JP2004085009A - Manufacturing method for hydrate slurry by use of adsorption refrigerator - Google Patents

Manufacturing method for hydrate slurry by use of adsorption refrigerator Download PDF

Info

Publication number
JP2004085009A
JP2004085009A JP2002244141A JP2002244141A JP2004085009A JP 2004085009 A JP2004085009 A JP 2004085009A JP 2002244141 A JP2002244141 A JP 2002244141A JP 2002244141 A JP2002244141 A JP 2002244141A JP 2004085009 A JP2004085009 A JP 2004085009A
Authority
JP
Japan
Prior art keywords
adsorption
hydrate
guest compound
adsorbent
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002244141A
Other languages
Japanese (ja)
Inventor
Shingo Takao
高雄 信吾
Shigenori Matsumoto
松本 繁則
Hidemasa Ogose
生越 英雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002244141A priority Critical patent/JP2004085009A/en
Publication of JP2004085009A publication Critical patent/JP2004085009A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/003Hydrates for sorption cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for hydrate slurry capable of dispensing with a heat exchanger of plate type or multipipe type and a pump and achieving cost reduction and energy saving. <P>SOLUTION: In this method for manufacturing hydrate slurry containing hydrate of guest compound by cooling aqueous solution of guest compound generating hydrate at temperature higher than 0°C, a plurality of adsorption refrigerators operated by refrigeration cycle including an adsorption process of refrigerant by adsorbent and a regeneration process for desorbing refrigerant from the adsorbent are used, a heat transfer pipe for making guest compound aqueous solution flow is provided in an evaporator of each adsorption refrigerator to cool guest compound aqueous solution, and refrigeration cycle is staggered among a plurality of adsorption refrigerators. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、吸着冷凍機を用いた水和物スラリの製造方法に関する。
【0002】
【従来の技術】
ゲスト化合物(テトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラiso−ブチルホスホニウム塩、トリiso−アミルスルホニウム塩などの各種塩類)を含む水溶液を冷却すると、ホスト分子である水分子によって構成された籠状の包接格子内にゲスト化合物が包み込まれて結晶化し、水和物(液系包接水和物)が生成する。この水和物は、大気圧下において0℃以上の温度で生成でき、しかも5〜12℃程度の冷熱利用温度域で潜熱が大きく、冷水に比較して数倍の熱量の冷熱を貯蔵することができる。また、この水和物は微細な結晶粒子であり水溶液中に浮遊するため、比較的流動性の高い水和物スラリ(固液二相流体)の形態で存在する。
【0003】
この水和物スラリは、従来の冷熱輸送媒体である冷水と比較して、所定の輸送熱密度に対して輸送動力(ポンプ動力)を低減でき省エネルギーを達成できるので、空調システムや産業用冷熱利用システムなどで利用される冷熱輸送媒体として好ましい特性を有している。
【0004】
従来、所定の熱密度を持つ水和物スラリを製造するには、プレート式や多管式などの伝熱面積の大きい熱交換器に、冷凍機によって冷却した冷水とゲスト化合物の水溶液とを流通させて両者を熱交換させていた。
【0005】
しかし、上述した従来の水和物スラリの製造方法では、プレート式や多管式などの熱交換器に加えて、熱交換器にそれぞれ冷水およびゲスト化合物水溶液を輸送する冷水ポンプと水溶液ポンプが必要になるため、設備コストが高く、消費エネルギーも多いという問題があった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、プレート式や多管式などの熱交換器およびポンプを省略して、コスト低減および省エネルギーを達成できる水和物スラリの製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明に係る水和物スラリの製造方法は、0℃より高い温度で水和物を生成するゲスト化合物の水溶液を冷却することによりゲスト化合物の水和物を含む水和物スラリを製造する方法であって、吸着剤による冷媒の吸着過程および吸着剤から冷媒を脱着させる再生過程を含む冷凍サイクルで運転される複数台の吸着冷凍機を用い、各吸着冷凍機の蒸発器内にゲスト化合物水溶液を流通させる伝熱管を設けてゲスト化合物水溶液を冷却するように構成し、前記複数台の吸着冷凍機の間で冷凍サイクルをずらせることを特徴とする。
【0008】
本発明の方法においては、前記複数台の吸着冷凍機のうち再生過程にある吸着冷凍機において、蒸発器内に配置された伝熱管内部に付着した水和物を融解させるようにしてもよい。
【0009】
本発明の方法において、前記ゲスト化合物としては、テトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラiso−ブチルホスホニウム塩およびトリiso−アミルスルホニウム塩からなる群より選択される少なくとも1種が挙げられる。
【0010】
【発明の実施の形態】
以下、本発明の方法を図面に基づいてより詳細に説明する。
【0011】
まず、本発明の原理を図1および図2を参照して説明する。図1および図2は2台の吸着冷凍機10a、10bを用い、それぞれの吸着冷凍機10a、10bの冷凍サイクルをずらせて運転する最も単純な例を示している。2台の吸着冷凍機10a、10bは同一の機器で構成されており、それぞれ吸着剤熱交換器11a、11b、凝縮器12a、12b、蒸発器13a、13bを有する。各吸着冷凍機は、吸着剤による冷媒の吸着過程および吸着剤から冷媒を脱着させる再生過程を交互に繰り返す冷凍サイクルで運転される。吸着剤としては、たとえばシリカゲル、ゼオライト、生石灰などが用いられる。冷媒としては、たとえば水が用いられる。
【0012】
図1は、一方の吸着冷凍機10aを吸着過程とし、他方の吸着冷凍機10bを再生過程として、冷凍サイクルをずらした状態を示している。
【0013】
吸着過程にある吸着冷凍機10aでは、吸着剤熱交換器11aと凝縮器12aとの間を閉とし、吸着剤熱交換器11aと蒸発器13aとの間を開としている。吸着冷凍機10aの吸着剤熱交換器11aに充填された吸着剤中に配置された伝熱管には冷却水が流通しており、吸着剤は冷却される。蒸発器13a内にはゲスト化合物水溶液が流通する伝熱管16aが配置されている。蒸発器13a内の冷媒液は冷媒ポンプ14aにより蒸発器13a上部のノズル15aから散布され、伝熱管16a表面で蒸発する。この結果、伝熱管16a内を流通するゲスト化合物水溶液は冷却されて水和物スラリとなって蒸発器13aから出る。蒸発器13aで蒸発した冷媒蒸気は吸着剤熱交換器11aへ送られ、冷却された吸着剤によって吸着される。
