JP2004091878A - Method for forming tree-dimensional fine structure by plating - Google Patents

Method for forming tree-dimensional fine structure by plating Download PDF

Info

Publication number
JP2004091878A
JP2004091878A JP2002256335A JP2002256335A JP2004091878A JP 2004091878 A JP2004091878 A JP 2004091878A JP 2002256335 A JP2002256335 A JP 2002256335A JP 2002256335 A JP2002256335 A JP 2002256335A JP 2004091878 A JP2004091878 A JP 2004091878A
Authority
JP
Japan
Prior art keywords
oxide film
plating
dimensional
metal
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002256335A
Other languages
Japanese (ja)
Other versions
JP4257676B2 (en
Inventor
Hideaki Takahashi
高橋 英明
Masatoshi Sakairi
坂入 正敏
Tatsuya Kikuchi
菊地 竜也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002256335A priority Critical patent/JP4257676B2/en
Publication of JP2004091878A publication Critical patent/JP2004091878A/en
Application granted granted Critical
Publication of JP4257676B2 publication Critical patent/JP4257676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily subject structures with three-dimensional shape such as continued curved faces to fine working at a high precision by a simple process. <P>SOLUTION: The surface of an aluminum or aluminum alloy matrix base material 10 formed so as to be three-dimensional shape is smoothened by electropolishing or the like. Thereafter, an anode oxide film 20 is formed. The oxide film is removed so as to be prescribed patterns by the irradiation of laser light 30 in a solution comprising a metal salt for plating, and plating 40 is applied to the parts 35 freed of the oxide film. Thereafter, the base material and the oxide film are dissolved away, so that three-dimensional structures 41 to 44 are obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、めっきにより形成した金属層による成形体を得る電鋳法に関し、特に微細な三次元立体構造の成形法に関する。
【0002】
【従来の技術】
近年、ナノテクノロジーの技術開発が著しく進み、種々のマイクロマシンや各種の機能を有するデバイスなどが試みられているが、これらの要素技術が微細加工/成形法であり、フォトリソグラフィーなどの手法がマイクロマシンや各種のデバイス作成に適用されている。
しかしながら、これらの手法は主として半導体デバイスの製造技術として培われてきたもので、いずれも2次元平面のパターニング法として開発されてきたものであるため、微細なパターニングを高精度で実現でき、高生産性を有するが、3次元の立体構造に関しては必ずしも適したものといえない。たとえば、マイクロマシンなどでは、メカニズム上立体的な配置構造を有しており、各構成要素自体も3次元で屈曲した構造が求められることが少なくないが、半導体製造に用いられていたフォトリソグラフィーの手法では基板の平面を基準としてパターニングするため、そのままでは立体形状に適用できない。
【0003】
また、これらの立体形状を機械的・物理的手段により作成し、或いはフォトリソグラフィーによる成型後にこれらの加工法を適用することは、その微細な構造上困難であるばかりでなく、これらの加工法においては加工に伴う歪や残留応力が生じるため、精密な形状を再現することが困難であり、また、デバイスの特性上残留応力の発生など好ましくない場合が少なくない。
【0004】
このようなことから現在、マイクロマシンなどの立体形状を有する微細構造体を作成するには、これらのフォトリソグラフィーの手法を適用して基板上に形成しためっき層などをパターニングした後、基板電極などを溶解して分離して得た成形体を組み立てて立体構造を構成することによって行われている。
【0005】
しかしながら、この方法によっては連続した曲面を形成したり、角度を付したい場合、或いは複雑な立体構造については、工程が複雑となり、また組み立て加工することにも限界がある。
また、これらマイクロマシン等の開発・実証段階にあるものや、少量生産であって高精度を要求される分野などにあっては、これらの加工条件に対して柔軟性と共に少ない工程で容易に加工できることが求められるが、フォトリソグラフィーは、フォトマスク製造やフォトレジスト形成工程を含むため、工程も複雑で大掛かりとなってこのような要請に応えることが困難である。
【0006】
【発明が解決しようとする課題】
連続した曲面などの立体的な形状の構造体を容易に、且つ簡単な工程により、高精度で微細加工する手法を実現する。
【0007】
【課題を解決するための手段】
本発明は、3次元立体形状に成形したアルニミウム基材を電界研磨などにより表面を平滑化した後、アノード酸化皮膜を形成し、めっきする金属塩を含む溶液中でこの酸化皮膜をレーザー照射により所定のパターンに除去してその酸化膜剥離部にめっきし、その後基材及び酸化皮膜を溶解除去することにより三次元立体構造体を得る、
ことを最も主要な特徴とする。
【0008】
【発明の実施の形態】
本発明においては、3次元立体形状をアルミニウム基材上に予め成形しておき、一方これに対してレーザー照射光によって平面パターニングを行なうことにより、これら二つのパターニングを組合わせた立体三次元構造体の成形を可能とした。
すなわち、フォトマスクやフォトレジストによるパターニングと異なり、アルミニウム又はアルミニウム合金基材を3次元立体形状の母型とし、そのアノード酸化皮膜の特性を応用してめっきマスクパターンとするのであり、レーザー光直接描画による精密なパターニングを可能とし、簡単且つ柔軟性のある加工法が実現できた。
【0009】
この手法におけるレーザー光によるアノード酸化膜のパターニングは、発明者らがアルミニウムの局部表面処理法の研究成果を通じてかねてより明らかにしてきたもので、レーザー光に対して透明な酸化膜は下地金属表面に達して照射域を瞬間的に加熱し、素地金属のいわゆるレーザーアブレーションによってその上の酸化膜を剥離させるもので、確実に下地金属表面の露出したパターニングが可能である。
そして、この照射処理をめっき金属塩を含む溶液中で、レーザー光を石英窓などを通して行ない、露出した下地金属表面に対して直接めっき工程に移行することにより、下地のアルミニウム表面を酸化させることなく均一なめっき層を形成することができる。これは、レーザー光照射によって酸化膜が剥離する際に溶液中のめっき金属が(微粒状に)析出してめっき下地層を形成することによると解されるが、このようにして通常はアルミニウム表面に形成される酸化皮膜のため困難なアルミニウムへのめっきを可能とした。
このレーザ照射の際の酸化防止効果は、めっき処理において有効であるが、特に化学めっきにおいては、通常必要とされる表面活性化処理に換えて直接めっき工程が可能であり、めっき皮膜の特性も優れている特徴がある。また、このレーザー照射処理の際の酸化防止効果は、必ずしもめっき金属の塩などを含まなくとも大気を遮断する液体であれば、例えば水を用いても効果があり、レーザー照射処理後大気に直接触れないようにめっき液に浸漬することによって効果的に発揮することができた。
