JP2004090171A - Ball end mill - Google Patents

Ball end mill Download PDF

Info

Publication number
JP2004090171A
JP2004090171A JP2002255318A JP2002255318A JP2004090171A JP 2004090171 A JP2004090171 A JP 2004090171A JP 2002255318 A JP2002255318 A JP 2002255318A JP 2002255318 A JP2002255318 A JP 2002255318A JP 2004090171 A JP2004090171 A JP 2004090171A
Authority
JP
Japan
Prior art keywords
cutting edge
radius
tip
end mill
tip cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002255318A
Other languages
Japanese (ja)
Inventor
Taichi Aoki
青木 太一
Motoki Matsumoto
松本 元基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Kobe Tools Corp
Priority to JP2002255318A priority Critical patent/JP2004090171A/en
Publication of JP2004090171A publication Critical patent/JP2004090171A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ball end mill which prevents reduction of machining efficiency even in machining a material with cutting difficulty by suppressing a molding error by deflection of an end mill body 1. <P>SOLUTION: In the ball end mill, a substantially semi-spherical tip cutting edge 5 of which rotation trajectory about the axial line O has a convex on the tip side is formed at the tip of the end mill body 1 rotated about the axial line O. A point separated from the tip P of the rotation trajectory of the tip cutting edge 5 to the back end side by a reference radius r provided to the tip cutting edge 5 on the axial line O is set as a reference point C. In a range where included angle θ between the straight line M extending from the reference point C toward the rotation trajectory and the axial line O is 30° or more, the rotation trajectory of the tip cutting edge 5 is set outside a semi-circle of the reference radius r about the reference point C, and the curvature radius R is set larger than the reference radius r. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、エンドミル本体の先端部に回転軌跡が略凸半球状をなす先端切刃が形成されたボールエンドミルに関するものである。
【0002】
【従来の技術】
この種のボールエンドミルは、加工物に断面U字状の溝を形成したり、滑らかな曲面状をなす加工面を形成したりするのに用いられる工具であって、一般的には図3に示すように、後端部が図示されない工作機械の主軸に把持されて軸線O回りに回転される概略円柱状のエンドミル本体1の先端部が略凸半球状に形成されるとともに、この先端部から後端側に向けてのエンドミル本体1外周に螺旋状に捩れる切屑排出溝2が形成されて、この切屑排出溝2のエンドミル回転方向を向く壁面がすくい面3とされ、このすくい面3の外周側稜線部に切刃4が形成された構成とされており、この切刃4は、上記先端部に形成されて軸線O回りの回転軌跡が該軸線O上に中心を有する凸半球状をなす先端切刃5と、この先端切刃5の後端に連なって軸線O回りの回転軌跡が上記凸半球に滑らかに接する該軸線Oを中心とした円筒面状の外周切刃6とから構成される。そして、この先端切刃5がなす凸半球の半径は、それぞれのボールエンドミルの当該先端切刃5に与えられるべき基準半径と理想的には等しく、実際には切刃4によって加工物が削り取られ過ぎてしまうのを防ぐため、基準半径よりも僅かに小さめに形成されている。
【0003】
【発明が解決しようとする課題】
ところで、このようなボールエンドミルによる切削加工では、そのエンドミル本体1の後端部が把持された状態で先端部の切刃4が加工物に接触して加工が行われることから、この切削時の加工物への接触による反力により、図3に破線で示すように上記切刃4の切り込み側とは反対側、すなわち加工物Wの加工面Sに対向する側に向けて、エンドミル本体1に多少なりとも撓みが生じることが避けられない。しかしながら、近年の加工物の材質の多様化に伴い、例えば金型の成形などにおいては高硬度材のような難削材よりなる加工物を上述のようなボールエンドミルで加工する場合が増えてきており、取り分け高い加工精度が要求される場合には、たとえエンドミル本体1が超硬合金等の硬質材料によって形成されていても、この撓みによる加工物の成形誤差が無視できないほど大きくなって、従来は不要であった仕上げ加工を余儀なくされたり、あるいは仕上げ代が増大したりし、加工物が難削材であることとも相俟って加工効率の著しい低下を招く結果となる。
【0004】
本発明は、このような背景の下になされたもので、このようなエンドミル本体の撓みによる成形誤差を抑えて難削材の加工などでも加工効率の低下を防ぐことが可能なボールエンドミルを提供することを目的としている。
【0005】
【課題を解決するための手段】
上記課題を解決して、このような目的を達成するために、本発明は、軸線回りに回転されるエンドミル本体の先端部に、上記軸線回りの回転軌跡が先端側に凸となる略半球状をなす先端切刃が形成されてなるボールエンドミルであって、上記軸線上において上記先端切刃の回転軌跡の先端から後端側に該先端切刃に与えられる基準半径だけ離れた点を基準点として、この基準点から上記回転軌跡に向けて延びる直線と上記軸線との挟角が30°以上となる範囲では、上記先端切刃の回転軌跡を、上記基準点を中心とする上記基準半径の半球よりも外側にあって、その曲率半径が上記基準半径よりも大きくなるようにしたことを特徴とする。従って、このように構成されたボールエンドミルにおいては、上記挟角が30°以上となる範囲では先端切刃の回転軌跡が当該ボールエンドミルの基準半径よりも大きな曲率半径でこの基準半径の半球の外周側に膨らむように位置することとなるため、エンドミル本体に上述のような撓みが生じても、この先端切刃の回転軌跡が加工すべき所望の加工面から離れすぎて大きな成形誤差が生じるのを防ぐことができる。なお、上記先端切刃の回転軌跡の曲率半径が基準半径よりも大きくなる範囲を上記挟角が30°以上となる範囲としたのは、エンドミル本体の撓みが顕著となるのは図3に示したように先端切刃のうちでも特にその後端外周側が加工物の加工面に接触する場合であって、上記挟角が30°未満の範囲すなわち先端切刃の先端内周側では、加工物との接触による反力がエンドミル本体の剛性の高い軸線方向に作用するため、撓みが生じ難くて加工精度が維持されるからである。
【0006】
また、このようにエンドミル本体の撓みは先端切刃の後端外周側ほど加工面に接触する場合に大きくなることから、上記先端切刃の回転軌跡の曲率半径は、上記挟角が30°以上となる範囲でこの挟角が大きくなるに従い、すなわち回転軌跡が略半円球状となる先端切刃の後端外周側に向かうに従い、漸次大きくなる傾向となるのが望ましい。ただし、実際にこのような先端切刃を形成する場合には加工誤差が生じることは避けられず、微視的にみた場合には先端切刃の後端外周側に向けて上記半径が小さくなる部分が局部的に形成されることも避けられないので、この曲率半径は、傾向として上記挟角が大きくなるに従い漸次大きくなるようにされていればよい。さらに、この先端切刃の回転軌跡の曲率半径と上記基準半径との差は、この基準半径に対して1%以下とされるのが望ましく、この差がこれ以上大きくなると、撓みが生じても先端切刃が加工物を削り取りすぎてしまうおそれが生じる。ただし、逆にこの差が小さすぎると上述の効果が十分に奏功されなくなるおそれが生じるので、この先端切刃の回転軌跡の曲率半径と基準半径との差は10μm以上とされるのが望ましい。さらにまた、上記エンドミル本体の外周に、上記軸線回りの回転軌跡が略円筒面状をなす外周切刃が上記先端切刃の後端に連なるように形成されている場合においては、この先端切刃の回転軌跡の曲率半径を、この先端切刃と上記外周切刃との交点においてこの外周切刃の上記軸線からの半径よりも大きく、かつこの交点と上記先端切刃の先端との上記軸線方向の距離を上記基準半径よりも小さく構成することにより、上記基準半径よりも僅かに大きな半径を有し、かつこれらの半径の差の分だけ上記基準点から軸線方向後端側に後退した位置に中心を有する球面となるように、この先端切刃の回転軌跡を設定することで、上述のような先端切刃を容易に形成することが可能となる。
【0007】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明するが、この実施形態のボールエンドミルにおいても、その基本的構成は図3に示した従来の一般的なボールエンドミルと共通するものであるので、この図3のボールエンドミルと共通する構成要素には互いに同一の符号を配して説明を簡略化する。すなわち、本実施形態においても、超硬合金等の硬質材料により形成されて軸線O回りに回転されるエンドミル本体1の先端部には、上記軸線O回りの回転軌跡が先端側に凸となる略半球状をなす先端切刃5が形成されるとともに、エンドミル本体1の外周には、上記軸線O回りの回転軌跡が略円筒面状をなす外周切刃6が、この先端切刃5の後端に連なるように形成されており、これら先端切刃5と外周切刃6とによって切刃4が構成されている。
【0008】
ここで、図1は上記軸線Oを含む平面上におけるこの切刃4の上記回転軌跡を示すものであって、この図1に破線Aで示すのは上述した理想的なボールエンドミルに与えられるべき切刃の回転軌跡の基準線である。すなわち、この理想的なボールエンドミルにおいては、その先端切刃の回転軌跡がエンドミル本体1の軸線O上に中心Cを有する半球面状をなし、従って上記平面においてはこの回転軌跡は半円をなすようにされるとともに、外周切刃の回転軌跡は、この半球の半径rと等しい半径rを有して該半球面に滑らかに連なる軸線Oを中心とした円筒面状をなし、従って上記平面においては上記半円の両端で該半円に接して軸線Oに平行に後端側に延びる直線状をなすこととなり、この半径rが当該ボールエンドミルの基準半径とされる。従って、上記平面上においてこの先端切刃の回転軌跡がなす半円と軸線Oとの交点すなわち先端切刃の回転軌跡の先端(切刃の先端)Pから上記中心Cまでの距離は上記基準半径rと等しくされ、また該平面上における先端切刃と外周切刃との交点は、その上記先端切刃の先端Pとの上記軸線O方向の距離が上記基準半径rと等しくされ、かつ軸線Oから該軸線Oに垂直に基準半径rと等しい距離だけ径方向外周側に離れた位置に配置されることとなる。
【0009】
しかして、これに対して本実施形態のボールエンドミルでは、上記軸線O上において先端切刃5の回転軌跡の先端から後端側に上記基準半径rだけ離れた点を基準点としたとき、この基準点から上記回転軌跡に向けて延びる直線Mと上記軸線Oとの挟角θが30°以上となる範囲では、この先端切刃5の回転軌跡が、上記基準点を中心とする基準半径rの半球すなわち上記理想的なボールエンドミルの先端切刃の回転軌跡がなす半球の外側にあり、しかもこの先端切刃5の回転軌跡の曲率半径Rが上記基準半径rよりも大きくされている。ただし、上記基準点は、軸線O上において先端切刃5の回転軌跡の先端から後端側に基準半径rだけ離れた点であるので、図1に示すようにこの回転軌跡の先端を、上記理想的なボールエンドミルの先端切刃の回転軌跡における先端Pと一致させた場合には、この理想的なボールエンドミルの先端切刃の回転軌跡の上記中心Cと一致することとなる(以下、基準点Cと称する。)。すなわち、本実施形態では、上記平面上において先端切刃5の回転軌跡上の点Nをとってこの点Nと上記基準点Cとを結ぶ直線Mを想定した場合、この直線Mと軸線Oとがなす挟角θが0°のとき、つまり直線Mと軸線Oとが一致しているときには上記点Nが基準半径rの基準線A上に位置して上記先端Pとされているのに対し、この挟角θが30°以上となる範囲では図1に実線で示すように、先端切刃5の回転軌跡が上記基準半径rによる理想的な回転軌跡の基準線Aの外側に位置するようにされ、しかもこの点Nにおける先端切刃5の回転軌跡の曲率半径Rが上記基準半径rよりも大きくされているのである。なお、本実施形態においてこの先端切刃5の回転軌跡は、上記平面上においてその上記先端Pから該先端切刃5の後端に至るまで滑らかに連続した曲線をなすようにされている。
【0010】
