JP2004085420A - Flow measuring instrument - Google Patents

Flow measuring instrument Download PDF

Info

Publication number
JP2004085420A
JP2004085420A JP2002248247A JP2002248247A JP2004085420A JP 2004085420 A JP2004085420 A JP 2004085420A JP 2002248247 A JP2002248247 A JP 2002248247A JP 2002248247 A JP2002248247 A JP 2002248247A JP 2004085420 A JP2004085420 A JP 2004085420A
Authority
JP
Japan
Prior art keywords
impedance
flow rate
input
unit
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002248247A
Other languages
Japanese (ja)
Other versions
JP3654273B2 (en
JP2004085420A5 (en
Inventor
Yuji Nakabayashi
中林 裕治
Hideji Abe
安倍 秀二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002248247A priority Critical patent/JP3654273B2/en
Publication of JP2004085420A publication Critical patent/JP2004085420A/en
Publication of JP2004085420A5 publication Critical patent/JP2004085420A5/ja
Application granted granted Critical
Publication of JP3654273B2 publication Critical patent/JP3654273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize precise measurement at a low cost, in a flow measuring instrument. <P>SOLUTION: This instrument is provided with an impedance controlling means for changing an impedance of an input part for receiving an output from a reception side oscillator. The impedance is set to an input impedance to satisfy precision in response to a measuring condition. An amplification rate required for signal detection from an output signal of the oscillator is thereby minimized. As a result therein, a consumed current is reduced because the setting is allowed to satisfy the precision and to reduce the consumed current. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、流量計測装置に関するものである。
【0002】
【従来の技術】
従来のこの種の流量計測装置は図4に示すように流体管路1に設けられ超音波信号を送受信する第1の振動子2及び第2の振動子3とを流れの方向に相対して設け、駆動手段4によって第1の振動子2を駆動し超音波を送信する。この超音波を第2の振動子3で受信し、受信した信号から受信検知手段5で受信タイミングを決定する。計時手段6は駆動手段4が第1の振動子2を駆動してから受信検知手段5が受信タイミングを決定するまでの時間を計測することによって伝搬時間を測定する。また切替手段7によって超音波を送受する方向を変え逆方向の超音波の伝搬時間を測定し、両方向の伝搬時間より流量を流量演算手段8によって演算し求めていた。
【0003】
【発明が解決しようとする課題】
しかしながら上記従来の流量計測装置の受信側振動子の等価回路は図2で示す等価回路のように、超音波振動を電気信号に変換する信号源9と、信号源9のインピーダンス10と、振動子の電極間容量11からなっており、前記振動子から出力される信号は超音波の振動に対し、インピーダンス10と電極間容量11で決まるタイミングだけ遅れて電気信号として出力される。
【0004】
この場合、温度変動があると電極間容量11の値が大きく変化し、出力信号のタイミング遅れが変わるので正確な時間測定ができない。この遅延の変動を小さな値にするために、内部インピーダンスより低いインピーダンスの回路によって振動子の出力信号を受け、遅延時間を短くする方法があった。しかし、振動子の出力を受ける回路の入力インピーダンスを小さくするほど消費電流が必要である上、小さなインピーダンスで振動子の出力を受けるので振動子の出力信号が小さくなり、信号検出のため出力信号を大きく増幅する為の消費電流が増えていた。このため測定精度を落とすことなく装置全体の消費電流を小さくするという課題があった。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するため、入力部のインピーダンスを変更するインピーダンス制御手段を備える。測定条件に応じて精度を満足する入力インピーダンスに設定することが出来るので、振動子の出力信号から信号検出のために必要な増幅率を必要最低とすることができる。つまり、精度を満足しなおかつ消費電流を小さくする設定とすることができるので消費電流を小さくすることができる。
【0006】
【発明の実施の形態】
本発明の請求項1にかかる流量計測装置は、入力部のインピーダンスを変更するインピーダンス制御手段を有する。そして、測定条件に応じて精度を満足する入力インピーダンスに設定する。これにより振動子の出力信号から信号検出のために必要な増幅率を必要最低とすることができる。その結果、精度を満足しなおかつ消費電流を小さくする設定とすることができるので消費電流を小さくすることができる。
【0007】
本発明の請求項2にかかる流量計測装置は、インピーダンス制御手段が伝搬時間を検知する伝搬時間検知手段を備え、前記伝搬時間検知手段が検知した伝搬時間が長くなると入力部の入力インピーダンスが高くなるよう変える。流量測定における誤差は、伝搬時間に対する時間測定誤差の比率が問題となる。そのため、伝搬時間が長い場合は時間計測誤差も相対的に許容値が大きくなり、同じ受信条件では必要以上に測定精度がよくなる。
【0008】
この場合、測定精度を満足する範囲で入力部のインピーダンスを高くすることにより、超音波信号の電気信号振幅が大きくなる。また、超音波信号のS/Nが改善され測定値のばらつきを小さくすることができる。また入力信号振幅が大きくなるので、信号を増幅度を小さくすることができるので消費電流を少なくすることができる。
【0009】
本発明の請求項3にかかる流量計測装置は、インピーダンス制御手段は、前回測定時の計時部による計時が長くなると入力部の入力インピーダンスが高くなるよう変える。そして、計時部出力は伝搬時間と比例しているので、この値を伝搬時間とすることによって、伝搬時間を測定する必要がなく、伝搬時間測定のための電力消費を削減できるとともに、測定時間を短くすることができる。
【0010】
本発明の請求項4にかかる流量計測装置は、インピーダンス制御手段は、測定方向を切り替え超音波の伝搬時間を測定した2つの計時部出力の逆数和が大きくなると入力部の入力インピーダンスが高くなるよう変える。そして測定した伝搬時間は流体そのものの音速に流体の流速を加減した伝搬時間を測定しているため、流体本来の伝搬時間ではない。そこで測定方向を切り替えて測定した2つの計時部出力の逆数和を求めることによって、流体の流速を除去した伝搬時間を求めることができ、より正確に伝搬時間に応じて入力部インピーダンスを設定することができる。
【0011】
本発明の請求項5にかかる流量計測装置は、インピーダンス制御手段は、流量を検知する流量検知手段を備え、前記流量検知手段が検知した流量が多くなると入力部の入力インピーダンスが高くなるよう変える請求項1記載の流量計測装置。流量測定における誤差は、ほとんどの場合測定流量値に対する誤差比率を基準としている。つまり、時間測定誤差が一定の場合、相対的に測定流量が多い場合は必要以上に測定精度がよくなる。この場合、入力部のインピーダンスを高くすることにより、超音波信号の電気信号振幅が大きくなるので、超音波信号のS/Nが改善され測定値のばらつきを小さくすることができる。
【0012】
本発明の請求項6にかかる流量計測装置は、流量検知手段が流量演算手段の出力を流量検知手段に受け記憶する。
【0013】
そして前記流量記憶部に前回の流量演算手段の出力を記憶した値に基づき、入力部の入力インピーダンスを制御するため、別途流量測定をする必要がなく、流量測定のための電力消費を削減できるとともに、測定時間を短くすることができる。
【0014】
本発明の請求項7にかかる流量検知手段は、インピーダンス制御手段に超音波を受信するタイミングを予測する予測手段を備え、前記予測手段が予測したタイミングのみ入力部の入力インピーダンスを振動子のインピーダンスに比べ小さな値に変更する。受信信号を受信する必要なタイミングのみ、入力部のインピーダンスを小さくするので、前記入力部のインピーダンスを小さくするための消費電流を小さくすることができると同時に、受信信号を受信しないタイミングでは、入力部のインピーダンスは高くなるので電気的なロスが大きく、振動子に発生した震動を早く減衰させることができるので消費電流が少なくかつ高精度の流量測定装置を実現できる。
【0015】
本発明の請求項8にかかる流量計測装置は、インピーダンス制御手段に振動子を駆動するタイミングを検知する駆動タイミング検知手段を備え、振動子駆動時は入力部の入力インピーダンスを振動子のインピーダンスに比べ小さな値に変更する。このため送信側振動子を駆動する駆動信号が原因であるノイズあるいは漏れ信号が、受信側振動子を震動させるよう発生した場合であっても、入力部を低インピーダンスとしない場合と比較し、入力部の方にも多くのエネルギーが流れるので、受信側振動子が震動しにくくなる。その結果、受信側振動子に超音波信号が伝搬し受信されるまで残る残留震動を低減できるので、消費電流が少ない高精度の流量測定装置を実現できる。
【0016】
本発明の請求項9にかかる流量計測装置は、インピーダンス制御手段に切り替え手段が動作するタイミングを検知する切り替えタイミング検知手段を備え、切り替え手段動作時に入力部の入力インピーダンスを振動子のインピーダンスに比べ小さな値に変更する。このため切り替え手段の動作が原因であるノイズあるいは漏れ信号が、受信側振動子を震動させるよう発生した場合であっても、入力部を低インピーダンスとしない場合と比較し、入力部の方にも多くのエネルギーが流れるので、受信側振動子が震動しにくくなる。その結果、受信側振動子に超音波信号が伝搬し受信されるまで残る残留震動を低減できるので、消費電流が少ない高精度の流量測定装置を実現できる。
【0017】
本発明の請求項10にかかる流量計測装置は、インピーダンス制御手段に電源が動作したタイミングを検知する電源タイミング検知手段を備え、電源投入時に入力部の入力インピーダンスを振動子のインピーダンスとほぼ同等の値とする。電源投入時に受信側振動子が震動した場合であっても、入力部の方に最も効率よくエネルギーを流すことができるので、受信側振動子発生した震動を早く低減でき、流量計測開始までの時間を短くすることができ消費電流を実現できる。
【0018】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0019】
(実施例1)
図1は本発明の実施例1の流量計測装置を示す全体のブロック図である。図2は本発明の振動子の等価回路である。
【0020】
図1において、1は流体管路であり内部を測定流体が流れる。2、3は第1の振動子及び第2の振動子であり超音波信号を送受信する。4は駆動手段であり、前記振動子を駆動する信号を出力する。11は入力部であり、振動子2,3の出力信号を低インピーダンスで受ける。7は切替え手段であり振動子2、3と駆動手段4、入力部11との接続を切替る。5は受信検知手段であり入力部12の出力信号から、受信タイミングを検知し出力する。6は計時手段であり、スタート信号が入力されてから受信検知手段5の出力を受けるまでの時間を測定する。8は流量演算手段であり、計時手段6の出力から演算によって流量を求める。13は伝搬時間検知手段であり、伝搬時間を出力する。14は流速検知手段であり流速を出力する。15はインピーダンス制御手段であり、出力信号によって入力部12の入力インピーダンスを変化させる。16は制御部であり、切替手段7を動作させ、送信受信の切り替え設定した後に駆動手段4と計時手段6にスタート信号を出力する。17は受信タイミング検知手段であり、駆動手段4が駆動するタイミングを検知した後伝搬時間よりわずかに短い時間後インピーダンス制御手段15へ出力する。18は駆動タイミング検知手段であり駆動手段4への制御信号から駆動手段4の検知し、インピーダンス制御手段へ出力する。19は切り替えタイミング検知手段であり制御部16が出力した切り替え手段への制御信号から切り替えタイミングを検知し、インピーダンス制御手段15へ出力する。20は電源タイミング検知手段であり、電源がONされることを検知しインピーダンス制御手段15へ出力する。
【0021】
以下動作を説明する。まず制御部16が伝搬時間を測定する方向に切替手段7を制御する。ここでは第1の振動子2から第2の振動子3への伝搬時間を測定するので、第1の振動子2と駆動手段4とを、第2の振動子3と入力部12とをそれぞれ接続する。次にインピーダンス制御手段15が伝搬時間検知手段13と流量検知手段14の出力に基づいて、伝搬時間が長い場合、あるいは流量が多い場合は入力部12の入力インピーダンスが高くなるよう入力部12のインピーダンスを設定する。次に制御部16から駆動手段4と計時手段6とにスタート信号を出力し、駆動手段4は第1の振動子2を駆動する信号を出力し、計時手段8は計時を開始する。駆動された第1の振動子2からは超音波が送信される。そして第2の振動子3によって受信した受信信号を入力部12で受け、受信検知手段5によって受信検知し、計時手段6の計時を停止させる。計時手段6は演算手段8に計時結果を出力する。
【0022】
次に制御部16は切り替え手段7を制御し逆方向の伝搬時間を測定するよう切替手段7の接続を設定する。以下同様に逆方向の測定を実施し、測定結果を演算手段8に出力する。演算手段8では、両方向の伝搬時間の逆数差に定数を乗ずることによって流量を求める。
【0023】
以上のように、本実施例においては、伝搬時間が長い場合、あるいは流量が大きい場合、など測定条件に応じてインピーダンス制御手段15が精度を満足する入力インピーダンスに設定する。これにより振動子の出力信号から信号検出のために必要な増幅率を必要最低とすることができる。その結果、精度を満足しなおかつ消費電流を小さくする設定とすることができるので消費電流を小さくすることができる。
【0024】
また、インピーダンス制御手段15が伝搬時間を検知する伝搬時間検知手段13を備え、前記伝搬時間検知手段13が検知した伝搬時間が長くなると入力部の入力インピーダンスが高くなるよう変える。流量測定における誤差は、伝搬時間に対する時間測定誤差の比率が問題となる。そのため、伝搬時間が長い場合は時間計測誤差も相対的に許容値が大きくなり、同じ受信条件では必要以上に測定精度がよくなる。 この場合、測定精度を満足する範囲で入力部のインピーダンスを高くすることにより、超音波信号の電気信号振幅が大きくなる。また、超音波信号のS/Nが改善され測定値のばらつきを小さくすることができる。また入力信号振幅が大きくなるので、信号を増幅度を小さくすることができるので消費電流を少なくすることができる。
【0025】
また、インピーダンス制御手段15は、流量を検知する流量検知手段14を備え、流量検知手段14が検知した流量が多くなると入力部12の入力インピーダンスが高くなるよう変える流量測定における誤差は、ほとんどの場合測定流量値に対する誤差比率を基準としている。つまり、時間測定誤差が一定の場合、相対的に測定流量が多い場合は必要以上に測定精度がよくなる。この場合、入力部のインピーダンスを高くすることにより、超音波信号の電気信号振幅が大きくなるので、超音波信号のS/Nが改善され測定値のばらつきを小さくすることができる。
【0026】
また、受信タイミング検知手段17はスタート信号を受けた後、伝搬時間よりわずかに短い時間経過後、インピーダンス制御手段15の出力によって、入力部のインピーダンスを小さな値とするので、受信信号を受信する必要なタイミングのみ、入力部12のインピーダンスを小さくするので、入力部12のインピーダンスを小さくするための消費電流を小さくすることができると同時に、受信信号を受信しないタイミングでは、入力部のインピーダンスは高くなるので電気的なロスが大きく、振動子に発生した震動を早く減衰させることができるので消費電流が少なくかつ高精度の流量測定装置を実現できる。
【0027】
さらに、駆動タイミング検知手段18はスタート信号を受け、駆動タイミングを検知し、インピーダンス制御手段15の出力によって、駆動手段4が動作しているタイミングは入力部12のインピーダンスを小さな値とするので、振動子駆動時は入力部の入力インピーダンスを振動子のインピーダンスに比べ小さな値となっている。このため送信側振動子を駆動する駆動信号が原因であるノイズあるいは漏れ信号が、受信側振動子を震動させるよう発生した場合であっても、入力部を低インピーダンスとしない場合と比較し、入力部の方にも多くのエネルギーが流れるので、受信側振動子が震動しにくくなる。その結果、受信側振動子に超音波信号が伝搬し受信されるまで残る残留震動を低減できるので、消費電流が少ない高精度の流量測定装置を実現できる。
【0028】
切り替えタイミング検知手段19は、切り替え手段7の動作を制御部16から切り替え手段7への制御信号から検知し、インピーダンス制御手段15の出力によって、切り替え手段7が動作しているタイミングは入力部のインピーダンスを小さな値とするので、切り替え手段7の動作が原因であるノイズあるいは漏れ信号が、受信側振動子を震動させるよう発生した場合であっても、入力部を低インピーダンスとしない場合と比較し、入力部の方にも多くのエネルギーが流れるので、受信側振動子が震動しにくくなる。その結果、受信側振動子に超音波信号が伝搬し受信されるまで残る残留震動を低減できるので、消費電流が少ない高精度の流量測定装置を実現できる。
【0029】
電源タイミング検知手段20は、電源投入時に入力部12の入力インピーダンスを振動子のインピーダンスとほぼ同等の値とする。電源投入時に受信側振動子が震動した場合であっても、入力部の方に最も効率よくエネルギーを流すことができるので、受信側振動子発生した震動を早く低減でき、流量計測開始までの時間を短くすることができ消費電流を実現できる。
【0030】
(実施例2)
図3は本発明の実施例2の流量計測装置の全体のブロックを示す図である。
【0031】
本実施例2において、実施例1と異なる点はインピーダンス制御手段15が伝搬時間検知手段の代わりに計時手段6の出力を受けている点と、流量検知手段14が流量演算手段8の出力とを記憶し次回測定時にインピーダンス制御手段15に出力する点であり、その他のブロックに関しては実施例1と同じでるので説明は省略する。
【0032】
インピーダンス制御手段15は計時手段6の出力を受け、計時部による計時が長くなるとインピーダンス制御手段15によって、次回測定時の入力部12のインピーダンスを、入力部12の入力インピーダンスが高くなるよう変える。
【0033】
このようにすることによって、伝搬時間検知手段13を別途設けることなく、入力部12のインピーダンスを伝搬時間に応じた値とすることができ、消費電力を少なくする子ができる。
【0034】
また、インピーダンス制御手段15は測定方向を切り替え超音波の伝搬時間を測定した2つの計時手段6の出力を受ける。そして前記2つの計時手段6の出力の逆数和が大きくなると入力部12の入力インピーダンスが高くなるよう変える。
【0035】
測定した伝搬時間は、超音波が流体そのものの音速に流体の流速を加減して伝搬した伝搬時間を測定しているため、流体本来の伝搬時間ではない。そこで測定方向を切り替えて測定した2つの計時手段6の出力の逆数和を求めることによって、流体の流速を除去した伝搬時間を求めることができ、より正確に伝搬時間に応じて入力部12を設定することができる。
【0036】
また、流量検知手段14が、前回の流量演算手段8の出力を記憶し、インピーダンス制御手段15が、流量検知手段14に記憶された流量値に基づき、入力部12の入力インピーダンスを制御するため、別途流量検知手段を設ける必要がなく、流量測定のための電力消費を削減できるとともに、測定時間を短くすることがである。
【0037】
【発明の効果】
以上説明したように本発明の流量計測装置は、入力部のインピーダンスを変更するインピーダンス制御手段を備え、測定条件に応じて精度を満足する入力インピーダンスに設定することが出来るので、振動子の出力信号から信号検出のために必要な増幅率を必要最低とすることができる。すなわち、精度を満足しなおかつ消費電流を小さくする設定とすることができるので消費電流を小さくすることができる。
【図面の簡単な説明】
【図1】本発明の実施例1における流量計測装置のブロック図
【図2】同流量計測装置の振動子部分の等価回路図
【図3】本発明の実施例2における流量計測装置のブロック図
【図4】従来の流量計測装置のブロック図
【符号の説明】
1 測定管路
2 第1の振動子
3 第2の振動子
4 駆動手段
5 受信検知手段
6 計時手段
7 切替手段
8 流量演算手段
12 入力部
13 伝搬時間検知手段
14 流量検知手段
15 インピーダンス検知手段
17 受信タイミング検知手段
18 駆動タイミング検知手段
19 切り替えタイミング検知手段
20 電源タイミング検知手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flow measurement device.
[0002]
[Prior art]
As shown in FIG. 4, this type of conventional flow rate measuring apparatus is provided with a first vibrator 2 and a second vibrator 3 which are provided in a fluid conduit 1 and transmit and receive an ultrasonic signal, in the direction of flow. The driving unit 4 drives the first vibrator 2 to transmit ultrasonic waves. The ultrasonic wave is received by the second vibrator 3, and the reception timing is determined by the reception detection means 5 from the received signal. The time measuring means 6 measures the propagation time by measuring the time from when the driving means 4 drives the first transducer 2 to when the reception detecting means 5 determines the reception timing. In addition, the direction of transmission and reception of the ultrasonic wave is changed by the switching means 7, the propagation time of the ultrasonic wave in the opposite direction is measured, and the flow rate is calculated by the flow rate calculation means 8 from the propagation time in both directions.
[0003]