【0014】
再生過程にある吸着冷凍機10bでは、吸着剤熱交換器11bと凝縮器12bとの間を開とし、吸着剤熱交換器11bと蒸発器13bとの間を閉としている。吸着冷凍機10bの吸着剤熱交換器11bに充填された吸着剤中に配置された伝熱管には熱源水が流通しており、吸着剤は加熱される。この結果、吸着剤に吸着されている冷媒は蒸発する。凝縮器12b内に配置された伝熱管には冷却水が流通している。吸着剤熱交換器11bで吸着剤から蒸発した冷媒蒸気は凝縮器12bへ送られ、その内部に配置された伝熱管を流通する冷却水によって冷却されて凝縮する。凝縮した冷媒液は、配管17bを通って蒸発器13bへ送られる。
【0015】
図2は、図1とは逆に、吸着冷凍機10aを再生過程とし、吸着冷凍機10bを吸着過程として、冷凍サイクルをずらした状態を示している。
【0016】
再生過程にある吸着冷凍機10aでは、吸着剤熱交換器11aと凝縮器12aとの間を開とし、吸着剤熱交換器11aと蒸発器13aとの間を閉としている。吸着冷凍機10aの吸着剤熱交換器11aに充填された吸着剤中に配置された伝熱管には熱源水が流通しており、吸着剤は加熱されて吸着剤に吸着されている冷媒は蒸発する。吸着剤熱交換器11aで吸着剤から蒸発した冷媒蒸気は凝縮器12aへ送られ、その内部に配置された伝熱管を流通する冷却水によって冷却されて凝縮する。凝縮した冷媒液は、配管17aを通って蒸発器13aへ送られる。
【0017】
吸着過程にある吸着冷凍機10bでは、吸着剤熱交換器11bと凝縮器12bとの間を閉とし、吸着剤熱交換器11bと蒸発器13bとの間を開としている。蒸発器13b内の冷媒液は冷媒ポンプ14bにより蒸発器13b上部のノズル15bから散布され、伝熱管16b表面で蒸発する。この結果、伝熱管16b内を流通するゲスト化合物水溶液は冷却されて水和物スラリとなって蒸発器13bから出る。蒸発器13bで蒸発した冷媒蒸気は吸着剤熱交換器11bへ送られ、冷却された吸着剤によって吸着される。
【0018】
図1および図2を参照して説明したように、2台の吸着冷凍機10a、10bの冷凍サイクルをずらして運転することにより、水和物スラリを連続的に製造することができる。
【0019】
上述したように、吸着過程にある吸着冷凍機の蒸発器では、その内部に配置された伝熱管を流通するゲスト化合物水溶液が冷却されて水和物スラリが生成するが、その伝熱管内部に水和物が付着して閉塞し始めることがある。この問題に対して、本発明の方法では、伝熱管が完全に閉塞してしまう前に適切な時間間隔で図1の状態と図2の状態との間で運転を切り換え、再生過程に入った吸着冷凍機において蒸発器内に配置された伝熱管を加熱することにより、その内部に付着した水和物を融解させるようにする(融解運転)。このように融解運転を行うようにすれば、さらに安定して水和物スラリの製造を継続させることができる。
【0020】
この融解運転時に、蒸発器内に配置された伝熱管を加熱する熱源は特に限定されない。ただし、吸着冷凍機中の高温の冷媒、たとえば再生中の吸着剤熱交換器から発生する冷媒蒸気の一部を蒸発器へバイパスさせるようにすれば、省エネルギーを達成できる。
【0021】
なお、吸着冷凍機の構成は図1および図2に示したものに限らず、種々の変形が可能である。たとえば、吸着冷凍機の構成は再生過程で熱源水と減圧を併用するようにしたものであってもよい。
【0022】
以上においては、2台の吸着冷凍機10a、10bの冷凍サイクルを半サイクルずらせて運転する場合について説明したが、3台以上の吸着冷凍機を用いてそれぞれの吸着冷凍機の冷凍サイクルを少しずつずらせるようにしてもよい。また、吸着冷凍機の蒸発器を用いて製造された水和物スラリはたとえば空調負荷に輸送されて空調に利用される。このような空調システムを図3および図4を参照して説明する。
【0023】
図3の空調システムにおいて、吸着冷凍機10は3台以上の個別の吸着冷凍機10a、10b、10c…の全体を示している。これらの吸着冷凍機の冷凍サイクルを少しずつずれている。各吸着冷凍機10a、10b、10c…の凝縮器(図3には図示せず)には、冷却塔20から冷却水ポンプ21により冷却水が送られる。また、各吸着冷凍機10a、10b、10c…の蒸発器(図3には図示せず)には、循環ポンプ31によりゲスト化合物水溶液が送られ、吸着過程にある吸着冷凍機の蒸発器で水和物スラリが製造される。製造された水和物スラリは負荷40へ輸送され、その冷熱が利用される。一方、再生過程にある吸着冷凍機の蒸発器では水和物の融解運転が行われる。
【0024】
図4の空調システムは、吸着過程にある吸着冷凍機の蒸発器で製造された水和物スラリをいったん蓄熱槽30に貯留し(たとえば夜間)、負荷40において必要になったとき(たとえば昼間)に蓄熱槽30内の水和物スラリを負荷ポンプ32により負荷40へ輸送するようにしたものである。それ以外の構成は、図3の空調システムと同様である。
【0025】
【発明の効果】
以上詳述したように本発明によれば、プレート式や多管式などの熱交換器およびポンプを省略して、コスト低減および省エネルギーを達成できる水和物スラリの製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の原理を示す説明図。
【図2】本発明の原理を示す説明図。
【図3】本発明の方法を用いて運転される空調システムを示す構成図。
【図4】本発明の方法を用いて運転される他の空調システムを示す構成図。
【符号の説明】
10、10a、10b、10c…吸着冷凍機
11a、11b…吸着剤熱交換器
12a、12b…凝縮器
13a、13b…蒸発器
14a、14b…冷媒ポンプ
15a、15b…ノズル
16a、16b…伝熱管
17a、17b…配管
20…冷却塔
21…冷却水ポンプ
30…蓄熱槽
31…循環ポンプ
32…負荷ポンプ
40…負荷
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a hydrate slurry using an adsorption refrigerator.
[0002]
[Prior art]
When an aqueous solution containing a guest compound (various salts such as tetra-n-butylammonium salt, tetraiso-amylammonium salt, tetraiso-butylphosphonium salt, triiso-amylsulfonium salt) is cooled, it is composed of water molecules as host molecules. The guest compound is wrapped and crystallized in the cage-shaped clathrate lattice formed, and a hydrate (a liquid clathrate hydrate) is generated. This hydrate can be generated at a temperature of 0 ° C. or higher under atmospheric pressure, and has a large latent heat in a cold heat utilization temperature range of about 5 to 12 ° C., and stores cold heat several times as much as cold water. Can be. In addition, since this hydrate is fine crystal particles and floats in an aqueous solution, it exists in the form of a hydrate slurry (solid-liquid two-phase fluid) having relatively high fluidity.
[0003]
This hydrate slurry can reduce the transportation power (pump power) for a predetermined transportation heat density and achieve energy saving compared to the chilled water that is a conventional cryogenic transportation medium. It has favorable characteristics as a cold transport medium used in systems and the like.
[0004]
Conventionally, to produce a hydrate slurry having a predetermined heat density, cold water cooled by a refrigerator and an aqueous solution of a guest compound are passed through a heat exchanger having a large heat transfer area such as a plate type or a multi-tube type. The heat exchange was performed between them.
[0005]
However, the above-described conventional hydrate slurry production method requires a chilled water pump and an aqueous solution pump for transporting the chilled water and the aqueous solution of the guest compound to the heat exchanger, respectively, in addition to a plate-type or multi-tube heat exchanger. Therefore, there has been a problem that equipment costs are high and energy consumption is large.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a hydrate slurry that can achieve cost reduction and energy saving by omitting a plate type or multi-tube type heat exchanger and pump.
[0007]
[Means for Solving the Problems]
The method for producing a hydrate slurry according to the present invention is a method for producing a hydrate slurry containing a hydrate of a guest compound by cooling an aqueous solution of a guest compound that produces a hydrate at a temperature higher than 0 ° C. And using a plurality of adsorption refrigerators operated in a refrigeration cycle including a refrigerant adsorption process by the adsorbent and a regeneration process of desorbing the refrigerant from the adsorbent, and a guest compound aqueous solution in the evaporator of each adsorption refrigerator. A heat transfer tube for circulating water is provided to cool the guest compound aqueous solution, and a refrigeration cycle is shifted among the plurality of adsorption refrigerators.
[0008]
In the method of the present invention, in the adsorption refrigerator in the regeneration process among the plurality of adsorption refrigerators, the hydrate attached to the inside of the heat transfer tube disposed in the evaporator may be melted.
[0009]
In the method of the present invention, the guest compound is at least one selected from the group consisting of tetra n-butylammonium salt, tetraiso-amylammonium salt, tetraiso-butylphosphonium salt and triiso-amylsulfonium salt. No.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the method of the present invention will be described in more detail with reference to the drawings.
[0011]
First, the principle of the present invention will be described with reference to FIGS. 1 and 2 show the simplest example in which two adsorption chillers 10a and 10b are used and the refrigeration cycle of each of the adsorption chillers 10a and 10b is shifted. The two adsorption refrigerators 10a and 10b are constituted by the same device, and have adsorbent heat exchangers 11a and 11b, condensers 12a and 12b, and evaporators 13a and 13b, respectively. Each adsorption refrigerator is operated in a refrigerating cycle in which a process of adsorbing the refrigerant by the adsorbent and a regeneration process of desorbing the refrigerant from the adsorbent are alternately repeated. As the adsorbent, for example, silica gel, zeolite, quick lime and the like are used. As the refrigerant, for example, water is used.
[0012]
FIG. 1 shows a state in which the refrigeration cycle is shifted, with one adsorption chiller 10a as an adsorption process and the other adsorption chiller 10b as a regeneration process.
[0013]
In the adsorption refrigerator 10a in the adsorption process, the space between the adsorbent heat exchanger 11a and the condenser 12a is closed, and the space between the adsorbent heat exchanger 11a and the evaporator 13a is open. Cooling water flows through the heat transfer tubes arranged in the adsorbent filled in the adsorbent heat exchanger 11a of the adsorption refrigerator 10a, and the adsorbent is cooled. A heat transfer tube 16a through which the aqueous solution of the guest compound flows is arranged in the evaporator 13a. The refrigerant liquid in the evaporator 13a is sprayed from the nozzle 15a above the evaporator 13a by the refrigerant pump 14a, and evaporates on the surface of the heat transfer tube 16a. As a result, the guest compound aqueous solution flowing in the heat transfer tube 16a is cooled and becomes a hydrate slurry and exits from the evaporator 13a. The refrigerant vapor evaporated in the evaporator 13a is sent to the adsorbent heat exchanger 11a and is adsorbed by the cooled adsorbent.
[0014]
In the adsorption refrigerator 10b in the regeneration process, the space between the adsorbent heat exchanger 11b and the condenser 12b is open, and the space between the adsorbent heat exchanger 11b and the evaporator 13b is closed. The heat source water flows through the heat transfer tubes arranged in the adsorbent filled in the adsorbent heat exchanger 11b of the adsorption refrigerator 10b, and the adsorbent is heated. As a result, the refrigerant adsorbed by the adsorbent evaporates. Cooling water flows through the heat transfer tubes arranged in the condenser 12b. Refrigerant vapor evaporated from the adsorbent in the adsorbent heat exchanger 11b is sent to the condenser 12b, where it is cooled and condensed by the cooling water flowing through the heat transfer tubes arranged inside the condenser 12b. The condensed refrigerant liquid is sent to the evaporator 13b through the pipe 17b.
[0015]
FIG. 2 shows a state in which the refrigeration cycle is shifted with the adsorption chiller 10a as the regeneration process and the adsorption chiller 10b as the adsorption process, contrary to FIG.
[0016]
In the adsorption refrigerator 10a in the regeneration process, the space between the adsorbent heat exchanger 11a and the condenser 12a is open, and the space between the adsorbent heat exchanger 11a and the evaporator 13a is closed. Heat source water flows through the heat transfer tubes arranged in the adsorbent filled in the adsorbent heat exchanger 11a of the adsorption refrigerator 10a, and the adsorbent is heated and the refrigerant adsorbed by the adsorbent evaporates. I do. Refrigerant vapor evaporated from the adsorbent in the adsorbent heat exchanger 11a is sent to the condenser 12a, where it is cooled and condensed by the cooling water flowing through the heat transfer tubes arranged therein. The condensed refrigerant liquid is sent to the evaporator 13a through the pipe 17a.
[0017]
In the adsorption refrigerator 10b in the adsorption process, the space between the adsorbent heat exchanger 11b and the condenser 12b is closed, and the space between the adsorbent heat exchanger 11b and the evaporator 13b is open. The refrigerant liquid in the evaporator 13b is sprayed from the nozzle 15b above the evaporator 13b by the refrigerant pump 14b, and evaporates on the surface of the heat transfer tube 16b. As a result, the guest compound aqueous solution flowing through the heat transfer tube 16b is cooled to form a hydrate slurry and exits from the evaporator 13b. The refrigerant vapor evaporated in the evaporator 13b is sent to the adsorbent heat exchanger 11b, and is adsorbed by the cooled adsorbent.
[0018]
As described with reference to FIGS. 1 and 2, the hydrate slurry can be continuously produced by operating the two adsorption chillers 10a and 10b with the refrigeration cycles shifted.
[0019]
As described above, in the evaporator of the adsorption refrigerator in the adsorption process, the guest compound aqueous solution flowing through the heat transfer tube disposed therein is cooled to generate a hydrate slurry, but water is formed inside the heat transfer tube. Occasionally the adhering stuff may begin to block. To solve this problem, in the method of the present invention, the operation is switched between the state of FIG. 1 and the state of FIG. 2 at appropriate time intervals before the heat transfer tube is completely closed, and the regeneration process is started. By heating the heat transfer tube arranged in the evaporator in the adsorption refrigerator, the hydrate adhering to the inside is melted (melting operation). By performing the melting operation in this manner, the production of the hydrate slurry can be continued more stably.
[0020]
During this melting operation, the heat source for heating the heat transfer tubes arranged in the evaporator is not particularly limited. However, energy can be saved by bypassing a part of the high-temperature refrigerant in the adsorption refrigerator, for example, refrigerant vapor generated from the adsorbent heat exchanger during regeneration to the evaporator.
[0021]
The configuration of the adsorption refrigerator is not limited to those shown in FIGS. 1 and 2, and various modifications are possible. For example, the configuration of the adsorption refrigerator may be such that both heat source water and reduced pressure are used in the regeneration process.
[0022]
In the above, the case where the refrigeration cycles of the two adsorption chillers 10a and 10b are shifted by half a cycle has been described. However, the refrigeration cycle of each adsorption chiller is slightly increased by using three or more adsorption chillers. It may be shifted. The hydrate slurry produced using the evaporator of the adsorption refrigerator is transported to, for example, an air conditioning load and used for air conditioning. Such an air conditioning system will be described with reference to FIGS.
[0023]
In the air conditioning system of FIG. 3, the adsorption chiller 10 shows three or more individual adsorption chillers 10a, 10b, 10c,... The refrigeration cycles of these adsorption refrigerators are slightly shifted. Cooling water is sent from a cooling tower 20 to a condenser (not shown in FIG. 3) of each of the adsorption refrigerators 10a, 10b, 10c,. Also, an aqueous solution of the guest compound is sent to the evaporator (not shown in FIG. 3) of each of the adsorption refrigerators 10a, 10b, 10c,. A Japanese slurry is produced. The produced hydrate slurry is transported to the load 40, and its cold energy is used. On the other hand, the hydrate melting operation is performed in the evaporator of the adsorption refrigerator in the regeneration process.
[0024]
The air conditioning system of FIG. 4 temporarily stores the hydrate slurry produced in the evaporator of the adsorption refrigerator in the adsorption process in the heat storage tank 30 (for example, at night), and when it becomes necessary at the load 40 (for example, during the day). The hydrate slurry in the heat storage tank 30 is transported to the load 40 by the load pump 32. Other configurations are the same as those of the air conditioning system of FIG.
[0025]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide a method for producing a hydrate slurry capable of achieving cost reduction and energy saving by omitting a plate type or multi-tube type heat exchanger and pump. .
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the principle of the present invention.
FIG. 2 is an explanatory diagram showing the principle of the present invention.
FIG. 3 is a block diagram showing an air conditioning system operated using the method of the present invention.
FIG. 4 is a block diagram illustrating another air conditioning system operated using the method of the present invention.
[Explanation of symbols]
10, 10a, 10b, 10c Adsorption refrigerators 11a, 11b Adsorbent heat exchangers 12a, 12b Condensers 13a, 13b Evaporators 14a, 14b Refrigerant pumps 15a, 15b Nozzles 16a, 16b Heat transfer tubes 17a , 17b ... pipe 20 ... cooling tower 21 ... cooling water pump 30 ... heat storage tank 31 ... circulation pump 32 ... load pump 40 ... load

Claims (3)

0℃より高い温度で水和物を生成するゲスト化合物の水溶液を冷却することによりゲスト化合物の水和物を含む水和物スラリを製造する方法であって、吸着剤による冷媒の吸着過程および吸着剤から冷媒を脱着させる再生過程を含む冷凍サイクルで運転される複数台の吸着冷凍機を用い、各吸着冷凍機の蒸発器内にゲスト化合物水溶液を流通させる伝熱管を設けてゲスト化合物水溶液を冷却するように構成し、前記複数台の吸着冷凍機の間で冷凍サイクルをずらせることを特徴とする水和物スラリの製造方法。A method for producing a hydrate slurry containing a hydrate of a guest compound by cooling an aqueous solution of a guest compound that produces a hydrate at a temperature higher than 0 ° C., comprising: Using a plurality of adsorption refrigerators operated in a refrigeration cycle including a regeneration process of desorbing the refrigerant from the agent, cooling the guest compound aqueous solution by providing a heat transfer tube for flowing the guest compound aqueous solution in the evaporator of each adsorption refrigerator Wherein the refrigeration cycle is shifted among the plurality of adsorption refrigerators. 前記複数台の吸着冷凍機のうち再生過程にある吸着冷凍機において、蒸発器内に配置された伝熱管内部に付着した水和物を融解させることを特徴とする請求項1記載の水和物スラリの製造方法。The hydrate according to claim 1, wherein the hydrate attached to the inside of the heat transfer tube disposed in the evaporator is melted in the adsorption refrigerator in the regeneration process among the plurality of adsorption refrigerators. Slurry manufacturing method. 前記ゲスト化合物が、テトラn−ブチルアンモニウム塩、テトラiso−アミルアンモニウム塩、テトラiso−ブチルホスホニウム塩およびトリiso−アミルスルホニウム塩からなる群より選択される少なくとも1種であることを特徴とする請求項1または2に記載の水和物スラリの製造方法。The guest compound is at least one selected from the group consisting of tetra-n-butylammonium salt, tetra-iso-amyl ammonium salt, tetra-iso-butylphosphonium salt and tri-iso-amyl sulfonium salt. Item 3. The method for producing a hydrate slurry according to Item 1 or 2.
JP2002244141A 2002-08-23 2002-08-23 Manufacturing method for hydrate slurry by use of adsorption refrigerator Pending JP2004085009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244141A JP2004085009A (en) 2002-08-23 2002-08-23 Manufacturing method for hydrate slurry by use of adsorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244141A JP2004085009A (en) 2002-08-23 2002-08-23 Manufacturing method for hydrate slurry by use of adsorption refrigerator

Publications (1)

Publication Number Publication Date
JP2004085009A true JP2004085009A (en) 2004-03-18

Family

ID=32052717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244141A Pending JP2004085009A (en) 2002-08-23 2002-08-23 Manufacturing method for hydrate slurry by use of adsorption refrigerator

Country Status (1)

Country Link
JP (1) JP2004085009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101818967A (en) * 2010-05-20 2010-09-01 上海交通大学 Composite energy storage and supply device via thermochemical temperature swing adsorption combined cold-heat supply
JP2013019664A (en) * 2011-07-11 2013-01-31 Palo Alto Research Center Inc Plate-based adsorption chiller subassembly
JP2014037960A (en) * 2012-08-13 2014-02-27 Shanghai Jiao Tong Univ Hydrate slurry heat storage device, heat storage method of hydrate slurry, and hydrate heat storage type air conditioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101818967A (en) * 2010-05-20 2010-09-01 上海交通大学 Composite energy storage and supply device via thermochemical temperature swing adsorption combined cold-heat supply
CN101818967B (en) * 2010-05-20 2012-08-29 上海交通大学 Composite energy storage and supply device via thermochemical temperature swing adsorption combined cold-heat supply
JP2013019664A (en) * 2011-07-11 2013-01-31 Palo Alto Research Center Inc Plate-based adsorption chiller subassembly
JP2014037960A (en) * 2012-08-13 2014-02-27 Shanghai Jiao Tong Univ Hydrate slurry heat storage device, heat storage method of hydrate slurry, and hydrate heat storage type air conditioning system

Similar Documents

Publication Publication Date Title
JP4101373B2 (en) Heat absorption system
WO2003102474A1 (en) Hydrate slurry manufacturing device
US5209071A (en) Immediate heat upgrading air conditioning system and associated cool thermal storage
JP2003075014A (en) Absorption refrigerating machine
JP2004085009A (en) Manufacturing method for hydrate slurry by use of adsorption refrigerator
JP5402186B2 (en) Refrigeration equipment
JP2003144855A (en) Membrane separation device and absorption refrigerator utilizing membrane separation
JPH11117713A (en) Chemical heat-accumulating type intake air cooling device
JP2776200B2 (en) Absorption type ice cold storage device
JPWO2017051532A1 (en) Cooling system and cooling method
JP3397164B2 (en) Heat pump cycle type absorption refrigeration and heating simultaneous removal machine and method
JP2009002539A (en) Exhaust-heat driving type absorption refrigerating device
JPS6346356A (en) Method of operating adsorption type refrigeration system
JP2008020094A (en) Absorption type heat pump device
JP2678211B2 (en) Heat storage type cold / heat generator
JPS62196567A (en) Solar-heat utilizing absorption chilling unit
JP5260895B2 (en) Absorption refrigerator
JP2012068019A (en) Absorption refrigerating machine
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP2004325048A (en) Low temperature water manufacturing device
JPH04268170A (en) Absorption type heat pump device
JP3138784B2 (en) Adsorption refrigeration system with heat storage function and its operation method
JP2005300126A (en) Absorption type refrigerating machine
JP2000018753A (en) Absorption refrigerating machine
JP2005104087A (en) Heat storage type mold cooling system