogging or the like.
[0015]
The PQ characteristic value is obtained by quantifying the relationship between P and Q. The relationship between P and Q when the target burner is normal is obtained in advance by an equation or a diagram, and the range of Q in the appropriate range of P is determined. Is a standard value, and can be represented by a ratio of a deviation of Q from the standard value. Alternatively, the range of P in Q in the appropriate range may be set as a standard value, and the range of P from the standard value may be indicated.
For example, if the relationship between P and Q when the burner is normal is the solid line in FIG. 7 and this shifts like a broken line or a dashed line, the absolute value of (q−q 1 ) / q, or (q− The absolute value of q 2 ) / q can be used as the PQ characteristic value.
[0016]
During the operation of the continuous annealing furnace, the burners 6 of the non-oxidizing furnace 3 are all cleaned, and a required amount of fuel gas and air having a predetermined air ratio are flowed for each zone, so that the individual burner pre-pressures P become uniform. Adjust with the cock in front of the burner. If the individual burner pre-pressures P become uniform, the amount of fuel gas and air flowing in each zone can be divided by the number of burners in the zone, and this can be used as the flow rate Q of each burner.
[0017]
During the operation, the emissivity ε of the steel strip 1 is constantly measured on the exit side of the reduction furnace 4 to indirectly monitor the oxide film thickness after annealing. When the coating thickness increases and ε exceeds or is about to exceed a predetermined value, the PQ characteristic value is obtained for each of all the burners 6 of the non-oxidizing furnace 3 by a command from the command device 8. .
Then, a burner in which ε exceeds a set value and a PQ characteristic value exceeds a predetermined set value is determined as a burner abnormality.
[0018]
The reason for measuring the emissivity ε at the outlet of the reduction furnace 4 is that the oxide film is too thick on the outlet side of the non-oxidizing furnace, making it difficult to evaluate and judge, and the oxide film at the outlet side of the reduction furnace is extremely thin. This is because an oxide film formed due to the burner abnormality and not completely reduced appears, so that the abnormal state can be easily determined from the emissivity ε.
As the radiation thermometer 7, a so-called two-color thermometer or trace thermometer can be adopted.
[0019]
As shown in the example of FIG. 2, the hot-dip plating line is provided with plating equipment on the outlet side of the cooling zone 5 of the continuous annealing furnace. In this example, the steel strip 1 is immersed in the plating pot 10 by the snout 9, the sink roll 8 is turned, and the molten metal is adhered. The amount of the molten metal is adjusted by the plating amount adjuster 11. An alloy phase with a metal is formed and cooled by the cooler 13.
[0020]
When the method of the present invention is applied to such a hot-dip plating line, when the emissivity ε is 0.5 or more and the absolute value of the deviation from the standard value of the PQ characteristic value is 5% or more, poor plating adhesion is obtained. It can be determined that the burner is abnormal which causes the burner. If the absolute value of the above deviation is less than 5% even if the emissivity ε is 0.5 or more, it is not a burner abnormality but a cause other than the burner, such as contamination of the steel strip before annealing, is considered. Check incoming equipment such as equipment. When the emissivity ε is less than 0.5 and the absolute value of the deviation is 5% or more, poor plating adhesion due to burner abnormality has not yet occurred, but it is likely to occur. .
[0021]
According to the experimental results, the relationship between the emissivity ε and the thickness of the oxide film varies greatly as shown in FIG. 8, and the relationship between the absolute value of the deviation of the PQ value from the standard value and the oxide film thickness is also shown in FIG. The variation was large.
The relationship between the emissivity ε of the steel strip on the exit side of the reduction furnace and the results of the plating adhesion test is shown in FIG. 4, and the absolute value of the deviation of the PQ characteristic value of the non-oxidizing furnace burner from the standard value and the plating adhesion test result are shown in FIG. Was as shown in FIG.
However, when looking at the relationship between both the absolute value of the deviation, the emissivity ε, and the plating adhesion, as shown in FIG. 6, the burner abnormality criterion for the cause of the plating adhesion failure in the method of the present invention is clearly shown.
[0022]
In order to prevent the deterioration of the surface properties of the steel strip and the occurrence of poor plating adhesion by applying the method of the present invention, when the emissivity of the steel strip on the exit side of the reduction furnace starts approaching a predetermined set value, the individual The PQ characteristic value of the burner is determined. Then, the burner whose PQ characteristic value has begun to approach a predetermined set value may be inspected, repaired or replaced with the risk of burner abnormality.
[0023]
【Example】
In the hot-dip galvanizing line as shown in FIGS. 1 and 2, in the non-oxidizing furnace 3, the COG gas is used as a fuel gas, and the air ratio (the amount of introduced air / the amount of air required for complete combustion) is controlled to 0.96. And a burner as shown in FIG. In the reduction furnace 4, heating was performed in a reducing atmosphere of 10% hydrogen gas. A trace thermometer was used as the radiation thermometer.
[0024]
The number of burners in the non-oxidizing furnace 3 is eight in the first zone and sixteen in each of the second and third zones. FIG. 1 shows one side of the furnace, with four, eight, and eight, respectively.
COG amount first zone 626 nm 3 / H, the second zone is 1,250Nm 3 / H, the third zone is 1,750Nm 3 / H.
Air amount first zone 2,775Nm 3 / H, the second zone is 5,545Nm 3 / H, the third zone is 7,760Nm 3 / H. The theoretical amount of COG air is 4.62.
[0025]
The relationship between the pre-burner pressure P and the flow rate Q in the normal state after the burner cleaning was as shown in Table 1 for the 16 burners in the third zone. In addition, an example of measurement of the emissivity ε by the radiation thermometer 7 in a normal state is 0.20, 0.29, 0.30.
[0026]
[Table 1]
Figure 2004091901
[0027]
During the operation, in an abnormal state where the measured value of the emissivity ε was 0.6, the burner pre-pressure P and the flow rate Q of the air and COG were obtained for each burner in the third zone.
The air pre-burner pressure Pa was 66 mmH 2 O. The amount of air in the third zone is 2128 Nm 3 / H, and the air flow rate Qa per line is 133 Nm 3 / H. Therefore, the air amount does not change from the normal value obtained from equation (2) in Table 1, and It was determined that there was no abnormality.
[0028]
The pre-burner pressure Pc of the COG was 48 mmH 2 O. The COG amount in the third zone is 480 Nm 3 / H, and the COG Qc per line is 30 Nm 3 / H, which deviates from the normal value 32 Nm 3 / H obtained from the expression (1) in Table 1. The ratio of the shift was 7%, and it was determined that the sample was abnormal. In this example, it was estimated that the gas pre-burner pressure increased due to the clogging of the fuel gas ejection holes 16.
[0029]
Further, based on the burner abnormality determination criterion for the cause of poor plating adhesion obtained from the method of the present invention as shown in FIG. 6, the emissivity ε is constantly measured, The PQ characteristic value of each burner was determined, and the burner whose absolute value of deviation from the standard value became large and approached 5% was inspected and repaired, whereby occurrence of poor adhesion of the plated product could be prevented.
[0030]
【The invention's effect】
By the method of the present invention, it is possible to prevent the occurrence of poor plating adhesion of the hot-dip coated steel strip and the deterioration of the surface properties of the continuously annealed steel strip, thereby improving the production yield by about 0.8%. In addition, as a result of the major burner repair work being eliminated, productivity can be improved by about 0.5%. In addition, remarkable effects can be obtained in various fields, such as improvement of product reliability, facilitation of inspection and repair of many burners installed in the non-oxidizing furnace, and the like.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of a continuous annealing furnace to which the method of the present invention is applied.
FIG. 2 is a partial explanatory view showing an example of a hot-dip plating line to be subjected to the method of the present invention.
FIG. 3 is a partially cutaway view showing an example of a burner to be subjected to the method of the present invention.
FIG. 4 is a graph showing the relationship between emissivity ε and plating adhesion.
FIG. 5 is a graph showing a relationship between a shift in a PQ characteristic value and plating adhesion.
FIG. 6 is an explanatory diagram showing criteria for judging burner abnormalities caused by poor plating adhesion in the method of the present invention.
FIG. 7 is an explanatory diagram of PQ characteristics of a burner.
FIG. 8 is a graph showing the relationship between emissivity ε and oxide film thickness.
FIG. 9 is a graph showing a relationship between a shift of a PQ characteristic value and an oxide film thickness.
[Explanation of symbols]
1: steel strip 2: preheating furnace 3: non-oxidizing furnace 4: reducing furnace 5: cooling zone 6: burner 7: radiation thermometer 8: sink roll 9: snout 10: plating pot 11: plating amount regulator 12: alloying Furnace 13: Cooler 14: Fuel gas introduction pipe 15: Air introduction pipe 16: Fuel gas discharge hole 17: Air ejection part 18: Gas nozzle 19: Burner body 20: Combustion cylinders 21, 22: Pressure gauges 23, 24: Cock 25 , 26: Orifice

Claims (2)

無酸化炉に続いて還元炉を設けた鋼帯の連続焼鈍炉において、還元炉出側の鋼帯の放射率εを測定し、かつ無酸化炉に配置された個々のバーナーについて燃料ガスと空気のバーナー前圧Pと流量Qの関係からPQ特性値を求め、放射率εおよびPQ特性値があらかじめ定めた設定値を超えた場合を異常と判定することを特徴とする連続焼鈍炉のバーナー異常検出方法。In a continuous annealing furnace for steel strips provided with a reduction furnace following the non-oxidation furnace, the emissivity ε of the steel strip on the exit side of the reduction furnace was measured, and the fuel gas and air were measured for each burner placed in the non-oxidation furnace. A burner abnormality in a continuous annealing furnace characterized by determining a PQ characteristic value from a relationship between a burner pre-pressure P and a flow rate Q, and determining that the emissivity ε and the PQ characteristic value exceed a predetermined set value as abnormal. Detection method. 前記εが0.5以上で、かつ前記PQ特性値の標準値からのずれの絶対値が5%以上の場合を、メッキ密着性不良原因の異常と判定することを特徴とする請求項1記載の連続焼鈍炉のバーナー異常検出方法。2. The method according to claim 1, wherein when the value of .epsilon. Is 0.5 or more and the absolute value of the deviation of the PQ characteristic value from the standard value is 5% or more, it is determined that the plating adhesion failure is abnormal. For detecting burner abnormality in continuous annealing furnace.
JP2002258119A 2002-09-03 2002-09-03 Burner abnormality detection method for continuous annealing furnace Expired - Fee Related JP4159028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002258119A JP4159028B2 (en) 2002-09-03 2002-09-03 Burner abnormality detection method for continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002258119A JP4159028B2 (en) 2002-09-03 2002-09-03 Burner abnormality detection method for continuous annealing furnace

Publications (2)

Publication Number Publication Date
JP2004091901A true JP2004091901A (en) 2004-03-25
JP4159028B2 JP4159028B2 (en) 2008-10-01

Family

ID=32062868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002258119A Expired - Fee Related JP4159028B2 (en) 2002-09-03 2002-09-03 Burner abnormality detection method for continuous annealing furnace

Country Status (1)

Country Link
JP (1) JP4159028B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058781A (en) * 2009-09-14 2011-03-24 Nippon Steel Corp Combustion control device for burner and combustion control method for burner
CN111094614A (en) * 2017-10-12 2020-05-01 安赛乐米塔尔公司 Method for treating metal plate and metal plate treated by the method
JP2020537045A (en) * 2017-10-12 2020-12-17 アルセロールミタル Metal plate processing method and metal plate processed by this method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278038B2 (en) * 2014-12-03 2018-02-14 Jfeスチール株式会社 Combustion management system for heat treatment equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058781A (en) * 2009-09-14 2011-03-24 Nippon Steel Corp Combustion control device for burner and combustion control method for burner
CN111094614A (en) * 2017-10-12 2020-05-01 安赛乐米塔尔公司 Method for treating metal plate and metal plate treated by the method
JP2020537044A (en) * 2017-10-12 2020-12-17 アルセロールミタル Metal plate processing method and metal plate processed by this method
JP2020537045A (en) * 2017-10-12 2020-12-17 アルセロールミタル Metal plate processing method and metal plate processed by this method
CN111094614B (en) * 2017-10-12 2021-12-03 安赛乐米塔尔公司 Method for treating metal plate and metal plate treated by the method
US11319633B2 (en) 2017-10-12 2022-05-03 Arcelormittal Metal sheet treatment method and metal sheet treated with this method
US11319631B2 (en) 2017-10-12 2022-05-03 Arcelormittal Metal sheet treatment method and metal sheet treated with this method

Also Published As

Publication number Publication date
JP4159028B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
KR102537661B1 (en) Methods and electronic devices for monitoring the manufacture of metal products, related computer programs and apparatus
CN110064667B (en) Laminar cooling method for steel plate
US8197746B2 (en) Method of arranging and setting spray cooling nozzles and hot steel plate cooling apparatus
JP4159028B2 (en) Burner abnormality detection method for continuous annealing furnace
KR100964904B1 (en) Heater for annealing furnace
JP5428593B2 (en) Combustion abnormality diagnosis method for combustion furnace
CN110042223B (en) On-line monitoring and diagnosing method for annealing furnace of cold rolling hot galvanizing unit
CN101842172A (en) Discharging cryogen onto work surfaces in a cold roll mill
JP4709726B2 (en) Method for predicting width direction material of temper rolled steel sheet and operation method of continuous annealing line using the same
KR102119981B1 (en) Method and apparatus for controlling temperature of continuous annealing furnace
JP6079522B2 (en) Steel plate cooling device and steel plate cooling method
JP5589260B2 (en) Thick steel plate quality assurance system
TWI628285B (en) Quality evaluation system and method for rolling metal billet
CN110453023B (en) Blast furnace hearth elephant foot erosion prevention and analysis method
JP2015055002A (en) Steel sheet cooling device and steel sheet cooling method
JP5532637B2 (en) Thick steel plate temperature guarantee system and thick steel plate manufacturing method
KR100885884B1 (en) Apparatus for preventing gas intrusion in annealing furnace
JP2010214432A (en) Apparatus for measuring surface temperature of thick steel plate and method of judging material of the same
JP2010240684A (en) Apron of table roll on hot-rolling line, method of operating the same and method of manufacturing hot-rolled metal strip
CN113390571B (en) Method for efficiently and online checking cracking of non-oxidation furnace radiant tube
JP2010099723A (en) Material quality assurance system of thick steel plate
JPH05345929A (en) Detection of abnormality of value registered by radiation thermometer for continuous annealing furnace
JP5310149B2 (en) Thick steel plate quality assurance equipment
JPH06304626A (en) Method for deciding arrangement of cooling nozzles
US6659166B1 (en) Installation for controlling the sealed condition of water-gas heat exchangers for industrial furnaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080711

R151 Written notification of patent or utility model registration

Ref document number: 4159028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees