JP2004088920A - Current differential protective relay device - Google Patents

Current differential protective relay device Download PDF

Info

Publication number
JP2004088920A
JP2004088920A JP2002247151A JP2002247151A JP2004088920A JP 2004088920 A JP2004088920 A JP 2004088920A JP 2002247151 A JP2002247151 A JP 2002247151A JP 2002247151 A JP2002247151 A JP 2002247151A JP 2004088920 A JP2004088920 A JP 2004088920A
Authority
JP
Japan
Prior art keywords
current
data
phase
orthogonal
quantities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002247151A
Other languages
Japanese (ja)
Other versions
JP3812830B2 (en
Inventor
Kazumi Yamada
山田 員己
Tatsuya Isomoto
磯本 達也
Hidemasa Sugiura
杉浦 秀昌
Hirobumi Ono
大野 博文
Kazuto Fukushima
福嶋 和人
Tomotaka Nishida
西田 知敬
Yasuhiro Kurosawa
黒沢 保広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Kansai Electric Power Co Inc
Toshiba System Technology Corp
Original Assignee
Toshiba Corp
Kansai Electric Power Co Inc
Toshiba System Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Kansai Electric Power Co Inc, Toshiba System Technology Corp filed Critical Toshiba Corp
Priority to JP2002247151A priority Critical patent/JP3812830B2/en
Publication of JP2004088920A publication Critical patent/JP2004088920A/en
Application granted granted Critical
Publication of JP3812830B2 publication Critical patent/JP3812830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a standard communication system by enabling the reduction of the transmission speed of the sampled data of each terminal transmitted between counter terminals. <P>SOLUTION: A current differential protective relay device is installed in each terminal of a power system constiuted by linking a plurality of terminals by a transmission line, and performs protective operation by transmitting the data created by sampling each phase of currents of each terminal in fixed cycles, based on a sampling synchronization signal, and converting them into digital between each terminal and the next. The relay device possesses an orthogonal quantity operation part 9 which gets two mutually orthogonal quantities expressing the current vectors of each phase from a plurality of current data sampled in fixed cycles, a transmission part 8 which transmits and receives the two orthogonal quantities obtained by the orthogonal quantity operation part 9 between counter electrodes, an operation part 6 which determines the existence of the occurrence of the trouble of the transmission line by differential operation from the two orthogonal quantities transmitted from its own end and the counter end obtained by the orthogonal quantity operation part 9, and an output part 7 which sends out a specified output, based on the determination results of the operation part. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、複数端子間を送電線により連系してなる電力系統の各端子の各相電流を同一時刻に一定周期でサンプリングし、ディジタル変換してなる電流データを瞬時値データの生成周期に左右されることなく各端子間で伝送しあって、電流差動保護演算により保護区間内外の事故を判定する電流差動保護継電装置に関する。
【0002】
【従来の技術】
複数端子間を送電線により連系してなる電力系統において、送電線の保護装置として、保護区間内外部の事故判定能力が高い電流差動保護継電装置が多用されている。
【0003】
図7は従来の電流差動保護継電装置を2端子送電系統に適用した一例を示す構成図である。図7において、4は端子α、β間を送電線1により連系してなる2端子送電系統の各端子に設置された電流差動保護継電装置で、この電流差動保護継電装置4は、アナログ−ディジタル変換部5、演算部6、出力部7及び伝送部8から構成されている。
【0004】
アナログ−ディジタル変換部5は、各端子の送電線1に流れる電流を変流器2を介して入力し、所定の周期でサンプリングを行い、サンプリングタイミング時点の電流瞬時値を表すディジタル値(瞬時値データ)に変換して伝送部8に出力する。
【0005】
伝送部8では、アナログ−ディジタル変換部5より出力された電流瞬時値データを含む自端のデータを通信装置3を介して相手端へ送信すると共に、相手端から通信装置3を介して伝送されてくるデータを受信して、自端及び相手端のデータを演算部6へ出力する。
【0006】
演算部6では、伝送部8を介して入力される自端及び相手端の電流瞬時値データから(1)式の差動演算にて両端子の電流のベクトル和である差電流の瞬時値を計算後、差電流の振幅値を計算し、この値を両端子の電流各々のスカラー量に応じた所定の値と比較することで送電線内の事故発生の有無を判定する。そして、出力部7は演算部6の判定結果に応じた出力を送出する。
【0007】
なお、電力系統は三相交流であり、電流差動保護継電装置も各相の電流3量と必要に応じて零相の電流を導入し、各電流に対して差動演算を実行しているが、図7及び以降の説明においては、単相表記として扱う。
【0008】
idm=iαm+iβm      ……(1)
idm:サンプリング時刻mの電流瞬時値データ
iαm,iβm:各端子のサンプリング時刻mの差電流瞬時値データ
【0009】
【発明が解決しようとする課題】
図8は(1)式を電流波形上で模式的に表したものである。電流差動保護継電装置では、各端子における電流のサンプリングタイミングは同期しているので、(1)式で得られる値は、差電流の瞬時値を表す。
【0010】
電流差動保護継電装置により事故の有無を判定するには、差電流瞬時値データから振幅値を求める必要があるが、現時点の瞬時値データ1点のみで振幅値を求めることは不可能であり、現時点を含む過去の複数サンプリングの瞬時値データから振幅値を算出している。
【0011】
瞬時値データから振幅値を算出する公知の振幅値演算手法の多くは、電気角30°間隔(60Hzの電力系統では、720Hz周期に相当)の現時点を含む過去の複数サンプリングの瞬時値データを用いて振幅値を求めるものであり、伝送部を介して相手端の瞬時値データを取得する電流差動保護継電装置で差電流の振幅値を求めるには、瞬時値データの伝送を少なくとも電気角30°毎に実施する必要がある。
【0012】
したがって、従来の電流差動保護継電装置においては、伝送部8及び通信装置3が、電気角30°周期の伝送を行うのに十分な伝送速度を持つ必要があり、60Hzの送電線保護に用いられる一般的な電流差動保護継電装置の場合、電流の瞬時値データを含む自端のデータを75ビットで表現されるので、通信装置3は
75×720=54.0kbps
以上の伝送速度を持つ必要がある。
【0013】
この値は標準的なデータ伝送端末装置の伝送速度である48kbpsよりも大きいため、通信装置3に非標準的な速度に対応した高価な専用装置を適用するか、1ランク上の標準伝送速度である1544kbpsの装置を使用して、1544kbpsの回線1チャンネルを電流差動保護継電装置に占有させるなどの対応をとらなければならないという問題がある。
【0014】
また、瞬時値データを間引いて伝送することで、伝送周期を電気角30°よりも長くして必要となる伝送速度の低速化を実現しようとすると、電気角30°周期を前提としない振幅値演算手法を用いて瞬時値データから振幅値を演算することになるが、演算に使用する瞬時値データの間隔が粗くなるので、振幅値演算の精度が低下するという問題が生じる。
【0015】
この場合、標本化定理(サンプリング定理)から、伝送する瞬時値データが60Hzの電流をサンプリングしたものであるから、少なくとも2倍の周波数である120Hz以上(電気角180°以下)の周期で伝送する必要があることは公知であり、振幅値演算の精度低下を許容した上で伝送周期を変更したとしても、その変更には限界がある。
【0016】
本発明は上記のような事情に鑑みてなされたもので、瞬時値データに代わるデータを伝送することで、瞬時値データの生成周期とは異なる周期で伝送することを可能とし、伝送速度の低速化を実現して、標準的な通信装置を使用することが可能な電流差動保護継電装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明は上記の目的を達成するため、次のような手段により電流差動保護継電装置を構成する。
【0018】
請求項1に対応する発明は、複数端子間を送電線により連系してなる電力系統の各端子に設置され、各端子の各相電流をサンプリング同期信号に基づき一定周期でサンプリングし、ディジタル変換してなるデータを各端子間で伝送しあって、保護演算を行う電流差動保護継電装置において、前記一定周期でサンプリングされた複数の電流データから各相の電流ベクトルを表す互いに直交する2量を求める第1の演算手段と、この第1の演算手段により求められた直交する2量を対向端子間で送受信する伝送手段と、前記第1の演算手段により求められた自端と対向端の直交する2量から両端子の電流のベクトル和とスカラー量を算出し、送電線の事故発生の有無を判定する第2の演算手段と、この第2の演算手段の判定結果に基づき所定の出力を送出する出力手段とを備える。
【0019】
請求項2に対応する発明は、複数端子間を送電線により連系してなる電力系統の各端子に設置され、各端子の各相電流をサンプリング同期信号に基づき一定周期でサンプリングし、ディジタル変換してなるデータを各端子間で伝送しあって、保護演算を行う電流差動保護継電装置において、前記一定周期でサンプリングされた複数の電流データから各相の電流ベクトルを表す互いに直交する2量を求める第1の演算手段と、この第1の演算手段により求められた直交する2量を大きさと位相の2量に変換する第1の変換手段と、この第1の変換手段により変換された大きさと位相の2量を対向端子間で送受信する伝送手段と、前記第1の変換手段により変換された自端と対向端から伝送されてくる前記大きさと位相の2量を各相の電流ベクトルを表す互いに直交する2量に変換する第2の変換手段と、この第2の変換手段により変換された自端と対向端の直交する2量から両端子の電流のベクトル和とスカラー量を算出し、送電線の事故発生の有無を判定する第2の演算手段と、この第2の演算手段の判定結果に基づき所定の出力を送出する出力手段とを備える。
【0020】
請求項3に対応する発明は、請求項1又は請求項2に対応する発明の電流差動保護継電装置において、前記サンプリングされた各相のデータから正相のデータを求め、該正相のデータを前記第1の演算手段に与える第3の演算手段を設け、前記第1の演算手段は、正相のデータに対する直交する2量を求める。
【0021】
請求項4に対応する発明は、請求項1乃至請求項3のいずれかに対応する発明の電流差動保護継電装置において、外部からの信号を取り込んで前記伝送手段のデータ伝送周期を任意の周期に制御する伝送周期制御手段を設ける。
【0022】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照して説明する。
【0023】
図1は本発明による電流差動保護継電装置を2端子送電系統に適用した第1の実施形態を示す構成図である。
【0024】
図1において、4は端子α、β間を送電線1により連系してなる2端子送電系統の各端子に設置された電流差動保護継電装置で、この電流差動保護継電装置4は、アナログ−ディジタル変換部5、演算部6、出力部7、伝送部8及び直交量演算部9から構成されている。
【0025】
アナログ−ディジタル変換部5は、各端子の送電線1に流れる電流を変流器2を介して入力し、所定の周期でサンプリングを行い、サンプリングタイミング時点の電流瞬時値を表すディジタル値(瞬時値データ)に変換して直交量演算部9に出力する。
【0026】
直交量演算部9では、アナログ−ディジタル変換部5より出力された電流瞬時値データと過去に出力されている電流瞬時値データの複数のデータより(2)式に示した離散フーリエ変換(DFT)を用いて、任意のサンプリング時点を基準とした電流のフェーザ(複素数表現)の実部データと虚部データの互いに直交する2量を演算し、伝送部8へ出力する。
【0027】
【数1】

Figure 2004088920
【0028】
Im:サンプリング時刻mのフェーザ
i(m−k):サンプリング時刻(m−k)の瞬時値データ
Real(Im):フェーザの実部データ
Imaginary(Im):フェーザの虚部データ
N:1周期当りのサンプリング数
伝送部8では、直交量演算部9より出力された実部データと虚部データを含む自端のデータを通信装置3を介して相手端へ送信すると共に、相手端から通信装置3を介して伝送されてくる相手端のデータを受信して、自端及び相手端のデータを演算部6へ出力する。
【0029】
演算部6では、伝送部8を介して入力される自端及び相手端の実部データと虚部データから(3)式の成分毎の差動演算により差電流の実部データと虚部データを計算後、(4)式から両端子の電流のベクトル和である差電流の振幅値を計算し、この値を両端子の電流各々のスカラー量に応じた所定の値と比較することで送電線内の事故発生の有無を判定する。
【0030】
Figure 2004088920
Idm:サンプリング時刻mの差電流のフェーザ
Real(Iαm),Real(Iβm):各端子のサンプリング時刻mの実部データ
Imaginary(Iαm),Imaginary(Iβm):各端子のサンプリング時刻mの虚部データ
|Idm|=(Real(Idm))+(Imaginary(Idm))  ……(4)
|Idm|:差電流の振幅値
そして、出力部7は演算部6の判定結果に応じた出力を送出する。
【0031】
次に上記のように構成された電流差動保護継電装置の作用を述べる。
【0032】
図2は本発明の第1の実施形態における差電流演算の様子を模式的に表したものである。フェーザは時間的に正弦振動する波形を複素数平面上で回転するベクトルとして捉え、このベクトルを複素数表現したものであり、電流のフェーザは所定の周期でサンプリングした電流瞬時値データを用いて、基本波成分に対するDFT計算式の一つである(2)式により演算を行うことで実部と虚部が算出できることは周知の通りである。
【0033】
電流差動保護継電装置では、各端子におけるサンプリングタイミングが同期していることを考慮すると、(3)式に表した各端子におけるサンプリング時刻mに算出された実部データ同士、虚部データ同士の和が、サンプリング時刻mにおける差電流のフェーザを表現することが分かる。この差電流の実部と虚部は互いに直交するものであることから、三平方の定理により(4)式が成り立ち、これより差電流の振幅値を求めることができる。
【0034】
ここで、(3)及び(4)式は、従来の瞬時値データから振幅値を求める場合と異なり、現時点の実部データと虚部データのみで演算が可能であり、過去のデータを必要としないので、必ずしも伝送周期を瞬時値データの生成周期と同一にする必要はない。また、瞬時値データの伝送ではないので、標本化定理による伝送周期に対する制約もない。
【0035】
したがって、本実施形態によれば、瞬時値データの生成周期とは異なる周期で伝送を行うことが可能となるので、伝送速度の低速化を実現することにより、標準的な通信装置を使用することができる。
【0036】
次に本発明の第2の実施形態を説明する。
【0037】
上記第1の実施形態で説明した瞬時値データのDFT演算による実部データと虚部データを算出する例では、電流をある直交座標平面上(この例の場合は、複素数平面)で回転するベクトルとして捉え、そのベクトルを座標軸上の直交する2量で表した。
【0038】
第2の実施形態では、現時点と1つ以上の過去の瞬時値データから、座標軸上ではない直交する2量を算出するようにしたもので、このようにしても第1の実施形態と同様の差動演算による送電線事故の有無の判定を行うことができる。
【0039】
(5)式は、現時点mとkサンプリング前の瞬時値データの加減算から、直交する2量を算出するものであり、図3はこの様子を説明するための図である。
【0040】
Ixm=im+i(m−k)  ……  (5)
Iym=im−i(m−k)
Ixm:サンプリング時刻mの直交する2量のX成分
Iym:サンプリング時刻mの直交する2量のY成分
このように本実施形態では、直交演算部5にて(5)式の演算を実行し、直交する2量を求めることにより、瞬時値データの生成周期とは異なる周期で伝送を行うことが可能となり、伝送速度の低速化を実現することにより、標準的な通信装置を使用することができる。
【0041】
図4は本発明による電流差動保護継電装置を2端子送電系統に適用した第3の実施形態を示す構成図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる点を述べる。
【0042】
第3の実施形態では、直交量演算部9と伝送部8との間に電流ベクトルを表す互いに直交する2量を大きさと位相の2量に変換する変換部10を設け、また伝送部8と演算部6との間に大きさと位相の2量を電流ベクトルを表す互いに直交する2量に逆変換する逆変換部11を設けたものである。
【0043】
ここで、変換部10では、例えば第1の実施形態で説明した(2)式の演算を実行する直交量演算部9より出力される直交する2量を(6)式で示す演算にて大きさと位相の2量に変換し、この2量を伝送部8へ出力する。
【0044】
|Im|=[{Real(Im)}+{Imaginary(Im)}1/2 ……(6)
θ=tan−1{Imaginary(Im)/Real(Im)}
|Im|:サンプリング時刻mの電流の大きさ
θ:サンプリング時刻mの電流の位相
また、逆変換部11では、大きさと位相の2量を(7)式で示す演算にて直交する2量に変換し、演算部6で例えば第1の実施形態で説明した直交する成分毎の和による差電流の算出ができるようにする。
【0045】
Real(Im)=|Im|cosθ  ……  (7)
Imaginary(Im)=|Im|sinθ
このようにすれば、大きさと位相の2量への変換と直交する2量への逆変換を行う手順が増加するが、伝送するデータを大きさと位相の2量にすることができる。
【0046】
直交する2量は、電流の振幅値により2量共にその取り得る値が変化するため、保護対象となる電力系統の諸条件に応じた最大の電流値を表現できるようにデータ長や1ビットの重み(量子化値)を決定する必要がある。
【0047】
これに対して、大きさと位相の2量の場合、大きさは負の値を取らないこと、位相はその表現範囲が0から360°に限定できることから、量子化値の取り方次第によっては、より少ないデータ量で表現できることがある。
【0048】
そこで、データ伝送速度を低速化するためには、伝送周期を長くする方法と1回の伝送周期内で伝送するデータ量を削減する方法の二通りがあるが、本実施形態によれば、前述した第1の実施形態または第2の実施形態で伝送周期を長くすることによる作用効果に加え、データ量を削減して伝送速度の低速化を実現することにより、標準的な伝送装置を使用することが可能となる。
【0049】
図5は本発明による電流差動保護継電装置を2端子送電系統に適用した第4の実施形態を示す構成図で、図1と同一部分には同一符号を付してその説明を省略し、ここでは異なる点を述べる。
【0050】
第4の実施形態では、アナログ−ディジタル変換部5と直交量演算部9との間に正相演算部12を設けたものである。
【0051】
前述した第1の実施形態乃至第3の実施形態では、三相各相の電流を扱う場合であるが、本実施形態では、正相演算部12において、各相の電流瞬時値データから正相の瞬時値データを算出し、直交量演算部9へ出力する。
【0052】
これにより、三相を個別に扱うことはできなくなるが、例えば事故検出時の出力部7の出力が三相一括遮断指令であるような、三相一括の処理が許容される場合には、データ量を削減することが可能となる。
【0053】
したがって、本実施形態によれば、前述した第1乃至第3の実施形態で得られる作用効果に加え、データ量の削減による伝送速度の低速化を実現することにより、標準的な通信装置を使用することができる。
【0054】
以上は本発明の第1の実施形態乃至第4の実施形態について述べたが、各実施形態において、次のような機能を持たせるようにしてもよい。
【0055】
前述した各実施形態では、伝送速度の低速化のために、データの生成周期とは異なる周期で伝送を行う場合について述べたが、伝送が周期的でなくとも機能することは明らかである。
【0056】
そこで、図6に示すように外部から周期変更信号が入力すると、伝送部8より出力される直交する2量の伝送周期を制御する伝送周期制御部13を設け、任意の周期で伝送するようにしても前述した各実施形態と同様の作用効果を得ることができる。
【0057】
また、前述した各実施形態では、保護対象として2端子の送電線を保護する場合について述べたが、3端子以上の多端子送電線を保護する場合にも、前述同様に適用実施できるものである。
【0058】
【発明の効果】
以上述べたように本発明によれば、瞬時値データに代わるデータを伝送することで、瞬時値データの生成周期とは異なる周期で伝送を行うことが可能な構成としたので、伝送速度の低速化の実現が可能となり、標準的な通信装置を使用することができる電流差動保護継電装置を提供できる。
【図面の簡単な説明】
【図1】本発明による電流差動保護継電装置を2端子送電系統に適用した第1の実施形態を示す構成図。
【図2】同実施形態における差動電流演算を模式的に表した図。
【図3】本発明の第2の実施形態における直交する2量の算出を説明するための図。
【図4】本発明による電流差動保護継電装置を2端子送電系統に適用した第3の実施形態を示す構成図。
【図5】本発明による電流差動保護継電装置を2端子送電系統に適用した第4の実施形態を示す構成図。
【図6】本発明による電流差動保護継電装置を2端子送電系統に適用した第5の実施形態を示す構成図。
【図7】従来の電流差動保護継電装置を2端子送電系統に適用した例を示す構成図。
【図8】従来装置による差動演算を模式的に表した図。
【符号の説明】
1……送電線
2……変流器
3……通信装置
4……電流差動保護継電装置
5……アナログ−ディジタル変換部
6……演算部
7……出力部
8……伝送部
9……直交量演算部
10……変換部
11……逆変換部
12……正相演算部
13……伝送周期制御部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention samples the phase current of each terminal of a power system which is connected to a plurality of terminals by a transmission line at the same time at a constant period, and converts the current data obtained by digital conversion into a generation period of instantaneous value data. The present invention relates to a current differential protection relay device that transmits signals between terminals without being influenced by the current differential protection operation and determines an accident inside and outside a protection section by a current differential protection calculation.
[0002]
[Prior art]
2. Description of the Related Art In a power system in which a plurality of terminals are interconnected by a transmission line, a current differential protection relay having high accident determination capability inside and outside a protection section is frequently used as a protection device of the transmission line.
[0003]
FIG. 7 is a configuration diagram showing an example in which a conventional current differential protection relay device is applied to a two-terminal power transmission system. In FIG. 7, reference numeral 4 denotes a current differential protection relay installed at each terminal of a two-terminal power transmission system in which terminals α and β are interconnected by a transmission line 1; Is composed of an analog-digital conversion unit 5, a calculation unit 6, an output unit 7, and a transmission unit 8.
[0004]
The analog-to-digital converter 5 inputs a current flowing through the transmission line 1 of each terminal via the current transformer 2, performs sampling at a predetermined cycle, and outputs a digital value (instantaneous value) representing an instantaneous current value at the sampling timing. ) And outputs it to the transmission unit 8.
[0005]
The transmission unit 8 transmits the data of the own end including the instantaneous current value data output from the analog-digital conversion unit 5 to the other end via the communication device 3 and is transmitted from the other end via the communication device 3. It receives the incoming data and outputs the data of its own end and the other end to the arithmetic unit 6.
[0006]
The arithmetic unit 6 calculates the instantaneous value of the difference current, which is the vector sum of the currents at the two terminals, from the instantaneous current value data of the self-end and the other end input via the transmission unit 8 by the differential operation of equation (1). After the calculation, the amplitude value of the difference current is calculated, and this value is compared with a predetermined value corresponding to the scalar amount of each of the currents at both terminals to determine whether or not an accident has occurred in the transmission line. Then, the output unit 7 sends out an output according to the determination result of the calculation unit 6.
[0007]
The power system is a three-phase AC, and the current differential protection relay also introduces three currents of each phase and zero-phase currents as necessary, and performs a differential operation on each current. However, in FIG. 7 and the following description, it is treated as a single-phase notation.
[0008]
idm = iαm + iβm (1)
idm: instantaneous current value data iαm, iβm at sampling time m: instantaneous difference current value data at sampling time m for each terminal
[Problems to be solved by the invention]
FIG. 8 schematically shows equation (1) on a current waveform. In the current differential protection relay, since the current sampling timing at each terminal is synchronized, the value obtained by equation (1) represents the instantaneous value of the difference current.
[0010]
In order to determine the presence / absence of an accident with the current differential protection relay, it is necessary to obtain the amplitude value from the instantaneous difference current data, but it is impossible to obtain the amplitude value from only one instantaneous value data at the present time. Yes, the amplitude value is calculated from instantaneous value data of a plurality of past samplings including the present time.
[0011]
Many of the known amplitude value calculation methods for calculating an amplitude value from instantaneous value data use instantaneous value data of a plurality of past samplings including the present time at an electrical angle interval of 30 ° (equivalent to a 720 Hz cycle in a 60 Hz power system). In order to obtain the amplitude value of the differential current with the current differential protection relay that acquires the instantaneous value data of the other end through the transmission unit, the transmission of the instantaneous value data must be at least an electrical angle. It must be performed every 30 °.
[0012]
Therefore, in the current differential protection relay device of the related art, the transmission unit 8 and the communication device 3 need to have a transmission speed sufficient to perform the transmission of the electrical angle cycle of 30 °. In the case of a general current differential protection relay device used, since the data of the self-end including the instantaneous value data of the current is expressed by 75 bits, the communication device 3 is 75 × 720 = 54.0 kbps.
It is necessary to have the above transmission speed.
[0013]
Since this value is larger than 48 kbps, which is the transmission speed of a standard data transmission terminal device, an expensive dedicated device corresponding to a non-standard speed is applied to the communication device 3 or the standard transmission speed higher by one rank is used. There is a problem that a certain 1544 kbps device must be used to take measures such as occupying one channel of the 1544 kbps line by the current differential protection relay.
[0014]
In addition, if the transmission period is made longer than the electrical angle of 30 ° to reduce the required transmission speed by thinning out and transmitting the instantaneous value data, an amplitude value that does not assume the electrical angle of 30 ° period is required. The amplitude value is calculated from the instantaneous value data using the calculation method. However, since the interval between the instantaneous value data used for the calculation becomes coarse, there is a problem that the accuracy of the amplitude value calculation is reduced.
[0015]
In this case, according to the sampling theorem (sampling theorem), since the instantaneous value data to be transmitted is obtained by sampling a current of 60 Hz, the data is transmitted at a frequency of at least twice as high as 120 Hz (electrical angle of 180 ° or less). It is known that it is necessary. Even if the transmission cycle is changed while the accuracy of the amplitude value calculation is reduced, there is a limit to the change.
[0016]
The present invention has been made in view of the above circumstances, and by transmitting data in place of instantaneous value data, it is possible to transmit data at a period different from the generation period of the instantaneous value data. It is an object of the present invention to provide a current differential protection relay device that can realize standardization and can use a standard communication device.
[0017]
[Means for Solving the Problems]
In order to achieve the above object, the present invention constitutes a current differential protection relay using the following means.
[0018]
The invention corresponding to claim 1 is provided at each terminal of a power system in which a plurality of terminals are interconnected by a transmission line, and samples each phase current of each terminal at a constant period based on a sampling synchronization signal, and performs digital conversion. In the current differential protection relay device for transmitting protection data between terminals and performing a protection operation, the current differential protection relay device, which represents a current vector of each phase from a plurality of current data sampled at the constant period, is used as two orthogonal signals. First calculating means for calculating the quantity, transmitting means for transmitting and receiving the two orthogonal quantities determined by the first calculating means between the opposite terminals, and a self end and a facing end determined by the first calculating means A second arithmetic means for calculating the vector sum of the currents of both terminals and the scalar amount from the two orthogonal quantities, and determining whether or not an accident has occurred in the transmission line; and a predetermined arithmetic operation means based on the determination result of the second arithmetic means. Out And output means for delivering.
[0019]
The invention corresponding to claim 2 is provided at each terminal of a power system in which a plurality of terminals are interconnected by a transmission line, and samples each phase current of each terminal at a constant period based on a sampling synchronization signal to perform digital conversion. In the current differential protection relay device for transmitting protection data between terminals and performing a protection operation, the current differential protection relay device, which represents a current vector of each phase from a plurality of current data sampled at the constant period, is used as two orthogonal signals. A first calculating means for obtaining the quantity, a first converting means for converting the two orthogonal quantities obtained by the first calculating means into two quantities of magnitude and phase, and conversion by the first converting means. Means for transmitting and receiving the two quantities of the magnitude and phase between the opposite terminals, and the two quantities of the magnitude and phase transmitted from the own end and the opposite end converted by the first conversion means to the current of each phase. Vect A second conversion means for converting into two quantities orthogonal to each other, and a vector sum of currents of both terminals and a scalar quantity from the two orthogonal quantities at the self end and the opposite end converted by the second conversion means. A second calculating means for determining whether or not an accident has occurred in the transmission line; and an output means for transmitting a predetermined output based on the determination result of the second calculating means.
[0020]
According to a third aspect of the present invention, in the current differential protection relay according to the first or second aspect, positive-phase data is obtained from the sampled data of each phase, and the positive-phase data is obtained. A third operation means for providing data to the first operation means is provided, and the first operation means obtains two orthogonal quantities with respect to the in-phase data.
[0021]
According to a fourth aspect of the present invention, in the current differential protection relay device according to the first aspect of the present invention, a data transmission cycle of the transmission unit is arbitrarily set by receiving an external signal. Transmission period control means for controlling the period is provided.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 is a configuration diagram showing a first embodiment in which a current differential protection relay device according to the present invention is applied to a two-terminal power transmission system.
[0024]
In FIG. 1, reference numeral 4 denotes a current differential protection relay installed at each terminal of a two-terminal power transmission system in which terminals α and β are interconnected by a transmission line 1. Is composed of an analog-digital conversion unit 5, an operation unit 6, an output unit 7, a transmission unit 8, and an orthogonal amount operation unit 9.
[0025]
The analog-to-digital converter 5 inputs a current flowing through the transmission line 1 of each terminal via the current transformer 2, performs sampling at a predetermined cycle, and outputs a digital value (instantaneous value) representing an instantaneous current value at the sampling timing. ) And outputs the result to the orthogonal amount calculation unit 9.
[0026]
In the orthogonal amount calculation unit 9, a discrete Fourier transform (DFT) shown in the equation (2) is obtained from a plurality of data of the current instantaneous value data output from the analog-digital conversion unit 5 and the current instantaneous value data output in the past. Is used to calculate two orthogonal quantities of the real part data and the imaginary part data of the phasor (complex number representation) of the current with reference to an arbitrary sampling time point, and output the result to the transmission unit 8.
[0027]
(Equation 1)
Figure 2004088920
[0028]
Im: phasor i (mk) at sampling time m: instantaneous value data Real (Im) at sampling time (mk): real part data of phasor Imaginary (Im): imaginary part data of phasor N: per cycle The sampling number transmitting unit 8 transmits the data of the own end including the real part data and the imaginary part data output from the orthogonal amount calculating unit 9 to the other end via the communication device 3 and transmits the data from the other end to the communication device 3. And outputs the data of the own end and the other end to the arithmetic unit 6.
[0029]
The arithmetic unit 6 calculates the real part data and the imaginary part data of the difference current from the real part data and the imaginary part data of the own end and the other end inputted through the transmission part 8 by the differential operation for each component of the equation (3). , The amplitude value of the difference current, which is the vector sum of the currents at both terminals, is calculated from the equation (4), and this value is compared with a predetermined value corresponding to the scalar amount of the current at both terminals. Determine whether an accident has occurred in the wire.
[0030]
Figure 2004088920
Idm: phasor Real (Iαm), Real (Iβm) of difference current at sampling time m: real part data at sampling time m of each terminal Imaginary (Iαm), Imaginary (Iβm): imaginary part data at sampling time m of each terminal | Idm | 2 = (Real (Idm)) 2 + (Imaginary (Idm)) 2 (4)
| Idm |: the amplitude value of the difference current The output unit 7 sends out an output according to the determination result of the calculation unit 6.
[0031]
Next, the operation of the current differential protection relay configured as described above will be described.
[0032]
FIG. 2 schematically shows a state of the difference current calculation in the first embodiment of the present invention. The phasor captures a waveform that sinusoidally oscillates in time as a vector rotating on a complex plane, and expresses this vector as a complex number.The current phasor uses the instantaneous current data sampled at a predetermined cycle to generate the fundamental wave. It is well known that the real part and the imaginary part can be calculated by performing an operation according to equation (2), which is one of the DFT calculation equations for the components.
[0033]
In the current differential protection relay, considering that the sampling timing at each terminal is synchronized, the real part data and the imaginary part data calculated at the sampling time m at each terminal expressed by the equation (3) are considered. It can be seen that the sum of represents the phasor of the difference current at the sampling time m. Since the real part and the imaginary part of this difference current are orthogonal to each other, the equation (4) is established by the three-square theorem, from which the amplitude value of the difference current can be obtained.
[0034]
Here, the equations (3) and (4) are different from the conventional case where the amplitude value is obtained from the instantaneous value data, and can be operated only with the real part data and the imaginary part data at the present time. Therefore, the transmission cycle does not necessarily have to be the same as the generation cycle of the instantaneous value data. Further, since the transmission is not the transmission of instantaneous value data, there is no restriction on the transmission cycle due to the sampling theorem.
[0035]
Therefore, according to the present embodiment, it is possible to perform transmission at a period different from the generation period of the instantaneous value data, so that it is possible to use a standard communication device by realizing a lower transmission speed. Can be.
[0036]
Next, a second embodiment of the present invention will be described.
[0037]
In the example of calculating the real part data and the imaginary part data by the DFT operation of the instantaneous value data described in the first embodiment, the vector that rotates the current on a certain rectangular coordinate plane (in this case, a complex number plane) And the vector was represented by two orthogonal quantities on the coordinate axis.
[0038]
In the second embodiment, two orthogonal quantities that are not on the coordinate axis are calculated from the present and one or more past instantaneous value data. It is possible to determine the presence or absence of a transmission line accident by differential operation.
[0039]
Equation (5) calculates two orthogonal quantities from the addition and subtraction of the instantaneous value data before the current m and k samplings, and FIG. 3 is a diagram for explaining this state.
[0040]
Ixm = im + i (mk) (5)
Iym = im-i (mk)
Ixm: Two orthogonal X components at sampling time m Iym: Two orthogonal Y components at sampling time m As described above, in the present embodiment, the orthogonal operation unit 5 executes the operation of Expression (5), By obtaining two orthogonal quantities, transmission can be performed at a period different from the generation period of the instantaneous value data, and by realizing a lower transmission speed, a standard communication device can be used. .
[0041]
FIG. 4 is a configuration diagram showing a third embodiment in which the current differential protection relay device according to the present invention is applied to a two-terminal power transmission system. The same parts as those in FIG. Here, different points will be described.
[0042]
In the third embodiment, a conversion unit 10 for converting two orthogonal quantities representing a current vector into two quantities of magnitude and phase is provided between the orthogonal quantity calculation unit 9 and the transmission unit 8. An inverse transform unit 11 is provided between the arithmetic unit 6 and the inverse transform unit for inversely transforming two quantities of magnitude and phase into two orthogonal quantities representing current vectors.
[0043]
Here, in the conversion unit 10, for example, the two orthogonal quantities output from the orthogonal quantity calculation unit 9 that executes the calculation of the equation (2) described in the first embodiment are increased by the calculation shown in the equation (6). And the two quantities are output to the transmission unit 8.
[0044]
| Im | = [{Real (Im)} 2 + {Imaginary (Im)} 2 ] 1/2 (6)
θ = tan-1 {Imaginary (Im) / Real (Im)}
| Im |: The magnitude of the current at the sampling time m θ: The phase of the current at the sampling time m Also, the inverse transform unit 11 converts the two quantities of the magnitude and phase into two quantities that are orthogonal to each other by the calculation represented by the equation (7). After the conversion, the calculation unit 6 can calculate the difference current based on the sum of each orthogonal component described in the first embodiment, for example.
[0045]
Real (Im) = | Im | cos θ (7)
Imaginary (Im) = | Im | sin θ
By doing so, the number of procedures for performing the conversion of the magnitude and phase to two quantities and the inverse transformation to the orthogonal two quantities increases, but the data to be transmitted can be made of two quantities of magnitude and phase.
[0046]
Since the values of the two orthogonal quantities change according to the amplitude value of the current, the possible values of the two quantities change. Therefore, the data length and the 1-bit value of the 1-bit data can be expressed so that the maximum current value can be expressed according to the conditions of the power system to be protected. Weights (quantized values) need to be determined.
[0047]
On the other hand, in the case of the two quantities of the magnitude and the phase, the magnitude does not take a negative value, and the phase can be limited to an expression range of 0 to 360 °. Sometimes it can be expressed with a smaller amount of data.
[0048]
In order to reduce the data transmission speed, there are two methods, a method of lengthening the transmission cycle and a method of reducing the amount of data transmitted within one transmission cycle. In addition to the effect of increasing the transmission cycle in the first or second embodiment, a standard transmission device is used by reducing the amount of data and realizing a lower transmission speed. It becomes possible.
[0049]
FIG. 5 is a configuration diagram showing a fourth embodiment in which the current differential protection relay device according to the present invention is applied to a two-terminal power transmission system. The same components as those in FIG. Here, different points will be described.
[0050]
In the fourth embodiment, a positive-phase operation unit 12 is provided between the analog-digital conversion unit 5 and the orthogonal amount operation unit 9.
[0051]
Although the first to third embodiments described above deal with the currents of each of the three phases, in the present embodiment, the positive-phase operation unit 12 calculates the positive-phase current from the instantaneous current value data of each phase. Is calculated and output to the orthogonal amount calculation unit 9.
[0052]
This makes it impossible to handle the three phases individually. However, when the three-phase batch processing is allowed, for example, when the output of the output unit 7 at the time of detecting an accident is a three-phase batch cutoff command, The amount can be reduced.
[0053]
Therefore, according to the present embodiment, in addition to the functions and effects obtained in the above-described first to third embodiments, a standard communication device can be used by realizing a lower transmission speed by reducing the amount of data. can do.
[0054]
While the first to fourth embodiments of the present invention have been described above, the following functions may be provided in each embodiment.
[0055]
In each of the above-described embodiments, a case has been described in which transmission is performed at a period different from the data generation period in order to reduce the transmission speed.
[0056]
Therefore, as shown in FIG. 6, when a period change signal is input from the outside, a transmission period control unit 13 that controls two orthogonal transmission periods output from the transmission unit 8 is provided, and transmission is performed at an arbitrary period. The same operation and effect as those of the above-described embodiments can be obtained.
[0057]
Further, in each of the above-described embodiments, the case where the two-terminal transmission line is protected as the protection target has been described. However, the present invention can be applied and implemented similarly to the case where the multi-terminal transmission line having three or more terminals is protected. .
[0058]
【The invention's effect】
As described above, according to the present invention, by transmitting data in place of the instantaneous value data, the transmission can be performed at a period different from the generation period of the instantaneous value data. Therefore, it is possible to provide a current differential protection relay device that can use a standard communication device.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a first embodiment in which a current differential protection relay device according to the present invention is applied to a two-terminal power transmission system.
FIG. 2 is a diagram schematically showing a differential current calculation in the embodiment.
FIG. 3 is a diagram illustrating calculation of two orthogonal quantities according to a second embodiment of the present invention.
FIG. 4 is a configuration diagram showing a third embodiment in which the current differential protection relay device according to the present invention is applied to a two-terminal power transmission system.
FIG. 5 is a configuration diagram showing a fourth embodiment in which the current differential protection relay device according to the present invention is applied to a two-terminal power transmission system.
FIG. 6 is a configuration diagram showing a fifth embodiment in which the current differential protection relay device according to the present invention is applied to a two-terminal power transmission system.
FIG. 7 is a configuration diagram showing an example in which a conventional current differential protection relay device is applied to a two-terminal power transmission system.
FIG. 8 is a diagram schematically showing a differential operation by a conventional device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Transmission line 2 ... Current transformer 3 ... Communication device 4 ... Current differential protection relay device 5 ... Analog-to-digital conversion unit 6 ... Calculation unit 7 ... Output unit 8 ... Transmission unit 9 ... Quadrature amount operation unit 10 Conversion unit 11 Inverse conversion unit 12 In-phase operation unit 13 Transmission cycle control unit

Claims (4)

複数端子間を送電線により連系してなる電力系統の各端子に設置され、各端子の各相電流をサンプリング同期信号に基づき一定周期でサンプリングし、ディジタル変換してなるデータを各端子間で伝送しあって、保護演算を行う電流差動保護継電装置において、
前記一定周期でサンプリングされた複数の電流データから各相の電流ベクトルを表す互いに直交する2量を求める第1の演算手段と、
この第1の演算手段により求められた直交する2量を対向端子間で送受信する伝送手段と、
前記第1の演算手段により求められた自端と対向端の直交する2量から両端子の電流のベクトル和とスカラー量を算出し、送電線の事故発生の有無を判定する第2の演算手段と、
この第2の演算手段の判定結果に基づき所定の出力を送出する出力手段とを備えたことを特徴とする電流差動保護継電装置。
Installed at each terminal of the power system that connects multiple terminals with transmission lines, each phase current of each terminal is sampled at a fixed cycle based on a sampling synchronization signal, and digitally converted data is output between each terminal. In the current differential protection relay that transmits and performs protection calculation,
First arithmetic means for obtaining two mutually orthogonal quantities representing current vectors of the respective phases from the plurality of current data sampled at the constant cycle;
Transmitting means for transmitting and receiving two orthogonal quantities obtained by the first calculating means between the opposite terminals;
A second arithmetic means for calculating a vector sum of currents of both terminals and a scalar amount from two orthogonal quantities of the self end and the opposite end obtained by the first arithmetic means and determining whether or not an accident has occurred in the transmission line. When,
Output means for sending a predetermined output based on the result of the determination by the second arithmetic means.
複数端子間を送電線により連系してなる電力系統の各端子に設置され、各端子の各相電流をサンプリング同期信号に基づき一定周期でサンプリングし、ディジタル変換してなるデータを各端子間で伝送しあって、保護演算を行う電流差動保護継電装置において、
前記一定周期でサンプリングされた複数の電流データから各相の電流ベクトルを表す互いに直交する2量を求める第1の演算手段と、
この第1の演算手段により求められた直交する2量を大きさと位相の2量に変換する第1の変換手段と、
この第1の変換手段により変換された大きさと位相の2量を対向端子間で送受信する伝送手段と、
前記第1の変換手段により変換された自端と対向端から伝送されてくる前記大きさと位相の2量を各相の電流ベクトルを表す互いに直交する2量に変換する第2の変換手段と、
この第2の変換手段により変換された自端と対向端の直交する2量から両端子の電流のベクトル和とスカラー量を算出し、送電線の事故発生の有無を判定する第2の演算手段と、
この第2の演算手段の判定結果に基づき所定の出力を送出する出力手段とを備えたことを特徴とする電流差動保護継電装置。
Installed at each terminal of the power system that connects multiple terminals with transmission lines, each phase current of each terminal is sampled at a fixed cycle based on a sampling synchronization signal, and digitally converted data is output between each terminal. In the current differential protection relay that transmits and performs protection calculation,
First arithmetic means for obtaining two mutually orthogonal quantities representing current vectors of the respective phases from the plurality of current data sampled at the constant cycle;
First conversion means for converting two orthogonal quantities obtained by the first calculation means into two quantities of magnitude and phase;
Transmitting means for transmitting and receiving the two quantities of the magnitude and phase converted by the first converting means between the opposite terminals;
Second conversion means for converting the two quantities of the magnitude and phase transmitted from the own end and the opposite end converted by the first conversion means into two orthogonal quantities representing current vectors of each phase;
A second computing means for calculating a vector sum of currents of both terminals and a scalar quantity from two orthogonal quantities of the own end and the opposite end converted by the second converting means, and determining whether or not an accident has occurred in the transmission line. When,
Output means for sending a predetermined output based on the result of the determination by the second arithmetic means.
請求項1又は請求項2に記載の電流差動保護継電装置において、
前記サンプリングされた各相のデータから正相のデータを求め、該正相のデータを前記第1の演算手段に与える第3の演算手段を設け、
前記第1の演算手段は、正相のデータに対する直交する2量を求めることを特徴とする電流差動保護継電装置。
The current differential protection relay according to claim 1 or 2,
A third calculating means for obtaining positive-phase data from the sampled phase data and providing the positive-phase data to the first calculating means;
The current differential protection relay device according to claim 1, wherein the first calculating means obtains two orthogonal quantities with respect to positive-phase data.
請求項1乃至請求項3のいずれかに記載の電流差動保護継電装置において、
外部からの信号を取り込んで前記伝送手段のデータ伝送周期を任意の周期に制御する伝送周期制御手段を設けたことを特徴とする電流差動保護継電装置。
The current differential protection relay according to any one of claims 1 to 3,
A current differential protection relay device comprising transmission cycle control means for receiving a signal from the outside and controlling the data transmission cycle of the transmission means to an arbitrary cycle.
JP2002247151A 2002-08-27 2002-08-27 Current differential protection relay device Expired - Fee Related JP3812830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247151A JP3812830B2 (en) 2002-08-27 2002-08-27 Current differential protection relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247151A JP3812830B2 (en) 2002-08-27 2002-08-27 Current differential protection relay device

Publications (2)

Publication Number Publication Date
JP2004088920A true JP2004088920A (en) 2004-03-18
JP3812830B2 JP3812830B2 (en) 2006-08-23

Family

ID=32054871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247151A Expired - Fee Related JP3812830B2 (en) 2002-08-27 2002-08-27 Current differential protection relay device

Country Status (1)

Country Link
JP (1) JP3812830B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100459356C (en) * 2006-06-16 2009-02-04 天津大学 Split-phase current phase differential protecting method for extra-high voltage transmission line
JP2010154641A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Current differential protective relay device
JP2011045215A (en) * 2009-08-24 2011-03-03 Hitachi Ltd Ground fault distance protective relay device
KR101338304B1 (en) * 2008-10-31 2013-12-09 가부시끼가이샤 도시바 Protection relay and method for controlling transmission level of the same
WO2014013826A1 (en) 2012-07-20 2014-01-23 日産自動車株式会社 Fault diagnostic system, fault diagnostic device, and fault diagnostic method
CN103947064A (en) * 2011-11-25 2014-07-23 株式会社东芝 Transmission line protective relay device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100459356C (en) * 2006-06-16 2009-02-04 天津大学 Split-phase current phase differential protecting method for extra-high voltage transmission line
KR101338304B1 (en) * 2008-10-31 2013-12-09 가부시끼가이샤 도시바 Protection relay and method for controlling transmission level of the same
US8908780B2 (en) 2008-10-31 2014-12-09 Kabushiki Kaisha Toshiba Protective relay and method for controlling the same
JP2010154641A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Current differential protective relay device
JP2011045215A (en) * 2009-08-24 2011-03-03 Hitachi Ltd Ground fault distance protective relay device
CN103947064A (en) * 2011-11-25 2014-07-23 株式会社东芝 Transmission line protective relay device
WO2014013826A1 (en) 2012-07-20 2014-01-23 日産自動車株式会社 Fault diagnostic system, fault diagnostic device, and fault diagnostic method
US9590882B2 (en) 2012-07-20 2017-03-07 Nissan Motor Co., Ltd. Fault diagnostic system, fault diagnostic device, and fault diagnostic method

Also Published As

Publication number Publication date
JP3812830B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
JP4657151B2 (en) Rotational phase angle measuring device, frequency measuring device using the same, synchronous phasor measuring device, switching pole phase control device, synchronous input device and phase discrimination device
US6662124B2 (en) Protective relay with synchronized phasor measurement capability for use in electric power systems
CN105842530B (en) Electric quantity measuring apparatus and electric quantity measuring method
JP5283938B2 (en) Digital protective relay device
CN103543335A (en) Method for measuring synchronous phasor
JP3983031B2 (en) Semiconductor power converter control circuit
JP2004088920A (en) Current differential protective relay device
JP4413883B2 (en) Sampling frequency converter
JPH0737998B2 (en) Electricity detector
CN108092234B (en) Differential protection method and device suitable for variable frequency motor
KR101309400B1 (en) Merging unit with frequency protection function
JP2007114190A (en) Leakage current resistance fraction detection method and device for it
JP6570476B2 (en) Current differential protection relay device
JP6832811B2 (en) Protection control device and protection control system
JP5078763B2 (en) Transmission line accident location device and transmission line accident location method
JPH05264605A (en) Positive phase/negative phase component detecting circuit of three-phase electric current or voltage
JP2010266411A (en) Synchronous phasor measuring device
EP3018782A1 (en) Protection relay device
CA1080363A (en) Apparatus for calculating amplitude values
JP3505626B2 (en) Power converter and power converter controller
JP2013031306A (en) Digital protection relay device
JP4176709B2 (en) AC / DC bidirectional converter
JP2733397B2 (en) Undervoltage relay device with current compensation
JPS6022772Y2 (en) Digital protective relay device
JP2508036B2 (en) Digital Directional Ground Fault Relay

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050201

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20050614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060525

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees