JP2004083681A - Composite film between resin composition having low dielectric dissipation factor and liquid-crystal polymer and flexible circuit board using the same - Google Patents

Composite film between resin composition having low dielectric dissipation factor and liquid-crystal polymer and flexible circuit board using the same Download PDF

Info

Publication number
JP2004083681A
JP2004083681A JP2002244517A JP2002244517A JP2004083681A JP 2004083681 A JP2004083681 A JP 2004083681A JP 2002244517 A JP2002244517 A JP 2002244517A JP 2002244517 A JP2002244517 A JP 2002244517A JP 2004083681 A JP2004083681 A JP 2004083681A
Authority
JP
Japan
Prior art keywords
composite film
low dielectric
molecular weight
resin composition
crystal polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002244517A
Other languages
Japanese (ja)
Inventor
Masatoshi Sugimasa
杉政 昌俊
Akira Nagai
永井  晃
Shinji Yamada
山田 真治
Satoru Amo
天羽  悟
Yuzo Ito
伊藤 雄三
Yoshiyuki Ando
安藤 好幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002244517A priority Critical patent/JP2004083681A/en
Publication of JP2004083681A publication Critical patent/JP2004083681A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a composite film having a low dielectric constant and a low dielectric dissipation factor and exhibiting excellent heat resistance, flexibility and thermal expansion properties after curing and to provide a flexible circuit board comprising the composite film as an insulating layer. <P>SOLUTION: The resin composition having a low dielectric dissipation factor contains a crosslinking component containing a plurality of styrene groups represented by formula (R is a hydrocarbon skeleton; R<SP>1</SP>s are mutually the same or different and are each hydrogen atom or a 1-20C hydrocarbon group; R<SP>2</SP>, R<SP>3</SP>and R<SP>4</SP>are mutually the same or different and are each hydrogen atom or a 1-6C alkyl group; m is an integer of 1-4; n is an integer of ≥2) and having a ≤1,000 weight-average molecular weight and a polymeric substance having a ≥5,000 weight-average molecular weight. The composite film contains the resin composition having a low dielectric dissipation factor and a liquid-crystal polymer. The flexible circuit board comprises the cured material of the laminate film as an insulating layer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は高周波信号に対応するための誘電損失の小さな絶縁層形成する複合フィルムとそれ用いたフレキシブル配線基板に関する。
【0002】
【従来の技術】
近年、PHS,携帯電話等の情報通信機器の信号帯域,コンピューターのCPUクロックタイムはGHz帯に達し、高周波数化が進行している。電気信号の誘電損失は、回路を形成する絶縁体の比誘電率の平方根、誘電正接及び使用される信号の周波数の積に比例する。そのため、使用される信号の周波数が高いほど誘電損失が大きくなる。誘電損失は電気信号を減衰させて信号の信頼性を損なうので、これを抑制するために絶縁体には誘電率及び誘電正接の小さな材料を選定する必要がある。絶縁体の低誘電率化及び低誘電正接化には分子構造中の極性基の除去が有効であり、フッ素樹脂,硬化性ポリオレフィン,シアネートエステル系樹脂,硬化性ポリフェニレンオキサイド,アリル変性ポリフェニレンエーテル,ジビニルベンゼン又はジビニルナフタレンで変性したポリエーテルイミド等が提案されている。例えばポリテトラフルオロエチレン(PTFE)に代表されるフッ素樹脂は、誘電率及び誘電正接がともに低く、高周波信号を扱う基板材料に使用されている。これに対して、有機溶剤に可溶で取り扱い易い、非フッ素系の低誘電率で低誘電正接の樹脂も種々検討されており、例えば、特開平8−208856号記載のポリブタジエン等のジエン系ポリマーをガラスクロスに含浸して過酸化物で硬化した例;特開平10−158337号記載のノルボルネン系付加型重合体にエポキシ基を導入し、硬化性を付与した環状ポリオレフィンの例;特開平11−124491号記載のシアネートエステル,ジエン系ポリマー及びエポキシ樹脂を加熱してBステージ化した例;特開平9−118759号記載のポリフェニレンオキサイド,ジエン系ポリマー及びトリアリルイソシアネートからなる変性樹脂の例;特開平9−246429号記載のアリル化ポリフェニレンエーテル及びトリアリルイソシアネート等からなる樹脂組成物の例;特開平5−156159号記載のポリエーテルイミドと、スチレン,ジビニルベンゼン又はジビニルナフタレンとをアロイ化した例;特開平5−78552号記載のジヒドロキシ化合物とクロロメチルスチレンからウイリアムソン反応で合成した、例えばヒドロキノンビス(ビニルベンジル)エーテルとノボラックフェノール樹脂からなる樹脂組成物の例など多数の例が挙げられる。
【0003】
【発明が解決しようとする課題】
上記のような低誘電率,低誘電正接材においても、今後の高周波機器に対応するためには誘電特性が十分ではない。
【0004】
本発明の目的は、従来材に比べて優れた誘電特性を有する多官能スチレン化合物を含有する低誘電正接樹脂組成物と液晶ポリマーを含有する複合フィルムとそれを絶縁層とするフレキシブル配線基板を提供することにある。
【0005】
【課題を解決するための手段】
多官能スチレン化合物の硬化物は極めて低い誘電率と誘電正接を有し、その値は測定周波数10GHzにおいて誘電率が約2.5、誘電正接が0.002未満である。
【0006】
本多官能スチレン化合物にフィルム形成能及び低熱膨張性を付与する検討を種々行った結果、高分子量体と多官能スチレン化合物を含有する低誘電正接樹脂組成物を負の熱膨張を有する液晶ポリマーと複合化することによって極めて誘電正接が低く、熱膨張率が任意にコントロールできる複合フィルムが得られることが判明した。本複合フィルムは、銅などの導体箔と積層接着することによって導体層付き複合フィルムとすることができ、更に導体層に配線加工を施すことによってTAB(Tape Automated Bonding)テープ等のフィルム状のフレキシブル配線基板に加工することができ、更に多層化することも可能である。このようにして得られたフレキシブル配線基板は、絶縁層を形成する複合フィルムの熱膨張率を導体配線と同程度に調整することができることから複合フィルムと導体層との剥離が生じにくく、更に複合フィルムの誘電正接が極めて低いことに起因して電気信号の誘電損失が小さい。即ち、信頼性が高く、高周波伝送特性の優れたフレキシブル配線基板となる。
【0007】
本発明の複合フィルム,フレキシブル配線基板について説明する。
【0008】
本発明の複合フィルムは、基本的には下記一般式:
【0009】
【化1】

Figure 2004083681
【0010】
(式中、Rは置換基を有していても良い炭化水素骨格を現わし、R,R,R は、同一又は異なっても良い、水素原子又は炭素数1〜6の炭化水素基を表し、R,R,R,Rは同一又は異なっても良い、水素原子又は炭素数1から20の炭化水素基を表し、nは2以上の整数を表す。)
で示される複数のスチレン基を有する重量平均分子量1000以下の架橋成分と重量平均分子量5000以上の高分子量体を含有する低誘電正接樹脂組成物と液晶ポリマーとを複合した複合フィルムである。
【0011】
本発明では架橋成分として極性基を含まない多官能スチレン化合物を用いることによって極めて低い誘電率と誘電正接を有する複合フィルムを作製することができる。本架橋成分は、従来材において架橋成分として用いられてきたジビニルベンゼンのような揮発性を有していないため、加工時の架橋成分の揮発が生じない。即ち、本架橋成分を用いると優れた誘電特性を有する複合フィルムを簡便に安定して作製することができる利点がある。本架橋成分の重量平均分子量(GPC,スチレン換算置)は1000以下であることが好ましい。これにより架橋成分の溶融温度の低温化,成型時の流動性の向上,硬化温度の低温化,種々のポリマー,モノマー,充填材との相溶性の向上等が改善され、加工性に富んだ低誘電正接樹脂組成物となり、複合フィルムの作製,硬化が容易になる。架橋成分の好ましい例としては、1,2−ビス(p−ビニルフェニル)エタン、1,2−ビス(m−ビニルフェニル)エタン、1−(p−ビニルフェニル)−2−(m−ビニルフェニル)エタン、1,4−ビス(p−ビニルフェニルエチル)ベンゼン、1,4−ビス(m−ビニルフェニルエチル)ベンゼン、1,3−ビス(p−ビニルフェニルエチル)ベンゼン、1,3−ビス(m−ビニルフェニルエチル)ベンゼン、1−(p−ビニルフェニルエチル)−3−(m−ビニルフェニルエチル)ベンゼン,ビスビニルフェニルメタン、1,6―(ビスビニルフェニル)ヘキサン及び側鎖にビニル基を有するジニルベンゼン重合体(オリゴマー)等が挙げられる。
【0012】
本発明では低誘電正接樹脂組成物に高分子量体を分散させることによって、低誘電正接樹脂組成物にフィルム形成能を付与すると共に、強度,伸び,導体配線への接着力の優れた複合フィルムを得ることができる。これによりフレキシブル配線基板の作製が容易になると共に、信頼性の向上を図ることができる。前記高分子量体は分子量が5000以上であることが好ましく、より好ましくは10000〜100000、更に好ましくは15000〜60000であることが好ましい。分子量が小さい場合は、機械強度が不十分になる場合があり、分子量が大きすぎる場合は低誘電正接樹脂組成物をワニス化した際の粘度が高くなり、混合攪拌,成膜,含浸等の作業効率が低下する場合がある。高分子量体の例としては、ブタジエン,イソプレン,スチレン,エチルスチレン,ジビニルベンゼン、N−ビニルフェニルマレイミド,アクリル酸エステル,アクリロニトリルから選ばれるモノマーの単独或いは共重合体,置換基を有していてもよいポリフェニレンオキサイド,環状ポリオレフィン,ポリシロキサン,ポリエーテルイミド等が挙げられる。中でもポリフェニレンオキサイド,環状ポリオレフィンは強度や低誘電正接性の観点で好ましい。これらの高分子量体は複合して用いても良い。
【0013】
本発明に用いられる液晶ポリマーの形態には特に制限はないが、複合フィルムを容易に作製するための好ましい例としては液晶ポリマーのフィルム,クロス,不織布を用いるとよい。液晶ポリマーフィルムを用いる際には、低誘電正接樹脂組成物と液晶ポリマーフィルムとの接着性を高めるためにフィルム表面を粗化して0.5 〜10μmの粗面を形成するとよい。粗化方法はサンドブラスト,サンドペーパーでの研磨等どのような方法を用いても良い。
【0014】
本発明の複合フィルムは低誘電正接樹脂組成物を有機溶剤に溶解して前記液晶ポリマーのフィルム,クロス,不織布に塗布または含浸したのち、乾燥することによって容易に作製することができる。本複合フィルムと導体箔を重ね合わせ、プレス加工するか、ラミネート加工と後熱加熱を組み合わせて導体層付き複合フィルムを作成した後、導体層に配線加工を施すことによってフレキシブル配線基板を作製することができる。
【0015】
本発明では、液晶ポリマーの短繊維を低誘電正接樹脂組成物にブレンドし、フィルム化する方法も可能である。液晶ポリマーの短繊維を低誘電正接樹脂組成物のワニスに分散し、好ましくは導体箔上に塗布し、乾燥、必要に応じて硬化することによって導体層を表面に有する複合フィルムを作製することができる。本複合フィルムを二枚積層して、プレス加工またはラミネート加工することによって両面に導体層を有する複合フィルムとし、次いで導体層に配線加工を施すことによってフレキシブル配線基板を作成することができる。
【0016】
本発明に用いられる低誘電正接樹脂組成物の架橋成分と高分子量体の添加量に関しては特に制限はないが、架橋成分が5〜95重量部、高分子量体が95〜5重量部の範囲で添加するのが好ましい。前記組成範囲内で、成膜性,強度,伸び,接着性の向上等の目的に応じて組成を調整することができる。より好ましい組成としては、架橋成分が50〜95重量部、高分子量体が50〜5重量部であり、更に好ましい組成としては、架橋成分が50〜80重量部、高分子量体が50〜20重量部であり、この組成範囲により架橋性の官能基を持たない高分子量体を用いた場合にもその硬化物の耐溶剤性が保たれる。また、複合フィルム中の液晶ポリマー成分と低誘電正接樹脂組成物との配合比率は、必要とする複合フィルムの熱膨張率に応じて任意に選定する。例えば、熱膨張率を15〜20ppm/℃ に調整する場合には液晶ポリマーの形態,低誘電正接樹脂組成物の特性にもよるが、液晶ポリマーとして不織布,低誘電正接樹脂組成物として1,2―ビスビニルフェニルエタンとポリフェニレンオキサイドを用いた例では、低誘電正接樹脂組成物の含有率を40〜50wt%に調整するとよい。
【0017】
前記、低誘電正接樹脂組成物をワニス化するための有機溶剤は、架橋成分及び高分子量体を溶解するものであれば特に制限はなく、例えば、アセトン,メチルエチルケトン,メチルイソブチルケトン等のケトン類,トルエン,キシレン等の芳香族炭化水素類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類,ジエチルエーテル,エチレングリコールモノメチルエーテル,プロピレングリコールモノメチルエーテル,テトラヒドロフラン,ジオキサン等のエーテル類,メタノール,エタノール,イソプロパノール等のアルコール類等が挙げられ、これらの有機溶剤は単独で、又は2種以上混合して用いてもよい。
【0018】
本発明の複合フィルムは硬化触媒を添加しなくとも加熱のみによって硬化することができるが、硬化効率の向上を目的として、スチレン基を重合しうる硬化触媒を添加することができる。その添加量には特に制限はないが、硬化触媒の残基が誘電特性に悪影響を与える恐れがあるので、前記架橋成分及び高分子量体の合計100重量部に対して、0.0005 〜10重量部とすることが望ましい。硬化触媒を前記範囲で添加することにより、スチレン基の重合反応が促進され、低温で強固な硬化物を得ることができる。スチレン基の重合を開始しうるカチオン又はラジカル活性種を、熱又は光によって生成する硬化触媒の例を以下に示す。カチオン重合開始剤としては、BF,PF,AsF,SbFを対アニオンとするジアリルヨードニウム塩,トリアリルスルホニウム塩及び脂肪族スルホニウム塩が挙げられ、旭電化工業製SP−70,172,CP−66,日本曹達製CI−2855,2823,三新化学工業製SI−100L及びSI−150L等の市販品を使用することができる。ラジカル重合開始剤としては、ベンゾイン及びベンゾインメチルのようなベンゾイン系化合物、アセトフェノン及び2,2−ジメトキシ−2−フェニルアセトフェノンのようなアセトフェノン系化合物、チオキサントン及び2,4−ジエチルチオキサントンのようなチオキサンソン系化合物、4,4′−ジアジドカルコン、2,6−ビス(4′−アジドベンザル)シクロヘキサノン及び4,4′−ジアジドベンゾフェノンのようなビスアジド化合物、アゾビスイソブチルニトリル、2,2−アゾビスプロパン、m,m′−アゾキシスチレン及びヒドラゾンのようなアゾ化合物、ならびに2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン及び2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3,ジクミルパーオキシドのような有機過酸化物等が挙げられる。特に、官能基を持たない化合物の水素引き抜きを生じさせ、架橋成分と高分子量体間の架橋をもたらしうる有機過酸化物又はビスアジド化合物を添加することが望ましい。
【0019】
本発明の複合フィルムには、未硬化時の保存安定性を増すために重合禁止剤を添加することもできる。その添加量は、誘電特性、硬化時の反応性を著しく阻害しないような範囲であることが好ましく、前記架橋成分及び高分子量体の合計100重量部に対して、0.0005 〜5重量部とすることが望ましい。重合禁止剤を前記範囲で添加すると、保存時の余計な架橋反応を抑制することができ、また、硬化時に著しい硬化障害をもたらすこともない。重合禁止剤の例としては、ハイドロキノン、p−ベンゾキノン,クロラニル,トリメチルキノン、4−t−ブチルピロカテコール等のキノン類及び芳香族ジオール類が挙げられる。
【0020】
本発明の複合フィルムを作製する際の乾燥条件,硬化条件は、低誘電正接樹脂組成物の組成,ワニス化に用いた溶媒によるが、例えば溶媒としてトルエンを使用した場合の乾燥条件は、80〜120℃で30〜90分程度乾燥するのが好ましく、その後、プレス加工によって導体箔と複合フィルムとを積層接着する場合には150℃〜180℃で1〜3時間、プレス圧力1〜5MPaの範囲内で接着,硬化することが好ましい。
【0021】
この導体層付きの複合フィルムの導体層を通常のエッチング法によって配線加工することによって、誘電損失の小さなTABテープ等に用いられるフレキシブル配線基板が作製される。また、配線加工後のフレキキシブル配線基板を、例えば未硬化の複合フィルムを介して複数積層し、加熱プレス加工することによって多層化したフレキシブル多層配線基板も作製できる。
【0022】
【発明の実施の形態】
以下に実施例及び比較例を示して本発明を具体的に説明するが、本発明はこれらに限定されない。なお、以下の説明中に部とあるのは、特に断りのない限り重量部を指す。
【0023】
表1に本発明の実施例と比較例の組成及びその特性を示す。以下に実施例及び比較例に使用した試薬の名称、合成方法、ワニスの調製方法及び硬化物の評価方法を説明する。
【0024】
(1)1,2−ビス(ビニルフェニル)エタン(BVPE)の合成
1,2−ビス(ビニルフェニル)エタン(BVPE)は、以下に示すような公知の方法で合成した。500mlの三つ口フラスコにグリニャール反応用粒状マグネシウム(関東化学製)5.36g(220mmol)をとり、滴下ロート,窒素導入管及びセプタムキャップを取り付けた。窒素気流下,スターラーによってマグネシウム粒を攪拌しながら、系全体をドライヤーで加熱脱水した。乾燥テトラヒドロフラン300mlをシリンジにとり、セプタムキャップを通じて注入した。溶液を−5℃に冷却した後、滴下ロートを用いてビニルベンジルクロライド(VBC,東京化成製)30.5g(200mmol)を約4時間かけて滴下した。滴下終了後、0℃/20時間、攪拌を続けた。反応終了後、反応溶液をろ過して残存マグネシウムを除き、エバポレーターで濃縮した。濃縮溶液をヘキサンで希釈し、3.6% 塩酸水溶液で1回、純水で3回洗浄し、次いで硫酸マグネシウムで脱水した。脱水溶液をシリカゲル(和光純薬製ワコーゲルC300)/ヘキサンのショートカラムに通して精製し、真空乾燥してBVPEを得た。得られたBVPEはm−m体(液状),m−p体(液状),p−p体(結晶)の混合物であり、収率は90%であった。H−NMR によって構造を調べたところその値は文献値と一致した(6H−ビニル:α−2H,6.7 ,β−4H,5.7,5.2;8H−アロマティック:7.1〜7.35;4H−メチレン:2.9)。
このBVPEを架橋成分として用いた。
【0025】
(2)その他の構成部材
その他の構成部材として以下に示すものを使用した。
【0026】
高分子量体;
PPE:アルドリッチ製,ポリ−2,6−ジメチル−1,4−フェニレンオキシド
硬化触媒;
25B:日本油脂製2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)ヘキシン−3(パーヘキシン25B)
有機不織布;
クラレ製MBBK40,HSBK40,HS40
(3)ワニスの調製方法
所定量の高分子量体、架橋成分及び硬化触媒をクロロホルムに溶解することによって樹脂組成物のワニスを作製した。
【0027】
(4)硬化複合フィルムの作製
前記ワニスを不織布に塗布して乾燥した後に、図1のように複合フィルムと銅箔とポリイミドフィルム及び鏡板を重ね合わせ、真空下で、加熱及び加圧して硬化物としての銅箔付き複合フィルムを作製した。加熱条件は、120℃/30分,150℃/30分180℃/100分で、プレス圧力1.5MPa の多段階加熱とした。フィルムの大きさは150×70×0.005〜0.01mmとした。
【0028】
(5)誘電率及び誘電正接の測定
誘電率,誘電正接は空洞共振法(アジレントテクノロジー製8722ES型ネットワークアナライザー,関東電子応用開発製空洞共振器)によって、10GHzでの値を観測した。
【0029】
(6)熱膨張係数
熱膨張係数は、アルバック製TM7000サーモ・メカニカルアナライザーを用い、厚さ1mm,幅1mm,長さ70mmの柱状サンプル及び厚さ0.005〜0.01mm,幅1mm,長さ150mmのフィルム状サンプルを用い、支点間距離20mm,昇温速度2℃/分の条件で測定した。
【0030】
(7)ガラス転移温度(Tg)
Tgは、アイティー計測制御製DVA−200型粘弾性測定装置(DMA)を用いて、tanδ のピーク位置を観測して求めた。サンプル形状及び支点間距離は熱膨張係数測定用のサンプルと同じであり、昇温速度は5℃/分とした。
【0031】
(8)ピール強度
ピール強度測定用サンプルは、各樹脂組成物を電解銅箔(18μm)の粗面上に硬化複合フィルムの作製方法と同様の条件で樹脂層を形成して作製した。硬化複合フィルムは厚さ0.005〜0.01mm、大きさは70×150mmとした。複合フィルム上の電解銅箔を幅10mmに切断して、そのピール強度を測定した。
【0032】
[比較例1]
比較例1は、高分子量体であるPPEと架橋成分であるBVPEをそれぞれ50部、ならびに樹脂成分の重量に対して1部の硬化触媒25Bを含んでなる樹脂組成物の例である。この組成物を溶媒にクロロホルムを使用してワニス化し、このワニスをPETフィルムに塗布して乾燥した後に、これを剥離してPTFE製スペーサー内に所定量入れ、真空下で加熱及び加圧して硬化物としての樹脂板を得た。加熱条件は、120℃/30分,150℃/30分,180℃/100分で、プレス圧力1.5MPa の多段階加熱とした。樹脂板は70×70×1mmとした。作製した樹脂板は、誘電率が2.43、誘電正接が0.0018と低く、Tgが225℃と高い。硬化性を有するため耐溶剤性にも優れる。また、成形温度は180℃であり、低い温度での成形が可能であった。しかし、熱膨張係数が60ppm/℃と大きい点で問題を有する。
【0033】
[比較例2]
比較例2は、クラレ製液晶ポリマー不織布MBBK40の例である。本不織布は、誘電率が1.99 、誘電正接が0.0014 とどちらも非常に低く、熱膨張係数も−4ppm/℃ と低い値を示した。しかし、液晶ポリマーの成形加工には300℃以上の高温が必要であり、銅箔との接着、多層化が困難であった。
【0034】
[実施例1〜3]
実施例1〜3は、高分子量体であるPPEと架橋成分であるBVPEをそれぞれ50部、ならびに樹脂成分の重量に対して1部の硬化触媒25Bからなる樹脂組成物を、それぞれ異なる含有量の液晶ポリマーの不織布に塗布して作製した硬化複合フィルムの例である。これらの硬化複合フィルムは、溶媒にクロロホルムを使用してワニスを調製し、上述の方法で作製した。硬化複合フィルム全重量に対する樹脂組成物の含有量は42〜56%であった。作製した硬化複合フィルムは、誘電率が2.8〜2.9、誘電正接が0.0022〜0.0025と低い値を示した。その他の特性は、低誘電正接樹脂組成物と不織布の特性が反映され、熱膨張係数が15〜20ppm/℃ 、Tgが200〜220℃と優れた値を示した。本樹脂組成物は硬化性を有しているため、耐溶剤性に優れている。また、ピール強度は0.8〜1.1kN/mであり、銅箔と硬化複合フィルムは良好な接着性を示した。これにより、TABテープ等に適用可能なフレキシブル配線基板の作製が可能となった。
【0035】
前記比較例1〜2及び実施例1〜3の結果を、以下の表1に示す。
【0036】
【表1】
Figure 2004083681
【0037】
[実施例4,5]
表2には、樹脂成分の含有量の異なる硬化複合フィルムの構成及び特性を示した。これらの硬化複合フィルムの作製には、高分子量体であるPPEと架橋成分であるBVPEをそれぞれ50重量部、ならびに樹脂成分の重量に対して1wt%の硬化触媒25Bからなる樹脂組成物を使用した。硬化複合フィルムは、有機溶媒としてクロロホルムを使用してワニスを調製し、不織布MBBK40に塗布し、乾燥,硬化して作製した。全重量に対する樹脂成分の含有量が49%である実地例1の複合フィルムは、誘電率が2.8、誘電正接が0.0022、熱膨張係数が17ppm/℃、含有率が25%の実施例4の複合フィルムは、誘電率が2.98、誘電正接が0.0021、熱膨張係数が0.8ppm/℃ 、含有率が72%の実施例5の複合フィルムは誘電率が2.68、誘電正接が0.0025、熱膨張係数が60ppm/℃ であった。いずれも良好な誘電特性を有している。また、全重量に対する樹脂成分の含有量を調整することにより、作製した硬化複合フィルムの熱膨張係数を任意にコントロールできることが確認された。
【0038】
【表2】
Figure 2004083681
【0039】
[実施例6]
以下に本発明のフレキシブル多層配線基板の作成例を示す(図2)。(A)両面銅箔付き複合フィルムの片面にフォトレジスト(日立化成製HS425)をラミネートして全面に露光した。次いで残る銅表面にフォトレジスト(日立化成製HS425)をラミネートしてテストパターンを露光し、未露光部分のフォトレジストを1%炭酸ナトリウム液で現像した。(B)硫酸5%,過酸化水素5%のエッチング液で露出した銅箔をエッチング除去して、両面銅張積層板の片面に導体配線を形成した。(C)3%水酸化ナトリウム溶液で残存するフォトレジストを除去し、片面に配線を有する配線基板を得た。同様にして2枚の配線基板を作製した。(D)二枚の配線基板の配線側の面に実施例1で調製したワニスを不織布に塗布して乾燥させた複合フィルムを挟み、真空下、加熱,加圧して多層化した。加熱条件は120℃/30分,150℃/30分,180℃/100分,プレス圧力1.5MPaの多段階加熱とした。(E)作製した多層板の両面の外装銅にフォトレジスト(日立化成製HS425)をラミネートしてテストパターンを露光し、未露光部分のフォトレジストを1%炭酸ナトリウム液で現像した。その後、硫酸5%,過酸化水素5%のエッチング液で露出した銅箔をエッチング除去し、3%水酸化ナトリウム溶液で残存するフォトレジストを除去して外装配線を形成した。(F)内層配線と外装配線を接続するスルーホールをドリル加工で形成した。(G)配線基板をめっき触媒のコロイド溶液に浸して、スルーホール内、基板表面に触媒を付与した。(H)めっき触媒の活性化処理の後、無電解めっき(日立化成製CUST2000)により、約1μmの種膜を設けた。(I)フォトレジスト(日立化成製HN920)を配線基板の両面にラミネートした。(J)スルーホール部及び配線基板の端部をマスクして露光後、3%炭酸ナトリウムで現像して開孔部を設置し、電解めっきによってスルー部分にめっき銅を約18μm形成した。(K)電極部分を切断除去し、残存するフォトレジストを5%水酸化ナトリウム水溶液で除去した後、硫酸5%,過酸化水素5%のエッチング液に配線基板を浸して約1μmエッチングして種膜を除去しフレキシブル多層配線基板を作製した。本多層配線基板を200℃のハンダリフロー槽に10分間、288℃ハンダ槽に1分保持したが、樹脂界面,配線の剥離等は生じなかった。
【0040】
【発明の効果】
本発明によれば、誘電率,誘電正接が低く、ガラス転移温度が高く、さらに熱膨張率を任意にコントロールできる有機複合フィルムが得られる。本樹脂組成物は、高周波用電気部品の絶縁材料に好適であり、高周波信号用TABテープ等のフレキシブル配線基板への応用が可能である。
【図面の簡単な説明】
【図1】硬化複合フィルム作製時のプロセスを現わす模式図である。
【図2】フレキシブル多層配線基板作製時のプロセスを現わす模式図である。
【符号の説明】
1…複合フィルム、2…電解銅箔、3…ポリイミドフィルム、4…鏡板、5…フォトレジスト、6…硬化複合フィルム、7…スルーホール、8…内層配線、9…外層配線、10…めっき触媒、11…種膜、12…めっき銅。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite film for forming an insulating layer having a small dielectric loss to cope with a high-frequency signal, and a flexible wiring board using the same.
[0002]
[Prior art]
In recent years, the signal band of information communication devices such as PHS and mobile phones and the CPU clock time of computers have reached the GHz band, and higher frequencies are being promoted. The dielectric loss of an electrical signal is proportional to the square root of the relative permittivity of the insulator forming the circuit, the product of the dielectric tangent and the frequency of the signal used. Therefore, the higher the frequency of the signal used, the greater the dielectric loss. Since the dielectric loss attenuates the electrical signal and impairs the reliability of the signal, it is necessary to select a material having a small dielectric constant and a small dielectric loss tangent for the insulator in order to suppress the loss. Removal of the polar group in the molecular structure is effective for lowering the dielectric constant and the dielectric loss tangent of the insulator. Fluorine resin, curable polyolefin, cyanate ester resin, curable polyphenylene oxide, allyl-modified polyphenylene ether, divinyl Polyetherimide modified with benzene or divinylnaphthalene has been proposed. For example, a fluororesin represented by polytetrafluoroethylene (PTFE) has a low dielectric constant and a low dielectric loss tangent, and is used as a substrate material for handling high-frequency signals. On the other hand, various non-fluorine-based resins having a low dielectric constant and a low dielectric loss tangent, which are soluble in an organic solvent and are easy to handle, have been studied. For example, diene-based polymers such as polybutadiene described in JP-A-8-208856 are disclosed. Of epoxy resin introduced into a norbornene-based addition-type polymer described in JP-A-10-158337 to impart curability; No. 124491, Examples of heating the cyanate ester, diene-based polymer and epoxy resin to B-stage; Examples of modified resin comprising polyphenylene oxide, diene-based polymer and triallyl isocyanate described in JP-A-9-118759; Allylated polyphenylene ether and triallyl isocyanate described in No. 9-246429 Examples of resin compositions comprising: an alloy of polyetherimide described in JP-A-5-156159 and styrene, divinylbenzene or divinylnaphthalene; and a dihydroxy compound and chloromethylstyrene described in JP-A-5-78552. There are many examples such as a resin composition composed of hydroquinone bis (vinylbenzyl) ether and a novolak phenol resin synthesized by the Williamson reaction.
[0003]
[Problems to be solved by the invention]
Even with the low dielectric constant and low dielectric loss tangent materials described above, their dielectric properties are not sufficient to support future high-frequency equipment.
[0004]
An object of the present invention is to provide a composite film containing a low dielectric loss tangent resin composition containing a polyfunctional styrene compound having excellent dielectric properties as compared with conventional materials and a liquid crystal polymer, and a flexible wiring board using the same as an insulating layer. Is to do.
[0005]
[Means for Solving the Problems]
The cured product of the polyfunctional styrene compound has an extremely low dielectric constant and a dielectric loss tangent, and the values are a dielectric constant of about 2.5 and a dielectric loss tangent of less than 0.002 at a measurement frequency of 10 GHz.
[0006]
As a result of various studies to impart film forming ability and low thermal expansion property to the present polyfunctional styrene compound, a low dielectric loss tangent resin composition containing a high molecular weight substance and a polyfunctional styrene compound was converted to a liquid crystal polymer having a negative thermal expansion. It has been found that a composite film having an extremely low dielectric loss tangent and a arbitrarily controllable coefficient of thermal expansion can be obtained by forming the composite. The composite film can be formed into a composite film with a conductor layer by laminating and bonding with a conductor foil such as copper, and further, by subjecting the conductor layer to wiring processing, a film-like flexible film such as TAB (Tape Automated Bonding) tape. It can be processed into a wiring board and can be further multilayered. In the flexible wiring board obtained in this manner, since the coefficient of thermal expansion of the composite film forming the insulating layer can be adjusted to the same level as that of the conductor wiring, peeling between the composite film and the conductor layer hardly occurs, and The dielectric loss of electric signals is small due to the extremely low dielectric loss tangent of the film. That is, a flexible wiring board having high reliability and excellent high-frequency transmission characteristics is obtained.
[0007]
The composite film and flexible wiring board of the present invention will be described.
[0008]
The composite film of the present invention basically has the following general formula:
[0009]
Embedded image
Figure 2004083681
[0010]
(In the formula, R represents a hydrocarbon skeleton which may have a substituent, and R 2 , R 3 and R 4 may be the same or different, and may be a hydrogen atom or a hydrocarbon having 1 to 6 carbon atoms. R 5 , R 6 , R 7 , R 8 may be the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and n represents an integer of 2 or more.)
And a liquid crystal polymer comprising a low dielectric loss tangent resin composition containing a cross-linking component having a plurality of styrene groups having a weight average molecular weight of 1,000 or less and a high molecular weight polymer having a weight average molecular weight of 5,000 or more.
[0011]
In the present invention, a composite film having an extremely low dielectric constant and a dielectric loss tangent can be produced by using a polyfunctional styrene compound containing no polar group as a crosslinking component. This cross-linking component does not have volatility unlike divinylbenzene, which has been used as a cross-linking component in conventional materials, so that the cross-linking component does not volatilize during processing. That is, there is an advantage that a composite film having excellent dielectric properties can be easily and stably produced by using the crosslinking component. The weight average molecular weight (GPC, styrene equivalent) of the crosslinking component is preferably 1,000 or less. As a result, the melting temperature of the crosslinking component is lowered, the fluidity during molding is improved, the curing temperature is lowered, the compatibility with various polymers, monomers, and fillers is improved. It becomes a dielectric loss tangent resin composition, which facilitates production and curing of the composite film. Preferred examples of the crosslinking component include 1,2-bis (p-vinylphenyl) ethane, 1,2-bis (m-vinylphenyl) ethane, 1- (p-vinylphenyl) -2- (m-vinylphenyl) ) Ethane, 1,4-bis (p-vinylphenylethyl) benzene, 1,4-bis (m-vinylphenylethyl) benzene, 1,3-bis (p-vinylphenylethyl) benzene, 1,3-bis (M-vinylphenylethyl) benzene, 1- (p-vinylphenylethyl) -3- (m-vinylphenylethyl) benzene, bisvinylphenylmethane, 1,6- (bisvinylphenyl) hexane and vinyl in the side chain Dinylbenzene polymer (oligomer) having a group is exemplified.
[0012]
In the present invention, by dispersing a high molecular weight substance in the low dielectric loss tangent resin composition, the low dielectric loss tangent resin composition is imparted with a film-forming ability, and a composite film having excellent strength, elongation and adhesion to conductive wiring is obtained. Obtainable. This facilitates the manufacture of the flexible wiring board and improves the reliability. The high molecular weight body preferably has a molecular weight of 5,000 or more, more preferably 10,000 to 100,000, and still more preferably 15,000 to 60,000. If the molecular weight is small, the mechanical strength may be insufficient. If the molecular weight is too large, the viscosity of the low dielectric loss tangent resin composition when varnished becomes high, and operations such as mixing, stirring, film formation, and impregnation are performed. Efficiency may decrease. Examples of the high molecular weight product include a monomer selected from butadiene, isoprene, styrene, ethylstyrene, divinylbenzene, N-vinylphenylmaleimide, an acrylate ester, and acrylonitrile. Good polyphenylene oxide, cyclic polyolefin, polysiloxane, polyetherimide and the like can be mentioned. Among them, polyphenylene oxide and cyclic polyolefin are preferable from the viewpoint of strength and low dielectric loss tangent. These high molecular weight compounds may be used in combination.
[0013]
The form of the liquid crystal polymer used in the present invention is not particularly limited. However, as a preferable example for easily producing a composite film, a liquid crystal polymer film, cloth, or nonwoven fabric may be used. When a liquid crystal polymer film is used, the surface of the film is preferably roughened to form a rough surface of 0.5 to 10 μm in order to enhance the adhesion between the low dielectric loss tangent resin composition and the liquid crystal polymer film. As a roughening method, any method such as sandblasting or sandpaper polishing may be used.
[0014]
The composite film of the present invention can be easily prepared by dissolving the low dielectric loss tangent resin composition in an organic solvent, coating or impregnating the liquid crystal polymer film, cloth or nonwoven fabric, and then drying. Laminating the composite film and conductor foil and pressing, or combining the lamination and post-heating to create a composite film with a conductor layer, and then wiring the conductor layer to produce a flexible wiring board Can be.
[0015]
In the present invention, a method in which short fibers of a liquid crystal polymer are blended with a low dielectric loss tangent resin composition to form a film is also possible. It is possible to prepare a composite film having a conductor layer on the surface by dispersing short fibers of a liquid crystal polymer in a varnish of a low dielectric loss tangent resin composition, preferably applied on a conductor foil, and drying and curing as necessary. it can. By laminating two composite films and pressing or laminating the composite films to form a composite film having conductor layers on both sides, a wiring process is performed on the conductor layers to produce a flexible wiring board.
[0016]
The amount of the crosslinking component and the high molecular weight of the low dielectric loss tangent resin composition used in the present invention is not particularly limited, but the crosslinking component is in the range of 5 to 95 parts by weight and the high molecular weight is in the range of 5 to 5 parts by weight. It is preferably added. Within the above-mentioned composition range, the composition can be adjusted according to the purpose of improving film-forming properties, strength, elongation, adhesiveness and the like. A more preferred composition is 50 to 95 parts by weight of a crosslinking component and 50 to 5 parts by weight of a high molecular weight substance, and a still more preferred composition is 50 to 80 parts by weight of a crosslinking component and 50 to 20 parts by weight of a high molecular weight substance. In this case, even when a high molecular weight compound having no crosslinkable functional group is used, the solvent resistance of the cured product is maintained. The compounding ratio of the liquid crystal polymer component and the low dielectric loss tangent resin composition in the composite film is arbitrarily selected according to the required coefficient of thermal expansion of the composite film. For example, when the coefficient of thermal expansion is adjusted to 15 to 20 ppm / ° C., it depends on the form of the liquid crystal polymer and the characteristics of the low dielectric loss tangent resin composition. In the example using bisvinylphenylethane and polyphenylene oxide, the content of the low dielectric loss tangent resin composition may be adjusted to 40 to 50 wt%.
[0017]
The organic solvent for varnishing the low dielectric loss tangent resin composition is not particularly limited as long as it dissolves a crosslinking component and a high molecular weight substance. Examples thereof include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; Aromatic hydrocarbons such as toluene and xylene, amides such as N, N-dimethylformamide and N, N-dimethylacetamide, ethers such as diethyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, tetrahydrofuran and dioxane; Examples thereof include alcohols such as methanol, ethanol, and isopropanol. These organic solvents may be used alone or in combination of two or more.
[0018]
Although the composite film of the present invention can be cured only by heating without adding a curing catalyst, a curing catalyst capable of polymerizing a styrene group can be added for the purpose of improving curing efficiency. There is no particular limitation on the amount of addition, but since the residue of the curing catalyst may adversely affect the dielectric properties, 0.0005 to 10 parts by weight based on 100 parts by weight of the total of the crosslinking component and the high molecular weight compound. Part. By adding the curing catalyst in the above range, the polymerization reaction of the styrene group is promoted, and a strong cured product can be obtained at a low temperature. Examples of a curing catalyst that generates a cation or a radical active species capable of initiating polymerization of a styrene group by heat or light are shown below. Examples of the cationic polymerization initiator include diallyliodonium salts having BF 4 , PF 6 , AsF 6 , and SbF 6 as counter anions, triallylsulfonium salts, and aliphatic sulfonium salts, and SP-70, 172, manufactured by Asahi Denka Kogyo. Commercial products such as CP-66, Nippon Soda's CI-2855, 2823, and Sanshin Chemical Industries' SI-100L and SI-150L can be used. Examples of the radical polymerization initiator include benzoin compounds such as benzoin and benzoin methyl, acetophenone compounds such as acetophenone and 2,2-dimethoxy-2-phenylacetophenone, and thioxanthone compounds such as thioxanthone and 2,4-diethylthioxanthone. Compounds, bisazide compounds such as 4,4'-diazidochalcone, 2,6-bis (4'-azidobenzal) cyclohexanone and 4,4'-diazidobenzophenone, azobisisobutylnitrile, 2,2-azobispropane Azo compounds such as, m, m'-azoxystyrene and hydrazone, and 2,5-dimethyl-2,5-di (t-butylperoxy) hexane and 2,5-dimethyl-2,5-di ( t-butylperoxy) hexyne-3, dicumylpa Organic peroxides such as oxides. In particular, it is desirable to add an organic peroxide or a bisazide compound which can cause hydrogen abstraction of a compound having no functional group and cause crosslinking between a crosslinking component and a high molecular weight compound.
[0019]
A polymerization inhibitor may be added to the composite film of the present invention in order to increase the storage stability before curing. The addition amount is preferably in a range that does not significantly impair the dielectric properties and reactivity during curing, and is 0.0005 to 5 parts by weight based on 100 parts by weight of the total of the crosslinking component and the high molecular weight substance. It is desirable to do. When the polymerization inhibitor is added in the above-mentioned range, unnecessary crosslinking reaction during storage can be suppressed, and no significant curing failure occurs during curing. Examples of the polymerization inhibitor include quinones such as hydroquinone, p-benzoquinone, chloranil, trimethylquinone, and 4-t-butylpyrocatechol, and aromatic diols.
[0020]
The drying conditions and curing conditions for producing the composite film of the present invention depend on the composition of the low dielectric loss tangent resin composition and the solvent used for varnishing. For example, when toluene is used as the solvent, the drying conditions are 80 to It is preferable to dry at 120 ° C. for about 30 to 90 minutes, and then, when laminating and bonding the conductor foil and the composite film by press working, at 150 ° C. to 180 ° C. for 1 to 3 hours, a press pressure of 1 to 5 MPa. It is preferable to adhere and cure in the inside.
[0021]
By wiring the conductor layer of the composite film with the conductor layer by an ordinary etching method, a flexible wiring board used for a TAB tape having a small dielectric loss is manufactured. In addition, a flexible multilayer wiring board in which a plurality of flexible wiring boards after wiring processing are laminated via, for example, an uncured composite film and heated and pressed to form a multilayer can be manufactured.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the following description, “parts” means “parts by weight” unless otherwise specified.
[0023]
Table 1 shows the compositions and characteristics of Examples and Comparative Examples of the present invention. Hereinafter, the names of the reagents used in Examples and Comparative Examples, the synthesis method, the varnish preparation method, and the cured product evaluation method will be described.
[0024]
(1) Synthesis of 1,2-bis (vinylphenyl) ethane (BVPE) 1,2-bis (vinylphenyl) ethane (BVPE) was synthesized by a known method as shown below. 5.36 g (220 mmol) of granular magnesium for Grignard reaction (manufactured by Kanto Kagaku) was placed in a 500 ml three-necked flask, and a dropping funnel, a nitrogen inlet tube, and a septum cap were attached. The whole system was heated and dehydrated with a dryer while stirring the magnesium particles with a stirrer under a nitrogen stream. 300 ml of dry tetrahydrofuran was taken in a syringe and injected through a septum cap. After cooling the solution to −5 ° C., 30.5 g (200 mmol) of vinylbenzyl chloride (VBC, manufactured by Tokyo Kasei) was added dropwise using a dropping funnel over about 4 hours. After completion of the dropwise addition, stirring was continued at 0 ° C. for 20 hours. After completion of the reaction, the reaction solution was filtered to remove residual magnesium, and concentrated by an evaporator. The concentrated solution was diluted with hexane, washed once with a 3.6% aqueous hydrochloric acid solution and three times with pure water, and then dried over magnesium sulfate. The dewatered aqueous solution was purified by passing through a short column of silica gel (Wako Gel C300, manufactured by Wako Pure Chemical Industries) / hexane, and dried under vacuum to obtain BVPE. The obtained BVPE was a mixture of an mm-form (liquid), an mp-form (liquid), and a pp-form (crystal), and the yield was 90%. When the structure was examined by 1 H-NMR, the values agreed with those in the literature (6H-vinyl: α-2H, 6.7, β-4H, 5.7, 5.2; 8H-aromatic: 7. 1-7.35; 4H-methylene: 2.9).
This BVPE was used as a crosslinking component.
[0025]
(2) Other components The following components were used as other components.
[0026]
High molecular weight products;
PPE: poly-2,6-dimethyl-1,4-phenylene oxide curing catalyst manufactured by Aldrich;
25B: 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3 (Perhexin 25B) manufactured by NOF Corporation
Organic non-woven fabric;
Kuraray MBBK40, HSBK40, HS40
(3) Varnish Preparation Method A varnish of a resin composition was prepared by dissolving a predetermined amount of a high molecular weight substance, a crosslinking component and a curing catalyst in chloroform.
[0027]
(4) Preparation of cured composite film After applying the varnish to the nonwoven fabric and drying, the composite film, the copper foil, the polyimide film and the mirror plate are laminated as shown in FIG. 1, and the cured product is heated and pressed under vacuum. As a composite film with a copper foil. The heating conditions were 120 ° C./30 minutes, 150 ° C./30 minutes, 180 ° C./100 minutes, and multi-stage heating at a press pressure of 1.5 MPa. The size of the film was 150 × 70 × 0.005 to 0.01 mm.
[0028]
(5) Measurement of dielectric constant and dielectric loss tangent The dielectric constant and dielectric loss tangent were measured at 10 GHz by a cavity resonance method (8722ES network analyzer manufactured by Agilent Technologies, cavity resonator manufactured by Kanto Electronics Application Development).
[0029]
(6) Coefficient of thermal expansion The coefficient of thermal expansion was determined using a UL7000 TM7000 thermomechanical analyzer, using a columnar sample having a thickness of 1 mm, a width of 1 mm, and a length of 70 mm, a thickness of 0.005 to 0.01 mm, a width of 1 mm, and a length of Using a 150 mm film sample, the measurement was carried out under the conditions of a distance between supporting points of 20 mm and a heating rate of 2 ° C./min.
[0030]
(7) Glass transition temperature (Tg)
Tg was determined by observing the tan δ peak position using a DVA-200 type viscoelasticity measuring device (DMA) manufactured by IT Measurement Control. The sample shape and the distance between the fulcrums were the same as those of the sample for measuring the thermal expansion coefficient, and the heating rate was 5 ° C./min.
[0031]
(8) Peel strength A peel strength measurement sample was prepared by forming a resin layer on each of the resin compositions on a rough surface of an electrolytic copper foil (18 μm) under the same conditions as in the method for preparing a cured composite film. The cured composite film had a thickness of 0.005 to 0.01 mm and a size of 70 × 150 mm. The electrolytic copper foil on the composite film was cut into a width of 10 mm, and the peel strength was measured.
[0032]
[Comparative Example 1]
Comparative Example 1 is an example of a resin composition containing 50 parts each of PPE which is a high molecular weight substance and BVPE which is a crosslinking component, and 1 part of a curing catalyst 25B based on the weight of the resin component. After varnishing this composition using chloroform as a solvent, applying the varnish to a PET film and drying, peeling it off, putting it in a predetermined amount in a PTFE spacer, and heating and pressing under vacuum to cure A resin plate was obtained as a product. The heating conditions were 120 ° C./30 minutes, 150 ° C./30 minutes, 180 ° C./100 minutes, and multi-stage heating at a press pressure of 1.5 MPa. The resin plate was 70 × 70 × 1 mm 3 . The produced resin plate has a low dielectric constant of 2.43, a low dielectric loss tangent of 0.0018, and a high Tg of 225 ° C. It has excellent solvent resistance due to its curability. The molding temperature was 180 ° C., and molding at a low temperature was possible. However, there is a problem in that the thermal expansion coefficient is as large as 60 ppm / ° C.
[0033]
[Comparative Example 2]
Comparative Example 2 is an example of a liquid crystal polymer nonwoven fabric MBBK40 manufactured by Kuraray. This nonwoven fabric has a very low dielectric constant of 1.99 and a dielectric loss tangent of 0.0014, both of which are very low, and a low coefficient of thermal expansion of -4 ppm / ° C. However, a high temperature of 300 ° C. or higher is required for the molding process of the liquid crystal polymer, and it has been difficult to bond to a copper foil and to form a multilayer.
[0034]
[Examples 1 to 3]
In Examples 1 to 3, a resin composition consisting of 50 parts each of PPE which is a high molecular weight substance and BVPE which is a cross-linking component, and 1 part of a curing catalyst 25B with respect to the weight of the resin component, was used in different contents. It is an example of a cured composite film produced by applying to a liquid crystal polymer nonwoven fabric. These cured composite films were prepared by preparing a varnish using chloroform as a solvent and by the above-described method. The content of the resin composition with respect to the total weight of the cured composite film was 42 to 56%. The cured composite film thus produced exhibited a low dielectric constant of 2.8 to 2.9 and a low dielectric loss tangent of 0.0022 to 0.0025. Other characteristics reflected the characteristics of the low dielectric loss tangent resin composition and the nonwoven fabric, and exhibited excellent values of a thermal expansion coefficient of 15 to 20 ppm / ° C and a Tg of 200 to 220 ° C. Since the present resin composition has curability, it has excellent solvent resistance. Further, the peel strength was 0.8 to 1.1 kN / m, and the copper foil and the cured composite film showed good adhesion. As a result, a flexible wiring board applicable to a TAB tape or the like can be manufactured.
[0035]
The results of Comparative Examples 1 and 2 and Examples 1 to 3 are shown in Table 1 below.
[0036]
[Table 1]
Figure 2004083681
[0037]
[Examples 4 and 5]
Table 2 shows the configurations and properties of the cured composite films having different resin component contents. For the production of these cured composite films, a resin composition comprising 50 parts by weight of PPE as a high molecular weight substance and 50 parts by weight of BVPE as a crosslinking component, and 1 wt% of a curing catalyst 25B based on the weight of the resin component was used. . The cured composite film was prepared by preparing a varnish using chloroform as an organic solvent, applying the varnish to the nonwoven fabric MBBK40, drying and curing. The composite film of Practical Example 1, in which the content of the resin component is 49% based on the total weight, has a dielectric constant of 2.8, a dielectric loss tangent of 0.0022, a thermal expansion coefficient of 17 ppm / ° C, and a content of 25%. The composite film of Example 5 has a dielectric constant of 2.98, a dielectric loss tangent of 0.0021, a coefficient of thermal expansion of 0.8 ppm / ° C., and a content of 72%. The composite film of Example 5 has a dielectric constant of 2.68. , The dielectric loss tangent was 0.0025, and the coefficient of thermal expansion was 60 ppm / ° C. All have good dielectric properties. Further, it was confirmed that by adjusting the content of the resin component relative to the total weight, the thermal expansion coefficient of the produced cured composite film can be arbitrarily controlled.
[0038]
[Table 2]
Figure 2004083681
[0039]
[Example 6]
Hereinafter, an example of producing the flexible multilayer wiring board of the present invention is shown (FIG. 2). (A) A photoresist (HS425, manufactured by Hitachi Chemical Co., Ltd.) was laminated on one side of a composite film with double-sided copper foil, and the entire surface was exposed. Next, a photoresist (HS425 manufactured by Hitachi Chemical Co., Ltd.) was laminated on the remaining copper surface to expose a test pattern, and the unexposed portion of the photoresist was developed with a 1% sodium carbonate solution. (B) The exposed copper foil was removed by etching with an etching solution of 5% sulfuric acid and 5% hydrogen peroxide to form conductor wiring on one side of the double-sided copper-clad laminate. (C) The remaining photoresist was removed with a 3% sodium hydroxide solution to obtain a wiring board having wiring on one side. Similarly, two wiring boards were produced. (D) A varnish prepared in Example 1 was applied to a nonwoven fabric and dried on a wiring side surface of two wiring boards, and a composite film was sandwiched, and heated and pressed under vacuum to form a multilayer. The heating conditions were multi-stage heating at 120 ° C./30 minutes, 150 ° C./30 minutes, 180 ° C./100 minutes, and a press pressure of 1.5 MPa. (E) Photoresist (HS425, manufactured by Hitachi Chemical Co., Ltd.) was laminated on exterior copper on both sides of the produced multilayer board to expose a test pattern, and the unexposed portion of the photoresist was developed with a 1% sodium carbonate solution. Thereafter, the exposed copper foil was removed by etching with an etching solution of 5% sulfuric acid and 5% hydrogen peroxide, and the remaining photoresist was removed with a 3% sodium hydroxide solution to form exterior wiring. (F) A through hole for connecting the inner layer wiring and the outer wiring was formed by drilling. (G) The wiring substrate was immersed in a colloidal solution of a plating catalyst to apply the catalyst to the inside of the through hole and to the substrate surface. (H) After the activation treatment of the plating catalyst, a seed film of about 1 μm was provided by electroless plating (CUST2000 manufactured by Hitachi Chemical). (I) A photoresist (HN920 manufactured by Hitachi Chemical) was laminated on both sides of the wiring board. (J) Exposure was performed by masking the through-hole portion and the end portion of the wiring board, and developed with 3% sodium carbonate to form an opening portion, and about 18 μm of plated copper was formed in the through portion by electrolytic plating. (K) The electrode portion is cut and removed, the remaining photoresist is removed with a 5% aqueous solution of sodium hydroxide, and then the wiring board is immersed in an etching solution of 5% sulfuric acid and 5% hydrogen peroxide, and etched by about 1 μm to seed the seed. The film was removed to produce a flexible multilayer wiring board. The multilayer wiring board was held in a solder reflow bath at 200 ° C. for 10 minutes, and then in a 288 ° C. solder bath for 1 minute, but no resin interface, peeling of wiring, etc. occurred.
[0040]
【The invention's effect】
According to the present invention, an organic composite film having a low dielectric constant and a low dielectric loss tangent, a high glass transition temperature, and capable of arbitrarily controlling the coefficient of thermal expansion can be obtained. The present resin composition is suitable as an insulating material for high-frequency electric components, and can be applied to a flexible wiring board such as a TAB tape for high-frequency signals.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a process at the time of producing a cured composite film.
FIG. 2 is a schematic view illustrating a process at the time of manufacturing a flexible multilayer wiring board.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Composite film, 2 ... electrolytic copper foil, 3 ... polyimide film, 4 ... mirror plate, 5 ... photoresist, 6 ... cured composite film, 7 ... through hole, 8 ... inner wiring, 9 ... outer wiring, 10 ... plating catalyst , 11 ... seed film, 12 ... plated copper.

Claims (8)

下記一般式:
Figure 2004083681
(式中、Rは炭化水素骨格を表し、R は、同一又は異なって、水素原子又は炭素数1〜20の炭化水素基を表し、R,R及びR は、同一又は異なって、水素原子又は炭素数1〜6のアルキル基を表し、mは1〜4の整数、nは2以上の整数を表す。)
で示される複数のスチレン基を有する重量平均分子量1000以下の架橋成分と、重量平均分子量5000以上の高分子量体とを含有する低誘電正接樹脂組成物と液晶ポリマーを有することを特徴とする複合フィルム。
The following general formula:
Figure 2004083681
(Wherein, R represents a hydrocarbon skeleton, R 1 is the same or different and represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and R 2 , R 3 and R 4 are the same or different. , A hydrogen atom or an alkyl group having 1 to 6 carbon atoms, m represents an integer of 1 to 4, and n represents an integer of 2 or more.)
A composite film comprising: a low dielectric loss tangent resin composition containing a cross-linking component having a plurality of styrene groups having a weight average molecular weight of 1000 or less and a high molecular weight polymer having a weight average molecular weight of 5000 or more and a liquid crystal polymer. .
該液晶ポリマーが液晶ポリマーフィルム,クロス,不織布または短繊維の何れかの形態であることを特徴とする請求項1に記載の複合フィルム。The composite film according to claim 1, wherein the liquid crystal polymer is in the form of a liquid crystal polymer film, cloth, nonwoven fabric, or short fiber. 前記高分子量体が、ブタジエン,イソプレン,スチレン,メチルスチレン,エチルスチレン,ジビニルベンゼン,アクリル酸エステル,アクリロニトリル、N−フェニルマレイミド及びN−ビニルフェニルマレイミドの少なくとも一種からなる重合体,置換基を有していてもよいポリフェニレンオキサイド、ならびに脂環式構造を有するポリオレフィンからなる群から選ばれる少なくとも一種の樹脂である請求項1〜2のいずれかに記載の複合フィルム。The high molecular weight polymer has a polymer and a substituent comprising at least one of butadiene, isoprene, styrene, methylstyrene, ethylstyrene, divinylbenzene, acrylate, acrylonitrile, N-phenylmaleimide and N-vinylphenylmaleimide. The composite film according to any one of claims 1 to 2, which is at least one resin selected from the group consisting of polyphenylene oxide which may be contained, and polyolefin having an alicyclic structure. 該複合フィルムの硬化物の10GHzにおける誘電正接が0.001〜0.003であることを特徴とする請求項1から3のいずれかに記載の複合フィルム。The composite film according to any one of claims 1 to 3, wherein the cured product of the composite film has a dielectric loss tangent at 10 GHz of 0.001 to 0.003. 該複合フィルムの硬化物の熱膨張率が20ppm/℃ 以下であることを特徴とする請求項1から4のいずれかに記載の複合フィルム。The composite film according to any one of claims 1 to 4, wherein the cured product of the composite film has a coefficient of thermal expansion of 20 ppm / ° C or less. 該複合フィルムの両面または片面に導体層を有する請求項1〜5のいずれかに記載の複合フィルム。The composite film according to any one of claims 1 to 5, having a conductor layer on both surfaces or one surface of the composite film. 請求項1〜5のいずれかに記載の複合フィルムの硬化物を絶縁層とするフレキシブル配線基板。A flexible wiring board comprising a cured product of the composite film according to claim 1 as an insulating layer. 請求項1〜5のいずれかに記載の複合フィルムの硬化物を絶縁層とするフレキシブル多層配線基板。A flexible multilayer wiring board comprising a cured product of the composite film according to claim 1 as an insulating layer.
JP2002244517A 2002-08-26 2002-08-26 Composite film between resin composition having low dielectric dissipation factor and liquid-crystal polymer and flexible circuit board using the same Pending JP2004083681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002244517A JP2004083681A (en) 2002-08-26 2002-08-26 Composite film between resin composition having low dielectric dissipation factor and liquid-crystal polymer and flexible circuit board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002244517A JP2004083681A (en) 2002-08-26 2002-08-26 Composite film between resin composition having low dielectric dissipation factor and liquid-crystal polymer and flexible circuit board using the same

Publications (1)

Publication Number Publication Date
JP2004083681A true JP2004083681A (en) 2004-03-18

Family

ID=32052952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002244517A Pending JP2004083681A (en) 2002-08-26 2002-08-26 Composite film between resin composition having low dielectric dissipation factor and liquid-crystal polymer and flexible circuit board using the same

Country Status (1)

Country Link
JP (1) JP2004083681A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001977A (en) * 2004-06-15 2006-01-05 Asahi Kasei Chemicals Corp Tab lead tape produced from polyphenylene ether-based resin
US7193009B2 (en) 2002-08-26 2007-03-20 Hitachi, Ltd. Electronic device using low dielectric loss tangent insulators for high frequency signals
JP2010077445A (en) * 2009-12-04 2010-04-08 Asahi Kasei Chemicals Corp Polyphenylene ether resin-made tab (tape automated bonding) lead tape
JP2014120580A (en) * 2012-12-14 2014-06-30 Mitsubishi Gas Chemical Co Inc Metal clad laminated plate, manufacturing method of the same, and printed wiring board
JP2016062954A (en) * 2014-09-16 2016-04-25 株式会社プライマテック Laminate for electronic circuit board and electronic circuit board
CN106604521A (en) * 2015-10-19 2017-04-26 昆山雅森电子材料科技有限公司 Composite type stack-up high-frequency low-dielectricity adhesive film and manufacturing method thereof
CN114174062A (en) * 2019-08-06 2022-03-11 株式会社村田制作所 Resin sheet and resin multilayer substrate
CN114479419A (en) * 2021-12-29 2022-05-13 上海普利特化工新材料有限公司 Liquid crystal polymer resin composition and copper-clad plate prepared from same
WO2022113961A1 (en) * 2020-11-24 2022-06-02 富士フイルム株式会社 Liquid crystal polymer film, polymer film, and laminate
WO2022113962A1 (en) * 2020-11-24 2022-06-02 富士フイルム株式会社 Liquid crystal polymer film, polymer film, and laminate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193009B2 (en) 2002-08-26 2007-03-20 Hitachi, Ltd. Electronic device using low dielectric loss tangent insulators for high frequency signals
JP2006001977A (en) * 2004-06-15 2006-01-05 Asahi Kasei Chemicals Corp Tab lead tape produced from polyphenylene ether-based resin
JP4518383B2 (en) * 2004-06-15 2010-08-04 旭化成ケミカルズ株式会社 TAB lead tape made of polyphenylene ether resin
JP2010077445A (en) * 2009-12-04 2010-04-08 Asahi Kasei Chemicals Corp Polyphenylene ether resin-made tab (tape automated bonding) lead tape
JP2014120580A (en) * 2012-12-14 2014-06-30 Mitsubishi Gas Chemical Co Inc Metal clad laminated plate, manufacturing method of the same, and printed wiring board
JP2016062954A (en) * 2014-09-16 2016-04-25 株式会社プライマテック Laminate for electronic circuit board and electronic circuit board
CN106604521A (en) * 2015-10-19 2017-04-26 昆山雅森电子材料科技有限公司 Composite type stack-up high-frequency low-dielectricity adhesive film and manufacturing method thereof
CN114174062A (en) * 2019-08-06 2022-03-11 株式会社村田制作所 Resin sheet and resin multilayer substrate
WO2022113961A1 (en) * 2020-11-24 2022-06-02 富士フイルム株式会社 Liquid crystal polymer film, polymer film, and laminate
WO2022113962A1 (en) * 2020-11-24 2022-06-02 富士フイルム株式会社 Liquid crystal polymer film, polymer film, and laminate
CN114479419A (en) * 2021-12-29 2022-05-13 上海普利特化工新材料有限公司 Liquid crystal polymer resin composition and copper-clad plate prepared from same
CN114479419B (en) * 2021-12-29 2023-08-15 上海普利特化工新材料有限公司 Liquid crystal polymer resin composition and copper-clad plate prepared from same

Similar Documents

Publication Publication Date Title
JP4325337B2 (en) Resin composition, prepreg, laminate and multilayer printed wiring board using the same
JP5040092B2 (en) Low dielectric loss tangent resin varnish with excellent stability and wiring board material using the same
CN109912958B (en) Thermosetting resin composition, prepreg, laminate, and printed circuit board
JP4613977B2 (en) Prepreg including thin-layer quartz glass cloth and wiring board using the same
JP4467816B2 (en) Low dielectric loss tangent resin composition, curable film, cured product, electrical component using the same, and production method thereof
TWI342886B (en) Resin composition and prepreg for laminate and metal-clad laminate
JP5138267B2 (en) Prepreg, multilayer substrate and electronic component using the same
JP2009167268A (en) Low thermal expansion low dielectric loss prepreg and its applied article
JP3801117B2 (en) Low dielectric loss tangent film and wiring film
JP2008115280A (en) Low dielectric-loss resin composition, its cured product and electronic part obtained using the same
JP2009067894A (en) Resin composition and electronic part
JP2004083681A (en) Composite film between resin composition having low dielectric dissipation factor and liquid-crystal polymer and flexible circuit board using the same
JP4550324B2 (en) Low dielectric loss tangent resin composition, cured product thereof, and prepreg, laminate and multilayer printed board using the composition
JP3944430B2 (en) Heat resistant porous resin multilayer substrate
JPS63159443A (en) Laminate
JP3938500B2 (en) Low dielectric loss tangent method, low dielectric loss tangent resin composition and electrical component using the same
JP5339318B2 (en) Low dielectric loss resin for multilayer wiring board, resin composition, prepreg, and multilayer wiring board
JP2006291125A (en) New copolymer, resin composition, cured material of the same and electronic part
JP4499344B2 (en) Resin composition and prepreg, laminate and multilayer printed circuit board using the same
TWI815938B (en) Aromatic amine resin having N-alkyl group, curable resin composition and cured product thereof
JP2005041914A (en) Resin composition containing rubber component and film and electric part using the same
JP4499345B2 (en) Organophosphorus compound-containing resin composition, prepreg, laminate and multilayer printed board using the resin composition
JP4499346B2 (en) Red phosphorus particle-containing resin composition, prepreg using the resin composition, laminated board, multilayer printed board
JP2005050860A (en) Porosity wiring board and electronic component using it
JPS63156835A (en) Laminated board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050530

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20060512

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20060512

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Effective date: 20070907

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A02 Decision of refusal

Effective date: 20080129

Free format text: JAPANESE INTERMEDIATE CODE: A02