ここで、本実施形態における上記先端切刃5の回転軌跡の上記曲率半径Rは、上記挟角θが30°以上となる範囲でこの挟角θが大きくなるに従い漸次大きくなる傾向にあり、特に本実施形態では図1に示すように上記半径Rは挟角θが0°〜30°の範囲でも漸次大きくなる傾向に形成されている。さらに、この先端切刃5の回転軌跡の曲率半径Rと上記基準半径rとの差は、この基準半径rに対して1%以下となるようにされている。なお、図1に破線Bで示すのは上記基準半径rに対して+1%の半径の中心Cを中心とした半球が上記平面においてなす半円であって、すなわち先端切刃5の大きさの上限を示すものであり、本実施形態における先端切刃5はこの半円上またはその内側に配設されることとなる。ただし、この図1において上記基準線Aがなす半円に対する先端切刃5や上記上限を示す半円Bの大きさは、説明のために中心Cからの径方向に大きく示されている。
【0011】
従って、このように構成された本実施形態のボールエンドミルにおいては、図1に示されるように挟角θが30°以上となる範囲では先端切刃5の回転軌跡がその曲率半径Rを上記基準半径rよりも大きくされて、この基準半径rの半球面よりも外周側に位置するため、たとえ高硬度材等の難削材よりなる加工物に曲面状の加工面を切削加工するような場合において、この先端切刃5の後端外周側部分、すなわち挟角θが30°以上となる範囲が加工物に接することによりその反力でエンドミル本体1に撓みが生じても、この先端切刃5の回転軌跡が加工すべき所望の加工面から離れすぎてしまうのを避けることができる。このため、この所望の加工面と実際に切削された加工面との間に大きな成形誤差が生じるのを防ぐことができるので、かかる成形誤差により、本来は不要とされるべく設定されていた仕上げ加工を行わなければならなくなったり、あるいは元々仕上げ加工が予定されていた場合でもその仕上げ代が増大してしまったりしてこの仕上げ加工に多くの時間と労力とを要し、その結果加工効率の著しい低下を招いたりするような事態を防止することができる。特に、上述のような難削材は、仕上げ加工にもより多くの時間や労力が必要とされるのに対し、本実施形態によればこのような難削材の加工においても加工効率の向上を図ることが可能となる。
【0012】
ここで、本実施形態では先端切刃5の回転軌跡が上述のようにその先端Pでは基準半径rの理想的な回転軌跡がなす基準線Aと一致し、この先端Pから後端外周側に向けて漸次曲率半径Rが大きくなるようにされているが、加工物に曲面状の加工面を形成するときにエンドミル本体1の撓みが顕著となるのは、この先端切刃5のうちでも特にその後端外周側が加工面に接触する場合であるので、上記曲率半径Rは少なくともこの後端外周側で上記基準半径rに対して大きくされていればよく、例えば上記挟角θが0°〜30°の範囲では曲率半径Rが基準半径rと等しくて回転軌跡が基準線Aと一致させられ、挟角θが30°以上となる範囲で徐々に曲率半径Rが基準半径rから大きくなってゆくようにされていてもよい。ただし、このような場合でも図2に示すように先端切刃5を含めた実際の切刃4の形状は、この切刃4の形成時の加工誤差などにより、微視的には滑らかな曲線を描くことなく局部的に半径Rが小さくなってしまうような部分も形成されることが避けられないので、こうして挟角θが大きくなるに従い曲率半径Rを漸次大きくする場合でも、平均的な傾向として曲率半径Rが徐々に大きくなるようにされていればよい。なお、この図2においても図1と同様に説明のため、基準線Aの半円に対する先端切刃5や上記半円Bの大きさは径方向に大きく示されている。
【0013】
さらに、本実施形態では、この先端切刃5の回転軌跡の曲率半径Rと基準半径rとの差が基準半径rに対して1%以下とされて、図1に示したように先端切刃5が基準半径r+1%の半径の半円B内に収まるようにされているが、これは、この差がこれ以上大きくなって先端切刃5が基準半径rから大きく外周側に膨らみすぎると、上述のように切削加工時にエンドミル本体1に撓みが生じて先端切刃5が加工面から離れても、撓みが生じていない状態の上記基準線Aよりもこの先端切刃5が加工面側に突出することとなって、これにより加工物が削り取られすぎてしまうおそれが生じるからである。ただし、この差があまり小さくなりすぎると、上述のエンドミル本体1に撓みが生じた際の成形誤差の抑制効果が十分に奏功されなくなるおそれが生じるので、この差は10μm以上とされるのが望ましい。
【0014】
ところで、このようなボールエンドミルの先端切刃5は、一つには上述したように該先端切刃5の先端Pから上記挟角θが30°未満の範囲では曲率半径Rが基準半径rと等しくなるように、すなわち先端切刃5が基準線Aと一致するように形成するとともに、これよりも挟角θが大きい範囲では半径Rが基準半径rから徐々に大きくなるように形成することにより得ることができ、また例えばこの先端切刃5の回転軌跡を、上記平面において軸線O上に短軸を有してこの短軸方向の半径が基準半径rと等しい楕円を描くように形成することによっても得ることができるが、このような先端切刃5を、特に切屑排出溝2が螺旋状に捩れるために先端切刃5自体も螺旋状をなすボールエンドミルに形成することは容易ではない。そこで、このような先端切刃5をより容易に形成するには、図1に示すようにこの先端切刃5の回転軌跡の曲率半径Rを、該先端切刃5の後端に連なって軸線O回りの回転軌跡が円筒面状をなす外周切刃6と先端切刃5との交点Qにおいてこの外周切刃6の上記軸線Oからの半径よりも大きくし、かつこの交点Qと先端切刃5の先端Pとの上記軸線O方向の距離Lを上記基準半径rよりも小さくなるように構成すればよい。
【0015】
このようなボールエンドミルでは、先端切刃5の回転軌跡を、上記基準半径rよりも僅かに大きな半径を有し、かつこれらの半径の差の分だけ上記基準半径rの中心Cから軸線O方向後端側に後退した位置に中心を有する球面となるように形成することにより、上記構成のボールエンドミルを得ることができ、すなわち上記平面において先端切刃5が一定の曲率半径Rの単純な円弧をなすようにすることができるので、例えば当該ボールエンドミルの切刃4をNC工具研削盤によって形成する場合においても、上記半径R,rの差を数値制御による補正によって加えるだけで、容易に上述のような効果を奏するボールエンドミルを製造することが可能となる。なお、この場合には、上述のように先端切刃5の回転軌跡の中心は基準半径rの中心Cすなわち上記平面における基準線Aの中心Cとは一致せず、またこの回転軌跡も完全な半球面すなわち球面をその中心を通る平面で切断した面にはならずに、そのままでは上記外周切刃6がなす円筒面状の回転軌跡との接続部分が交点Qで角度をもって交差するように形成されてしまうので、この交点Qの近傍では先端切刃5と外周切刃6の回転軌跡が滑らかに連なるようにするのが望ましい。
【0016】
ここで、次表1は、このようにして製造された先端切刃5の回転軌跡がなす半球の曲率半径Rの異なる2種の上記実施形態に係わるボールエンドミル1、2について、先端切刃5上の上記挟角θが0°,10°,20°…90°となる各点において、基準半径rの先端切刃5の回転軌跡すなわち基準線Aとの差ΔRがどのように変化するかを測定したものである。ただし、このときの基準半径rは5.0mmであり、また表中の上段は上記各点と基準点Cとを結ぶ直線方向の差ΔRr、下段は軸線Oに垂直な方向での各点と上記基準線Aとの間の差ΔRhをそれぞれ測定したものである(図1参照。)。なお、挟角θが90°の点では差ΔRr,ΔRhがすべて0となっているのは、上述のように先端切刃5の先端Pから外周切刃6との交点Qまでの軸線O方向の距離Lが基準半径Rよりも短く、従って挟角θが90°の位置では半径が基準半径rと等しい外周切刃6の半径を測定することとなったためである。
【0017】
【表1】

Figure 2004090171
【0018】
しかして、この表1より、まず曲率半径Rが基準半径rよりも0.01mm大きくされたボールエンドミル1においては、挟角θが30°までの範囲では差ΔRrが0.001mm程度までで先端切刃5が基準線Aと略一致しているものの、それ以上の範囲では挟角θが大きくなるに従い差ΔRrも漸次大きくなる傾向となっている。また、軸線Oに垂直な方向の差Rhは、先端切刃5の全長に亙って挟角θが大きくなるに従い比例的に大きくなっている。一方、これに対して曲率半径Rが基準半径rよりも0.02mm大きくされたボールエンドミル2では、挟角θが30°の点で既に差ΔRrが0.003mmに達し、これより挟角θが大きい範囲でもボールエンドミル1より大きな増加率で差ΔRr,ΔRhとも大きくなっている。言い換えれば、このボールエンドミル2では、先端切刃5の形成時に−0.003mmの加工誤差が生じても、挟角θが30°以上の範囲では先端切刃5の回転軌跡を基準半径rの半球より外側に位置させることができ、このような加工誤差に関わらず上述のような効果を確実に奏することが可能となる。
【0019】
【発明の効果】
以上説明したように、本発明によれば、たとえ難削材よりなる加工物に滑らかな曲面状の加工面を形成する場合においても、エンドミル本体の撓みによって大きな加工誤差が生じ、これに伴う仕上げ加工によって加工効率が著しく損なわれたりするような事態を防ぐことができ、高精度の切削加工をより効率的に行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す切刃4の回転軌跡の軸線Oを含む平面による断面図である。
【図2】図1に示す断面図をより実際的に示した図である。
【図3】ボールエンドミルによって滑らかな曲面状の加工面Sを形成する場合を示した図である。
【符号の説明】
1 エンドミル本体
4 切刃
5 先端切刃
6 外周切刃
O エンドミル本体1の軸線
C 先端切刃5の回転軌跡の基準点(理想的なボールエンドミルの先端切刃5の回転軌跡の中心)
R 先端切刃5の回転軌跡の曲率半径
r 基準半径
A 基準半径rによる基準線
B 先端切刃5の回転軌跡の上限
P 先端切刃5の回転軌跡の先端
N 先端切刃5の回転軌跡上の点
M 基準点Cと点Nとを結ぶ直線
Q 先端切刃5と外周切刃6との交点
L 先端Pから交点Qまでの軸線O方向の距離
θ 直線Mと軸線Oとの挟角[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ball end mill in which a tip cutting edge whose rotation trajectory has a substantially convex hemispherical shape is formed at a tip portion of an end mill main body.
[0002]
[Prior art]
This type of ball end mill is a tool used for forming a groove having a U-shaped cross section in a workpiece or forming a processing surface having a smooth curved surface. Generally, FIG. As shown in the figure, the front end of a substantially cylindrical end mill body 1 whose rear end is gripped by a main shaft of a machine tool (not shown) and rotated around the axis O is formed in a substantially convex hemispherical shape. A chip discharge groove 2 that is spirally twisted is formed on the outer periphery of the end mill body 1 toward the rear end side, and a wall surface of the chip discharge groove 2 that faces the end mill rotation direction is a rake face 3. The cutting edge 4 is formed on the outer peripheral side ridge portion. The cutting edge 4 is formed as a convex hemisphere having a center on the axis O with a rotational trajectory around the axis O formed at the tip end. A cutting edge 5 to be formed and a shaft connected to the rear end of the cutting edge 5 O around a rotation locus consists of a cylindrical surface shape of the outer peripheral cutting edge 6 which around the axial line O in contact with the smooth the convex hemisphere. The radius of the convex hemisphere formed by the tip cutting edge 5 is ideally equal to the reference radius to be given to the tip cutting edge 5 of each of the ball end mills. It is formed slightly smaller than the reference radius to prevent it from passing.
[0003]
[Problems to be solved by the invention]
By the way, in the cutting by such a ball end mill, the cutting edge 4 at the front end contacts the workpiece while the rear end of the end mill body 1 is gripped, and the cutting is performed. Due to the reaction force due to the contact with the workpiece, the end mill main body 1 is moved toward the side opposite to the cutting side of the cutting blade 4 as shown by the broken line in FIG. It is unavoidable that bending occurs to some extent. However, with the diversification of the material of the workpiece in recent years, for example, in the case of molding a mold, the number of cases where a workpiece made of a difficult-to-cut material such as a high-hardness material is processed by the above-described ball end mill is increasing. In particular, when high machining accuracy is required, even if the end mill body 1 is formed of a hard material such as a cemented carbide, the molding error of the workpiece due to the bending becomes so large that it cannot be ignored. In this case, unnecessary finishing work is required, or the finishing allowance is increased, resulting in a remarkable reduction in working efficiency in combination with the fact that the workpiece is a difficult-to-cut material.
[0004]
The present invention has been made under such a background, and provides a ball end mill capable of suppressing a molding error due to the bending of the end mill main body and preventing a reduction in processing efficiency even when processing difficult-to-cut materials. It is intended to be.
[0005]
[Means for Solving the Problems]
In order to solve the above problems and achieve such an object, the present invention provides a substantially hemispherical shape in which the rotation trajectory around the axis is convex toward the tip side at the tip of the end mill body that is rotated around the axis. A ball end mill formed with a leading edge cutting edge, wherein a point separated from the leading end of the rotation locus of the leading edge cutting edge on the axis by a reference radius given to the leading edge cutting edge toward the rear end side is a reference point. As long as the included angle between the straight line extending from the reference point toward the rotation locus and the axis is 30 ° or more, the rotation locus of the tip cutting edge is defined by the reference radius centered on the reference point. It is characterized by being located outside the hemisphere and having a radius of curvature larger than the reference radius. Therefore, in the ball end mill thus configured, in the range where the included angle is 30 ° or more, the rotation trajectory of the tip cutting edge has a radius of curvature larger than the reference radius of the ball end mill and the outer circumference of the hemisphere of this reference radius. As a result, even if the end mill main body is bent as described above, the rotation locus of the tip cutting edge is too far from a desired processing surface to be processed, and a large forming error occurs. Can be prevented. Note that the range in which the radius of curvature of the rotation locus of the tip cutting edge is larger than the reference radius is set to the range in which the included angle is 30 ° or more is shown in FIG. 3 in which the bending of the end mill body becomes remarkable. As described above, even when the outer peripheral side of the rear end of the tip cutting edge contacts the processing surface of the workpiece, the included angle is less than 30 °, that is, in the inner peripheral side of the distal end of the tip cutting edge, Is applied in the axial direction of the end mill body, which is high in rigidity, so that the bending hardly occurs and the processing accuracy is maintained.
[0006]
In addition, since the deflection of the end mill body becomes larger when it comes into contact with the processing surface toward the rear end outer peripheral side of the tip cutting edge, the radius of curvature of the rotation locus of the tip cutting edge is such that the included angle is 30 ° or more. It is desirable that the angle gradually increases as the included angle increases in the range of と, that is, as the rotation trajectory moves toward the outer peripheral side of the rear end of the leading edge cutting blade having a substantially semi-spherical shape. However, when actually forming such a leading edge, it is inevitable that a processing error occurs, and when viewed microscopically, the radius decreases toward the rear end outer peripheral side of the leading edge. Since it is unavoidable that a portion is locally formed, the radius of curvature only needs to be gradually increased as the included angle increases. Further, it is desirable that the difference between the radius of curvature of the rotation locus of the tip cutting edge and the reference radius be 1% or less with respect to the reference radius. There is a risk that the cutting edge will scrape off the workpiece too much. However, if the difference is too small, the above-mentioned effect may not be sufficiently exerted. Therefore, it is desirable that the difference between the radius of curvature of the rotation locus of the tip cutting edge and the reference radius be 10 μm or more. Furthermore, in the case where an outer peripheral cutting edge whose rotation trajectory around the axis forms a substantially cylindrical surface is formed on the outer periphery of the end mill main body so as to be continuous with the rear end of the distal end cutting blade, The radius of curvature of the rotation locus is larger than the radius of the outer peripheral cutting edge from the axis at the intersection of the distal cutting edge and the outer peripheral cutting edge, and the axial direction of the intersection and the distal end of the distal cutting edge. By making the distance smaller than the reference radius, it has a radius slightly larger than the reference radius, and at a position retracted axially rearward from the reference point by the difference between these radii. By setting the rotation trajectory of the tip cutting edge so as to form a spherical surface having a center, the above-described tip cutting edge can be easily formed.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings, but the basic configuration of the ball end mill of this embodiment is also common to the conventional general ball end mill shown in FIG. Therefore, the same components as those of the ball end mill of FIG. 3 are assigned the same reference numerals to simplify the description. That is, also in the present embodiment, the end of the end mill main body 1 formed of a hard material such as a cemented carbide and rotated around the axis O has a rotation locus about the axis O convex toward the tip. A hemispherical tip cutting edge 5 is formed, and an outer peripheral cutting edge 6 whose rotation trajectory around the axis O forms a substantially cylindrical surface is formed on the outer periphery of the end mill main body 1. The cutting edge 4 is formed by the tip cutting edge 5 and the outer peripheral cutting edge 6.
[0008]
Here, FIG. 1 shows the rotation locus of the cutting edge 4 on a plane including the axis O. The broken line A shown in FIG. 1 should be given to the ideal ball end mill described above. It is a reference line of the rotation locus of the cutting blade. That is, in this ideal ball end mill, the rotation trajectory of the tip cutting edge has a hemispherical shape having a center C on the axis O of the end mill main body 1, and therefore, in the above-mentioned plane, this rotation trajectory forms a semicircle. And the rotation trajectory of the outer peripheral cutting edge has a cylindrical surface centered on the axis O having a radius r equal to the radius r of the hemisphere and smoothly connected to the hemisphere, and Is a straight line that is in contact with the semicircle at both ends of the semicircle and extends rearward in parallel with the axis O. The radius r is a reference radius of the ball end mill. Therefore, on the plane, the intersection between the semicircle formed by the rotation locus of the tip cutting edge and the axis O, that is, the distance from the tip (tip of the cutting edge) P of the rotation locus of the tip cutting edge to the center C is the reference radius. r, the intersection of the tip cutting edge and the outer peripheral cutting edge on the plane is such that the distance in the axis O direction from the tip P of the tip cutting edge is equal to the reference radius r, and the axis O Therefore, it is arranged at a position that is perpendicular to the axis O and separated from the outer peripheral side in the radial direction by a distance equal to the reference radius r.
[0009]
On the other hand, in the ball end mill of the present embodiment, when a point separated by the reference radius r from the tip of the rotation locus of the tip cutting edge 5 to the rear end side on the axis O is defined as a reference point. In a range where the included angle θ between the straight line M extending from the reference point toward the rotation locus and the axis O is 30 ° or more, the rotation locus of the tip cutting edge 5 has a reference radius r centered on the reference point. Is located outside the hemisphere where the rotation locus of the tip cutting edge of the ideal ball end mill is formed, and the radius of curvature R of the rotation locus of the tip cutting edge 5 is larger than the reference radius r. However, since the reference point is a point on the axis O that is separated from the tip of the rotation locus of the tip cutting edge 5 by a reference radius r toward the rear end side, the tip of the rotation locus is set as shown in FIG. In the case where the tip P of the tip cutting edge of the ideal ball end mill is coincident with the tip P, the center of the ideal tip of the tip C of the ball end mill is coincident with the center C (hereinafter referred to as a reference). Point C). That is, in the present embodiment, when a point N on the rotation locus of the tip cutting edge 5 is taken on the plane and a straight line M connecting the point N and the reference point C is assumed, the straight line M and the axis O When the included angle θ is 0 °, that is, when the straight line M and the axis O coincide with each other, the point N is located on the reference line A of the reference radius r and is the tip P. In the range where the included angle θ is 30 ° or more, as shown by a solid line in FIG. 1, the rotation trajectory of the tip cutting edge 5 is located outside the reference line A of the ideal rotation trajectory based on the reference radius r. In addition, the radius of curvature R of the rotation locus of the tip cutting edge 5 at this point N is set to be larger than the reference radius r. In the present embodiment, the rotation trajectory of the tip cutting edge 5 forms a smoothly continuous curve from the tip P to the rear end of the tip cutting edge 5 on the plane.
[0010]
Here, the radius of curvature R of the rotation locus of the tip cutting edge 5 in the present embodiment tends to gradually increase as the included angle θ increases in a range where the included angle θ is 30 ° or more. In the present embodiment, as shown in FIG. 1, the radius R tends to gradually increase even when the included angle θ is in the range of 0 ° to 30 °. Further, the difference between the radius of curvature R of the rotation locus of the tip cutting edge 5 and the reference radius r is set to be 1% or less of the reference radius r. In FIG. 1, a broken line B indicates a semicircle formed by a hemisphere centered on a center C having a radius of + 1% with respect to the reference radius r on the plane, that is, the size of the tip cutting edge 5. This indicates the upper limit, and the tip cutting edge 5 in the present embodiment is disposed on or inside this semicircle. However, in FIG. 1, the size of the tip cutting edge 5 and the semicircle B indicating the upper limit with respect to the semicircle formed by the reference line A are shown larger in the radial direction from the center C for explanation.
[0011]
Therefore, in the ball end mill of this embodiment configured as described above, as shown in FIG. 1, in the range where the included angle θ is 30 ° or more, the rotation locus of the tip cutting edge 5 determines its curvature radius R based on the above-mentioned reference radius. Since it is larger than the radius r and located on the outer peripheral side of the hemispherical surface of the reference radius r, even when a curved surface is cut on a workpiece made of a difficult-to-cut material such as a hard material. In this case, even if the rear end outer peripheral portion of the tip cutting edge 5, that is, the range where the included angle θ is 30 ° or more, comes into contact with the workpiece, the end mill main body 1 bends due to the reaction force thereof, It is possible to prevent the rotation trajectory 5 from being too far from the desired processing surface to be processed. For this reason, it is possible to prevent a large forming error from occurring between the desired processed surface and the actually cut processed surface, so that the finishing error that was originally set to be unnecessary due to such a forming error can be prevented. Processing must be performed, or even if finishing is originally planned, the finishing allowance increases, and this finishing requires a lot of time and labor, and as a result, processing efficiency is reduced. It is possible to prevent a situation that causes a significant decrease. In particular, difficult-to-cut materials as described above require more time and labor for finishing, but according to the present embodiment, even in such difficult-to-cut materials, the processing efficiency is improved. Can be achieved.
[0012]
Here, in the present embodiment, the rotation trajectory of the leading edge cutting edge 5 coincides with the reference line A formed by the ideal rotation trajectory of the reference radius r at the leading end P as described above, and from the leading end P to the rear end outer peripheral side. Although the radius of curvature R is gradually increased toward the surface, the bending of the end mill main body 1 becomes remarkable when a curved processing surface is formed on the workpiece, particularly in the tip cutting edge 5. Since the rear end outer peripheral side comes into contact with the processing surface, the curvature radius R may be at least larger than the reference radius r on the rear end outer peripheral side. For example, the included angle θ is 0 ° to 30 °. In the range of °, the radius of curvature R is equal to the reference radius r, and the rotation trajectory is matched with the reference line A. The radius of curvature R gradually increases from the reference radius r in a range where the included angle θ is 30 ° or more. It may be so. However, even in such a case, the actual shape of the cutting edge 4 including the tip cutting edge 5 as shown in FIG. Since it is inevitable that a portion where the radius R is locally reduced without drawing the shape, even if the radius of curvature R is gradually increased as the included angle θ is increased, the average tendency is increased. It is only necessary that the radius of curvature R gradually increases. 2, the size of the tip cutting edge 5 and the semicircle B with respect to the semicircle of the reference line A are shown larger in the radial direction for the sake of explanation as in FIG.
[0013]
Further, in the present embodiment, the difference between the radius of curvature R of the rotation locus of the tip cutting edge 5 and the reference radius r is set to 1% or less with respect to the reference radius r, and as shown in FIG. 5 is set so as to fall within the semicircle B having a radius of the reference radius r + 1%. This is because if the difference is further increased and the tip cutting edge 5 is greatly expanded from the reference radius r to the outer peripheral side too much, As described above, even when the end mill main body 1 is bent during the cutting process and the tip cutting edge 5 is separated from the processing surface, the tip cutting edge 5 is closer to the processing surface than the reference line A in a state where the bending is not generated. The reason for this is that there is a risk that the workpiece will protrude and the workpiece will be cut off too much. However, if the difference is too small, there is a possibility that the effect of suppressing the molding error when the end mill body 1 is bent may not be sufficiently effective. Therefore, the difference is preferably set to 10 μm or more. .
[0014]
By the way, the tip cutting edge 5 of such a ball end mill has, as described above, the curvature radius R is equal to the reference radius r when the included angle θ is less than 30 ° from the tip P of the tip cutting edge 5. By forming the tip cutting edge 5 so as to be equal to the reference line A and forming the radius R to gradually increase from the reference radius r in a range where the included angle θ is larger than this, For example, the rotation trajectory of the tip cutting edge 5 is formed so as to draw an ellipse having a short axis on the axis O in the plane and having a radius in the short axis direction equal to the reference radius r. However, it is not easy to form such a tip cutting edge 5 into a ball end mill in which the tip cutting edge 5 itself also forms a spiral shape, especially since the chip discharge groove 2 is spirally twisted. . Therefore, in order to form such a tip cutting edge 5 more easily, as shown in FIG. A radius of the outer peripheral cutting edge 6 from the axis O is larger at an intersection Q between the outer peripheral cutting edge 6 and the distal end cutting edge 5 whose rotational locus around O forms a cylindrical surface. What is necessary is just to constitute so that the distance L in the direction of the axis O with respect to the tip P may be smaller than the reference radius r.
[0015]
In such a ball end mill, the rotation trajectory of the tip cutting edge 5 has a radius slightly larger than the reference radius r, and the direction of the axis O from the center C of the reference radius r by the difference between these radii. The ball end mill having the above configuration can be obtained by forming a spherical surface having a center at a position retracted to the rear end side, that is, a simple arc having a constant radius of curvature R in the flat surface. Therefore, for example, even when the cutting edge 4 of the ball end mill is formed by an NC tool grinder, the difference between the radii R and r can be easily corrected by a numerical control. It is possible to manufacture a ball end mill having the following effects. In this case, as described above, the center of the rotation trajectory of the tip cutting edge 5 does not coincide with the center C of the reference radius r, that is, the center C of the reference line A on the plane, and this rotation trajectory is also complete. It is not formed into a hemispherical surface, that is, a surface obtained by cutting a spherical surface with a plane passing through the center thereof, but as it is, a connecting portion with a cylindrical rotational locus formed by the outer peripheral cutting edge 6 intersects at an intersection Q at an angle. Therefore, it is desirable that the rotation trajectory of the leading edge cutting edge 5 and the outer peripheral edge 6 be smoothly connected near the intersection Q.
[0016]
Here, the following Table 1 shows the end cutting edges 5 of the ball end mills 1 and 2 according to the above-described two embodiments having different radii of curvature R of the hemispheres formed by the rotation trajectories of the cutting edges 5 manufactured as described above. At each point where the above included angle θ is 0 °, 10 °, 20 °... 90 °, how the rotation locus of the tip cutting edge 5 of the reference radius r, that is, the difference ΔR from the reference line A changes. Is measured. However, the reference radius r at this time is 5.0 mm, the upper row in the table is the difference ΔRr in the linear direction connecting each point and the reference point C, and the lower row is each point in the direction perpendicular to the axis O. The difference ΔRh from the reference line A is measured (see FIG. 1). The difference ΔRr and ΔRh are all 0 at the point where the included angle θ is 90 °, as described above, in the direction of the axis O from the tip P of the tip cutting edge 5 to the intersection Q with the outer peripheral cutting edge 6. Is shorter than the reference radius R, and therefore, at a position where the included angle θ is 90 °, the radius of the outer peripheral cutting edge 6 whose radius is equal to the reference radius r is measured.
[0017]
[Table 1]
Figure 2004090171
[0018]
According to Table 1, first, in the ball end mill 1 in which the radius of curvature R is made 0.01 mm larger than the reference radius r, the difference ΔRr is up to about 0.001 mm in the range where the included angle θ is up to 30 °. Although the cutting edge 5 substantially coincides with the reference line A, the difference ΔRr tends to gradually increase as the included angle θ increases in a range beyond that. The difference Rh in the direction perpendicular to the axis O increases proportionally as the included angle θ increases over the entire length of the tip cutting edge 5. On the other hand, in the ball end mill 2 in which the radius of curvature R is 0.02 mm larger than the reference radius r, the difference ΔRr already reaches 0.003 mm at the point where the included angle θ is 30 °, and the included angle θ In the range where is larger, both the differences ΔRr and ΔRh are larger at a rate of increase larger than that of the ball end mill 1. In other words, in the ball end mill 2, even when a machining error of −0.003 mm occurs when the tip cutting edge 5 is formed, the rotation trajectory of the tip cutting edge 5 is defined by the reference radius r when the included angle θ is 30 ° or more. It can be positioned outside the hemisphere, and the above-described effects can be reliably achieved regardless of such processing errors.
[0019]
【The invention's effect】
As described above, according to the present invention, even when a smooth curved processing surface is formed on a workpiece made of a difficult-to-cut material, a large processing error occurs due to the bending of the end mill main body, and the resulting finishing A situation in which the processing efficiency is significantly impaired by the processing can be prevented, and high-precision cutting can be performed more efficiently.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a plane including an axis O of a rotation trajectory of a cutting blade 4 according to an embodiment of the present invention.
FIG. 2 is a more practical view of the sectional view shown in FIG. 1;
FIG. 3 is a view showing a case where a smooth curved processing surface S is formed by a ball end mill.
[Explanation of symbols]
1 End Mill Body 4 Cutting Edge 5 Tip Cutting Edge 6 Outer Cutting Edge O Axis C of End Mill Body 1 Reference Point of Rotation Trajectory of Tip Cutting Edge 5 (Center of Rotation Trajectory of Tip Cutting Edge 5 of Ideal Ball End Mill)
R Curvature radius r of the rotation trajectory of the tip cutting edge 5 Reference radius A Reference line B based on the reference radius r Upper limit P of the rotation trajectory of the tip cutting edge 5 Tip N of the rotation trajectory of the tip cutting edge 5 On the rotation trajectory of the tip cutting edge 5 Point M Straight line Q connecting reference point C and point N Intersection L between tip cutting edge 5 and outer peripheral cutting edge 6 Distance from tip P to intersection Q in the direction of axis O θ Angle between straight line M and axis O

Claims (4)

軸線回りに回転されるエンドミル本体の先端部に、上記軸線回りの回転軌跡が先端側に凸となる略半球状をなす先端切刃が形成されてなるボールエンドミルであって、上記軸線上において上記先端切刃の回転軌跡の先端から後端側に該先端切刃に与えられる基準半径だけ離れた点を基準点として、この基準点から上記回転軌跡に向けて延びる直線と上記軸線との挟角が30°以上となる範囲では、上記先端切刃の回転軌跡が、上記基準点を中心とする上記基準半径の半球よりも外側にあって、その曲率半径が上記基準半径よりも大きくされていることを特徴とするボールエンドミル。A ball end mill in which a tip of a substantially hemispherical cutting edge whose rotation locus around the axis is convex on the tip side is formed at the tip of the end mill body that is rotated around the axis, An angle between a straight line extending from the reference point toward the rotation locus and the axis, with a point separated by a reference radius given to the tip cutting edge from the front end of the rotation locus of the tip cutting edge toward the rear end side as a reference point. Is 30 ° or more, the rotation trajectory of the tip cutting edge is outside the hemisphere of the reference radius centered on the reference point, and the radius of curvature thereof is larger than the reference radius. A ball end mill characterized by the following. 上記先端切刃の回転軌跡の曲率半径は、上記挟角が30°以上となる範囲でこの挟角が大きくなるに従い漸次大きくなる傾向にあることを特徴とする請求項1に記載のボールエンドミル。The ball end mill according to claim 1, wherein the radius of curvature of the rotation locus of the tip cutting edge tends to gradually increase as the included angle increases in a range where the included angle is 30 ° or more. 上記先端切刃の回転軌跡の曲率半径と上記基準半径との差が、この基準半径に対して1%以下とされていることを特徴とする請求項1または請求項2に記載のボールエンドミル。3. The ball end mill according to claim 1, wherein a difference between a radius of curvature of a rotation locus of the tip cutting edge and the reference radius is 1% or less with respect to the reference radius. 4. 上記エンドミル本体の外周には、上記軸線回りの回転軌跡が略円筒面状をなす外周切刃が上記先端切刃の後端に連なるように形成されるとともに、上記先端切刃の回転軌跡の曲率半径が該先端切刃と上記外周切刃との交点においてこの外周切刃の上記軸線からの半径よりも大きくされ、かつこの交点と上記先端切刃の先端との上記軸線方向の距離が上記基準半径よりも小さくされていることを特徴とする請求項1ないし請求項3のいずれかに記載のボールエンドミル。On the outer periphery of the end mill main body, an outer peripheral cutting edge whose rotation locus around the axis forms a substantially cylindrical surface is formed so as to be connected to the rear end of the tip cutting edge, and the curvature of the rotation locus of the tip cutting edge is formed. A radius is set to be larger than a radius of the outer peripheral cutting edge from the axis at an intersection of the tip cutting edge and the outer peripheral cutting edge, and a distance in the axial direction between the intersection and the tip of the distal cutting edge is set to the reference value. The ball end mill according to any one of claims 1 to 3, wherein the ball end mill is smaller than a radius.
JP2002255318A 2002-08-30 2002-08-30 Ball end mill Withdrawn JP2004090171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255318A JP2004090171A (en) 2002-08-30 2002-08-30 Ball end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255318A JP2004090171A (en) 2002-08-30 2002-08-30 Ball end mill

Publications (1)

Publication Number Publication Date
JP2004090171A true JP2004090171A (en) 2004-03-25

Family

ID=32060866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255318A Withdrawn JP2004090171A (en) 2002-08-30 2002-08-30 Ball end mill

Country Status (1)

Country Link
JP (1) JP2004090171A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383060A1 (en) * 2009-01-21 2011-11-02 Mitsubishi Materials Corporation Radius end mill
WO2020245878A1 (en) * 2019-06-03 2020-12-10 オーエスジー株式会社 Ball end mill and cutting insert

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383060A1 (en) * 2009-01-21 2011-11-02 Mitsubishi Materials Corporation Radius end mill
EP2383060A4 (en) * 2009-01-21 2013-10-16 Mitsubishi Materials Corp Radius end mill
WO2020245878A1 (en) * 2019-06-03 2020-12-10 オーエスジー株式会社 Ball end mill and cutting insert
KR20210028717A (en) * 2019-06-03 2021-03-12 오에스지 가부시키가이샤 Ball end mill and cutting insert
CN112584953A (en) * 2019-06-03 2021-03-30 Osg株式会社 Ball end mill and cutting insert
KR102460611B1 (en) 2019-06-03 2022-10-27 오에스지 가부시키가이샤 Ball end mills and cutting inserts
CN112584953B (en) * 2019-06-03 2024-01-05 Osg株式会社 Ball end mill and cutting insert

Similar Documents

Publication Publication Date Title
EP2478983B1 (en) Ball end mill
JP4407975B2 (en) Ball end mill
KR101625700B1 (en) Radius end mill
JP4407974B2 (en) Ball end mill
CN101784355B (en) End mill
JP5447021B2 (en) Ball end mill
JP3581115B2 (en) Ball end mill and processing method using the ball end mill
JP2011189463A (en) End mill
JP2006224254A (en) Ball end mill
JP4677722B2 (en) 3-flute ball end mill
JP5958614B2 (en) Ball end mill
JP2006110683A (en) End mill
JP7417112B2 (en) end mill
JP2004090171A (en) Ball end mill
JP6825400B2 (en) Taper ball end mill
JP7131000B2 (en) ball end mill
JP2006015419A (en) Ball end mill
JP2588580Y2 (en) Ball end mill
JP3795278B2 (en) End mill
KR20110023709A (en) Rotary cutting tool
JP3754270B2 (en) Taper blade end mill
WO2010050390A1 (en) Ball end mill
JP7364921B2 (en) end mill
JP6780420B2 (en) Taper ball end mill
JP4449280B2 (en) Ball end mill

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101