(表面技術、Vol.49,No.11(1998)「レーザー照射およびを局部Niめっきによるアルミニウム表面のパターニング、I.レーザー照射によるアノード酸化皮膜の破壊挙動」、及び「 II.レーザー照射部における局部Niめっきと微細パターン作製」、高橋 英明、ほか、表面技術、Vol.50,No.8(1999)「Alのアノード酸化とレーザー照射を利用した金属微細構造の作製−新LIGAプロセスを目指してー」高橋 英明、ほか、及び、表面技術、Vol.50,No.9(1999)「Alのアノード酸化/レーザー照射/電気めっきを用いた微細回路板の作製」高橋 英明、ほか、)
また、両性金属であるアルミニウムをめっき母型に使用できるためその後の三次元立体構造体の分離においても、目的とする成形金属を母型基材から分離する溶解処理の際に成形金属を傷めず、また溶解液として成形金属に適したものを選択しやすく、その後の処理を容易としている。
【0010】
基材の3次元形状は、微細な機械加工の容易な円柱、三角柱などの加工線材などのほか、フォトリソグラフィーによって形成した微細な階段状の立体、或いはケミカルミーリング等によって厚みを変化させた傾斜形状など、が適用でき、レーザー照射可能で、めっきのつきまわりが可能であればその形状に格別の制限はない。また、レーザー光の照射はこれら軸対称な立体形状である場合には、母型を回転しながら軸方向に移動して行なうことによって自由なパターニングが可能であるが、平面上でパターニング可能な形状の場合には、母型をXYテーブル上で2次元移動するのみで行なうことができる。
したがって、以下に説明するコイル状や角状コイルなどの幾何学的な連続形状のほか、マイクロマシンなどで用いる角度付レバーやアームなどの形状も容易に成形可能である。
【0011】
めっきの種類に関しても、電気めっきと化学めっきを問わない。レーザー照射の際にめっき金属を含む溶液中でパターニングを行なうことにより、酸化皮膜剥離と同時にめっき金属の析出による下地層が形成されて、めっきの付着性を損なう酸化皮膜の形成が防止され、レーザー照射後、直ちにめっき工程を行なうことができる。
また、さらにめっき金属は、その後の三次元立体構造体として利用するためにその用途に応じた性質、機能が求められるが、材質上は上記したようにめっき可能な金属・物質であれば本発明の適用上格別の制約はない。
以下の実施例ではNiを挙げるが、その他Cu、Auでも確認しており、その他、Co、Cr、Sn、Pb、Pt、Ag、Pd 或いはこれらの合金を挙げることができ、また、これら合金のみでなくこれらの金属、合金をマトリックスとしてセラミックスを分散させた複合めっきなども対象とすることができる。
要は、めっき可能であれば良いのであって、これらの金属/合金及びそれらとセラミックスなどからなる複合材料などの種々の合金・材料の組合わせに適用可能である。
このような本発明の特徴は、形成された三次元立体構造体が、強度や弾性などの機械的性質のみでなく、デバイスとして電磁気的性質等の特性が求められる場合等に極めて有用である。
【0012】
【実施例】
図1は、円柱状のアルミニウム基材を用いてコイル状の微細構造体を製作する本発明の工程を示す。
図左端より順次工程を示す。
(1)前処理
アルミニウム丸棒(径2.0mm、純度99.5%)を電解研磨し表面の平滑化をおこなった。
アノード酸化:研磨試料を0.16M−H溶液に浸漬し、100Am−2の定電流アノード酸化(10〜240分間)を行い、ポーラス型酸化皮膜を形成した。ポーラスにする意味は、アノード酸化皮膜をテンプレートとして働かせるため、ある程度の厚さを必要とするからである。
酸化皮膜を形成して後、試料を0.029M−アルザリンレッドS溶液中に5分間浸漬して皮膜を着色した。酸化皮膜の着色により、レーザー光を効率よく吸収させることができ、また、レーザー照射の際に照射域の酸化膜を加熱して脆化し、剥離を促進することによってめっきマスクとして残存する皮膜にクラックが発生するのを防ぐことができる。
その後、沸騰2回蒸留水中に15分間浸漬して封孔処理を施した。封孔処理により、めっきをする際の定電位カソード分極によってレーザー照射部のポーラス酸化皮膜を剥離した微細加工パターンの面積以外にも金属が析出することを防止する。
【0013】
(2) レーザー照射
試料を0.31M−NiSO/0.4M−HBO 混合溶液(293K、以下Niめっき溶液という。)中に保持した後、パルスNd−YAGレーザー(2倍高調波:波長532nm、周波数10HZ、パルス幅8ns)をライン照射し、アノード酸化皮膜を局部的に破壊・除去した。波長依存度及び使える波長範囲の限度範囲はNd−YAGレーザーの基本波の波長の1064nm、及び4倍高調波まで可能である。
1064nm〜266nmの波長範囲が使用範囲である。
極短紫外レーザーを用いると、波長域はさらに短い範囲が使用可能である。レーザー照射においては、焦点距離60mmの平凸レンズを用いてレーザー光を集光するとともに、XYZθステージを用いて試料を移動・回転させた。
【0014】
(3)パターン形成
レーザー照射の後、定電位カソード分極(−1.2V v.s.Ag/AgCl)を15分間行い、レーザー照射部にNiを析出させた。
【0015】
(3)三次元構造体の分離
Niめっきした試料を1.0〜3.0M−NaOH溶液中(室温)に浸漬し、素地のアルミニウム及び酸化皮膜を溶解・除去して、めっき層からなる三次元構造体を分離した。
【0016】
このようにして得られたコイル状構造体の電界放射型走査電子顕微鏡(FE−SEM)による映像を図2に、同じくコイル状の構造に軸方向のNiラインを8本形成した構造体を図3に、さらにアルミニウムの角柱(1辺2mm)を素地金属として形成した四角い籠状のNi構造体を図4に示す。
これらのNi微細コイルのライン巾は、40μm、肉厚15μmであった。図2の微細コイルが若干歪んでいるのは、めっき層が薄く、自重による変形によるもので、コイル径を小さくするか、めっき層の厚さを50μm程度にすれば解消する。
【0017】
【発明の効果】
本発明の三次元構造体の製造方法によれば、アルミニウムアノード酸化皮膜処理後レーザー光照射によってパターニングし、直接めっきした後母型溶解による分離工程によって所定の三次元構造体が得られ、その設備上も、レーザー光照射装置と、XYZθステージを具えためっき設備があればよいのであって、加工対象として種々の三次元立体形状と平面パターニングとの組合わせからなる微細加工が可能であり、多品種/少量の成形に応じ、また、マイクロマシンなどの実証開発などの要請に柔軟に対応することができる。
【0018】
加工精度及び微細化についても、実施例では比較的サイズの大きい例(径2mmの丸棒)を挙げているが、加工精度上ライン巾5μm以上のサイズでの加工が可能であり、レーザー光波長の短波長化などの改良により更に大幅な微細化が可能である。
従って、これらの特徴を応用することにより、マイクロマシンなどに限らず、ナノテクノロジーの広い分野において要望される微細加工技術として適用可能であって、再生医療分野における視神経結合に用いられる10μmオーダーの電極構造や電子部品の三次元多電極構造、高周波・サブミリ波・テラヘルツ光の送受信アンテナ、など多くの応用が考えられ、その加工特性としても従来のリソグラフィーによる加工では困難であった数μmオーダーの精度を保って20cmの長さを有する多チャンネル細線電極など、容易に製作可能である。
これらの応用が期待される例として
ナノテクノロジー研究材料の微細加工
タンパク質、遺伝子などの生体研究用微細電極
再生医療用神経結合電極
マイクロロボットの微細部品
液晶、EL、半導体など電子部品の多層微細電極
X線・テラヘルツ級光二次元多チャンネルイメージングディスプレイデバイス
三次元微細プリント配線基板、マイクロコイル
等を挙げることができる。
【図面の簡単な説明】
【図1】本発明の三次元微細構造体の作成手順。
【図2】コイル状微細構造体。
【図3】籠状微細構造体。
【図4】四角籠状微細構造体
【符号の説明】
10  アルミニウム素地金属基材
20  酸化膜
30  レーザー光
31  剥離した酸化皮膜
35  レーザー光の照射により露出した素地金属パターン
40  めっき層
41  コイル状構造体
42  コイル軸方向にラインを形成した籠上構造体
43  帯状コイル構造体
44  リング状構造体
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an electroforming method for obtaining a formed body by a metal layer formed by plating, and more particularly to a method of forming a fine three-dimensional three-dimensional structure.
[0002]
[Prior art]
In recent years, the technological development of nanotechnology has progressed remarkably, and various micromachines and devices having various functions have been tried. However, these element technologies are micromachining / forming methods, and methods such as photolithography have been applied to micromachines and micromachines. Applied to create various devices.
However, these methods have been mainly cultivated as semiconductor device manufacturing techniques, and since all of them have been developed as two-dimensional plane patterning methods, fine patterning can be realized with high accuracy and high production can be achieved. However, it is not necessarily suitable for a three-dimensional structure. For example, micromachines and the like have a three-dimensional arrangement structure due to the mechanism, and it is often required that each component itself has a three-dimensionally bent structure, but the photolithography method used in semiconductor manufacturing In this case, since the patterning is performed based on the plane of the substrate, it cannot be applied to a three-dimensional shape as it is.
[0003]
In addition, it is not only difficult to form these three-dimensional shapes by mechanical / physical means, or to apply these processing methods after molding by photolithography because of their fine structure, but also in these processing methods. Since distortion and residual stress are generated during processing, it is difficult to reproduce a precise shape, and there are many unfavorable cases such as generation of residual stress due to device characteristics.
[0004]
Therefore, at present, in order to create a microstructure having a three-dimensional shape such as a micromachine, a plating layer formed on a substrate is patterned by applying these photolithography techniques, and then a substrate electrode and the like are formed. It is performed by assembling a molded body obtained by melting and separating to form a three-dimensional structure.
[0005]
However, according to this method, when a continuous curved surface is to be formed or an angle is required, or for a complicated three-dimensional structure, the process becomes complicated, and there is a limit in assembling and processing.
In addition, in the development and demonstration stages of these micromachines, etc., and in fields such as small-volume production where high precision is required, it is necessary to be able to process easily with a small number of processes with flexibility in these processing conditions. However, since photolithography includes a photomask manufacturing process and a photoresist forming process, the process is complicated and large-scale, and it is difficult to meet such a request.
[0006]
[Problems to be solved by the invention]
A method for easily and precisely processing a three-dimensional structure such as a continuous curved surface with a simple process is realized.
[0007]
[Means for Solving the Problems]
The present invention provides a three-dimensional three-dimensionally shaped aluminum substrate after smoothing the surface by electropolishing or the like, forming an anodic oxide film, and irradiating this oxide film with a laser in a solution containing a metal salt to be plated. The three-dimensional three-dimensional structure is obtained by removing the pattern and plating the oxide film peeling part, and then dissolving and removing the base material and the oxide film.
Is the most important feature.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a three-dimensional three-dimensional structure in which a three-dimensional three-dimensional shape is formed on an aluminum base material in advance, and the two-dimensional pattern is formed by performing planar patterning on the aluminum base material by laser irradiation light. Made possible.
That is, unlike the patterning using a photomask or a photoresist, an aluminum or aluminum alloy substrate is used as a three-dimensional three-dimensional matrix, and the characteristics of the anodic oxide film are applied to form a plating mask pattern. And enabled a simple and flexible processing method.
[0009]
The patterning of the anodic oxide film by laser light in this method has been previously clarified by the inventors through the research results of the local surface treatment method of aluminum, and an oxide film transparent to laser light is formed on the underlying metal surface. When it reaches, the irradiated area is instantaneously heated, and the oxide film thereon is peeled off by so-called laser ablation of the base metal, so that the underlying metal surface can be reliably exposed and patterned.
Then, this irradiation treatment is performed in a solution containing the plating metal salt by passing a laser beam through a quartz window or the like, and directly shifting to the plating process on the exposed underlying metal surface without oxidizing the underlying aluminum surface. A uniform plating layer can be formed. It is understood that this is due to the fact that the plating metal in the solution precipitates (finely) and forms a plating underlayer when the oxide film is peeled off by laser light irradiation. Due to the oxide film formed on the aluminum, difficult plating on aluminum was made possible.
The anti-oxidation effect at the time of laser irradiation is effective in the plating process. In particular, in the case of chemical plating, a direct plating process can be performed instead of the surface activation process that is usually required, and the characteristics of the plating film are also improved. There are excellent features. In addition, the antioxidant effect at the time of this laser irradiation treatment is effective even if water is used, as long as the liquid does not necessarily contain a salt of the plating metal, etc. By immersing it in the plating solution so as not to touch it, it could be exhibited effectively.
(Surface Technology, Vol. 49, No. 11 (1998), "Laser Irradiation and Patterning of Aluminum Surface by Localized Ni Plating, I. Breakdown Behavior of Anodic Oxide Film by Laser Irradiation", and "II. Localization in Laser Irradiated Area" Ni plating and fine pattern fabrication ”, Hideaki Takahashi, et al., Surface Technology, Vol.50, No.8 (1999)“ Fabrication of Metal Microstructure Using Anodic Oxidation of Al and Laser Irradiation-Aiming for New LIGA Process- "Hideaki Takahashi et al., And Surface Technology, Vol. 50, No. 9 (1999)" Preparation of fine circuit board using Al anodic oxidation / laser irradiation / electroplating "Hideaki Takahashi, et al.)
In addition, since aluminum, which is an amphoteric metal, can be used for the plating matrix, even in the subsequent separation of the three-dimensional three-dimensional structure, the molding metal is not damaged during the melting treatment for separating the target molding metal from the matrix substrate. In addition, it is easy to select a solution suitable for the forming metal as the dissolving liquid, thereby facilitating subsequent processing.
[0010]
The three-dimensional shape of the base material is a fine stepped solid formed by photolithography, or a slanted shape whose thickness is changed by chemical milling, in addition to a processing wire such as a cylinder or a triangular prism that is easy to machine. There is no particular limitation on the shape as long as laser irradiation is possible and plating throwing power is possible. In addition, in the case of these axially symmetric three-dimensional shapes, the laser beam irradiation can be freely patterned by rotating the matrix and moving it in the axial direction. In the case of (1), it can be performed only by moving the matrix two-dimensionally on the XY table.
Therefore, in addition to the geometric continuous shape such as a coil shape and a square coil described below, shapes such as an angled lever and an arm used in a micromachine or the like can be easily formed.
[0011]
Regarding the type of plating, it does not matter whether it is electroplating or chemical plating. By performing patterning in a solution containing plating metal during laser irradiation, an underlayer is formed by deposition of plating metal at the same time as oxide film peeling, preventing the formation of an oxide film that impairs the adhesion of plating, Immediately after the irradiation, the plating step can be performed.
Further, in order to use a plated metal as a subsequent three-dimensional structure, properties and functions according to its use are required. There are no special restrictions on the application of.
In the following examples, Ni is cited, but Cu and Au are also confirmed. In addition, Co, Cr, Sn, Pb, Pt, Ag, Pd or alloys thereof can be mentioned. Instead, composite plating in which ceramics are dispersed using these metals and alloys as a matrix can also be used.
In short, it is only necessary to be capable of plating, and the present invention is applicable to combinations of various alloys and materials such as these metals / alloys and composite materials composed of them and ceramics.
Such features of the present invention are extremely useful when the formed three-dimensional structure requires not only mechanical properties such as strength and elasticity but also electromagnetic properties and the like as a device.
[0012]
【Example】
FIG. 1 shows a process of the present invention for manufacturing a coil-shaped microstructure using a columnar aluminum base material.
The steps are shown sequentially from the left end of the figure.
(1) Pretreatment An aluminum round bar (diameter 2.0 mm, purity 99.5%) was electrolytically polished to smooth the surface.
Anodic oxidation: The polished sample was immersed in a 0.16 MH 2 C 2 O 4 solution, and was subjected to constant current anodic oxidation of 100 Am −2 (10 to 240 minutes) to form a porous oxide film. The meaning of the porous structure is that a certain thickness is required in order to use the anodic oxide film as a template.
After forming the oxide film, the sample was immersed in a 0.029 M-Alzaline Red S solution for 5 minutes to color the film. By coloring the oxide film, the laser light can be efficiently absorbed, and the oxide film in the irradiation area is heated to be brittle during laser irradiation, and the film remaining as a plating mask is cracked by promoting peeling. Can be prevented from occurring.
Then, it was immersed in boiling double distilled water for 15 minutes to perform a sealing treatment. The sealing treatment prevents deposition of metal in areas other than the area of the fine processing pattern in which the porous oxide film of the laser irradiation part has been peeled off by the constant potential cathodic polarization during plating.
[0013]
(2) After holding the laser irradiation sample in a mixed solution of 0.31 M-NiSO 4 /0.4 M-H 3 BO 3 (293 K, hereinafter referred to as Ni plating solution), a pulsed Nd-YAG laser (double harmonic) : A line irradiation was performed at a wavelength of 532 nm, a frequency of 10 HZ, and a pulse width of 8 ns to locally destroy and remove the anodic oxide film. The wavelength dependence and the usable range of the wavelength range can be up to 1064 nm and the fourth harmonic of the wavelength of the fundamental wave of the Nd-YAG laser.
The wavelength range of 1064 nm to 266 nm is the use range.
When an ultra-short ultraviolet laser is used, a shorter wavelength range can be used. In the laser irradiation, a laser beam was condensed using a plano-convex lens having a focal length of 60 mm, and the sample was moved and rotated using an XYZθ stage.
[0014]
(3) Pattern formation After laser irradiation, constant potential cathodic polarization (-1.2 V vs. Ag / AgCl) was performed for 15 minutes to precipitate Ni in the laser irradiated part.
[0015]
(3) Separation of the three-dimensional structure The Ni-plated sample is immersed in a 1.0 to 3.0 M NaOH solution (room temperature) to dissolve and remove the base aluminum and oxide film to form a tertiary plating layer. The original structure was separated.
[0016]
FIG. 2 shows a field emission scanning electron microscope (FE-SEM) image of the coiled structure obtained in this manner, and FIG. 2 shows a structure in which eight axial Ni lines are formed in the same coiled structure. FIG. 4 shows a square basket-shaped Ni structure in which an aluminum prism (2 mm on each side) is formed as a base metal.
The line width of these Ni fine coils was 40 μm and the wall thickness was 15 μm. The slight distortion of the fine coil shown in FIG. 2 is caused by the deformation of the thinned plating layer due to its own weight, which can be solved by reducing the coil diameter or reducing the thickness of the plating layer to about 50 μm.
[0017]
【The invention's effect】
According to the method for manufacturing a three-dimensional structure of the present invention, a predetermined three-dimensional structure is obtained by an aluminum anodic oxide film treatment, followed by patterning by laser light irradiation, direct plating, and then a separation step by melting the matrix. Above, it is only necessary to have a laser beam irradiation device and a plating facility equipped with an XYZθ stage, and it is possible to perform fine processing consisting of a combination of various three-dimensional solid shapes and planar patterning as processing targets. It is possible to flexibly respond to the demands of product type / small amount molding and demonstration and development of micro machines and the like.
[0018]
Regarding the processing accuracy and miniaturization, in the embodiment, an example of a comparatively large size (a round bar having a diameter of 2 mm) is cited, but processing with a line width of 5 μm or more is possible due to processing accuracy. Further miniaturization can be achieved by improvements such as shortening of the wavelength.
Therefore, by applying these features, it can be applied not only to micromachines and the like but also to microfabrication technology required in a wide field of nanotechnology, and an electrode structure of the order of 10 μm used for optic nerve coupling in the field of regenerative medicine. And three-dimensional multi-electrode structures of electronic components, transmission / reception antennas for high-frequency, sub-millimeter-wave, terahertz light, etc., and its processing characteristics are accurate to the order of several μm, which was difficult with conventional lithography. A multi-channel fine wire electrode having a length of 20 cm can be easily manufactured.
Examples of applications in which these applications are expected include microfabrication of nanotechnology research materials, microelectrodes for biological research, neural coupling electrodes for regenerative medicine, microparts for microbiology, microparts for microrobots, multilayer microelectrodes X for electronic parts such as liquid crystals, ELs, and semiconductors. Line / terahertz class optical two-dimensional multi-channel imaging display device Three-dimensional fine printed wiring board, microcoil, and the like.
[Brief description of the drawings]
FIG. 1 shows a procedure for producing a three-dimensional microstructure of the present invention.
FIG. 2 is a coiled microstructure.
FIG. 3 is a cage-like microstructure.
[Fig. 4] Square cage-like microstructure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Aluminum base metal base material 20 Oxide film 30 Laser beam 31 Exfoliated oxide film 35 Base metal pattern 40 exposed by laser beam irradiation Plating layer 41 Coiled structure 42 Basket structure 43 with lines formed in the coil axis direction Belt Coil structure 44 Ring-shaped structure

Claims (6)

表面を所定の立体形状に成形した後、研磨により平滑化したアルミニウム又はアルミニウム合金基材にアノード酸化により酸化皮膜を形成し、
レーザー光照射により酸化皮膜を剥離してパターニングを行い
酸化皮膜を剥離・除去した素地金属パターン上に電気的又は化学的めっきにより所定金属のめっき層を形成し、
素地基材及び酸化膜の溶解により、めっき層からなる三次元構造体を分離する
三次元微細構造体の製造方法。
After forming the surface into a predetermined three-dimensional shape, an oxide film is formed by anodic oxidation on aluminum or aluminum alloy base material smoothed by polishing,
Forming a plating layer of a predetermined metal by electrical or chemical plating on the base metal pattern from which the oxide film has been peeled and patterned by laser light irradiation and the oxide film has been peeled and removed,
A method for producing a three-dimensional microstructure in which a three-dimensional structure composed of a plating layer is separated by dissolving a base material and an oxide film.
上記アノード酸化膜がポーラス型酸化膜でありその形成後、封孔処理を行うことを特徴とする、請求項1記載の三次元微細構造体の製造方法。2. The method for manufacturing a three-dimensional microstructure according to claim 1, wherein the anode oxide film is a porous oxide film, and a sealing process is performed after the formation. 上記酸化膜形成後アリザリンレッドSなどのレーザー光を吸収する物質の溶液に浸漬してこれらの色素を浸透着色することを特徴とする請求項1乃至2記載の三次元微細構造体の製造方法。3. The method for producing a three-dimensional microstructure according to claim 1, wherein after the oxide film is formed, the pigment is immersed in a solution of a substance absorbing laser light such as Alizarin Red S to penetrate and color these pigments. レーザー光照射が、水等の大気を遮断する液体又はめっき金属塩を含む溶液中で行われることを特徴とする請求項1乃至3記載の三次元微細構造体の製造方法。The method for producing a three-dimensional microstructure according to any one of claims 1 to 3, wherein the laser light irradiation is performed in a liquid, such as water, that blocks the atmosphere or a solution containing a plating metal salt. 上記めっき金属が、Ni、Cu、又はAuであることを特徴とする請求項1乃至4記載の三次元微細構造体の製造方法。5. The method according to claim 1, wherein the plating metal is Ni, Cu, or Au. 上記めっき金属が、Co、Cr、Sn、Pb、Pt、Ag、Pdから選ばれた一種又はこれらの合金、又はこれらの金属・合金とセラミックスからなる複合めっきであることを特徴とする請求項1乃至4記載の三次元微細構造体の製造方法。2. The plating metal according to claim 1, wherein the plating metal is one selected from the group consisting of Co, Cr, Sn, Pb, Pt, Ag, and Pd, an alloy thereof, or a composite plating made of these metals and alloys and ceramics. 5. The method for producing a three-dimensional microstructure according to any one of items 4 to 4.
JP2002256335A 2002-09-02 2002-09-02 Forming of three-dimensional microstructures by plating Expired - Fee Related JP4257676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256335A JP4257676B2 (en) 2002-09-02 2002-09-02 Forming of three-dimensional microstructures by plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256335A JP4257676B2 (en) 2002-09-02 2002-09-02 Forming of three-dimensional microstructures by plating

Publications (2)

Publication Number Publication Date
JP2004091878A true JP2004091878A (en) 2004-03-25
JP4257676B2 JP4257676B2 (en) 2009-04-22

Family

ID=32061588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256335A Expired - Fee Related JP4257676B2 (en) 2002-09-02 2002-09-02 Forming of three-dimensional microstructures by plating

Country Status (1)

Country Link
JP (1) JP4257676B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663363A (en) * 2013-12-05 2014-03-26 浙江大学 Disordered alloy micro-spring, and preparation method and lighthouse thereof
CN108370102A (en) * 2016-03-09 2018-08-03 康普技术有限责任公司 It is used to form the 3D printing technique of flat plate array antenna
WO2024106129A1 (en) * 2022-11-14 2024-05-23 株式会社ヨコオ Method for producing electroformed spring
WO2024106128A1 (en) * 2022-11-14 2024-05-23 株式会社ヨコオ Method for producing electroformed spring, and electroformed spring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103663363A (en) * 2013-12-05 2014-03-26 浙江大学 Disordered alloy micro-spring, and preparation method and lighthouse thereof
CN108370102A (en) * 2016-03-09 2018-08-03 康普技术有限责任公司 It is used to form the 3D printing technique of flat plate array antenna
WO2024106129A1 (en) * 2022-11-14 2024-05-23 株式会社ヨコオ Method for producing electroformed spring
WO2024106128A1 (en) * 2022-11-14 2024-05-23 株式会社ヨコオ Method for producing electroformed spring, and electroformed spring

Also Published As

Publication number Publication date
JP4257676B2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
US8070970B2 (en) UV-LIGA process for fabricating a multilayer metal structure having adjacent layers that are not entirely superposed, and the structure obtained
JP5873894B2 (en) Method for producing single-layer or multi-layer metal structure in LIGA technology and structure obtained thereby
TW200847252A (en) High throughput, low cost dual-mode patterning method for large area substrates
Malba et al. Laser-lathe lithography—a novel method for manufacturing nuclear magnetic resonance microcoils
JP2009004669A (en) Method for manufacturing metal wiring substrate and metal wiring substrate formed by using it
CN1778505A (en) Production of extremely profiled fine electrode for processing electric spark
JP2004091878A (en) Method for forming tree-dimensional fine structure by plating
US8986563B2 (en) Method for the production of three-dimensional microstructures
US20210403319A1 (en) Method for forming micro pattern on surface of wire
Kikuchi et al. Three-dimensional microstructure fabrication with aluminum anodizing, laser irradiation, and electrodeposition
DE102005011345A1 (en) Method for producing nanostructure on substrate involves irradiating of defined surface of substrate through ions, introduction of irradiating substrate into a supersaturated solution and removal of substrate form solution
Hu et al. Facile and scalable fabrication of Ni cantilever nanoprobes using silicon template and micro-electroforming techniques for nano-tip focused electrohydrodynamic jet printing
US5755947A (en) Adhesion enhancement for underplating problem
WO2020256132A1 (en) Microfabrication device for metal product, and microfabrication method for metal product
US20220221799A1 (en) Photoresist-free deposition and patterning with vacuum ultraviolet lamps
JPH10140399A (en) Pattern forming method
Avilova et al. Fabrication of copper patterns on industrial-used dielectric substrates by direct laser metallization from deep eutectic solvents
Doll et al. Rotational UV-lithography using flexible chromium-coated polymer masks for the fabrication of microstructured dental implant surfaces: a proof of concept
JP5267996B2 (en) Tubing, shaft material with minimal heat effect and formed with fine shape, and processing method thereof
CN113005433B (en) Method for depositing a photo-induced material and corresponding device
JP3422428B2 (en) Method for forming microfabricated resist pattern
JPS59175580A (en) Heat generating resistor
WO2006094574A1 (en) Method for producing a nanostructure on a substrate
JP2004217995A (en) Method for producing electroformed product
JP2007247052A (en) Method of manufacturing microcomponent

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Effective date: 20050802

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A02 Decision of refusal

Effective date: 20070109

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20070216

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A521 Written amendment

Effective date: 20070216

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees