JP2004082260A - Method of manufacturing mems device - Google Patents

Method of manufacturing mems device Download PDF

Info

Publication number
JP2004082260A
JP2004082260A JP2002246367A JP2002246367A JP2004082260A JP 2004082260 A JP2004082260 A JP 2004082260A JP 2002246367 A JP2002246367 A JP 2002246367A JP 2002246367 A JP2002246367 A JP 2002246367A JP 2004082260 A JP2004082260 A JP 2004082260A
Authority
JP
Japan
Prior art keywords
ribbon member
layer
ribbon
film
forming layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002246367A
Other languages
Japanese (ja)
Inventor
Takeshi Taniguchi
谷口 武士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002246367A priority Critical patent/JP2004082260A/en
Publication of JP2004082260A publication Critical patent/JP2004082260A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a MEMS (micro electro mechanical system) device without damaging a ribbon member. <P>SOLUTION: A resist mask 56 having a resist pattern having opening parts 54 of a width the same as a width of a ribbon member 19 of the MEMS device at intervals the same as intervals of the ribbon members 19 is formed on a sacrifice layer 24, when a ribbon member forming layer is formed on the sacrifice layer 24 in manufacturing the MEMS device. An upper layer part of the sacrifice layer is etched to form recessed parts 58 of a width the same as the width of the ribbon member at intervals same as the intervals of the ribbon members, and projecting parts 60 of a width the same as the interval of the ribbon members are also formed. The ribbon member forming layer 46 is formed on the whole surface on the sacrifice layer. The CMP treatment is performed on the ribbon member forming layer on the sacrifice layer, and the ribbon member forming layer on the projecting parts of the sacrifice layer, and the projecting parts of the sacrifice layer are abraded to be eliminated. Whereby the ribbon member forming layer can be divided into ribbon members at predetermined intervals with a specific width by performing the patterning to the ribbon member forming layer. Then the sacrifice layer is eliminated by etching similarly as a conventional method, to form the ribbon members. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、MEMSデバイスの製造方法に関し、更に詳細には、駆動体を構成するリボン部材に損傷を与えないようにしたMEMSデバイスの製造方法に関するものである。
【0002】
【従来の技術】
微細技術の進展に伴い、いわゆるマイクロマシン(MEMS:Micro Electro−Mechanical System 、超小型電気的・機械的複合体)素子、及びそのようなMEMS素子を組み込んだ小型機器が、注目されている。
【0003】
MEMS素子は、シリコン基板、ガラス基板等の基板上に微細構造体として形成され、機械的駆動力を出力する駆動体と、駆動体を駆動する駆動機構と、駆動機構を制御する半導体集積回路等とを電気的に、更には機械的に結合させた素子である。
MEMS素子の基本的な特徴は、機械的構造として構成されている駆動体が素子の一部に組み込まれていることであって、駆動体の駆動は、電極間のクーロン引力などを応用して電気的に行われる。
例えば、MEMS素子の一つとして、駆動体の動きを光の反射や回折に利用して光変調素子として機能させる光学MEMS素子が開発されている。
【0004】
ここで、図2及び図3を参照して、光学MEMS素子の構造を説明する。図2(a)及び(b)は、それぞれ、両持ち梁構造の光学MEMS素子の構成を示す斜視図、及び図2(a)の線I−Iでの断面図であり、図3(a)及び(b)は、それぞれ、片持ち梁構造の光学MEMS素子の構成を示す斜視図、及び図3(a)の線II−IIでの断面図である。
両持ち梁構造の光学MEMS素子10は、静電引力又は静電反発力を利用して光の反射や回折を制御する光スイッチ、光変調素子として使用される光学MEMS素子の代表的な例であって、図2に示すように、絶縁性基板12と、絶縁性基板12上に形成されている下部電極14と、絶縁膜からなるブリッジ部材16と、ブリッジ部材16上に積層されている上部電極兼用反射膜18とからなるストライプ状のリボン部材19とを備えている。
【0005】
ブリッジ部材16と上部電極兼用反射膜18の積層膜からなるリボン部材19は、両持ち梁として両端部で同じ積層膜からなる柱状部20によって絶縁性基板12上に支持され、かつ空隙部22を介して下部電極14から電気的に絶縁され、かつ下部電極14に交差してブリッジ状に設けられている。
【0006】
絶縁性基板12は、例えばシリコン(Si)やガリウム砒素(GaAs)などの半導体基板上に絶縁膜を形成した基板、石英基板やガラス基板のような絶縁性の基板などが用いられる。
下部電極14は、例えば不純物をドーピングした多結晶シリコン膜、W蒸着膜、Cr蒸着膜等の金属膜などで形成される。
ブリッジ部材16を形成する絶縁膜は、例えば膜厚100μmから300μmのシリコン窒化膜(SiN膜)等の絶縁膜であり、上部電極兼用反射膜18は、膜厚50μmから300μmの例えばAl膜からなる反射膜を兼ねる駆動側電極として構成されている。
【0007】
光学MEMS素子10では、下部電極14と上部電極兼用反射膜18との間に印加される電位に応じて生じる静電引力又は静電反発により、ブリッジ部材16と上部電極兼用反射膜18の積層膜からなるリボン部材19が、例えば図2(a)の破線と実線とで示すように、下部電極14に対して凹み状態(点線)と平行状態とに変位する。
【0008】
また、ブリッジ部材と上部電極の積層膜からなるリボン部材の一端を支持した片持ち梁構造の光学MEMS素子も、両持ち梁構造の光学MEMS素子10と同様に、静電引力又は静電反発力を利用して光の反射や回折を制御する光スイッチ、光変調素子等として利用される。
片持ち梁構造の光学MEMS素子30は、図3に示すように、絶縁性基板32と、絶縁性基板32上に形成されている下部電極34と、絶縁膜からなるブリッジ部材36と、ブリッジ部材36上に積層されている上部電極兼用反射膜38とを備えている。
光学MEMS素子30では、下部電極34と上部電極38との間に印加される電位に応じて生じる静電引力又は静電反発により、ブリッジ部材36と上部電極兼用反射膜38の積層膜からなる片持ちビーム状のリボン部材39が、例えば図3(b)の破線と実線とで示すように、下部電極34に対して傾斜状態(点線)と平行状態とに変位する。
【0009】
これらの光学MEMS素子10、30は、光反射膜を兼ねる上部電極18、38の表面に照射された光がブリッジ部材16、36の駆動位置に応じて異なる方向に反射することを利用して一方向の反射光を検出し、それにより電気入力をオン/オフするスイッチ機能を有する光スイッチとして適用される。
また、後述するように、光学MEMS素子10、30は、複数個のリボン部材19、39を並列配置して光の回折を利用する光変調素子としても、適用できる。
【0010】
次に、図4を参照して、両持ち梁構造の光学MEMS素子10の作製方法を説明する。図4(a)から(e)は、それぞれ、両持ち梁構造の光学MEMS素子10を作製する際の工程毎の図2の線I−Iでの断面図である。
図4(a)に示すように、絶縁性基板12上にW(タングステン)膜等の金属膜を成膜し、パターニングして下部電極14を形成する。
次いで、図4(b)に示すように、絶縁性基板12全面にアモルファスシリコン膜又はポリシリコン膜を成膜し、パターニングして、下部電極14上に犠牲層24を形成する。
犠牲層24は、次のブリッジ部材16を形成するための支持層として機能し、後述するように、最終的には除去される。そのため、犠牲層24は、下部電極14、ブリッジ部材16、及び上部電極兼用反射膜18を構成する酸化膜、窒化膜、及び金属膜に対して大きなエッチング選択比を有するアモルファスシリコン膜、ポリシリコン膜等で形成されている。
【0011】
続いて、図4(c)に示すように、絶縁性基板12全面に絶縁膜、例えばSiN膜42を成膜し、更に上部電極兼用反射膜18を形成する層としてAl膜44を成膜してリボン部材形成層46とする。
次いで、図4(d)に示すように、リボン部材形成層46をパターニングして、犠牲層24に接して、かつ犠牲層24上を跨ぎ、絶縁性基板12上に立脚するブリッジ部材16と上部電極兼用反射膜18との積層膜からなるリボン部材19を形成する。
次に、アモルファスシリコン膜又はポリシリコン膜からなる犠牲層24をXeFガス等を用いたドライエッチング法により除去して、図4(e)に示すように、光学MEMS素子10を形成する。犠牲層24を除去したところは、空隙部22となる。
【0012】
図5に示すように、光学MEMS素子10を複数並列に配置したデバイスが、GLV(Grating Light Valve )デバイス50であって、光強度変換素子の1つとして利用されている。図5はGLVデバイスの構成を示す斜視図である。
GLVデバイス50は、複数個のリボン部材19が、一つおきに、下部電極94に対する近接、離間の動作により、リボン部材19上の反射膜18の高さを交互に変化させ、光の回折によって反射膜18で反射する光の強度を変調する。
【0013】
ところで、GLVデバイス50を製造する場合、犠牲層24(図4参照)を除去する前に、リボン部材形成層46(図4参照)をパターニングして、図6に示すように、複数個のストライプ状のリボン部材19に分割することが必要である。図6はリボン部材形成層46をパターニングしてリボン部材19に分割した状態を示す平面図である。
【0014】
そこで、従来、図7(a)に示すように、ブリッジ部材16を形成するSiN膜42及び上部電極兼用反射膜18を形成するAl膜44を犠牲層24上に成膜してリボン部材形成層46を形成した後、リボン部材形成層46上にレジスト膜を成膜し、続いてレジスト膜をパターニングして、図7(b)に示すように、ストライプ状の開口を有し、リボン部材形成領域を覆うレジストマスク52を形成する。
続いて、図7(c)に示すように、リボン部材形成層46をRIE法等によりエッチングして、ストライプ状の積層膜からなるリボン部材19に分割する。
尚、図7(a)から(c)は、それぞれ、従来のMEMSデバイスの製造方法の各工程を説明する断面図である。
【0015】
【発明が解決しようとする課題】
ところで、リボン部材形成層をRIE法によりエッチングしてストライプ状に加工する際に、図8に示すように、レジスト膜に起因するポリマーやリボン部材形成層の材質に由来するAl、N、Si、O等の複合されたエッチング残渣が、リボン部材19と隣のリボン部材19との間の溝状の凹部の底面や側壁に発生することが多い。
そのために、後の犠牲層除去工程で、犠牲層のエッチングがエッチング途中で停止するエッチングストップ現象や、犠牲層のエッチングが不均一になる現象等が発生し、リボン部材と基板との間を完全に中空にできなかったり、リボン部材の一部分のみに応力集中が起きてリボン部材を損傷させたりする現象が発生する。
そこで、その対策として、従来、リボン部材形成層のエッチング後に、薬液による通常の洗浄処理を施して、エッチング残渣を除去していた。
【0016】
しかし、リボン部材形成層をエッチングしたエッチング溝に堆積したエッチング残渣は、フラットなリボン部材形成層上に堆積した残渣に比べて、除去が困難である。と言って、エッチング残渣を完全に除去するために、洗浄効果の強い薬液を使用すると、リボン部材形成層にダメージを与えることが懸念される。つまり、残渣を完全に除去することと、リボン部材形成層或いはリボン部材に損傷を与えないようにすることの両方を満足させる方法を見つけることは、現実には、難しかった。
【0017】
特に、酸化膜に由来する残渣の除去では、HFやNH4 Fを成分として含む薬液を使用しているので、上部電極兼用反射膜としてAl膜が使用されている場合には、Al表面が腐食され易い。従って、残渣除去の効果とAl表面の腐食の問題がトレードオフになる。
残渣除去が不十分であると、Siからなる犠牲層をエッチングする際、SiO2 に対する選択比が1:1000以上と非常に高いXeF2 等のエッチングガスを使っているので、残渣に邪魔されて、エッチングが開始しないこともある。また、残渣の少ない領域から局所的にエッチングが進行し、リボン部材形成層やリボン部材に対する応力集中等を招いて破壊に至る場合もある。
【0018】
以上の説明では、積層膜からなるリボン部材形成層のエッチングを例にして説明しているが、リボン部材形成層が単層膜で形成されていても、エッチング残渣は同じように発生するので、問題は同じである。
【0019】
そこで、本発明の目的は、リボン部材に損傷を与えないようにしてMEMSデバイスを製造する方法を提供することである。
【0020】
【課題を解決するための手段】
上記目的を達成するために、本発明に係るMEMSデバイスの製造方法は、空隙部を介して基板上に両持ち梁型又は片持ち梁型構造で支持されたストライプ状のリボン部材と、リボン部材を駆動する駆動機構とを備え、駆動機構によってリボン部材を駆動させるようにしたMEMS素子を複数個所定距離離隔して並列に基板上に備えるMEMSデバイスの製造方法において、
基板上の所定領域に犠牲層を成膜する工程と、
犠牲層の上層をパターニングして、リボン部材の幅と同じ幅のストライプ状凹部を所定距離離隔して複数個形成するパターニング工程と、
次いで、犠牲層全面を含めて基板上に、リボン部材を形成するリボン部材形成層を成膜する工程と、
凹部と凹部との間の犠牲層上のリボン部材形成層及び犠牲層をCMP加工により研磨除去すると共に凹部にリボン部材を残すCMP加工工程と、
犠牲層を除去して空隙部を介して基板上に両持ち梁型又は片持ち梁型構造で支持されたリボン部材を形成する工程と
を備えることを特徴としている。
【0021】
リボン部材、或いはリボン部材形成層を構成する膜種及び膜数には制約はなく、例えばリボン部材形成層として単層膜を成膜しても、絶縁膜と導電性膜との積層膜を成膜しても良い。
犠牲層のパターニング工程では、ストライプ状凹部に長手方向に直交する第2のストライプ状凹部を形成するようにしても良い。これにより、格子状に延在する凹部を形成して、ストライプ状のリボン部材を長手方向に沿って更に分割することもできる。
【0022】
また、リボン部材形成層として、リボン部材形成層とリボン部材形成層上に設けられた保護層とからなる積層膜を成膜し、CMP加工工程では、リボン部材上に極く薄い保護層を残すようにCMP加工しても良い。保護層を設けることにより、ストライプ部材をCMP加工の雰囲気から保護することができる。
【0023】
犠牲層の成膜工程では、犠牲層として、例えばHFやBHFによりエッチング除去できるSiO2 膜、或いはSF6 やXeF2 ガスでエッチング除去できるSi膜を成膜する。
また、リボン部材形成層としては、例えば犠牲層に対して十分なエッチング選択比が取れるものとして、Si3 4 、SiO2 、Al、Si等を挙げることができる。また、上述の膜種以外にも、リボン部材形成層として使用可能な材料と、そのリボン部材形成層に対し十分なエッチング選択比が取れて、等方性エッチングが可能な材料の犠牲層、或いは中空構造を作成できる結晶方位に依存したような異方性エッチングが可能な材料の犠牲層との組合せであれば良い。
【0024】
本発明方法では、MEMSデバイスの中空構造体(リボン部材)を構成するリボン部材形成層を格子状又はスリット状に加工して、MEMSデバイスを構成する複数個のリボン部材を形成する際、従来のエッチングによるパターニングに代えて、予め、下地の犠牲層に、リボン部材を形成する領域に凹部を、リボン部材を形成しないリボン部材同士の離隔領域に凸部を形成する。
次いで、リボン部材形成層を成膜し、続いてCMP加工により凸部上のリボン部材形成層を研磨除去することにより、凹部にリボン部材を残す。更に犠牲層をエッチング除去して、リボン部材を形成する。
本発明方法の以上の工程を経ることにより、リボン部材に損傷を与えることなく、所定幅で所定間隔で離隔した複数個のリボン部材を備え、所定の性能を示すMEMSデバイスを製造することができる。
【0025】
【発明の実施の形態】
以下に、添付図面を参照し、実施形態例を挙げて本発明の実施の形態を具体的かつ詳細に説明する。
実施形態例
本実施形態例は、本発明に係るMEMSデバイスの製造方法の実施形態の一例であって、図1(a)から(d)は、それぞれ、本実施形態例の方法でMEMSデバイスを形成する際のリボン部材形成層のパターニングの各工程の断面図である。
本実施形態例では、MEMSデバイス50を製造する際、ブリッジ部材16を形成するSiN膜42及び上部電極兼用反射膜18を形成するAl膜44の積層膜を犠牲層24上に成膜する前に、先ず、図1(a)に示すように、リボン部材19の幅と同じ幅の開口部54をMEMSデバイス50のリボン部材19の間隔と同じ間隔で有するレジストパターンを備えたレジストマスク56を犠牲層24上に形成する。
【0026】
次いで、図1(b)に示すように、レジストマスク56上から犠牲層24の上層部をエッチングして、リボン部材19の幅と同じ幅の凹部58をリボン部材19の間隔と同じ間隔で形成すると共に、リボン部材19同士の間隔と同じ幅の凸部60を形成する。
【0027】
次いで、図1(c)に示すように、犠牲層24上全面にブリッジ部材16を形成するSiN膜42及び上部電極兼用反射膜18を形成するAl膜44からなるリボン部材形成層46を成膜する。
リボン部材形成層46の膜厚及び犠牲層24の厚さには制約は無い。犠牲層24には、ポリシリコン、アモルファス−Siを用いるが、犠牲層24の深さ方向に制約が無い場合は、ベアSiで犠牲層24を成膜することもできる。
続いて、図1(d)に示すように、CMP加工を犠牲層24上のリボン部材形成層46に施して犠牲層24の凸部60上のリボン部材形成層46及び犠牲層24の凸部60を研磨し、除去する。これにより、リボン部材形成層46をパターニングしてブリッジ部材16と上部電極兼用反射膜18からなるリボン部材19に分割することができる。
次いで、従来と同様にして、犠牲層24をエッチングして除去することにより、所定間隔で離隔させた所定幅のリボン部材19を基板12(図6参照)上に形成することができる。
【0028】
本実施形態例では、リボン部材形成層46の成膜前の状態で、犠牲層24上にレジストマスク56を形成し、続いてRIE等を用いて犠牲層24をエッチングする。ここで、犠牲層24がエッチングされない領域がリボン部材19同士の間隔、つまりリボン部材19の分離域に対応する。
次に、リボン部材形成層46を成膜する。リボン部材形成層46は下地の犠牲層24の形状に合わせて、リボン部材19の分離域が盛り上った形になる。その後、CMP加工を施して盛り上がった部分を除去する。
これにより、従来のRIEによるリボン部材形成層46のエッチングで発生するような残渣の無い状態で、所定幅のリボン部材19を所定間隔で分離することができる。次いで、犠牲層24を除去することにより、所定幅で損傷のないリボン部材19を形成することができる。
【0029】
実施例
本実施例では、図1(b)に示すように、ポリシリコンからなる膜厚200nm〜1000nmの犠牲層24をRIE法によりドライエッチングして深さ100nm〜800nmで幅200nm〜3000nmのストライプ状凹部58を犠牲層24のリボン部材形成領域に形成した。
次いで、図1(c)に示すように、犠牲層24上に絶縁膜として膜厚100nm〜300nmのSiN層42を、その上に上部電極兼用反射膜として膜厚50nm〜300nmのAl膜44を成膜した。
次いで、図1(d)に示すように、CMP加工により犠牲層24の凸部60上のSiN膜42及びAl膜44、続いて犠牲層24の凸部60を研磨除去すると共に、凹部58のAl膜44を上面にして平坦な面を形成する。
これにより、犠牲層24の凹部58に、SiN膜42からなるブリッジ部材16とAl膜44からなる上部電極兼用反射膜18との積層膜からなるリボン部材19を形成することができた。
【0030】
犠牲層24を構成するSiの等方性エッチングに用いられるXeF2 ガスは、SiO2 、Al等に対して1:10000以上の高い選択比を有する。Si3 4 に対しても1:500〜750程度の十分に高い選択比を有する。
従って、SiO2 、Al、Si3 4 等の薄膜をリボン部材19の形成層として成膜し、下地の犠牲層24として予めSiを堆積し、そのSiを除去する場合、高い選択比を有するXeF2 ガスを使用することにより、リボン部材19に殆どダメージを与えない状態で、下地のSi犠牲層24の除去が可能である。
【0031】
本実施形態例では、RIE法を用いた犠牲層24のパターニングの際に残渣が発生するものの、CMP加工の際に同時に除去できるという効果がある。
本実施形態例のように、リボン部材19の表面がAlであり、その面をCMP加工の雰囲気に曝したくない場合は、更にAl膜42上にSiO2 膜を保護膜として成膜し、CMP加工のの際に、SiO2 膜を薄く残した状態でCMP処理を終れば、Al表面がSiO2 膜で保護されているので、Al表面が荒れるおそれが無くなる。
また、リボン部材を構成する多層膜の膜数を多くなればなるほど、従来方法のRIE法エッチングによる多層膜のパターニングでは、エッチング条件が厳しくなり、残渣の発生も一般的には多くなる。しかし、本実施形態例では、CMP加工による物理的な加工によりリボン部材形成層をリボン部材に分割しているので、CMP加工の条件出しは、RIE法によるパターニング程には多層膜の膜数の影響を受けないといる利点がある。
【0032】
本実施形態例では、リボン部材が両持ち梁型のMEMSデバイスを例に上げているが、勿論、本発明方法は、リボン部材が片持ち梁型のMEMSデバイスの製造にも適用できる。
【0033】
【発明の効果】
本発明方法によれば、犠牲層の上層をパターニングして、リボン部材の幅と同じ幅のストライプ状凹部を所定距離離隔して複数個形成し、犠牲層全面を含めて基板上にリボン部材を形成するリボン部材形成層を成膜し、次いでリボン部材形成層のCMP加工により凹部にリボン部材を分離させ、犠牲層をエッチングして、空隙部を介して基板上に両持ち梁型又は片持ち梁型構造で支持されたリボン部材を形成している。
これにより、リボン部材形成層をRIE等でエッチングする従来方法で問題になったリボン部材形成層のエッチングの際の残渣発生が無くなり、エッチング後の残渣除去工程が不要になると共に、残渣除去工程で発生し勝ちなリボン部材に対する損傷を防止することができる。
また、エッチング残渣の発生が無いので、従来方法の犠牲層除去工程で生じていた、エッチング残渣によるエッチングストップ現象や、犠牲層エッチング不均一による応力集中に起因したリボン部材の損傷等が起きない。よって、MEMSデバイスの製造歩留まりを向上させることができる。
【図面の簡単な説明】
【図1】図1(a)から(d)は、それぞれ、本実施形態例の方法でMEMSデバイスを形成する際のリボン部材形成層のパターニングの各工程の断面図である。
【図2】図2(a)及び(b)は、それぞれ、両持ち梁構造の光学MEMS素子の構成を示す斜視図、及び図2(a)の線I−Iでの断面図である。
【図3】図3(a)及び(b)は、それぞれ、片持ち梁構造の光学MEMS素子の構成を示す斜視図、及び図3(a)の線II−IIでの断面図である。
【図4】図4(a)から(e)は、それぞれ、両持ち梁構造の光学MEMS素子10を作製する際の工程毎の図2の線I−Iでの断面図である。
【図5】GLVデバイスの構成を示す斜視図である。
【図6】リボン部材形成層をパターニングしてリボン部材に分割した状態を示す平面図である。
【図7】図7(a)から(c)は、それぞれ、従来のMEMSデバイスの製造方法の各工程を説明する断面図である。
【図8】従来のMEMSデバイスの製造方法の問題を説明するための断面図である。
【符号の説明】
10……両持ち梁構造の光学MEMS素子、12……絶縁性基板、14……絶縁性基板、16……ブリッジ部材、18……上部電極兼用反射膜、19……リボン部材、20……柱状部、22……空隙部、24……犠牲層、30……片持ち梁構造の光学MEMS素子、32……絶縁性基板、34……下部電極、36……ブリッジ部材、38……上部電極兼用反射膜、39……リボン部材、42……SiN膜、44……Al膜、46……リボン部材形成層、50……GLVデバイス、52……レジストマスク、54……開口部、56……レジストマスク、58……凹部、60……凸部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a MEMS device, and more particularly, to a method of manufacturing a MEMS device that does not damage a ribbon member constituting a driving body.
[0002]
[Prior art]
With the development of microtechnology, a so-called micro machine (MEMS: Micro Electro-Mechanical System, micro-electrical / mechanical composite) element and a small device incorporating such a MEMS element have attracted attention.
[0003]
The MEMS element is formed as a fine structure on a substrate such as a silicon substrate or a glass substrate, and outputs a mechanical driving force, a driving mechanism for driving the driving body, and a semiconductor integrated circuit for controlling the driving mechanism. Are electrically and mechanically coupled.
The basic feature of the MEMS element is that a driver configured as a mechanical structure is incorporated in a part of the element, and the driver is driven by applying Coulomb attraction between electrodes and the like. It is done electrically.
For example, as one of the MEMS elements, an optical MEMS element that functions as a light modulation element by utilizing the movement of a driver for light reflection or diffraction has been developed.
[0004]
Here, the structure of the optical MEMS device will be described with reference to FIGS. 2A and 2B are a perspective view showing the configuration of an optical MEMS element having a doubly supported structure, and a cross-sectional view taken along line II in FIG. 2A, respectively. 3A and 3B are respectively a perspective view showing a configuration of an optical MEMS element having a cantilever structure, and a cross-sectional view taken along line II-II in FIG.
The optical MEMS element 10 having a doubly supported structure is a typical example of an optical MEMS element used as an optical switch or an optical modulation element that controls the reflection or diffraction of light using electrostatic attraction or electrostatic repulsion. As shown in FIG. 2, an insulating substrate 12, a lower electrode 14 formed on the insulating substrate 12, a bridge member 16 made of an insulating film, and an upper portion laminated on the bridge member 16. And a striped ribbon member 19 composed of the electrode / reflection film 18.
[0005]
A ribbon member 19 made of a laminated film of the bridge member 16 and the upper electrode / reflective film 18 is supported on the insulating substrate 12 by a columnar portion 20 made of the same laminated film at both ends as a doubly supported beam, and a gap 22 is formed. The lower electrode 14 is electrically insulated from the lower electrode 14 and is provided in a bridge shape so as to cross the lower electrode 14.
[0006]
As the insulating substrate 12, a substrate in which an insulating film is formed on a semiconductor substrate such as silicon (Si) or gallium arsenide (GaAs), or an insulating substrate such as a quartz substrate or a glass substrate is used.
The lower electrode 14 is formed of, for example, a metal film such as a polycrystalline silicon film doped with an impurity, a W vapor-deposited film, or a Cr vapor-deposited film.
The insulating film forming the bridge member 16 is an insulating film such as a silicon nitride film (SiN film) having a thickness of, for example, 100 μm to 300 μm, and the upper electrode / reflective film 18 is formed of, for example, an Al film having a thickness of 50 μm to 300 μm. It is configured as a drive-side electrode also serving as a reflection film.
[0007]
In the optical MEMS element 10, a stacked film of the bridge member 16 and the upper electrode / reflective film 18 is formed by electrostatic attraction or electrostatic repulsion generated according to a potential applied between the lower electrode 14 and the upper electrode / reflective film 18. Is displaced with respect to the lower electrode 14 into a recessed state (dotted line) and a state parallel to the lower electrode 14, as shown by, for example, a broken line and a solid line in FIG.
[0008]
Further, the optical MEMS device having a cantilever structure supporting one end of a ribbon member composed of a laminated film of a bridge member and an upper electrode also has an electrostatic attractive force or an electrostatic repulsive force, like the optical MEMS device 10 having a doubly supported structure. It is used as an optical switch, a light modulation element, or the like that controls the reflection and diffraction of light by utilizing light.
As shown in FIG. 3, the optical MEMS element 30 having a cantilever structure includes an insulating substrate 32, a lower electrode 34 formed on the insulating substrate 32, a bridge member 36 made of an insulating film, and a bridge member. And an upper electrode / reflection film 38 laminated on the upper electrode 36.
In the optical MEMS device 30, a fragment formed of a laminated film of the bridge member 36 and the reflection film 38 also serving as the upper electrode is formed by electrostatic attraction or repulsion generated according to a potential applied between the lower electrode 34 and the upper electrode 38. The holding beam-shaped ribbon member 39 is displaced into a state inclined (dotted line) and a state parallel to the lower electrode 34 as shown by a broken line and a solid line in FIG. 3B, for example.
[0009]
These optical MEMS elements 10 and 30 utilize the fact that light applied to the surfaces of the upper electrodes 18 and 38 also serving as a light reflection film is reflected in different directions according to the driving positions of the bridge members 16 and 36. It is applied as an optical switch having a switching function of detecting reflected light in a direction and thereby turning on / off an electric input.
Further, as described later, the optical MEMS elements 10 and 30 can also be applied as a light modulation element that utilizes a diffraction of light by arranging a plurality of ribbon members 19 and 39 in parallel.
[0010]
Next, a method for manufacturing the optical MEMS device 10 having a doubly supported structure will be described with reference to FIGS. FIGS. 4A to 4E are cross-sectional views taken along line II of FIG. 2 for respective steps when the optical MEMS device 10 having the double-supported beam structure is manufactured.
As shown in FIG. 4A, a metal film such as a W (tungsten) film is formed on the insulating substrate 12 and patterned to form the lower electrode 14.
Next, as shown in FIG. 4B, an amorphous silicon film or a polysilicon film is formed on the entire surface of the insulating substrate 12 and is patterned to form a sacrifice layer 24 on the lower electrode 14.
The sacrificial layer 24 functions as a support layer for forming the next bridge member 16, and is eventually removed as described later. Therefore, the sacrificial layer 24 is made of an amorphous silicon film or a polysilicon film having a large etching selectivity with respect to the oxide film, the nitride film, and the metal film constituting the lower electrode 14, the bridge member 16, and the upper electrode reflective film 18. And so on.
[0011]
Subsequently, as shown in FIG. 4C, an insulating film, for example, a SiN film 42 is formed on the entire surface of the insulating substrate 12, and an Al film 44 is further formed as a layer for forming the upper electrode / reflective film 18. To form a ribbon member forming layer 46.
Next, as shown in FIG. 4D, the ribbon member forming layer 46 is patterned to contact the sacrifice layer 24, straddle the sacrifice layer 24, and bridge the bridge member 16 standing on the insulating substrate 12 and the upper portion. A ribbon member 19 made of a laminated film with the electrode / reflection film 18 is formed.
Next, the sacrificial layer 24 made of an amorphous silicon film or a polysilicon film is removed by a dry etching method using XeF 2 gas or the like to form the optical MEMS device 10 as shown in FIG. The space 22 is obtained by removing the sacrificial layer 24.
[0012]
As shown in FIG. 5, a device in which a plurality of optical MEMS elements 10 are arranged in parallel is a GLV (Grating Light Valve) device 50, which is used as one of the light intensity conversion elements. FIG. 5 is a perspective view showing the configuration of the GLV device.
The GLV device 50 is configured such that a plurality of ribbon members 19 alternately change the height of the reflection film 18 on the ribbon members 19 by an operation of approaching and separating from the lower electrode 94 every other, and the diffraction of light is performed. The intensity of the light reflected by the reflection film 18 is modulated.
[0013]
Meanwhile, when manufacturing the GLV device 50, before removing the sacrificial layer 24 (see FIG. 4), the ribbon member forming layer 46 (see FIG. 4) is patterned to form a plurality of stripes as shown in FIG. It is necessary to divide the ribbon member 19 into a ribbon shape. FIG. 6 is a plan view showing a state where the ribbon member forming layer 46 is patterned and divided into ribbon members 19.
[0014]
Therefore, conventionally, as shown in FIG. 7A, a SiN film 42 for forming the bridge member 16 and an Al film 44 for forming the upper electrode / reflective film 18 are formed on the sacrificial layer 24 to form a ribbon member forming layer. After forming the resist member 46, a resist film is formed on the ribbon member forming layer 46, and subsequently, the resist film is patterned to have a stripe-shaped opening as shown in FIG. A resist mask 52 covering the region is formed.
Subsequently, as shown in FIG. 7C, the ribbon member forming layer 46 is etched by RIE or the like to divide the ribbon member 19 into a ribbon member 19 formed of a stripe-shaped laminated film.
FIGS. 7A to 7C are cross-sectional views illustrating respective steps of a conventional MEMS device manufacturing method.
[0015]
[Problems to be solved by the invention]
By the way, when the ribbon member forming layer is processed into a stripe shape by etching by the RIE method, as shown in FIG. 8, a polymer resulting from the resist film and Al, N, Si, A combined etching residue such as O often occurs on the bottom surface and the side wall of the groove-shaped concave portion between the ribbon member 19 and the adjacent ribbon member 19.
For this reason, in the subsequent sacrifice layer removing step, an etching stop phenomenon in which the etching of the sacrifice layer is stopped during the etching, a phenomenon in which the etching of the sacrifice layer becomes non-uniform, and the like occur. In some cases, the ribbon member cannot be hollowed out, or stress concentration occurs only in a part of the ribbon member, thereby damaging the ribbon member.
Therefore, as a countermeasure, conventionally, after the etching of the ribbon member forming layer, a normal cleaning process using a chemical solution is performed to remove the etching residue.
[0016]
However, it is more difficult to remove the etching residue deposited on the etching groove formed by etching the ribbon member forming layer than the residue deposited on the flat ribbon member forming layer. However, if a chemical having a strong cleaning effect is used to completely remove the etching residue, there is a concern that the ribbon member forming layer may be damaged. That is, it has been difficult in practice to find a method that satisfies both the complete removal of the residue and the prevention of damage to the ribbon member forming layer or the ribbon member.
[0017]
In particular, in the removal of the residue derived from the oxide film, a chemical solution containing HF or NH 4 F as a component is used. Therefore, when the Al film is used as the upper electrode / reflection film, the Al surface is corroded. Easy to do. Therefore, there is a trade-off between the effect of residue removal and the problem of corrosion of the Al surface.
If the removal of the residue is insufficient, when etching the sacrificial layer made of Si, an etching gas such as XeF 2 having a very high selectivity to SiO 2 of 1: 1000 or more is used. In some cases, etching does not start. In addition, etching may locally proceed from a region with a small amount of residue, leading to stress concentration or the like on the ribbon member forming layer or the ribbon member, leading to destruction.
[0018]
In the above description, the etching of the ribbon member forming layer made of the laminated film is described as an example.However, even if the ribbon member forming layer is formed of a single layer film, the etching residue is generated in the same manner. The problem is the same.
[0019]
Accordingly, an object of the present invention is to provide a method for manufacturing a MEMS device without damaging the ribbon member.
[0020]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing a MEMS device according to the present invention comprises a strip-shaped ribbon member supported on a substrate in a doubly-supported or cantilever-type structure through a gap, and a ribbon member. And a driving mechanism for driving the ribbon member by the driving mechanism, a method for manufacturing a MEMS device including a plurality of MEMS elements arranged in parallel on a substrate at a predetermined distance apart from each other,
Forming a sacrificial layer in a predetermined area on the substrate;
Patterning the upper layer of the sacrificial layer, forming a plurality of stripe-shaped recesses having the same width as the width of the ribbon member at a predetermined distance,
Next, a step of forming a ribbon member forming layer for forming a ribbon member on the substrate including the entire surface of the sacrificial layer;
A CMP processing step of polishing and removing the ribbon member forming layer and the sacrificial layer on the sacrificial layer between the concave portions by the CMP process and leaving the ribbon member in the concave portions;
Removing the sacrificial layer and forming a ribbon member supported in a doubly supported or cantilevered structure on the substrate via the gap.
[0021]
There is no restriction on the type and number of films constituting the ribbon member or the ribbon member forming layer. For example, even if a single layer film is formed as the ribbon member forming layer, a laminated film of an insulating film and a conductive film is formed. It may be a film.
In the step of patterning the sacrificial layer, a second stripe-shaped concave portion perpendicular to the longitudinal direction may be formed in the stripe-shaped concave portion. This makes it possible to form concave portions extending in a lattice shape and further divide the striped ribbon member along the longitudinal direction.
[0022]
Further, as the ribbon member forming layer, a laminated film including the ribbon member forming layer and the protective layer provided on the ribbon member forming layer is formed, and in the CMP process, an extremely thin protective layer is left on the ribbon member. CMP processing may be performed as described above. By providing the protective layer, the stripe member can be protected from the atmosphere of the CMP processing.
[0023]
In the step of forming the sacrificial layer, a SiO 2 film that can be removed by etching with HF or BHF, or a Si film that can be removed by etching with SF 6 or XeF 2 gas is formed as the sacrificial layer.
Further, as the ribbon member forming layer, for example, Si 3 N 4 , SiO 2 , Al, Si, and the like can be given as those capable of obtaining a sufficient etching selectivity with respect to the sacrificial layer. In addition to the above film types, a material that can be used as a ribbon member forming layer and a sufficient etching selectivity with respect to the ribbon member forming layer can be obtained, and a sacrificial layer of a material that can be isotropically etched, or Any combination with a sacrifice layer made of a material capable of performing anisotropic etching that depends on the crystal orientation in which a hollow structure can be formed may be used.
[0024]
In the method of the present invention, when a ribbon member forming layer constituting a hollow structure (ribbon member) of a MEMS device is processed into a lattice shape or a slit shape to form a plurality of ribbon members constituting a MEMS device, a conventional method is used. Instead of patterning by etching, a concave portion is formed in advance in a region where a ribbon member is to be formed, and a convex portion is formed in a region where ribbon members are not formed, in a sacrificial layer as an underlayer.
Next, a ribbon member forming layer is formed into a film, and the ribbon member forming layer on the convex portion is polished and removed by CMP, thereby leaving the ribbon member in the concave portion. Further, the sacrificial layer is removed by etching to form a ribbon member.
Through the above steps of the method of the present invention, it is possible to manufacture a MEMS device having a plurality of ribbon members separated by a predetermined width and a predetermined distance and exhibiting a predetermined performance without damaging the ribbon member. .
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings by way of example embodiments.
Embodiment Example This embodiment is an example of an embodiment of a method for manufacturing a MEMS device according to the present invention, and FIGS. 1A to 1D respectively show a method according to this embodiment. FIG. 4 is a cross-sectional view of each step of patterning a ribbon member forming layer when forming a MEMS device by using FIG.
In the present embodiment, when the MEMS device 50 is manufactured, before forming the laminated film of the SiN film 42 forming the bridge member 16 and the Al film 44 forming the upper electrode / reflective film 18 on the sacrificial layer 24, First, as shown in FIG. 1A, a resist mask 56 having a resist pattern having openings 54 having the same width as the ribbon member 19 at the same interval as the ribbon member 19 of the MEMS device 50 is sacrificed. It is formed on the layer 24.
[0026]
Then, as shown in FIG. 1B, the upper layer portion of the sacrificial layer 24 is etched from above the resist mask 56 to form recesses 58 having the same width as the ribbon member 19 at the same interval as the ribbon members 19. At the same time, the protrusion 60 having the same width as the interval between the ribbon members 19 is formed.
[0027]
Then, as shown in FIG. 1C, a ribbon member forming layer 46 made of an SiN film 42 for forming the bridge member 16 and an Al film 44 for forming the upper electrode / reflective film 18 is formed on the entire surface of the sacrificial layer 24. I do.
There is no limitation on the thickness of the ribbon member forming layer 46 and the thickness of the sacrificial layer 24. Polysilicon or amorphous-Si is used for the sacrifice layer 24, but if there is no restriction in the depth direction of the sacrifice layer 24, the sacrifice layer 24 can be formed of bare Si.
Subsequently, as shown in FIG. 1D, CMP processing is performed on the ribbon member forming layer 46 on the sacrificial layer 24 to form the ribbon member forming layer 46 on the convex portion 60 of the sacrificial layer 24 and the convex portion of the sacrificial layer 24. Polish 60 and remove. Thereby, the ribbon member forming layer 46 can be patterned and divided into the ribbon member 19 including the bridge member 16 and the reflection film 18 also serving as the upper electrode.
Next, the sacrifice layer 24 is etched and removed in the same manner as in the related art, so that the ribbon members 19 having a predetermined width and separated at predetermined intervals can be formed on the substrate 12 (see FIG. 6).
[0028]
In the present embodiment, a resist mask 56 is formed on the sacrificial layer 24 before the ribbon member forming layer 46 is formed, and then the sacrificial layer 24 is etched using RIE or the like. Here, the region where the sacrificial layer 24 is not etched corresponds to the interval between the ribbon members 19, that is, the separation region of the ribbon member 19.
Next, the ribbon member forming layer 46 is formed. The ribbon member forming layer 46 has a shape in which the separation area of the ribbon member 19 rises according to the shape of the underlying sacrificial layer 24. After that, a raised portion is removed by performing a CMP process.
Thereby, the ribbon member 19 having a predetermined width can be separated at a predetermined interval without a residue generated by etching of the ribbon member forming layer 46 by the conventional RIE. Next, by removing the sacrificial layer 24, the ribbon member 19 having a predetermined width and no damage can be formed.
[0029]
Embodiment In this embodiment, as shown in FIG. 1B, a 200 nm to 1000 nm thick sacrificial layer 24 made of polysilicon is dry-etched by RIE to have a depth of 100 nm to 800 nm and a width of 200 nm. A stripe-shaped concave portion 58 of about 3000 nm was formed in the ribbon member forming region of the sacrificial layer 24.
Then, as shown in FIG. 1C, an SiN layer 42 having a thickness of 100 to 300 nm is formed on the sacrificial layer 24 as an insulating film, and an Al film 44 having a thickness of 50 to 300 nm is formed thereon as a reflective film also serving as an upper electrode. A film was formed.
Next, as shown in FIG. 1D, the SiN film 42 and the Al film 44 on the convex portions 60 of the sacrificial layer 24 and the convex portions 60 of the sacrificial layer 24 are polished and removed by CMP, and the concave portions 58 are removed. A flat surface is formed with the Al film 44 as the upper surface.
As a result, the ribbon member 19 made of a laminated film of the bridge member 16 made of the SiN film 42 and the upper electrode / reflective film 18 made of the Al film 44 was formed in the recess 58 of the sacrificial layer 24.
[0030]
XeF 2 gas used for isotropic etching of Si constituting the sacrifice layer 24 has a high selectivity of 1: 10000 or more with respect to SiO 2 , Al and the like. It also has a sufficiently high selectivity of about 1: 500 to 750 with respect to Si 3 N 4 .
Therefore, when a thin film of SiO 2 , Al, Si 3 N 4 or the like is formed as a forming layer of the ribbon member 19, Si is previously deposited as the underlying sacrificial layer 24, and the Si is removed, a high selectivity is obtained. By using the XeF 2 gas, the underlying Si sacrificial layer 24 can be removed with little damage to the ribbon member 19.
[0031]
In the present embodiment, although residues are generated when patterning the sacrificial layer 24 using the RIE method, there is an effect that they can be removed at the same time during the CMP processing.
If the surface of the ribbon member 19 is Al and the surface is not to be exposed to the atmosphere of the CMP processing as in the present embodiment, a SiO 2 film is further formed on the Al film 42 as a protective film, and the CMP process is performed. At the time of processing, if the CMP process is completed with the SiO 2 film remaining thin, the Al surface is protected by the SiO 2 film, so that the Al surface is not likely to be roughened.
Further, as the number of multilayer films constituting the ribbon member increases, the etching conditions become more strict in patterning the multilayer film by the conventional RIE method, and the generation of residues generally increases. However, in the present embodiment, since the ribbon member forming layer is divided into the ribbon members by physical processing by the CMP processing, the condition setting of the CMP processing requires that the number of multilayer films be smaller than that of the patterning by the RIE method. It has the advantage of not being affected.
[0032]
In the present embodiment, the MEMS device in which the ribbon member has a doubly supported beam type is taken as an example. However, the method of the present invention can be applied to the manufacture of a MEMS device in which the ribbon member is a cantilever type.
[0033]
【The invention's effect】
According to the method of the present invention, the upper layer of the sacrificial layer is patterned to form a plurality of stripe-shaped recesses having the same width as the width of the ribbon member at a predetermined distance, and the ribbon member is formed on the substrate including the entire surface of the sacrificial layer. The ribbon member forming layer to be formed is formed, then the ribbon member is separated into concave portions by CMP processing of the ribbon member forming layer, the sacrifice layer is etched, and the double-sided beam type or cantilever is formed on the substrate through the gap. A ribbon member supported by a beam-type structure is formed.
As a result, the generation of residues at the time of etching the ribbon member forming layer, which has been a problem in the conventional method of etching the ribbon member forming layer by RIE or the like, is eliminated, and the residue removing step after etching becomes unnecessary. Damage to the ribbon member, which is likely to occur, can be prevented.
Further, since no etching residue is generated, an etching stop phenomenon due to the etching residue and damage to the ribbon member due to stress concentration due to non-uniform etching of the sacrifice layer, which occur in the sacrificial layer removing step of the conventional method, do not occur. Therefore, the production yield of the MEMS device can be improved.
[Brief description of the drawings]
FIGS. 1A to 1D are cross-sectional views of respective steps of patterning a ribbon member forming layer when forming a MEMS device by a method according to an embodiment of the present invention.
FIGS. 2A and 2B are a perspective view showing a configuration of an optical MEMS element having a doubly supported beam structure, and a cross-sectional view taken along line II of FIG. 2A, respectively.
3A and 3B are a perspective view showing a configuration of an optical MEMS element having a cantilever structure and a cross-sectional view taken along line II-II in FIG. 3A, respectively.
4 (a) to 4 (e) are cross-sectional views taken along line II of FIG. 2 for each step when manufacturing the optical MEMS element 10 having a doubly supported structure.
FIG. 5 is a perspective view showing a configuration of a GLV device.
FIG. 6 is a plan view showing a state in which a ribbon member forming layer is patterned and divided into ribbon members.
FIGS. 7A to 7C are cross-sectional views illustrating each step of a conventional MEMS device manufacturing method.
FIG. 8 is a cross-sectional view for explaining a problem of a conventional method of manufacturing a MEMS device.
[Explanation of symbols]
Reference numeral 10: an optical MEMS element having a double-supported beam structure; 12, an insulating substrate; 14, an insulating substrate; 16, a bridge member; Column-shaped portion, 22 void portion, 24 sacrificial layer, 30 optical MEMS element of cantilever structure, 32 insulating substrate, 34 lower electrode, 36 bridge member, 38 upper portion Reflective film also serving as electrode, 39: Ribbon member, 42: SiN film, 44: Al film, 46: Ribbon member forming layer, 50: GLV device, 52: Resist mask, 54: Opening, 56 ... Resist mask, 58 recess, 60 projection.

Claims (4)

空隙部を介して基板上に両持ち梁型又は片持ち梁型構造で支持されたストライプ状のリボン部材と、リボン部材を駆動する駆動機構とを備え、駆動機構によってリボン部材を駆動させるようにしたMEMS素子を複数個所定距離離隔して並列に基板上に備えるMEMSデバイスの製造方法において、
基板上の所定領域に犠牲層を成膜する工程と、
犠牲層の上層をパターニングして、リボン部材の幅と同じ幅のストライプ状凹部を所定距離離隔して複数個形成するパターニング工程と、
次いで、犠牲層全面を含めて基板上に、リボン部材を形成するリボン部材形成層を成膜する工程と、
凹部と凹部との間の犠牲層上のリボン部材形成層及び犠牲層をCMP加工により研磨除去すると共に凹部にリボン部材を残すCMP加工工程と、
犠牲層を除去して空隙部を介して基板上に両持ち梁型又は片持ち梁型構造で支持されたリボン部材を形成する工程と
を備えることを特徴とするMEMSデバイスの製造方法。
A stripe-shaped ribbon member supported on the substrate in a doubly-supported or cantilever-type structure via a gap, and a drive mechanism for driving the ribbon member, wherein the drive mechanism drives the ribbon member. A method for manufacturing a MEMS device comprising a plurality of MEMS elements provided in parallel on a substrate at a predetermined distance apart from each other,
Forming a sacrificial layer in a predetermined region on the substrate;
Patterning the upper layer of the sacrificial layer, a patterning step of forming a plurality of stripe-shaped recesses having the same width as the width of the ribbon member at a predetermined distance apart;
Next, a step of forming a ribbon member forming layer for forming a ribbon member on the substrate including the entire surface of the sacrificial layer;
A CMP processing step of polishing and removing the ribbon member forming layer and the sacrificial layer on the sacrificial layer between the concave portions by the CMP process and leaving the ribbon member in the concave portions;
Removing the sacrificial layer to form a ribbon member supported in a doubly supported or cantilevered structure on the substrate via the gap.
パターニング工程では、ストライプ状凹部に長手方向に直交する第2のストライプ状凹部を形成することを特徴とする請求項1に記載のMEMSデバイスの製造方法。The method according to claim 1, wherein, in the patterning step, a second stripe-shaped recess orthogonal to the longitudinal direction is formed in the stripe-shaped recess. リボン部材形成層として絶縁膜と導電性膜との積層膜を成膜することを特徴とする請求項1又は2に記載のMEMSデバイスの製造方法。The method for manufacturing a MEMS device according to claim 1, wherein a laminated film of an insulating film and a conductive film is formed as the ribbon member forming layer. リボン部材形成層として、リボン部材形成層とリボン部材形成層上に設けられた保護層とからなる積層膜を成膜し、CMP加工工程では、リボン部材上に極く薄い保護層を残すようにCMP加工することを特徴とする請求項1から3のうちのいずれか1項に記載のMEMSデバイスの製造方法。As a ribbon member forming layer, a laminated film including a ribbon member forming layer and a protective layer provided on the ribbon member forming layer is formed, and in the CMP process, an extremely thin protective layer is left on the ribbon member. The method of manufacturing a MEMS device according to any one of claims 1 to 3, wherein the MEMS device is subjected to a CMP process.
JP2002246367A 2002-08-27 2002-08-27 Method of manufacturing mems device Abandoned JP2004082260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002246367A JP2004082260A (en) 2002-08-27 2002-08-27 Method of manufacturing mems device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002246367A JP2004082260A (en) 2002-08-27 2002-08-27 Method of manufacturing mems device

Publications (1)

Publication Number Publication Date
JP2004082260A true JP2004082260A (en) 2004-03-18

Family

ID=32054286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002246367A Abandoned JP2004082260A (en) 2002-08-27 2002-08-27 Method of manufacturing mems device

Country Status (1)

Country Link
JP (1) JP2004082260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923792B2 (en) 2006-01-11 2011-04-12 austruamicrosystems AG MEMS sensor comprising a deformation-free back electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923792B2 (en) 2006-01-11 2011-04-12 austruamicrosystems AG MEMS sensor comprising a deformation-free back electrode

Similar Documents

Publication Publication Date Title
US7476561B2 (en) Method of making microminiature moving device
US7343655B2 (en) Manufacturing methods of micro electromechanical switch
CA2584571C (en) Staggered vertical comb drive fabrication method
JP4102037B2 (en) Micromirror device and manufacturing method thereof
JP3994885B2 (en) MEMS element and manufacturing method thereof, diffractive MEMS element
JP5140041B2 (en) System and method for thermal isolation of silicon structures
JP5230385B2 (en) Micro machine
US6667823B2 (en) Monolithic in-plane shutter switch
KR100871268B1 (en) Thermal out-of-plane buckle-beam actuator
CN101077766B (en) Electromechanical element and electronic circuit device, and method for manufacturing the same
US6947197B2 (en) Micromirror actuator
JP2004082260A (en) Method of manufacturing mems device
JP2004141995A (en) Micro-machine and its method of manufacture
JP4314867B2 (en) Manufacturing method of MEMS element
JP4994096B2 (en) Semiconductor device manufacturing method and semiconductor device using the same
JP5870616B2 (en) MEMS switch and manufacturing method thereof
JP2006221956A (en) Fuse
JP4558745B2 (en) Optical component and method for manufacturing the same
JP5016653B2 (en) Manufacturing method of micro movable device
JP2004245973A (en) Optical mems (micro electronic mechanical system) element, manufacturing method therefor, and diffraction type mems element
JP4016739B2 (en) Micromachine and manufacturing method thereof
JP3869438B2 (en) MEMS device, manufacturing method thereof, and optical device
JP2004001140A (en) Method for manufacturing hollow structural body and method for manufacturing mems element
US8450132B2 (en) Thermally activated micromirror and fabrication method
JP2004130396A (en) Micromachine

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040604

A621 Written request for application examination

Effective date: 20050223

Free format text: JAPANESE INTERMEDIATE CODE: A621

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070629