[Problems to be solved by the invention]
However, the equivalent circuit of the receiving side vibrator of the above conventional flow rate measuring device is a signal source 9 for converting ultrasonic vibration into an electric signal, an impedance 10 of the signal source 9 and a vibrator, as shown in the equivalent circuit of FIG. The signal output from the vibrator is output as an electric signal with a delay determined by the impedance 10 and the interelectrode capacitance 11 with respect to the vibration of the ultrasonic wave.
[0004]
In this case, if the temperature fluctuates, the value of the interelectrode capacitance 11 greatly changes, and the timing delay of the output signal changes, so that accurate time measurement cannot be performed. In order to reduce the fluctuation of the delay to a small value, there has been a method of shortening the delay time by receiving the output signal of the vibrator by a circuit having an impedance lower than the internal impedance. However, the smaller the input impedance of the circuit that receives the output of the vibrator, the more current is required, and the lower the impedance, the lower the output signal of the vibrator, and the lower the output signal of the vibrator. The current consumption for large amplification was increasing. For this reason, there is a problem that the current consumption of the entire apparatus is reduced without lowering the measurement accuracy.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention includes an impedance control unit that changes the impedance of the input unit. Since the input impedance that satisfies the accuracy can be set according to the measurement conditions, the amplification factor necessary for signal detection from the output signal of the vibrator can be set to the minimum necessary. In other words, the current consumption can be reduced because the setting can be made so as to satisfy the accuracy and reduce the current consumption.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The flow rate measuring device according to claim 1 of the present invention has impedance control means for changing the impedance of the input section. Then, the input impedance is set to satisfy the accuracy according to the measurement conditions. This makes it possible to minimize the necessary amplification factor for signal detection from the output signal of the transducer. As a result, the current consumption can be reduced since the setting can be made to satisfy the accuracy and reduce the current consumption.
[0007]
The flow rate measuring device according to claim 2 of the present invention includes a propagation time detecting means for detecting the propagation time by the impedance control means, and the input impedance of the input section increases as the propagation time detected by the propagation time detecting means increases. Change as follows. The error in the flow rate measurement has a problem with the ratio of the time measurement error to the propagation time. Therefore, when the propagation time is long, the permissible value of the time measurement error is relatively large, and the measurement accuracy is improved more than necessary under the same reception condition.
[0008]
In this case, by increasing the impedance of the input unit within a range that satisfies the measurement accuracy, the electric signal amplitude of the ultrasonic signal increases. Further, the S / N of the ultrasonic signal is improved, and the dispersion of the measured values can be reduced. Further, since the amplitude of the input signal increases, the degree of amplification of the signal can be reduced, so that the current consumption can be reduced.
[0009]
In the flow rate measuring device according to claim 3 of the present invention, the impedance control means changes the input impedance of the input unit to be higher when the time measured by the timer unit at the time of the previous measurement is longer. Since the output of the timer unit is proportional to the propagation time, using this value as the propagation time eliminates the need to measure the propagation time, thereby reducing power consumption for measuring the propagation time and reducing the measurement time. Can be shorter.
[0010]
In a flow rate measuring apparatus according to a fourth aspect of the present invention, the impedance control means switches the measurement direction so that the input impedance of the input section increases as the reciprocal sum of the outputs of the two timer sections measuring the propagation time of the ultrasonic wave increases. Change. The measured propagation time is not the original propagation time of the fluid because the propagation time obtained by adding or subtracting the flow velocity of the fluid to the sound velocity of the fluid itself is measured. Therefore, by calculating the reciprocal sum of the outputs of the two timing units measured by switching the measurement direction, the propagation time without the flow velocity of the fluid can be obtained, and the input unit impedance can be set more accurately according to the propagation time. Can be.
[0011]
According to a fifth aspect of the present invention, there is provided the flow rate measuring device, wherein the impedance control means includes a flow rate detecting means for detecting a flow rate, and the input impedance of the input section is changed so as to increase as the flow rate detected by the flow rate detecting means increases. Item 6. The flow rate measuring device according to Item 1. In most cases, the error in the flow measurement is based on the error ratio to the measured flow value. That is, when the time measurement error is constant, and when the measured flow rate is relatively large, the measurement accuracy is improved more than necessary. In this case, by increasing the impedance of the input unit, the electric signal amplitude of the ultrasonic signal increases, so that the S / N of the ultrasonic signal is improved and the dispersion of the measured values can be reduced.
[0012]
In the flow rate measuring device according to claim 6 of the present invention, the flow rate detecting means receives and stores the output of the flow rate calculating means in the flow rate detecting means.
[0013]
Then, based on the value of the output of the previous flow rate calculation means stored in the flow rate storage unit, the input impedance of the input unit is controlled, so that it is not necessary to separately measure the flow rate, and the power consumption for the flow rate measurement can be reduced. , Measurement time can be shortened.
[0014]
The flow rate detecting means according to claim 7 of the present invention includes a predicting means for predicting a timing of receiving an ultrasonic wave in the impedance controlling means, and only the timing predicted by the predicting means changes the input impedance of the input unit to the impedance of the transducer. Change to a smaller value. Only when it is necessary to receive the reception signal, the impedance of the input unit is reduced, so that the current consumption for reducing the impedance of the input unit can be reduced. Since the impedance of the device becomes high, electric loss is large, and the vibration generated in the vibrator can be attenuated quickly, so that a high-precision flow measuring device with low current consumption can be realized.
[0015]
The flow rate measuring device according to claim 8 of the present invention is provided with a drive timing detecting means for detecting the timing of driving the vibrator in the impedance control means, and compares the input impedance of the input unit with the impedance of the vibrator when driving the vibrator. Change to a smaller value. Therefore, even if a noise or a leakage signal caused by a drive signal for driving the transmitting-side vibrator is generated so as to vibrate the receiving-side vibrator, the input is compared with a case where the input unit is not set to low impedance. Since a lot of energy also flows to the part, the receiving-side vibrator is less likely to vibrate. As a result, the residual vibration remaining until the ultrasonic signal propagates to the receiving transducer and is received can be reduced, so that a high-precision flow measurement device with low current consumption can be realized.
[0016]
A flow rate measuring device according to a ninth aspect of the present invention is provided with a switching timing detecting means for detecting a timing at which the switching means operates in the impedance control means, and the input impedance of the input unit is smaller than the impedance of the vibrator when the switching means operates. Change to a value. Therefore, even if the noise or leakage signal caused by the operation of the switching unit is generated to vibrate the receiving-side vibrator, the input unit is also reduced in comparison with the case where the input unit is not set to low impedance. Since a lot of energy flows, the receiving-side vibrator is less likely to vibrate. As a result, the residual vibration remaining until the ultrasonic signal propagates to the receiving transducer and is received can be reduced, so that a high-precision flow measurement device with low current consumption can be realized.
[0017]
The flow rate measuring device according to claim 10 of the present invention is provided with a power supply timing detecting means for detecting the timing at which the power supply is operated in the impedance control means, and when the power is turned on, the input impedance of the input unit is substantially equal to the impedance of the vibrator. And Even if the receiving transducer vibrates when the power is turned on, energy can be supplied to the input section most efficiently, so the vibration generated by the receiving transducer can be reduced quickly and the time until the flow measurement starts Can be shortened and current consumption can be realized.
[0018]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
(Example 1)
FIG. 1 is an overall block diagram illustrating a flow rate measuring device according to a first embodiment of the present invention. FIG. 2 is an equivalent circuit of the vibrator of the present invention.
[0020]
In FIG. 1, reference numeral 1 denotes a fluid conduit through which a measurement fluid flows. Reference numerals 2 and 3 denote a first vibrator and a second vibrator for transmitting and receiving an ultrasonic signal. A driving unit 4 outputs a signal for driving the vibrator. An input unit 11 receives output signals of the vibrators 2 and 3 with low impedance. A switching unit 7 switches the connection between the vibrators 2 and 3, the driving unit 4, and the input unit 11. Reference numeral 5 denotes a reception detecting unit which detects a reception timing from an output signal of the input unit 12 and outputs it. Reference numeral 6 denotes a time measuring means for measuring the time from when the start signal is input to when the output of the reception detecting means 5 is received. Numeral 8 denotes a flow rate calculating means for calculating a flow rate from the output of the timing means 6 by calculation. Reference numeral 13 denotes a propagation time detecting means, which outputs a propagation time. Numeral 14 is a flow velocity detecting means for outputting a flow velocity. Reference numeral 15 denotes an impedance control unit that changes the input impedance of the input unit 12 according to the output signal. Reference numeral 16 denotes a control unit that operates the switching unit 7 and outputs a start signal to the driving unit 4 and the time counting unit 6 after setting the switching between transmission and reception. Reference numeral 17 denotes a reception timing detecting means, which detects the timing at which the driving means 4 is driven and outputs the detected timing to the impedance control means 15 after a time slightly shorter than the propagation time. Reference numeral 18 denotes a drive timing detecting means, which detects the drive signal 4 from a control signal to the drive means 4 and outputs it to the impedance control means. Reference numeral 19 denotes a switching timing detecting unit which detects a switching timing from a control signal to the switching unit output from the control unit 16 and outputs the detected timing to the impedance control unit 15. Reference numeral 20 denotes a power supply timing detection unit, which detects that the power supply is turned on and outputs it to the impedance control unit 15.
[0021]
The operation will be described below. First, the control unit 16 controls the switching unit 7 in a direction in which the propagation time is measured. Here, since the propagation time from the first vibrator 2 to the second vibrator 3 is measured, the first vibrator 2 and the driving unit 4 are connected to each other, and the second vibrator 3 and the input unit 12 are connected to each other. Connecting. Next, based on the outputs of the propagation time detecting means 13 and the flow rate detecting means 14, the impedance control means 15 adjusts the impedance of the input section 12 so that the input impedance of the input section 12 increases when the propagation time is long or when the flow rate is large. Set. Next, the control unit 16 outputs a start signal to the driving unit 4 and the timing unit 6, the driving unit 4 outputs a signal for driving the first vibrator 2, and the timing unit 8 starts timing. Ultrasonic waves are transmitted from the driven first transducer 2. Then, the reception signal received by the second vibrator 3 is received by the input unit 12, the reception is detected by the reception detection unit 5, and the timing of the timing unit 6 is stopped. The clock means 6 outputs a clock result to the arithmetic means 8.
[0022]
Next, the control unit 16 controls the switching means 7 and sets the connection of the switching means 7 so as to measure the propagation time in the reverse direction. Hereinafter, the measurement in the reverse direction is performed in the same manner, and the measurement result is output to the calculating means 8. The calculating means 8 calculates the flow rate by multiplying the reciprocal difference between the propagation times in both directions by a constant.
[0023]
As described above, in the present embodiment, the impedance control unit 15 sets the input impedance to satisfy the accuracy according to the measurement conditions such as when the propagation time is long or when the flow rate is large. This makes it possible to minimize the necessary amplification factor for signal detection from the output signal of the transducer. As a result, the current consumption can be reduced since the setting can be made to satisfy the accuracy and reduce the current consumption.
[0024]
In addition, the impedance control unit 15 includes a propagation time detecting unit 13 for detecting a propagation time, and the input impedance of the input unit is changed to increase as the propagation time detected by the propagation time detecting unit 13 increases. The error in the flow rate measurement has a problem with the ratio of the time measurement error to the propagation time. Therefore, when the propagation time is long, the permissible value of the time measurement error is relatively large, and the measurement accuracy is improved more than necessary under the same reception condition. In this case, by increasing the impedance of the input unit within a range that satisfies the measurement accuracy, the electric signal amplitude of the ultrasonic signal increases. Further, the S / N of the ultrasonic signal is improved, and the dispersion of the measured values can be reduced. Further, since the amplitude of the input signal increases, the degree of amplification of the signal can be reduced, so that the current consumption can be reduced.
[0025]
In addition, the impedance control unit 15 includes a flow rate detection unit 14 that detects a flow rate, and when the flow rate detected by the flow rate detection unit 14 increases, the input impedance of the input unit 12 changes to increase. The error ratio with respect to the measured flow rate value is used as a reference. That is, when the time measurement error is constant, and when the measured flow rate is relatively large, the measurement accuracy is improved more than necessary. In this case, by increasing the impedance of the input unit, the electric signal amplitude of the ultrasonic signal increases, so that the S / N of the ultrasonic signal is improved and the dispersion of the measured values can be reduced.
[0026]
Further, after receiving the start signal, the reception timing detecting means 17 makes the impedance of the input section a small value by the output of the impedance control means 15 after a lapse of a time slightly shorter than the propagation time. Since the impedance of the input unit 12 is reduced only at the appropriate timing, the current consumption for reducing the impedance of the input unit 12 can be reduced. At the same time, the impedance of the input unit increases at the timing when no reception signal is received. Therefore, the electric loss is large, and the vibration generated in the vibrator can be attenuated quickly, so that a high-precision flow measuring device with low current consumption can be realized.
[0027]
Further, the drive timing detection means 18 receives the start signal, detects the drive timing, and the output of the impedance control means 15 sets the impedance of the input unit 12 to a small value at the timing when the drive means 4 is operating. During child drive, the input impedance of the input unit is smaller than the impedance of the vibrator. Therefore, even if a noise or leakage signal caused by a drive signal for driving the transmitting-side vibrator is generated so as to vibrate the receiving-side vibrator, the input unit is compared with a case where the input unit is not set to low impedance. Since a lot of energy also flows to the part, the receiving-side vibrator is less likely to vibrate. As a result, the residual vibration remaining until the ultrasonic signal propagates to the receiving transducer and is received can be reduced, so that a high-precision flow measurement device with low current consumption can be realized.
[0028]
The switching timing detecting unit 19 detects the operation of the switching unit 7 from a control signal from the control unit 16 to the switching unit 7, and the output of the impedance control unit 15 determines the timing at which the switching unit 7 is operating by the impedance of the input unit. Is set to a small value, even if the noise or the leakage signal caused by the operation of the switching means 7 is generated so as to vibrate the receiving vibrator, compared with the case where the input unit is not set to low impedance, Since much energy also flows to the input section, the receiving-side vibrator is less likely to vibrate. As a result, the residual vibration remaining until the ultrasonic signal propagates to the receiving transducer and is received can be reduced, so that a high-precision flow measurement device with low current consumption can be realized.
[0029]
The power supply timing detector 20 sets the input impedance of the input unit 12 to a value substantially equal to the impedance of the vibrator when the power is turned on. Even if the receiving transducer vibrates when the power is turned on, energy can be supplied to the input section most efficiently, so the vibration generated by the receiving transducer can be reduced quickly and the time until the flow measurement starts Can be shortened and current consumption can be realized.
[0030]
(Example 2)
FIG. 3 is a diagram showing the entire block of the flow rate measuring device according to the second embodiment of the present invention.
[0031]
The second embodiment is different from the first embodiment in that the impedance control unit 15 receives the output of the clock unit 6 instead of the propagation time detection unit, and the flow detection unit 14 determines the output of the flow calculation unit 8. It is stored and output to the impedance control means 15 at the time of the next measurement. The other blocks are the same as those in the first embodiment, and therefore description thereof is omitted.
[0032]
The impedance control means 15 receives the output of the timekeeping means 6, and when the timekeeping by the timekeeping unit becomes longer, the impedance control means 15 changes the impedance of the input unit 12 at the next measurement so that the input impedance of the input unit 12 becomes high.
[0033]
By doing so, the impedance of the input unit 12 can be set to a value corresponding to the propagation time without separately providing the propagation time detecting means 13, and a device that reduces power consumption can be provided.
[0034]
Further, the impedance control means 15 receives the outputs of the two timekeeping means 6 which switch the measurement direction and measure the propagation time of the ultrasonic wave. When the sum of the reciprocals of the outputs of the two timing means 6 increases, the input impedance of the input section 12 is changed to increase.
[0035]
The measured propagation time is not the original propagation time of the fluid because the propagation time of the ultrasonic wave measured by adjusting the flow velocity of the fluid to the sound velocity of the fluid itself is measured. Therefore, by calculating the reciprocal sum of the outputs of the two timing means 6 measured by switching the measurement direction, the propagation time without the flow velocity of the fluid can be obtained, and the input unit 12 can be set more accurately according to the propagation time. can do.
[0036]
Further, the flow rate detection means 14 stores the output of the previous flow rate calculation means 8 and the impedance control means 15 controls the input impedance of the input unit 12 based on the flow rate value stored in the flow rate detection means 14. There is no need to provide a separate flow rate detecting means, so that power consumption for flow rate measurement can be reduced and the measurement time can be shortened.
[0037]
【The invention's effect】
As described above, the flow measurement device of the present invention includes the impedance control means for changing the impedance of the input unit, and can set the input impedance to satisfy the accuracy according to the measurement conditions, so that the output signal of the vibrator can be set. Therefore, the amplification factor required for signal detection can be set to the minimum required. That is, the current consumption can be reduced because the setting can be made to satisfy the accuracy and to reduce the current consumption.
[Brief description of the drawings]
FIG. 1 is a block diagram of a flow measurement device according to a first embodiment of the present invention; FIG. 2 is an equivalent circuit diagram of a vibrator portion of the flow measurement device; FIG. 3 is a block diagram of a flow measurement device according to a second embodiment of the present invention; FIG. 4 is a block diagram of a conventional flow rate measuring device.
DESCRIPTION OF SYMBOLS 1 Measurement pipe line 2 1st vibrator 3 2nd vibrator 4 Driving means 5 Reception detecting means 6 Clocking means 7 Switching means 8 Flow rate calculating means 12 Input unit 13 Propagation time detecting means 14 Flow rate detecting means 15 Impedance detecting means 17 Receiving timing detecting means 18 Drive timing detecting means 19 Switching timing detecting means 20 Power supply timing detecting means

Claims (10)

流体管路に設けられ超音波信号を送受信する少なくとも一対の振動子と、前記振動子の送受信の切替え手段と、前記振動子の受信出力を受ける入力部と、前記入力部の出力から超音波の受信を検知する受信検知手段と、前記振動子を駆動する駆動手段と、前記振動子間の超音波の伝搬時間を計測する計時手段と、前記計時手段の計時値に基づいて流量を算出する流量演算手段と、電力を供給する電源と、入力部のインピーダンスを変更するインピーダンス制御手段を有した流量計測装置。At least one pair of transducers provided in the fluid conduit for transmitting and receiving ultrasonic signals, switching means for transmission and reception of the transducers, an input unit for receiving the output of the transducers, and an ultrasonic unit from the output of the input unit. Reception detecting means for detecting reception, driving means for driving the vibrator, time measuring means for measuring the propagation time of ultrasonic waves between the vibrators, and a flow rate for calculating a flow rate based on the time value of the time measuring means A flow rate measuring device comprising: an arithmetic unit; a power supply for supplying electric power; and an impedance control unit for changing an impedance of an input unit. インピーダンス制御手段は、伝搬時間を検知する伝搬時間検知手段を備え、前記伝搬時間検知手段が検知した伝搬時間が長くなると入力部の入力インピーダンスが高くなるよう変える請求項1に記載の流量計測装置。The flow rate measuring device according to claim 1, wherein the impedance control means includes a propagation time detecting means for detecting a propagation time, and changes the input impedance of the input section to increase as the propagation time detected by the propagation time detecting means increases. インピーダンス制御手段は、前回測定時の計時部による計時が長くなると入力部の入力インピーダンスが高くなるよう変える請求項1記載の流量計測装置。2. The flow rate measuring device according to claim 1, wherein the impedance control means changes the input impedance of the input unit so that the input impedance of the input unit increases as the time measured by the time measuring unit at the time of the previous measurement increases. インピーダンス制御手段は、測定方向を切り替え超音波の伝搬時間を測定した2つの計時部出力の逆数和が大きくなると入力部の入力インピーダンスが高くなるよう変える請求項1記載の流量計測装置。2. The flow rate measuring device according to claim 1, wherein the impedance control means changes the measurement direction so as to increase the input impedance of the input unit when the sum of the reciprocals of the outputs of the two clock units measuring the propagation time of the ultrasonic wave increases. インピーダンス制御手段は、流量を検知する流量検知手段を備え、前記流量検知手段が検知した流量が多くなると入力部の入力インピーダンスが高くなるよう変える請求項1記載の流量計測装置。2. The flow rate measuring device according to claim 1, wherein the impedance control means includes a flow rate detecting means for detecting a flow rate, and changes the input impedance of the input section so as to increase as the flow rate detected by the flow rate detecting means increases. 流量検知手段は、前回の流量演算手段の出力を採用する請求項5記載の流量計測装置。The flow rate measuring device according to claim 5, wherein the flow rate detecting means uses an output of the previous flow rate calculating means. インピーダンス制御手段に、超音波を受信するタイミングを予測する予測手段を備え、前記予測手段が予測したタイミングのみ入力部の入力インピーダンスを振動子のインピーダンスに比べ小さな値に変更する請求項1記載の流量測定装置。2. The flow rate according to claim 1, wherein the impedance control unit includes a prediction unit that predicts a timing of receiving the ultrasonic wave, and changes the input impedance of the input unit to a value smaller than the impedance of the vibrator only at the timing predicted by the prediction unit. measuring device. インピーダンス制御手段に振動子を駆動するタイミングを検知する駆動タイミング検知手段を備え、振動子駆動時は入力部の入力インピーダンスを振動子のインピーダンスに比べ小さな値に変更する請求項7記載の流量測定装置。8. The flow rate measuring device according to claim 7, wherein the impedance control means includes a drive timing detecting means for detecting a timing for driving the vibrator, and the input impedance of the input section is changed to a value smaller than the impedance of the vibrator when the vibrator is driven. . インピーダンス制御手段に切り替え手段が動作するタイミングを検知する切り替えタイミング検知手段を備え、切り替え手段動作時に入力部の入力インピーダンスを振動子のインピーダンスに比べ小さな値に変更する請求項7記載の流量測定装置。8. The flow rate measuring device according to claim 7, wherein the impedance control means includes a switching timing detecting means for detecting a timing at which the switching means operates, and changes the input impedance of the input unit to a value smaller than the impedance of the vibrator when the switching means operates. インピーダンス制御手段に電源が動作したタイミングを検知する電源タイミング検知手段を備え、電源投入後一定時間の間、入力部の入力インピーダンスを振動子のインピーダンスとほぼ同等の値とする請求項7記載の流量測定装置。8. The flow rate according to claim 7, wherein the impedance control means includes a power supply timing detecting means for detecting a timing at which the power supply operates, and the input impedance of the input unit is set to be substantially equal to the impedance of the vibrator for a predetermined time after the power is turned on. measuring device.
JP2002248247A 2002-08-28 2002-08-28 Flow rate measuring device and flow rate measuring method Expired - Fee Related JP3654273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248247A JP3654273B2 (en) 2002-08-28 2002-08-28 Flow rate measuring device and flow rate measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248247A JP3654273B2 (en) 2002-08-28 2002-08-28 Flow rate measuring device and flow rate measuring method

Publications (3)

Publication Number Publication Date
JP2004085420A true JP2004085420A (en) 2004-03-18
JP2004085420A5 JP2004085420A5 (en) 2005-04-07
JP3654273B2 JP3654273B2 (en) 2005-06-02

Family

ID=32055675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248247A Expired - Fee Related JP3654273B2 (en) 2002-08-28 2002-08-28 Flow rate measuring device and flow rate measuring method

Country Status (1)

Country Link
JP (1) JP3654273B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066083A (en) * 2008-09-10 2010-03-25 Panasonic Corp Method for measuring flow of fluid
JP2010091271A (en) * 2008-10-03 2010-04-22 Panasonic Corp Flow measuring device of fluid
JP2010243431A (en) * 2009-04-09 2010-10-28 Panasonic Corp Fluid-flow measuring device
JP2012127677A (en) * 2010-12-13 2012-07-05 Panasonic Corp Ultrasonic flow rate measurement device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010066083A (en) * 2008-09-10 2010-03-25 Panasonic Corp Method for measuring flow of fluid
JP2010091271A (en) * 2008-10-03 2010-04-22 Panasonic Corp Flow measuring device of fluid
JP2010243431A (en) * 2009-04-09 2010-10-28 Panasonic Corp Fluid-flow measuring device
JP2012127677A (en) * 2010-12-13 2012-07-05 Panasonic Corp Ultrasonic flow rate measurement device

Also Published As

Publication number Publication date
JP3654273B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP2004085420A (en) Flow measuring instrument
JP2004085420A5 (en)
JPH09133562A (en) Ultrasonic flowmeter
JP4562425B2 (en) Ultrasonic flow meter
JPH0921667A (en) Flow rate measuring apparatus
JP2000249583A (en) Ultrasonic flowmeter
JP2004069524A (en) Flow rate measuring apparatus
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP2004028994A (en) Ultrasonic flowmeter and method for measuring flow rate
JP2006275512A (en) Flow measuring device
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method
JP4400260B2 (en) Flow measuring device
JP4552285B2 (en) Flowmeter
JP2008180566A (en) Flow velocity or flow rate measuring device, and program therefor
JP3945530B2 (en) Flow measuring device
JP4973638B2 (en) Fluid flow measuring device
JP2010243431A (en) Fluid-flow measuring device
JP2001091319A (en) Flow rate measurement device
JPH109915A (en) Ultrasonic current meter
JP3453876B2 (en) Ultrasonic flow meter
JP2005189147A (en) Ultrasonic flowmeter
JP2003156373A (en) Flow rate change detector for ultrasonic flowmeter, and ultrasonic flowmeter
JPS5827018A (en) Ultrasonic wave flow rate measuring device
JP2000241220A (en) Method and apparatus for measuring flowing velocity of ultrasonic wave
JP2003194602A (en) Instrument for measuring flow rate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040921

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20041019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees