JP2004091228A - Method of forming silicon carbide thin film and heat treatment method - Google Patents

Method of forming silicon carbide thin film and heat treatment method Download PDF

Info

Publication number
JP2004091228A
JP2004091228A JP2002251975A JP2002251975A JP2004091228A JP 2004091228 A JP2004091228 A JP 2004091228A JP 2002251975 A JP2002251975 A JP 2002251975A JP 2002251975 A JP2002251975 A JP 2002251975A JP 2004091228 A JP2004091228 A JP 2004091228A
Authority
JP
Japan
Prior art keywords
silicon carbide
thin film
substrate
impurity
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002251975A
Other languages
Japanese (ja)
Other versions
JP4100669B2 (en
Inventor
Hiroyuki Fujisawa
藤澤 広幸
Shunsuke Izumi
和泉 俊介
Takeshi Tawara
俵 武志
Katsunori Ueno
上野 勝典
Mutsuhisa Hiraoka
平岡 睦久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002251975A priority Critical patent/JP4100669B2/en
Publication of JP2004091228A publication Critical patent/JP2004091228A/en
Application granted granted Critical
Publication of JP4100669B2 publication Critical patent/JP4100669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of selectively crystal-growing a silicon carbide thin film on a silicon carbide substrate. <P>SOLUTION: A silicon carbide crystal substrate (2) of the upper side on which the silicon carbide thin film is formed and a silicon carbide substrate (3) of the lower side are brought into contact with each other substrate surface, arranged in a crucible (1) and heat treated to form the silicon carbide thin film on the silicon carbide substrate (2) of another side using the silicon carbide crystal substrate (3) of one side as a raw material. Further, projecting and recessed parts are previously formed on the substrate (3) of the lower side to be provided with a part which is brought into contact with the upper side substrate (2) and a part which is not brought into contact with the upper side substrate (2) and the silicon carbide thin film is selectively crystal-grown only on the part which is brought into contact with upper side substrate (2) or a impurity source is previously provided and a thin film into which the impurity is introduced is formed on the upper side substrate (2). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、炭化珪素薄膜の形成方法および熱処理方法に関し、より詳細には、炭化珪素基板上に炭化珪素薄膜を選択的に結晶成長させるための薄膜形成方法、および、炭化珪素半導体中の不純物を所望の濃度で分布させるための熱処理方法に関する。
【0002】
【従来の技術】
シリコンに代わる次世代半導体材料の1つとして炭化珪素(SiC)が注目されている。炭化珪素は、シリコンに比較して、バンドギャップと飽和ドリフトが大きく、熱伝導度が高く、絶縁破壊電界強度も1桁大きいなど、物性面で優れ、高温センサ、高周波デバイス、パワーデバイスなどの半導体装置の材料として期待されている。
【0003】
炭化珪素半導体デバイスの製造には、炭化珪素基板上に炭化珪素薄膜を所望の領域に結晶成長させる技術、および、炭化珪素半導体中の不純物を所望の濃度で分布させる技術の開発が不可欠である。
【0004】
このうち、炭化珪素基板上に炭化珪素薄膜を所望の領域に結晶成長させる技術に関しては、例えば、炭化珪素結晶基板上の薄膜中に第1の導電型または第2の導電型をもつ不純物領域を部分的に形成するための炭化珪素結晶基板の作製方法として、R.C.Glassらによる報告がある(phys. stat. sol.(b),202,149(1997))。
【0005】
また、化学的気相成長により炭化珪素薄膜を基板全面に堆積させ、この薄膜を部分的にエッチングして不純物領域を形成する方法も提案されており、反応性イオンエッチング法を用いた例としては、P.H.Yihらによる報告がある(phys. stat. sol.(b),202,605(1997))。
【0006】
さらに、特開平11−16840号公報には、基板上に予めSiOマスクを形成しておき、このマスク領域以外の部分にp型炭化珪素薄膜を選択的に成長させるという発明が開示されている。
【0007】
また、炭化珪素半導体中の不純物を所望の濃度で分布させる方法に関しては、炭化珪素結晶中での不純物の拡散係数が小さく拡散により炭化珪素結晶に不純物領域を選択的に形成することは困難であることから、炭化珪素結晶基板上に形成した薄膜中に不純物領域を形成するに際してイオン注入法によりイオンを結晶中に注入しその後高温熱処理を施すことで注入イオンを活性化するという方法を用いるのが一般的であり(例えば、T.Trofferら、phys. stat. sol.(a),162,277(1997))、この方法では、p型不純物としてのアルミやボロン、n型不純物としての窒素などの元素をイオン打ち込みし、1700℃程度の温度で熱処理することで活性化させる。
【0008】
図5は、従来の熱処理方法を説明するための図で、不純物注入領域55を有する炭化珪素エピタキシャル層54が炭化珪素基板53上に形成された炭化珪素ウエハ56を、不純物注入領域55が上向きになるように炭化珪素製の坩堝51の中に配置し、坩堝蓋52を閉じた状態でアニール炉中で1700℃程度の加熱を行うことで不純物を活性化させている。
【0009】
【発明が解決しようとする課題】
しかしながら、エッチング法やSiOマスクを用いた選択成長法では、エッチングやパターニングのためのフォトプロセスが必要となり、製造プロセスが煩雑になるという問題がある。
【0010】
一方、特開2000−1399号公報には、種結晶となるα―SiC単結晶基板上に結晶成長原料を部分的に接触させ、α―SiC単結晶基板を下側、原料を上側として「重ね合わせ配置」し、基板を低温側として原料との間に温度差をもたせ、この状態でSiC飽和蒸気圧の不活性ガス雰囲気中で2000〜2300℃で熱処理することで単結晶を成長させる方法が記載されているものの、選択成長方法についての開示はなされていない。
【0011】
また、特開2000−34197号公報には、α―SiC単結晶基板とβ−SiC多結晶基板とを両者の対向面が僅かに隙間を有するように平行配置させた状態で、α―SiC単結晶基板が低温側となるように温度勾配をもたせ、この状態でSiC飽和蒸気圧の不活性ガス雰囲気中で熱処理し、Si原子およびC原子を上述の微小隙間内に昇華・拡散させて単結晶を成長させるという発明が開示されているものの、選択成長方法については何ら開示がなされていない。
【0012】
さらに、Tanakaらによって炭化珪素基板を2枚重ね合わせる方法が提案されているが(Materials Science Forum Vol.389−393(2002),p.803)、この方法は、イオン注入後の活性化熱処理のために行う方法であり、この方法を実施した際の結晶表面のエッチング状態や膜の堆積状態についての知見は得られていない。
【0013】
また、従来の不純物活性化熱処理方法では、高温熱処理中にウエハ表面が荒れてしまうという問題に加え、ボロン等の比較的軽い元素が熱処理中にウエハ表面から外方拡散してしまい、熱処理後の不純物濃度がイオン注入時の濃度よりも減少してして設計値どおりの不純物分布を得ることが困難であるという問題がある。
【0014】
図6は、ボロンを230keVのエネルギでイオン注入した後の注入直後のボロン濃度分布と、1700℃30分の熱処理を施した後のボロン濃度分布を2次イオン質量分析装置(SIMS)で分析した結果を示す図で、この例では、約30%ものボロンが結晶外へと外報拡散していることが確認できる。
【0015】
このうち、「表面荒れ」問題については、高温熱処理時に炭化珪素ウエハ上にダミーの炭化珪素ウエハを載せるという方法が提案されている(H.Tanaka,Technical Digest of ICSCRM2001,pp.442−443(2001))ものの、「外方拡散」問題については有効な解決策は提案されていない。
【0016】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、イオン注入やSiOマスク形成やエッチングといった複雑なプロセスを必要とすることなく炭化珪素基板上に簡便に炭化珪素薄膜を選択的に結晶成長させるための方法、および、イオン注入後の不純物の外方拡散を抑制して設計値どおりの不純物分布を実現する熱処理方法を提供することにある。
【0017】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、炭化珪素薄膜の形成方法であって、第1の炭化珪素結晶基板上に予め炭化珪素薄膜を成長させ、当該炭化珪素薄膜を第2の炭化珪素結晶基板表面に接触させた状態で炭化珪素坩堝内に配置し、前記第1の炭化珪素結晶基板が低温側、前記第2の炭化珪素結晶基板が高温側となるように温度勾配を設け、前記第2の炭化珪素結晶基板を炭化珪素の昇華温度以上に加熱し、当該第2の炭化珪素結晶基板側から昇華した炭化珪素を前記第1の炭化珪素結晶基板上の炭化珪素薄膜上に再結晶化させて成長させることを特徴とする。
【0018】
また、請求項2に記載の発明は、請求項1に記載の炭化珪素薄膜の形成方法において、前記第2の炭化珪素結晶基板は凹凸をもった表面形状を有し、前記炭化珪素薄膜と前記第2の炭化珪素結晶基板とは当該凸領域でのみ接触し、当該接触領域にのみ炭化珪素薄膜を選択的に成長させることを特徴とする。
【0019】
また、請求項3に記載の発明は、請求項1または2に記載の炭化珪素薄膜の形成方法において、前記第2の炭化珪素結晶基板は、炭化珪素単結晶基板、炭化珪素多結晶基板、または、炭化珪素薄膜付基板の何れかであることを特徴とする。
【0020】
また、請求項4に記載の発明は、請求項1乃至3の何れかに記載の炭化珪素薄膜の形成方法において、前記炭化珪素坩堝内に所望の不純物源を設け、当該不純物源を加熱することにより、前記成長させる炭化珪素薄膜中に不純物をドーピングすることを特徴とする。
【0021】
また、請求項5に記載の発明は、請求項1乃至3の何れかに記載の炭化珪素薄膜の形成方法において、前記炭化珪素坩堝に予め所望の不純物を含有させ、当該炭化珪素坩堝を加熱することにより、前記成長させる炭化珪素薄膜中に不純物をドーピングすることを特徴とする。
【0022】
また、請求項6に記載の発明は、請求項1乃至3の何れかに記載の炭化珪素薄膜の形成方法において、前記第2の炭化珪素結晶基板中に予め所望の不純物を含有させ、前記成長させる炭化珪素薄膜中に不純物をドーピングすることを特徴とする。
【0023】
さらに、請求項7に記載の発明は、不純物活性化のための熱処理方法であって、第1および第2の2枚の炭化珪素結晶基板上に、同一条件下でイオン注入された不純物注入領域を形成し、当該不純物注入領域同士が互いに一致するように接触させて炭化珪素坩堝内に配置し、前記第1および第2の炭化珪素結晶基板の不純物注入領域間に温度勾配が生じない加熱条件下で、前記不純物領域の活性化温度以上の温度で熱処理を施すことを特徴とする。
【0024】
【発明の実施の形態】
以下に、図面を参照して本発明の実施の形態について説明する。
[炭化珪素薄膜の形成方法]
(実施例1)
図1は、本発明の炭化珪素薄膜の形成方法を説明するための概念図で、図1(a)は上面図、図1(b)は断面図である。この炭化珪素薄膜の形成方法では、炭化珪素薄膜付の2枚の炭化珪素結晶基板(2、3)同士を互いの炭化珪素薄膜面が接するように向かい合わせた状態で坩堝(1)内に配置させて熱処理し、一方の炭化珪素結晶基板を原料として他方の炭化珪素基板上に炭化珪素薄膜を形成させる。
【0025】
図中、1は多結晶炭化珪素からなる蓋付坩堝、2は上側の炭化珪素基板、3は下側の炭化珪素基板であり、これらの炭化珪素基板は、ドーパント濃度5.9×1015cm−3、厚み10μmのn型炭化珪素エピタキシャル層を成長させたn型4H−SiC基板である。
【0026】
なお、ここに示した例では、本発明の薄膜形成方法で得られる炭化珪素薄膜の平坦性を確認する目的で、2枚の基板(2、3)を意図的にずらして配置させており、図中のTCとTUおよびBCとBUは、各々、上側の炭化珪素基板の重なり部分と非重なり部分、および、下側の炭化珪素基板の重なり部分と非重なり部分を示している。
【0027】
この配置で坩堝1ごと熱処理炉にいれてタングステンヒータにより加熱を行い、Arガス雰囲気中1700℃で30分間の熱処理を施した。熱処理後の基板(2、3)を観察すると、上述のTCとTUとの境界領域、および、BCとBUとの境界領域には共に段差が認められ、上側基板(2)では、TC部がTU部に比較して100nm程度高くなっている一方、下側基板(3)では、BC部がBU部に比較して100nm程度低くなっていた。すなわち、上述の熱処理過程において、下側基板(3)から昇華した炭化珪素が上側基板(2)のTC部に堆積して結晶成長が進行していることが明らかとなった。
【0028】
これは、熱処理中は、下側基板(3)は坩堝(1)からの熱伝導と放射熱で加熱されるのに対して、上側基板(2)は放射熱のみで加熱されることとなるため、上側基板(2)の温度は下側基板(3)の温度に比べて低くなり、下側基板(3)のBC部から昇華した炭化珪素が原料となり上側基板(2)のTC部に炭化珪素として堆積することによるものと解釈される。
【0029】
表1は、これらの基板の熱処理前後での表面平坦性の程度(Ra)を原子間力顕微鏡(AFM)で測定した結果である。
【0030】
【表1】

Figure 2004091228
【0031】
TU、BC、BUの各領域の表面は熱処理中の炭化珪素の昇華により大きく荒れているのに対し、熱処理中に結晶成長が進行した上側基板のTC部の平坦度は熱処理前と同等の平坦度を維持しており、極めて平坦な炭化珪素薄膜が得られていることが分る。
【0032】
(実施例2)
ドーパント濃度5.9×1015cm−3、厚み10μmのn型炭化珪素エピタキシャル層を成長させたn型4H−SiC基板を2枚用い、アルミ不純物を1016cm−3混入させた坩堝中に配置し、実施例1と同様の熱処理を実行して薄膜形成を行なった。段差計による評価により、基板の重なり部分に約100nmの炭化珪素薄膜が形成されていることが確認された。
【0033】
図2は、このようにして得られた上側基板の重なり部分(TC)の薄膜を、SIMSを用いてAl不純物の深さ方向での分布を評価した結果を説明するための図である。
【0034】
この図に示すように、TC部でのアルミ濃度は1018cm−3で深さは100nmであり、その他の部分(TU、BC、BU)からはアルミ不純物は検出されなかった。このことから、アルミ不純物を含む炭化珪素薄膜が、下側基板と接触した部分にのみ選択的に形成されたことが確認できる。
【0035】
なお、本実施例では炭化珪素坩堝自身に不純物を予め含有させることとしているが、炭化珪素坩堝内に所望の不純物源を設けることとしてもよいことは言うまでもない。
【0036】
(実施例3)
ドーパント濃度5.9×1015cm−3、厚み10μmのn型炭化珪素エピタキシャル層を成長させたn型4H−SiC基板を上側基板とし、アルミ不純物濃度1×1018cm−3、厚み1μmのn型炭化珪素エピタキシャル層を成長させたn型4H−SiC基板を下側基板として重ね合わせた状態で実施例1と同様の熱処理を行い、得られた薄膜のアルミ不純物分布の様子をSIMSにより評価した。
【0037】
その結果は、図2に示したものとほぼ同様であり、アルミ濃度1018cm−3で厚み100nmの炭化珪素薄膜の形成が確認された。
【0038】
なお、所望により、下側基板にもアルミ不純物を添加させておくこととしてもよい。
【0039】
(実施例4)
下側の基板に、機械的研磨または物理的化学的エッチングにより、予め1μm以上の凹凸を形成させ、上側の基板に接触する部分と接触しない部分とを設けて重ね合わせ配置し、実施例1と同様の熱処理を実施して薄膜形成を行なった。この場合、炭化珪素薄膜同士は凸領域でのみ接触することとなる。
【0040】
炭化珪素薄膜の形成は、下側基板に接触していた上側基板領域にのみ認められ、この部分に炭化珪素薄膜が選択的に形成されたことが確認された。
【0041】
なお、下側基板表面の凹凸の程度に特に制限はなく、選択成長させたい領域に応じて設定が可能であるが、凹凸レベルが0.1μm以下の場合には凹部での上側基板との間隔が狭くなりすぎてこの凹部においても薄膜成長が進行しやすくなるため、0.1μm以上の凹凸をもたせることが好ましく、微細パターンの形成を特別に要しない場合には、100μm以上とすることがより好ましい。
【0042】
また、熱処理温度を変化させて同様の薄膜形成を実施した結果、1700〜2000℃の熱処理温度範囲で上記と同様に選択的な薄膜形成が確認された。なお、熱処理温度が2000℃を越える場合には、基板間の非接触部分にも結晶成長が進行して選択性が低下し、1700℃を下回る温度では充分な結晶成長速度が得られないことも確認された。従って、本発明の炭化珪素薄膜の形成方法においては、1700〜2000℃の熱処理温度が好ましい。
【0043】
なお、これまでの実施例では、下側基板を薄膜を形成させた単結晶基板であるものとして説明したが、多結晶基板でもよく、更には、その表面に薄膜を有しないベアの基板であってもよい。
【0044】
[不純物活性化熱処理方法]
(実施例5)
図3は、本発明の不純物活性化のための第1の熱処理方法を説明するための図で、ここに示した例では、n型炭化珪素基板33の上にn型炭化珪素エピタキシャル層34を成長させ、不純物注入領域35を有する第1の炭化珪素ウエハ38と、上記不純物注入領域35に注入した不純物と同じ不純物を同濃度に注入した不純物注入領域36を有する第2の炭化珪素ウエハ37を用意し、これらの不純物注入領域35、36同士の位置を合わせて接触させ、炭化珪素製の坩堝31内に配置し、この状態で炭化珪素製の坩堝蓋32を閉めて密閉し、第1および第2の炭化珪素ウエハ(38、37)の不純物注入領域(35、36)間に温度勾配が生じない加熱条件下で、Ar雰囲気中で、不純物活性化温度以上の1700℃30分の高温熱処理を行う。
【0045】
なお、ここで、第1および第2の炭化珪素ウエハ(38、37)の不純物注入領域(35、36)間に温度勾配が生じない加熱条件とするのは、これらの領域間に温度勾配が生じると、一方の領域から他方の領域への物質移動が生じ易くなり、所望の不純物分布が得られなくなるためである。このように不純物注入領域間に温度勾配が生じないようにするためには、図3に示すように、坩堝蓋側の炭化珪素ウエハを坩堝蓋に接触させ、坩堝の底に接触している下側の炭化珪素ウエハと同様の加熱環境とすることが有効である。
【0046】
図5に示した従来のウエハ配置とすれば、不純物注入領域55から炭化珪素ウエハ56の外部に向けて不純物が外方拡散して不純物濃度が低下するのに対し、図3に示す本発明のウエハ配置では、同一元素をどう濃度で注入された不純物注入領域35、36同士が互いに接触しているために、各々のウエハの外部への不純物濃度勾配が緩やかとなって不純物が外方拡散し難くなり、その結果、高温熱処理中での不純物の現象が抑制されることとなる。
【0047】
なお、本実施例では、熱処理温度が1700℃の場合について説明したが、1600〜1800℃の温度範囲で同様の効果が認められた。
【0048】
また、不純物注入領域が複数ある場合には、図4に示すように、対応する各不純物注入領域同士(35と36、35´と36´)を位置合わせして接触させるように配置させればよい。
【0049】
不純物注入領域同士を位置合わせせずに配置して熱処理を行うと、不純物注入領域から、その領域に接触している不純物非注入領域へと不純物が拡散して表面を汚染させる結果となることはいうまでもない。
【0050】
なお、本発明の熱処理方法においては、2つのウエハの不純物注入領域同士が接触していることが必要なのであって、その他の領域は必ずしも接触している必要はない。
【0051】
【発明の効果】
以上説明したように、本発明の薄膜形成方法によれば、炭化珪素薄膜付の一方の炭化珪素結晶基板を上側とし、他方の炭化珪素結晶基板を下側として、これらの基板面同士を接触させた状態で坩堝内に配置させて熱処理し、後者の炭化珪素結晶基板を原料として前者の炭化珪素基板上に炭化珪素薄膜を形成させるようにした。また、下側の基板(原料)に予め凹凸を形成し、上の基板(成長基板)に接触する部分と接触しない部分とを設けることにより、接触した部分にのみ炭化珪素薄膜を選択的に成長させたり、予め不純物源を設置することにより上の基板に不純物を導入した薄膜を形成するようにした。
【0052】
このような構成とすることにより、炭化珪素基板上に炭化珪素薄膜を選択的に結晶成長させるための方法を提供することが可能となる。
【0053】
また、本発明の不純物活性化のための熱処理方法によれば、2枚のウエハの、同一の不純物を同濃度で注入された不純物注入領域同士を接触させるように配置して熱処理を実行することとしたので、不純物の外方拡散が抑制されてイオン注入後の不純物濃度の減少を防止することが可能となる。
【図面の簡単な説明】
【図1】本発明の炭化珪素薄膜の形成方法を説明するための概念図である。
【図2】本発明の炭化珪素薄膜の形成方法により得られた薄膜を、2次イオン質量分析装置を用いてAl不純物分布評価した結果を説明するための図である。
【図3】本発明の不純物活性化のための第1の熱処理方法を説明するための図である。
【図4】本発明の不純物活性化のための第2の熱処理方法を説明するための図である。
【図5】従来の不純物活性化熱処理方法を説明するための図である。
【図6】従来の不純物活性化熱処理前後でのボロン濃度分布のSIMS分析結果を説明するための図である。
【符号の説明】
1 多結晶炭化珪素からなる蓋付坩堝
2 上側の炭化珪素基板
3 下側の炭化珪素基板
TC 上側の炭化珪素基板の重なり部分
TU 上側の炭素基板の非重なり部分
BC 下側の炭化珪素基板の重なり部分
BU 下側の炭化珪素基板の非重なり部分
31、51 坩堝
32、52 坩堝蓋
33 n型炭化珪素基板
34 n型炭化珪素エピタキシャル層
35、36、35´、36´、55 不純物注入領域
36 不純物領域
37 第2の炭化珪素ウエハ
38 第1の炭化珪素ウエハ
53 炭化珪素基板
54 炭化珪素エピタキシャル層
56 炭化珪素ウエハ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for forming a silicon carbide thin film and a heat treatment method, and more particularly, to a method for forming a thin film for selectively growing a silicon carbide thin film on a silicon carbide substrate, and a method for removing impurities in a silicon carbide semiconductor. The present invention relates to a heat treatment method for distributing at a desired concentration.
[0002]
[Prior art]
Silicon carbide (SiC) has attracted attention as one of the next-generation semiconductor materials replacing silicon. Silicon carbide has superior physical properties, such as higher band gap and saturation drift, higher thermal conductivity, and an order of magnitude higher dielectric breakdown electric field strength than silicon, and semiconductors such as high-temperature sensors, high-frequency devices, and power devices. It is expected as a material for equipment.
[0003]
In manufacturing a silicon carbide semiconductor device, it is essential to develop a technique for growing a silicon carbide thin film on a silicon carbide substrate in a desired region and a technique for distributing impurities in a silicon carbide semiconductor at a desired concentration.
[0004]
Among them, with respect to a technique for growing a silicon carbide thin film on a silicon carbide substrate in a desired region, for example, an impurity region having a first conductivity type or a second conductivity type is formed in a thin film on a silicon carbide crystal substrate. As a method for manufacturing a silicon carbide crystal substrate for partial formation, R.S. C. There is a report by Glass et al. (Phys. Stat. Sol. (B), 202, 149 (1997)).
[0005]
Further, a method of depositing a silicon carbide thin film on the entire surface of a substrate by chemical vapor deposition and partially etching the thin film to form an impurity region has also been proposed. An example using a reactive ion etching method is as follows. , P. H. Yih et al. (Phys. Stat. Sol. (B), 202, 605 (1997)).
[0006]
Further, Japanese Patent Application Laid-Open No. H11-16840 discloses an invention in which an SiO 2 mask is formed in advance on a substrate, and a p-type silicon carbide thin film is selectively grown in a portion other than the mask region. .
[0007]
Further, with respect to a method for distributing impurities in a silicon carbide semiconductor at a desired concentration, it is difficult to selectively form an impurity region in silicon carbide crystal by diffusion because the diffusion coefficient of the impurity in the silicon carbide crystal is small. Therefore, when forming an impurity region in a thin film formed on a silicon carbide crystal substrate, it is necessary to use a method in which ions are implanted into a crystal by an ion implantation method and then a high-temperature heat treatment is performed to activate the implanted ions. This method is common (for example, T. Troffe et al., Phys. Stat. Sol. (A), 162, 277 (1997)), and in this method, aluminum or boron as a p-type impurity, nitrogen as an n-type impurity, or the like is used. Is ion-implanted and heat-treated at a temperature of about 1700 ° C. for activation.
[0008]
FIG. 5 is a view for explaining a conventional heat treatment method, in which a silicon carbide wafer 56 in which a silicon carbide epitaxial layer 54 having an impurity implantation region 55 is formed on a silicon carbide substrate 53 is placed with the impurity implantation region 55 facing upward. Thus, the impurities are activated by placing them in a crucible 51 made of silicon carbide and heating at about 1700 ° C. in an annealing furnace with the crucible lid 52 closed.
[0009]
[Problems to be solved by the invention]
However, the etching method or the selective growth method using a SiO 2 mask requires a photo process for etching and patterning, and has a problem that the manufacturing process becomes complicated.
[0010]
On the other hand, Japanese Patent Application Laid-Open No. 2000-1399 discloses that a crystal growth raw material is partially contacted on an α-SiC single crystal substrate serving as a seed crystal, and the α-SiC single crystal substrate is on the lower side and the raw material is on the upper side. A method of growing a single crystal by performing a heat treatment at 2000 to 2300 ° C. in an inert gas atmosphere having a saturated vapor pressure of SiC in this state with a temperature difference between the raw material and the substrate at a low temperature side. Although described, there is no disclosure of a selective growth method.
[0011]
Japanese Patent Application Laid-Open No. 2000-34197 discloses an α-SiC single crystal substrate in which an α-SiC single crystal substrate and a β-SiC polycrystal substrate are arranged in parallel so that their opposing surfaces have a slight gap. A temperature gradient is provided so that the crystal substrate is on the low temperature side, and a heat treatment is performed in this state in an inert gas atmosphere having a saturated vapor pressure of SiC to sublimate and diffuse Si atoms and C atoms into the minute gaps described above to form a single crystal. Although there is disclosed an invention that grows, there is no disclosure of a selective growth method.
[0012]
Further, Tanaka et al. Have proposed a method of superposing two silicon carbide substrates (Materials Science Forum Vol. 389-393 (2002), p. 803). However, no knowledge has been obtained on the etching state of the crystal surface or the deposition state of the film when this method is performed.
[0013]
Further, in the conventional impurity activation heat treatment method, in addition to the problem that the wafer surface is roughened during the high-temperature heat treatment, a relatively light element such as boron diffuses outward from the wafer surface during the heat treatment. There is a problem that the impurity concentration is lower than that at the time of ion implantation, and it is difficult to obtain an impurity distribution as designed.
[0014]
FIG. 6 shows the results of analyzing a boron concentration distribution immediately after implantation of boron at an energy of 230 keV and a boron concentration distribution after heat treatment at 1700 ° C. for 30 minutes using a secondary ion mass spectrometer (SIMS). In the figure showing the results, in this example, it can be confirmed that about 30% of boron is diffused outside the crystal.
[0015]
Among them, with respect to the problem of “surface roughness”, a method of mounting a dummy silicon carbide wafer on a silicon carbide wafer during high-temperature heat treatment has been proposed (H. Tanaka, Technical Digest of ICSCRM 2001, pp. 442-443 (2001)). )) However, no effective solution has been proposed for the "outward diffusion" problem.
[0016]
The present invention has been made in view of such a problem, and an object of the present invention is to easily perform carbonization on a silicon carbide substrate without requiring complicated processes such as ion implantation, SiO 2 mask formation and etching. An object of the present invention is to provide a method for selectively growing a crystal of a silicon thin film and a heat treatment method for realizing an impurity distribution as designed by suppressing outward diffusion of impurities after ion implantation.
[0017]
[Means for Solving the Problems]
In order to achieve such an object, the present invention provides a method for forming a silicon carbide thin film, comprising: growing a silicon carbide thin film on a first silicon carbide crystal substrate in advance; The silicon carbide thin film is placed in a silicon carbide crucible in a state of being in contact with the surface of the second silicon carbide crystal substrate, and the first silicon carbide crystal substrate is on the low temperature side, and the second silicon carbide crystal substrate is on the high temperature side. The second silicon carbide crystal substrate is heated to a temperature equal to or higher than the sublimation temperature of silicon carbide, and the silicon carbide sublimated from the second silicon carbide crystal substrate side is converted into the first silicon carbide crystal. It is characterized in that it is recrystallized and grown on a silicon carbide thin film on a substrate.
[0018]
Further, according to a second aspect of the present invention, in the method for forming a silicon carbide thin film according to the first aspect, the second silicon carbide crystal substrate has a surface shape having irregularities, and The second silicon carbide crystal substrate is contacted only at the convex region, and a silicon carbide thin film is selectively grown only at the contact region.
[0019]
According to a third aspect of the present invention, in the method of forming a silicon carbide thin film according to the first or second aspect, the second silicon carbide crystal substrate is a silicon carbide single crystal substrate, a silicon carbide polycrystal substrate, or Or a substrate with a silicon carbide thin film.
[0020]
According to a fourth aspect of the present invention, in the method for forming a silicon carbide thin film according to any one of the first to third aspects, a desired impurity source is provided in the silicon carbide crucible, and the impurity source is heated. Thus, an impurity is doped into the silicon carbide thin film to be grown.
[0021]
According to a fifth aspect of the present invention, in the method for forming a silicon carbide thin film according to any one of the first to third aspects, the silicon carbide crucible is made to contain a desired impurity in advance, and the silicon carbide crucible is heated. Thereby, an impurity is doped into the silicon carbide thin film to be grown.
[0022]
According to a sixth aspect of the present invention, in the method of forming a silicon carbide thin film according to any one of the first to third aspects, a desired impurity is contained in the second silicon carbide crystal substrate in advance, and the growth is performed. The silicon carbide thin film to be doped is doped with impurities.
[0023]
Further, the invention according to claim 7 is a heat treatment method for activating impurities, wherein an impurity-implanted region is ion-implanted under the same conditions on the first and second two silicon carbide crystal substrates. Are formed in a silicon carbide crucible such that the impurity-implanted regions are brought into contact with each other so as to coincide with each other, and heating conditions under which a temperature gradient does not occur between the impurity-implanted regions of the first and second silicon carbide crystal substrates. The heat treatment is performed at a temperature equal to or higher than the activation temperature of the impurity region.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
[Method of forming silicon carbide thin film]
(Example 1)
FIG. 1 is a conceptual diagram for explaining a method of forming a silicon carbide thin film according to the present invention. FIG. 1 (a) is a top view and FIG. 1 (b) is a cross-sectional view. In this method for forming a silicon carbide thin film, two silicon carbide crystal substrates (2, 3) with a silicon carbide thin film are arranged in a crucible (1) in a state where the two silicon carbide thin films face each other so as to be in contact with each other. Then, heat treatment is performed to form a silicon carbide thin film on one silicon carbide crystal substrate using the other silicon carbide crystal substrate as a raw material.
[0025]
In the figure, 1 is a crucible with a lid made of polycrystalline silicon carbide, 2 is an upper silicon carbide substrate, 3 is a lower silicon carbide substrate, and these silicon carbide substrates have a dopant concentration of 5.9 × 10 15 cm. -3 , an n-type 4H-SiC substrate on which an n-type silicon carbide epitaxial layer having a thickness of 10 μm was grown.
[0026]
In the example shown here, the two substrates (2, 3) are intentionally shifted from each other in order to confirm the flatness of the silicon carbide thin film obtained by the thin film forming method of the present invention, In the figure, TC and TU and BC and BU respectively indicate an overlapping portion and a non-overlapping portion of the upper silicon carbide substrate and an overlapping portion and a non-overlapping portion of the lower silicon carbide substrate.
[0027]
In this arrangement, the crucible 1 was put into a heat treatment furnace and heated by a tungsten heater, and heat treatment was performed at 1700 ° C. for 30 minutes in an Ar gas atmosphere. When the substrates (2, 3) after the heat treatment are observed, steps are recognized in both the boundary region between TC and TU and the boundary region between BC and BU, and the TC portion is formed in the upper substrate (2). On the other hand, in the lower substrate (3), the BC part was lower by about 100 nm than the TU part, while it was higher by about 100 nm than the TU part. That is, in the above-described heat treatment process, it was clarified that silicon carbide sublimated from the lower substrate (3) was deposited on the TC portion of the upper substrate (2) and crystal growth was progressing.
[0028]
This means that during the heat treatment, the lower substrate (3) is heated by heat conduction and radiant heat from the crucible (1), while the upper substrate (2) is heated only by radiant heat. Therefore, the temperature of the upper substrate (2) is lower than the temperature of the lower substrate (3), and silicon carbide sublimated from the BC portion of the lower substrate (3) becomes a raw material to the TC portion of the upper substrate (2). This is interpreted as being due to deposition as silicon carbide.
[0029]
Table 1 shows the results of measurement of the degree of surface flatness (Ra) of these substrates before and after heat treatment with an atomic force microscope (AFM).
[0030]
[Table 1]
Figure 2004091228
[0031]
The surface of each of the TU, BC, and BU regions is largely roughened by the sublimation of silicon carbide during the heat treatment, whereas the flatness of the TC portion of the upper substrate where crystal growth has progressed during the heat treatment is the same as that before the heat treatment. It can be seen that an extremely flat silicon carbide thin film was obtained.
[0032]
(Example 2)
Two n-type 4H-SiC substrates on which an n-type silicon carbide epitaxial layer having a dopant concentration of 5.9 × 10 15 cm −3 and a thickness of 10 μm were grown were placed in a crucible into which aluminum impurities were mixed at 10 16 cm −3. The thin film was formed by arranging and performing the same heat treatment as in Example 1. Evaluation by a step gauge confirmed that a silicon carbide thin film of about 100 nm was formed in the overlapping portion of the substrates.
[0033]
FIG. 2 is a view for explaining the result of evaluating the distribution of Al impurities in the depth direction of the thin film at the overlapping portion (TC) of the upper substrate obtained by using SIMS.
[0034]
As shown in this figure, the aluminum concentration in the TC portion was 10 18 cm −3 and the depth was 100 nm, and no aluminum impurities were detected from the other portions (TU, BC, BU). From this, it can be confirmed that the silicon carbide thin film containing the aluminum impurity was selectively formed only in the portion in contact with the lower substrate.
[0035]
In this embodiment, the silicon carbide crucible itself contains impurities in advance, but it goes without saying that a desired impurity source may be provided in the silicon carbide crucible.
[0036]
(Example 3)
An n-type 4H-SiC substrate on which an n-type silicon carbide epitaxial layer having a dopant concentration of 5.9 × 10 15 cm −3 and a thickness of 10 μm was grown was used as an upper substrate, and an aluminum impurity concentration of 1 × 10 18 cm −3 and a thickness of 1 μm was used. The same heat treatment as in Example 1 was performed in a state where the n-type 4H-SiC substrate on which the n-type silicon carbide epitaxial layer was grown was stacked as a lower substrate, and the state of aluminum impurity distribution in the obtained thin film was evaluated by SIMS. did.
[0037]
The results are almost the same as those shown in FIG. 2, and it was confirmed that a silicon carbide thin film having a thickness of 100 nm and an aluminum concentration of 10 18 cm −3 was formed.
[0038]
If desired, the lower substrate may be doped with aluminum impurities.
[0039]
(Example 4)
On the lower substrate, irregularities of 1 μm or more are formed in advance by mechanical polishing or physical chemical etching, and a portion that is in contact with the upper substrate and a portion that is not in contact with the upper substrate are provided and arranged in a superposed manner. The same heat treatment was performed to form a thin film. In this case, the silicon carbide thin films come into contact only in the convex region.
[0040]
The formation of the silicon carbide thin film was observed only in the upper substrate region in contact with the lower substrate, and it was confirmed that the silicon carbide thin film was selectively formed in this portion.
[0041]
It should be noted that there is no particular limitation on the degree of the irregularities on the surface of the lower substrate, and it is possible to set according to the region to be selectively grown. Is too narrow, and the thin film growth easily proceeds in this concave portion. Therefore, it is preferable to provide irregularities of 0.1 μm or more, and when it is not particularly necessary to form a fine pattern, it is more preferable that the thickness be 100 μm or more. preferable.
[0042]
In addition, as a result of performing similar thin film formation while changing the heat treatment temperature, selective thin film formation was confirmed in the heat treatment temperature range of 1700 to 2000 ° C. in the same manner as described above. If the heat treatment temperature is higher than 2000 ° C., the crystal growth proceeds in the non-contact portion between the substrates and the selectivity is reduced. If the temperature is lower than 1700 ° C., a sufficient crystal growth rate may not be obtained. confirmed. Therefore, in the method for forming a silicon carbide thin film of the present invention, a heat treatment temperature of 1700 to 2000 ° C. is preferable.
[0043]
In the embodiments described above, the lower substrate is described as a single-crystal substrate on which a thin film is formed. However, a polycrystalline substrate may be used, and further, a bare substrate having no thin film on its surface may be used. You may.
[0044]
[Impurity activation heat treatment method]
(Example 5)
FIG. 3 is a diagram for explaining a first heat treatment method for activating impurities according to the present invention. In the example shown here, an n -type silicon carbide epitaxial layer is formed on an n + -type silicon carbide substrate 33. 34, a first silicon carbide wafer 38 having an impurity implanted region 35 and a second silicon carbide wafer having an impurity implanted region 36 implanted at the same concentration as the impurity implanted into the impurity implanted region 35. 37, these impurity-implanted regions 35, 36 are aligned and contacted with each other, placed in the silicon carbide crucible 31, and in this state, the silicon carbide crucible lid 32 is closed and sealed. Under a heating condition in which a temperature gradient does not occur between the impurity implanted regions (35, 36) of the first and second silicon carbide wafers (38, 37), in an Ar atmosphere, 1700 ° C. for 30 minutes or more, which is higher than the impurity activation temperature. High temperature heat Carry out the management.
[0045]
Here, the heating conditions under which a temperature gradient does not occur between the impurity-implanted regions (35, 36) of the first and second silicon carbide wafers (38, 37) are that a temperature gradient exists between these regions. If this occurs, mass transfer from one region to the other region is likely to occur, and a desired impurity distribution cannot be obtained. As shown in FIG. 3, in order to prevent a temperature gradient from occurring between the impurity-implanted regions, the silicon carbide wafer on the crucible lid side is brought into contact with the crucible lid, and the lower part is in contact with the bottom of the crucible. It is effective to make the heating environment similar to that of the silicon carbide wafer on the side.
[0046]
According to the conventional wafer arrangement shown in FIG. 5, impurities are diffused outward from impurity implantation region 55 to the outside of silicon carbide wafer 56 to lower the impurity concentration, whereas the impurity concentration of the present invention shown in FIG. In the wafer arrangement, the impurity implantation regions 35 and 36 in which the same element is implanted at the same concentration are in contact with each other, so that the impurity concentration gradient to the outside of each wafer becomes gentle and impurities diffuse outward. As a result, the phenomenon of impurities during the high-temperature heat treatment is suppressed.
[0047]
In this example, the case where the heat treatment temperature was 1700 ° C. was described, but the same effect was observed in the temperature range of 1600 to 1800 ° C.
[0048]
In the case where there are a plurality of impurity-implanted regions, as shown in FIG. 4, the corresponding impurity-implanted regions (35 and 36, 35 'and 36') may be positioned and brought into contact with each other. Good.
[0049]
If the heat treatment is performed by disposing the impurity-implanted regions without being aligned with each other, the impurities may diffuse from the impurity-implanted regions to the impurity-non-implanted regions that are in contact with the regions, resulting in contamination of the surface. Needless to say.
[0050]
In the heat treatment method of the present invention, the impurity implantation regions of the two wafers need to be in contact with each other, and the other regions need not necessarily be in contact.
[0051]
【The invention's effect】
As described above, according to the thin film forming method of the present invention, one silicon carbide crystal substrate with a silicon carbide thin film is set to the upper side, and the other silicon carbide crystal substrate is set to the lower side, and these substrate surfaces are brought into contact with each other. In this state, the substrate was placed in a crucible and heat-treated to form a silicon carbide thin film on the former silicon carbide substrate using the latter silicon carbide crystal substrate as a raw material. Also, by forming in advance a concave and convex portion on the lower substrate (raw material) and providing a portion that contacts the upper substrate (growth substrate) and a portion that does not contact, a silicon carbide thin film is selectively grown only on the contact portion. Alternatively, a thin film in which an impurity is introduced is formed on the upper substrate by providing an impurity source in advance.
[0052]
With such a structure, it is possible to provide a method for selectively growing a silicon carbide thin film on a silicon carbide substrate.
[0053]
Further, according to the heat treatment method for activating impurities according to the present invention, the heat treatment is performed by arranging the two wafers so that the impurity implanted regions of the same concentration implanted with the same impurity are brought into contact with each other. Therefore, outward diffusion of impurities is suppressed, and it is possible to prevent a decrease in impurity concentration after ion implantation.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram for describing a method for forming a silicon carbide thin film according to the present invention.
FIG. 2 is a diagram for explaining the results of Al impurity distribution evaluation of a thin film obtained by the method of forming a silicon carbide thin film of the present invention using a secondary ion mass spectrometer.
FIG. 3 is a view for explaining a first heat treatment method for activating impurities according to the present invention.
FIG. 4 is a view for explaining a second heat treatment method for activating impurities according to the present invention.
FIG. 5 is a view for explaining a conventional impurity activation heat treatment method.
FIG. 6 is a view for explaining a conventional SIMS analysis result of a boron concentration distribution before and after the impurity activation heat treatment.
[Explanation of symbols]
Reference Signs List 1 crucible with lid made of polycrystalline silicon carbide 2 upper silicon carbide substrate 3 lower silicon carbide substrate TC overlapping portion of upper silicon carbide substrate TU non-overlapping portion BC of upper carbon substrate overlapping of lower silicon carbide substrate Part BU Non-overlapping parts 31, 51 of the silicon carbide substrate below crucible 32, 52 Crucible lid 33 n + type silicon carbide substrate 34 n type silicon carbide epitaxial layers 35, 36, 35 ', 36', 55 Impurity implantation region 36 Impurity region 37 Second silicon carbide wafer 38 First silicon carbide wafer 53 Silicon carbide substrate 54 Silicon carbide epitaxial layer 56 Silicon carbide wafer

Claims (7)

第1の炭化珪素結晶基板上に予め炭化珪素薄膜を成長させ、
当該炭化珪素薄膜を第2の炭化珪素結晶基板表面に接触させた状態で炭化珪素坩堝内に配置し、
前記第1の炭化珪素結晶基板が低温側、前記第2の炭化珪素結晶基板が高温側となるように温度勾配を設け、
前記第2の炭化珪素結晶基板を炭化珪素の昇華温度以上に加熱し、
当該第2の炭化珪素結晶基板側から昇華した炭化珪素を前記第1の炭化珪素結晶基板上の炭化珪素薄膜上に再結晶化させて成長させることを特徴とする炭化珪素薄膜の形成方法。
Growing a silicon carbide thin film on the first silicon carbide crystal substrate in advance;
Placing the silicon carbide thin film in a silicon carbide crucible in a state of being in contact with the surface of the second silicon carbide crystal substrate;
Providing a temperature gradient such that the first silicon carbide crystal substrate is on the low temperature side and the second silicon carbide crystal substrate is on the high temperature side;
Heating the second silicon carbide crystal substrate above the sublimation temperature of silicon carbide;
A method for forming a silicon carbide thin film, characterized in that silicon carbide sublimated from the second silicon carbide crystal substrate side is recrystallized and grown on the silicon carbide thin film on the first silicon carbide crystal substrate.
前記第2の炭化珪素結晶基板は凹凸をもった表面形状を有し、
前記炭化珪素薄膜と前記第2の炭化珪素結晶基板とは当該凸領域でのみ接触し、
当該接触領域にのみ炭化珪素薄膜を選択的に成長させることを特徴とする請求項1に記載の炭化珪素薄膜の形成方法。
The second silicon carbide crystal substrate has an uneven surface shape,
The silicon carbide thin film and the second silicon carbide crystal substrate are in contact only in the convex region,
The method for forming a silicon carbide thin film according to claim 1, wherein the silicon carbide thin film is selectively grown only in the contact region.
前記第2の炭化珪素結晶基板は、炭化珪素単結晶基板、炭化珪素多結晶基板、または、炭化珪素薄膜付基板の何れかであることを特徴とする請求項1または2に記載の炭化珪素薄膜の形成方法。3. The silicon carbide thin film according to claim 1, wherein the second silicon carbide crystal substrate is any one of a silicon carbide single crystal substrate, a silicon carbide polycrystal substrate, and a substrate with a silicon carbide thin film. Formation method. 前記炭化珪素坩堝内に所望の不純物源を設け、
当該不純物源を加熱することにより、前記成長させる炭化珪素薄膜中に不純物をドーピングすることを特徴とする請求項1乃至3の何れかに記載の炭化珪素薄膜の形成方法。
Providing a desired impurity source in the silicon carbide crucible,
The method for forming a silicon carbide thin film according to any one of claims 1 to 3, wherein an impurity is doped into the silicon carbide thin film to be grown by heating the impurity source.
前記炭化珪素坩堝に予め所望の不純物を含有させ、
当該炭化珪素坩堝を加熱することにより、前記成長させる炭化珪素薄膜中に不純物をドーピングすることを特徴とする請求項1乃至3の何れかに記載の炭化珪素薄膜の形成方法。
The silicon carbide crucible contains a desired impurity in advance,
The method for forming a silicon carbide thin film according to any one of claims 1 to 3, wherein the silicon carbide thin film to be grown is doped with impurities by heating the silicon carbide crucible.
前記第2の炭化珪素結晶基板中に予め所望の不純物を含有させ、
前記成長させる炭化珪素薄膜中に不純物をドーピングすることを特徴とする請求項1乃至3の何れかに記載の炭化珪素薄膜の形成方法。
A desired impurity is previously contained in the second silicon carbide crystal substrate,
The method for forming a silicon carbide thin film according to any one of claims 1 to 3, wherein an impurity is doped into the silicon carbide thin film to be grown.
第1および第2の2枚の炭化珪素結晶基板上に、同一条件下でイオン注入された不純物注入領域を形成し、
当該不純物注入領域同士が互いに一致するように接触させて炭化珪素坩堝内に配置し、
前記第1および第2の炭化珪素結晶基板の不純物注入領域間に温度勾配が生じない加熱条件下で、前記不純物領域の活性化温度以上の温度で熱処理を施すことを特徴とする不純物活性化のための熱処理方法。
Forming impurity-implanted regions ion-implanted under the same conditions on the first and second two silicon carbide crystal substrates;
Placed in the silicon carbide crucible in such a manner that the impurity implanted regions are in contact with each other so as to match each other,
Performing a heat treatment at a temperature equal to or higher than an activation temperature of the impurity region under a heating condition in which a temperature gradient does not occur between the impurity implantation regions of the first and second silicon carbide crystal substrates. Heat treatment method.
JP2002251975A 2002-08-29 2002-08-29 Method for forming silicon carbide thin film Expired - Fee Related JP4100669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002251975A JP4100669B2 (en) 2002-08-29 2002-08-29 Method for forming silicon carbide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002251975A JP4100669B2 (en) 2002-08-29 2002-08-29 Method for forming silicon carbide thin film

Publications (2)

Publication Number Publication Date
JP2004091228A true JP2004091228A (en) 2004-03-25
JP4100669B2 JP4100669B2 (en) 2008-06-11

Family

ID=32058408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002251975A Expired - Fee Related JP4100669B2 (en) 2002-08-29 2002-08-29 Method for forming silicon carbide thin film

Country Status (1)

Country Link
JP (1) JP4100669B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108137A1 (en) * 2010-03-02 2011-09-09 住友電気工業株式会社 Method for producing silicon carbide substrate
CN102668030A (en) * 2010-10-19 2012-09-12 住友电气工业株式会社 Composite substratge having single-crystal silicon carbide substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108137A1 (en) * 2010-03-02 2011-09-09 住友電気工業株式会社 Method for producing silicon carbide substrate
CN102471928A (en) * 2010-03-02 2012-05-23 住友电气工业株式会社 Method for manufacturing silicon carbide substrate
CN102668030A (en) * 2010-10-19 2012-09-12 住友电气工业株式会社 Composite substratge having single-crystal silicon carbide substrate

Also Published As

Publication number Publication date
JP4100669B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP5841339B2 (en) 100mm high purity semi-insulating single crystal silicon carbide wafer
EP1807558B1 (en) Method for producing 100 mm silicon carbide wafer with low micropipe density
US7772098B2 (en) Method for manufacturing semiconductor device
EP2551891B1 (en) Semiconductor device and method for producing same
WO2015182474A1 (en) Silicon-carbide-ingot manufacturing method, silicon-carbide seed substrate, silicon-carbide substrate, semiconductor device, and semiconductor-device manufacturing method
JP4449814B2 (en) Method for manufacturing silicon carbide semiconductor device
CA2759074A1 (en) Method for manufacturing silicon carbide substrate
TW201115632A (en) A method of producing silicon carbide semiconductor device
CN101536162B (en) Method for manufacturing silicon carbide semiconductor device
JP3956487B2 (en) Method for manufacturing silicon carbide semiconductor device
WO2008015766A1 (en) Method for recovering forward voltage of bipolar semiconductor device, method for reducing lamination defect and bipolar semiconductor device
EP1130137B1 (en) Material for raising single crystal sic and method of preparing single crystal sic
KR101926687B1 (en) Apparatus, method for fabrication epi wafer and epi wafer
JP4100669B2 (en) Method for forming silicon carbide thin film
JP2004343133A (en) Manufacturing method of silicon carbide, silicon carbide, and semiconductor device
CN110117814A (en) The preparation method of silicon carbide epitaxy with low-density C vacancy defect
KR20110087440A (en) Susceptor for manufacturing semiconductor and apparatus comprising thereof
JPH09266214A (en) Silicon wafer
KR102474331B1 (en) Epitaxial wafer and method for fabricating the same
JP4069508B2 (en) Method for producing silicon carbide single crystal
JPH02253622A (en) Manufacture of silicon carbide semiconductor device
JP5672021B2 (en) Manufacturing method of semiconductor substrate
JP4546982B2 (en) Manufacturing method of semiconductor device
JP3087030B2 (en) SiC composite, method for producing the same, and single crystal SiC
JP7143769B2 (en) Method for manufacturing silicon carbide semiconductor substrate and method for manufacturing silicon carbide semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees