JP2004077145A - Testing method using simulated fluid, and its device - Google Patents

Testing method using simulated fluid, and its device Download PDF

Info

Publication number
JP2004077145A
JP2004077145A JP2002233830A JP2002233830A JP2004077145A JP 2004077145 A JP2004077145 A JP 2004077145A JP 2002233830 A JP2002233830 A JP 2002233830A JP 2002233830 A JP2002233830 A JP 2002233830A JP 2004077145 A JP2004077145 A JP 2004077145A
Authority
JP
Japan
Prior art keywords
fluid
density
water
flow
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002233830A
Other languages
Japanese (ja)
Inventor
Ryutaro Mori
森 龍太郎
Keisuke Sonoda
園田 圭介
Hiroshi Kikuchi
菊地 洋
Masahiko Sotono
外野 雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002233830A priority Critical patent/JP2004077145A/en
Publication of JP2004077145A publication Critical patent/JP2004077145A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a testing method using simulated fluid capable of easily predicting a flow characteristic of two-phase flow of water and water vapor and realizing a flow state with a simple device, and its device. <P>SOLUTION: The testing device 10 simulates a flow state of the vapor-liquid two-phase flow composed of saturated vapor and saturated water. The testing device 10 comprises low-density fluid 14 composed of water or light oil, high-density fluid 13 composed of fluorine inert liquid, and an airtight container (test section) 11 of which inside is visible. The flow state of the low-density fluid 14 and the high-density fluid 13 introduced into the container 11 are made visible to recognize the flow characteristic. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水蒸気を利用した装置内での蒸気−水系気液二相流の流動状態を把握する試験に関し、特に可視化をはじめとする流動現象の観察、測定を容易に行うために二相流を模擬流体で代替して行う模擬流体を用いた試験方法及びその装置に関する。
【0002】
【従来の技術】
火力・原子力発電所、船等の輸送機関などにおいて、動力発生装置を代表とする水蒸気を利用した装置が多用されている。このような水蒸気を利用した装置を設計するにあたって、蒸気−水系気液二相流の流動特性を把握することは非常に重要である。水若しくは水蒸気等の単相の流体に比べて二相流の挙動は複雑であるため、可視化をはじめとする流動現象の観察、測定による流動特性の解明が必要とされている。
【0003】
一般的に、水蒸気を利用する装置においては高圧の水蒸気を利用しており、例えば火力発電所では200ataレベルの高圧蒸気を用いている。しかし、高圧水−水蒸気の二相流の流動特性を得るために実圧力・実温度で試験を実施する場合、装置規模が大きく高価となり、また高温・高圧であることから可視化が非常に困難となる。
従って従来は、空気−水等を用いた模擬流体試験により流動特性を予測していたが、物性値が大きく相違することから系が複雑となると各部流動状態の相似則を同時に合わせることは不可能であった。
【0004】
そこで、本発明者らはCOを利用した模擬流体試験方法(発明協会公開技報2002−500084)を提案している。かかる試験方法は、200ataレベルにおける水−水蒸気の物性値に非常に近い60ataレベルの二酸化炭素の気液二相流を用いている。これは、図5(a)CO及びHOの気液密度比を示すグラフ図及び図5(b)CO及びHOの表面張力を示すグラフ図に示されるように、二相流の流動状態に対する支配的物性値である密度比及び界面張力が近似していることによる。即ち、図5(a)に示される液相密度/気相密度及び(b)に示される界面張力がともに、COが60ataのときに200ataのHOと略同様の値を示し、このとき実際に使用される二相流に近い挙動を取ることがわかる。
【0005】
図4に60ataレベルのCOを用いた流体試験装置を示す。かかる試験装置は、アクリル樹脂若しくはガラス材等の容器からなる供試部51と、該供試部51の気相側流体が導入される凝縮器52と、該凝縮気52にて液化された流体と液相側流体とが混合されて導入される冷却器53と、ポンプ54と、加熱器55とから構成される。
これにより、高圧水−水蒸気の二相流の流動特性を得るために実圧力・実温度で試験を行う場合よりも装置規模を小型化することができ、低コストでかつ容易に可視化可能な装置を提供することができる。
【0006】
【発明が解決しようとする課題】
前記したように、高圧水−水蒸気の二相流に代えて二酸化炭素等の物性値の近い模擬流体を用いることにより、より低圧条件下での流動が模擬的に実現可能となるが、試験を行うに際して気相流体を生成する必要があり手間がかかる上に、凝縮器、蒸発器等の装置を具備しなければならず機器点数が増加し、装置が大型化、高コスト化する。
従って、本発明はかかる従来技術の問題に鑑み、水−水蒸気からなる二相流の流動特性を容易に予測可能で、かつ更に簡易な装置で以って流動状態を実現可能な模擬流体を用いた試験方法及びその装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
そこで、本発明はかかる課題を解決するために、内部を可視可能な容器内に導入された飽和蒸気及び飽和水からなる気液二相流の流動状態を模擬的に実現する試験方法において、
前記飽和蒸気側を水若しくは軽油からなる低密度模擬流体でかつ飽和水側をフッ素系不活性液体からなる高密度模擬流体で代替し、該低密度模擬流体及び高密度模擬流体を前記容器内に導入して流動特性を把握可能としたことを特徴とする。
また、前記低密度模擬流体及び高密度模擬流体を予め混合した後、前記容器内に導入することが好適である。
【0008】
かかる発明は、高圧水−水蒸気からなる気液二相流を、前記低密度模擬流体及び高密度模擬流体からなる液体で代替することにより、気相流体を生成する必要がなく簡単に流動状態を実現することが可能となり、また低温、低圧条件下で試験を行うことができるため、可視化をはじめとする各種観察、測定が容易に行える。
このとき、低密度模擬流体を水若しくは軽油とし、かつ高密度模擬流体をフッ素系不活性液体としているため、蒸気−水系気液二相流の流動状況に対する支配的物性値である密度比及び界面張力が模擬流体の物性値と近似し、二相流の流動状態と略同様の流動状態を実現することが可能となる。
【0009】
前記高密度模擬流体は、前記低密度模擬流体との密度比(高密度流体の密度/低密度流体の密度)が約1〜10で、かつ界面張力差(|高密度流体の界面張力−低密度流体の界面張力|)が約0.001〜0.06N/mであるフッ素系不活性液体であることが好ましい。
このように、前記範囲内のフッ素系不活性液体を用いることにより、蒸気−水系気液二相流の流動状態との挙動の近似性が高くなり、実機における二相流の流動状態を正確に把握することが可能となる。
【0010】
また、飽和蒸気及び飽和水からなる気液二相流の流動状態を模擬的に実現する試験装置において、
水若しくは軽油からなる低密度流体と、フッ素系不活性液体からなる高密度流体と、内部を可視可能な気密容器と、からなり、
前記容器に導入された前記低密度流体及び高密度流体の流動状態を可視化して流動特性を把握可能としたことを特徴とする。
【0011】
このように、水蒸気−水からなる気液二相流を前記水若しくは軽油−フッ素系不活性液体の両者液相で構成される模擬流体で代替させることにより、蒸発器、凝縮器等の装置が必要とされず、装置が小型化し、低廉化する。また、かかる発明では、低温、低圧条件下で試験を行うことができるため、容易に可視化が可能となる。さらに、模擬流体として水若しくは軽油及びフッ素系不活性液体を用いているため安全性が高く、また低密度流体と高密度流体が溶解する惧れがない。尚、前記容器が全体的に或いは部分的に可視可能な材質で形成されていることにより装置を低廉化することができ好適である。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施形態に係る軽油(水)−フッ素系不活性液体を用いた模擬流体試験装置の全体概略構成図、図2は二流体の組み合わせによる物性値の比較を示すグラフ図、図3は流体の物性値及び二流体の物性値の比較を示す表である。尚、軽油(水)とは軽油若しくは水のどちらか一方をいう。
【0013】
本実施形態は、火力・原子力発電所、船等の輸送機関などにおいて、動力発生装置を含む水蒸気を利用した装置における蒸気−水系気液二相流の挙動を把握するために、模擬流体を利用して模擬的に流動状態を実現する構成となっている。前記模擬流体としては、蒸気の代替である低密度流体として軽油若しくは水を用い、水の代替である高密度流体としてフッ素系不活性液体を用いる。
【0014】
前記高密度流体は、前記低密度流体との密度比(高密度流体の密度/低密度流体の密度)が約1〜10で、かつ界面張力差(|高密度流体の界面張力−低密度流体の界面張力|)が約0.001〜0.06N/mであるフッ素系不活性液体が好適で、例えばフロリナートFC−77或いはPF−5080(共に住友3M社の商品名)が使用できる。
【0015】
図3に示される各流体の物性値及び二流体の物性値の比較を示す表によれば、実缶(実機として使用されるボイラ)における蒸気と水の密度比(水/蒸気)は約3.684であり、これに対して(フッ素系不活性液体/軽油)の密度比は約2.200、また(フッ素系不活性液体/水)の密度比は約1.763であり蒸気−水系二相流と近似した値を示す。
また、実缶における蒸気と水の界面張力差は(|水−蒸気|)が約0.002で、これに対して(|フッ素系不活性液体−軽油|)の界面張力差が約0.015で、(|フッ素系不活性液体−水|)の界面張力差が約0.056であり、前記密度比と同様に近似した値を示している。
【0016】
即ち、図2の二流体の組み合わせによる物性値の比較を示すグラフ図にも明らかなように、軽油−フッ素系不活性液体△、及び水−フッ素系不活性液体▲はともに蒸気−水(実缶)●の近傍に位置し、類似した物性値を表わすことが判る。尚、前記軽油−フッ素系不活性液体に比べて水−フッ素系不活性液体の実缶との物性値の近似性は劣るが、試験装置コストは小さくなる。
【0017】
これに対して、従来用いられていた空気−水□は蒸気−水(実缶)●とは大幅に離れた位置に存在しており模擬流体に適していないことが判る。さらに、軽油−水▽は蒸気−水(実缶)●に比較的近い位置に存在するが、密度比が極めて低く、この要因により流動状態に影響を与える懸念があり適当でない。
従って、低密度流体に軽油若しくは水、高密度流体にフッ素系不活性液体を用いることにより、蒸気−水系二相流と略同様の流動状態を再現することができ、これらの動的挙動の測定、観察が容易に行える。
【0018】
次に、前記模擬流体を用いた試験装置の全体概略構成につき図1により説明する。かかる模擬流体試験装置10は、可視化可能な容器を有し、低密度流体と高密度流体とを分離する供試部11と、該供試部11にて分離された軽油(水)14とフッ素系不活性液体13を貯留する重力分離タンク12と、ポンプ15と、前記供試部11内のドラムレベルを検出する不図示のレベル計とから構成される。
【0019】
かかる試験装置10では、前記レベル計等に基づき前記ポンプ15により軽油(水)14及びフッ素系不活性液体13が前記供試部11の可視可能な容器(不図示)内に必要量供給され、該容器内の二流体の流動状態を可視化できるように構成されている。前記容器は、ガラス材、アクリル樹脂等の透明若しくは半透明な材料で形成されることが好ましい。
このように、本試験装置によれば蒸発器、凝縮器等の装置を省略することができ、装置の単純化、低廉化が可能となる。
【0020】
【発明の効果】
以上記載のごとく本発明によれば、従来のように気相流体を生成する必要がなく簡単に流動状態を実現することが可能となり、また低温、低圧条件下で試験を行うことができるため、可視化をはじめとする各種観察、測定が容易に行える。さらにまた、模擬流体試験装置に、蒸発器、凝縮器等の装置が必要とされず、装置が小型化し、低廉化する。また、模擬流体として水若しくは軽油及びフッ素系不活性液体を用いているため安全性が高く、また低密度流体と高密度流体が溶解する惧れがない。
【図面の簡単な説明】
【図1】本発明の実施形態に係る軽油(水)−フッ素系不活性液体を用いた模擬流体試験装置の全体概略構成図である。
【図2】二流体の組み合わせによる物性値の比較を示すグラフ図である。
【図3】流体の物性値及び二流体の物性値の比較を示す表である。
【図4】従来技術であるCO(気体)−CO(液体)を用いた試験装置の概略系統図である。
【図5】CO及びHOの気液密度比を示すグラフ図(a)、及びCO及びHOの表面張力を示すグラフ図(b)である。
【符号の説明】
10  模擬流体試験装置
11  供試部
12  重力分離タンク
13  フッ素系不活性液体
14  軽油(水)
15  ポンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a test for grasping the flow state of a vapor-water gas-liquid two-phase flow in an apparatus using water vapor, and particularly to a two-phase flow for facilitating observation and measurement of flow phenomena including visualization. The present invention relates to a test method using a simulated fluid and a device for performing the same in place of the simulated fluid.
[0002]
[Prior art]
BACKGROUND ART In a thermal power plant, a nuclear power plant, a transportation system such as a ship, and the like, a device using steam, typified by a power generation device, is frequently used. In designing an apparatus using such water vapor, it is very important to understand the flow characteristics of the vapor-water two-phase flow. Since the behavior of a two-phase flow is more complicated than that of a single-phase fluid such as water or steam, it is necessary to observe flow phenomena such as visualization and to clarify flow characteristics by measurement.
[0003]
In general, high-pressure steam is used in a device that uses steam. For example, high-pressure steam at a level of 200 ata is used in a thermal power plant. However, when conducting tests at actual pressure and actual temperature in order to obtain the flow characteristics of the two-phase flow of high-pressure water-steam, the equipment scale is large and expensive, and visualization is extremely difficult due to the high temperature and high pressure. Become.
In the past, flow characteristics were predicted by simulated fluid tests using air-water, etc., but due to large differences in physical properties, it was not possible to match the similarity rules of the flow conditions of each part simultaneously when the system became complicated. Met.
[0004]
Therefore, the present inventors have proposed a simulated fluid test method using CO 2 (Invention Association Technical Report 2002-5000084). This test method uses a gas-liquid two-phase flow of carbon dioxide at a level of 60 ata which is very close to the physical property value of water-steam at a level of 200 ata. As shown in FIG. 5A, a graph showing the gas-liquid density ratio of CO 2 and H 2 O, and FIG. 5B, a graph showing the surface tension of CO 2 and H 2 O, This is because the density ratio and interfacial tension, which are the dominant physical property values for the flow state of the flow, are similar. That is, both the liquid phase density / gas phase density shown in FIG. 5 (a) and the interfacial tension shown in FIG. 5 (b) show almost the same values as 200 ata H 2 O when CO 2 is 60 ata. It can be seen that the behavior sometimes approximates that of a two-phase flow actually used.
[0005]
FIG. 4 shows a fluid test apparatus using CO 2 at the level of 60 ata. The test apparatus includes a test section 51 made of a container such as an acrylic resin or a glass material, a condenser 52 into which a gas-phase fluid of the test section 51 is introduced, and a fluid liquefied by the condensed gas 52. And a liquid phase side fluid. The cooler 53 includes a cooler 53, a pump 54, and a heater 55.
This makes it possible to reduce the size of the apparatus as compared with the case where a test is performed at an actual pressure and an actual temperature in order to obtain flow characteristics of a two-phase flow of high-pressure water-steam, and an apparatus that can be visualized at low cost and easily. Can be provided.
[0006]
[Problems to be solved by the invention]
As described above, by using a simulated fluid having close physical property values such as carbon dioxide instead of the two-phase flow of high-pressure water-steam, it is possible to simulate flow under lower pressure conditions. In performing the process, it is necessary to generate a gas-phase fluid, which is troublesome. In addition, a device such as a condenser and an evaporator must be provided, the number of devices increases, and the size and cost of the device increase.
Therefore, in view of the problems of the prior art, the present invention uses a simulated fluid capable of easily predicting the flow characteristics of a two-phase flow composed of water-steam and realizing the flow state with a simpler device. It is an object of the present invention to provide a test method and an apparatus therefor.
[0007]
[Means for Solving the Problems]
Therefore, the present invention, in order to solve this problem, in a test method that simulates the flow state of a gas-liquid two-phase flow composed of saturated steam and saturated water introduced into a container whose inside is visible,
The saturated vapor side is replaced with a low-density simulated fluid made of water or light oil, and the saturated water side is replaced with a high-density simulated fluid made of a fluorine-based inert liquid, and the low-density simulated fluid and the high-density simulated fluid are placed in the container. It is characterized by being able to grasp flow characteristics by introducing.
It is preferable that the low-density simulation fluid and the high-density simulation fluid are mixed in advance and then introduced into the container.
[0008]
This invention replaces the gas-liquid two-phase flow composed of high-pressure water-steam with the liquid composed of the low-density simulated fluid and the high-density simulated fluid, so that it is not necessary to generate a gas-phase fluid and the flow state can be easily changed. Since the test can be realized and the test can be performed under low temperature and low pressure conditions, various observations and measurements including visualization can be easily performed.
At this time, since the low-density simulated fluid is water or light oil and the high-density simulated fluid is a fluorine-based inert liquid, the density ratio and interface, which are the dominant physical property values for the flow state of the vapor-water gas-liquid two-phase flow, are set. The tension is close to the physical property value of the simulation fluid, and it is possible to realize a flow state substantially similar to the flow state of the two-phase flow.
[0009]
The high-density simulated fluid has a density ratio (density of high-density fluid / low-density fluid) of about 1 to 10 with respect to the low-density simulated fluid, and a difference in interfacial tension (| interfacial tension of high-density fluid−low It is preferably a fluorine-based inert liquid having an interfacial tension |) of the density fluid of about 0.001 to 0.06 N / m.
As described above, by using the fluorine-based inert liquid within the above range, the approximation of the behavior with the flow state of the vapor-water-based gas-liquid two-phase flow is improved, and the flow state of the two-phase flow in the actual machine can be accurately determined. It becomes possible to grasp.
[0010]
Further, in a test device that simulates the flow state of a gas-liquid two-phase flow composed of saturated steam and saturated water,
A low-density fluid composed of water or light oil, a high-density fluid composed of a fluorine-based inert liquid, and an airtight container that allows the inside to be seen,
The flow state of the low-density fluid and the high-density fluid introduced into the container is visualized to make it possible to grasp the flow characteristics.
[0011]
As described above, by replacing the vapor-liquid two-phase flow composed of water vapor and water with the simulated fluid composed of both liquid phases of the water or the light oil-fluorinated inert liquid, devices such as an evaporator and a condenser can be provided. It is not needed, and the device is smaller and less expensive. In addition, according to the invention, since the test can be performed under low temperature and low pressure conditions, visualization can be easily performed. Further, since water or light oil and a fluorine-based inert liquid are used as the simulation fluid, the safety is high, and there is no fear that the low-density fluid and the high-density fluid are dissolved. In addition, since the container is entirely or partially formed of a visible material, the cost of the apparatus can be reduced, which is preferable.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be illustratively described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Not just.
FIG. 1 is an overall schematic configuration diagram of a simulated fluid test apparatus using light oil (water) -fluorinated inert liquid according to an embodiment of the present invention, FIG. 2 is a graph showing a comparison of physical property values by a combination of two fluids, FIG. 3 is a table showing a comparison between the physical property values of the fluid and the physical properties of the two fluids. Note that light oil (water) refers to either light oil or water.
[0013]
This embodiment uses a simulated fluid to grasp the behavior of a vapor-water system gas-liquid two-phase flow in a device using steam including a power generation device in a thermal power plant, a nuclear power plant, a transportation system such as a ship, and the like. Then, the flow state is simulated. As the simulated fluid, light oil or water is used as a low-density fluid as a substitute for steam, and a fluorine-based inert liquid is used as a high-density fluid as a substitute for water.
[0014]
The high-density fluid has a density ratio with the low-density fluid (density of high-density fluid / density of low-density fluid) of about 1 to 10 and a difference in interfacial tension (| interfacial tension of high-density fluid−low-density fluid). Is preferably about 0.001 to 0.06 N / m, for example, Fluorinert FC-77 or PF-5080 (both trade names of Sumitomo 3M) can be used.
[0015]
According to the table shown in FIG. 3 showing the comparison between the physical property values of the respective fluids and the physical property values of the two fluids, the density ratio of steam and water (water / steam) in an actual can (boiler used as an actual machine) is about 3 On the other hand, the density ratio of (fluorinated inert liquid / light oil) is about 2.200, and the density ratio of (fluorinated inert liquid / water) is about 1.763. The values approximate to two-phase flow.
The difference between the interfacial tensions of steam and water in the actual can is (| water-steam |) is about 0.002, whereas the interfacial tension difference of (| fluorinated inert liquid-light oil |) is about 0.12. 015, the difference in interfacial tension of (| fluorine-based inert liquid-water |) is about 0.056, which is a value similar to the density ratio.
[0016]
That is, as is apparent from the graph showing the comparison of the physical properties of the two fluids shown in FIG. 2, the light oil-fluorine inert liquid △ and the water-fluorine inert liquid ▲ are both steam-water (actual). It can be seen that it is located in the vicinity of (can) ● and shows similar physical property values. The water-fluorinated inert liquid is inferior in physical properties to the actual can compared to the light oil-fluorinated inert liquid, but the cost of the test apparatus is reduced.
[0017]
On the other hand, it can be seen that the conventionally used air-water □ is located far away from the steam-water (real can) ● and is not suitable for the simulated fluid. Furthermore, although light oil-water 比較 的 exists at a position relatively close to steam-water (real can) ●, the density ratio is extremely low, and there is a concern that this factor may affect the flow state, which is not appropriate.
Therefore, by using light oil or water as the low-density fluid and a fluorine-based inert liquid as the high-density fluid, it is possible to reproduce the flow state almost similar to the vapor-water two-phase flow, and to measure these dynamic behaviors. , And can be easily observed.
[0018]
Next, an overall schematic configuration of a test apparatus using the simulated fluid will be described with reference to FIG. The simulated fluid test apparatus 10 has a container that can be visualized, and a test unit 11 that separates a low-density fluid and a high-density fluid, light oil (water) 14 separated by the test unit 11, and fluorine. It comprises a gravity separation tank 12 for storing a system inert liquid 13, a pump 15, and a level meter (not shown) for detecting a drum level in the test section 11.
[0019]
In the test apparatus 10, light oil (water) 14 and a fluorine-based inert liquid 13 are supplied by a necessary amount into a visible container (not shown) of the test unit 11 by the pump 15 based on the level meter and the like. The fluid state of the two fluids in the container can be visualized. The container is preferably formed of a transparent or translucent material such as a glass material and an acrylic resin.
As described above, according to the present test apparatus, devices such as an evaporator and a condenser can be omitted, and the device can be simplified and reduced in cost.
[0020]
【The invention's effect】
As described above, according to the present invention, it is possible to easily realize a fluidized state without the need to generate a gaseous fluid as in the related art, and to perform a test under low temperature and low pressure conditions, Various observations and measurements including visualization can be easily performed. Furthermore, the simulated fluid test device does not require devices such as an evaporator and a condenser, so that the device can be reduced in size and cost. Further, since water or light oil and a fluorine-based inert liquid are used as the simulation fluid, the safety is high, and there is no fear that the low density fluid and the high density fluid are dissolved.
[Brief description of the drawings]
FIG. 1 is an overall schematic configuration diagram of a simulated fluid test device using a light oil (water) -fluorinated inert liquid according to an embodiment of the present invention.
FIG. 2 is a graph showing a comparison of physical property values by a combination of two fluids.
FIG. 3 is a table showing a comparison between physical properties of a fluid and physical properties of two fluids.
FIG. 4 is a schematic system diagram of a conventional test apparatus using CO 2 (gas) —CO 2 (liquid).
Is a [5] CO 2 and H 2 O graph showing a gas-liquid density ratio of (a), and CO 2 and H 2 O graph showing surface tension of (b).
[Explanation of symbols]
Reference Signs List 10 Simulated fluid test apparatus 11 Test section 12 Gravity separation tank 13 Fluorinated inert liquid 14 Light oil (water)
15 pump

Claims (4)

内部を可視可能な容器内に導入された飽和蒸気及び飽和水からなる気液二相流の流動状態を模擬的に実現する試験方法において、
前記飽和蒸気側を水若しくは軽油からなる低密度模擬流体でかつ飽和水側をフッ素系不活性液体からなる高密度模擬流体で代替し、該低密度模擬流体及び高密度模擬流体を前記容器内に導入して流動特性を把握可能としたことを特徴とする模擬流体を用いた試験方法。
In a test method that simulates the flow state of a gas-liquid two-phase flow composed of saturated steam and saturated water introduced into a container whose inside is visible,
The saturated vapor side is replaced with a low-density simulated fluid made of water or light oil, and the saturated water side is replaced with a high-density simulated fluid made of a fluorine-based inert liquid, and the low-density simulated fluid and the high-density simulated fluid are placed in the container. A test method using a simulated fluid, characterized in that flow characteristics can be grasped by being introduced.
前記低密度模擬流体及び高密度模擬流体を予め混合した後、前記容器内に導入することを特徴とする請求項1記載の模擬流体を用いた試験方法。The test method using the simulated fluid according to claim 1, wherein the low-density simulated fluid and the high-density simulated fluid are mixed in advance and then introduced into the container. 飽和蒸気及び飽和水からなる気液二相流の流動状態を模擬的に実現する試験装置において、
水若しくは軽油からなる低密度流体と、フッ素系不活性液体からなる高密度流体と、内部を可視可能な気密容器と、からなり、
前記容器に導入された前記低密度流体及び高密度流体の流動状態を可視化して流動特性を把握可能としたことを特徴とする模擬流体を用いた試験装置。
In a test device that simulates the flow state of a gas-liquid two-phase flow composed of saturated steam and saturated water,
A low-density fluid composed of water or light oil, a high-density fluid composed of a fluorine-based inert liquid, and an airtight container that allows the inside to be seen,
A test apparatus using a simulated fluid, characterized in that flow states of the low-density fluid and the high-density fluid introduced into the container are visualized and flow characteristics can be grasped.
前記容器が全体的に或いは部分的に可視可能な材質で形成されていることを特徴とする請求項3記載の模擬流体を用いた試験装置。4. The test apparatus using a simulated fluid according to claim 3, wherein the container is entirely or partially formed of a visible material.
JP2002233830A 2002-08-09 2002-08-09 Testing method using simulated fluid, and its device Withdrawn JP2004077145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233830A JP2004077145A (en) 2002-08-09 2002-08-09 Testing method using simulated fluid, and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233830A JP2004077145A (en) 2002-08-09 2002-08-09 Testing method using simulated fluid, and its device

Publications (1)

Publication Number Publication Date
JP2004077145A true JP2004077145A (en) 2004-03-11

Family

ID=32018859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233830A Withdrawn JP2004077145A (en) 2002-08-09 2002-08-09 Testing method using simulated fluid, and its device

Country Status (1)

Country Link
JP (1) JP2004077145A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171025A (en) * 2005-12-22 2007-07-05 Mitsubishi Heavy Ind Ltd Vapor-liquid two-phase flow simulation testing device, and vapor-liquid two-phase flow simulation test method
JP2007316059A (en) * 2006-04-28 2007-12-06 Yokohama National Univ Heat flow phenomenon simulating method and simulating testing apparatus
CN102759497A (en) * 2012-06-29 2012-10-31 西南科技大学 Rheological representation of Maotai-flavor white spirit
CN102759495A (en) * 2012-06-28 2012-10-31 西南科技大学 Rheology representation of basic liquor subjected to solid-state fermentation of white spirit
CN104374671A (en) * 2014-11-10 2015-02-25 首钢总公司 Method for detecting fluidity of furnace slag in heating process
CN106596334A (en) * 2016-12-08 2017-04-26 哈尔滨工业大学 Tensile shear rheometer and method for testing rheological properties of alloy solid-liquid two-phase region by using tensile shear rheometer
CN111638685A (en) * 2019-03-01 2020-09-08 北京国双科技有限公司 Simulation system construction method and device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171025A (en) * 2005-12-22 2007-07-05 Mitsubishi Heavy Ind Ltd Vapor-liquid two-phase flow simulation testing device, and vapor-liquid two-phase flow simulation test method
JP2007316059A (en) * 2006-04-28 2007-12-06 Yokohama National Univ Heat flow phenomenon simulating method and simulating testing apparatus
CN102759495A (en) * 2012-06-28 2012-10-31 西南科技大学 Rheology representation of basic liquor subjected to solid-state fermentation of white spirit
CN102759497A (en) * 2012-06-29 2012-10-31 西南科技大学 Rheological representation of Maotai-flavor white spirit
CN104374671A (en) * 2014-11-10 2015-02-25 首钢总公司 Method for detecting fluidity of furnace slag in heating process
CN106596334A (en) * 2016-12-08 2017-04-26 哈尔滨工业大学 Tensile shear rheometer and method for testing rheological properties of alloy solid-liquid two-phase region by using tensile shear rheometer
CN106596334B (en) * 2016-12-08 2019-08-02 哈尔滨工业大学 A method of utilizing high-temerature creep instrument beta alloy solid-liquid two-phase region rheological properties
CN111638685A (en) * 2019-03-01 2020-09-08 北京国双科技有限公司 Simulation system construction method and device

Similar Documents

Publication Publication Date Title
Vijayan et al. Effect of Loop Diameter on the Steady State and Stability Behaviour of Single‐Phase and Two‐Phase Natural Circulation Loops
JP5101012B2 (en) Gas-liquid two-phase flow simulation test apparatus and gas-liquid two-phase flow simulation test method
JP2004077145A (en) Testing method using simulated fluid, and its device
Charreton et al. Two-phase damping for internal flow: Physical mechanism and effect of excitation parameters
Davis On the behavior of a shear-coaxial jet, spanning sub-to supercritical pressures, with and without an externally imposed transverse acoustic field
Lebarbier et al. Experimental measurement and numerical simulation of the effect of swirl on flow stability in spray dryers
Rashid et al. Parametric study of single air bubble rising through different salinity water column using volume of fluid (VOF) technique
Girard Physical and statistical models for steam generator clogging diagnosis
Manthey et al. Effect of throttling on the two-phase flow stability in an open natural circulation system
De Lorenzo et al. A hyperbolic phase-transition model coupled to tabulated EoS for two-phase flows in fast depressurizations
Piteau et al. Experimental investigation of in-flow fluidelastic instability for rotated triangular tube bundles subjected to single-phase and two-phase transverse flows
Gravelle et al. Damping of tubes due to internal two-phase flow
Hamzekhani et al. Modeling and Optimization of the Bubble Detachment Diameter for a Pool Boiling System
Mitra Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow
Hamouda et al. An experimental model study of steam generator tube loading during a sudden depressurization
Bhanawat et al. Effect of surface inclination on filmwise condensation heat transfer during flow of steam–air mixtures
Kulankara Effect of enhancement additives on the absorption of water vapor by aqueous lithium bromide
Vierow Countercurrent flow limitation experiments and modeling for improved reactor safety
Coutier-Delgosha et al. TEST CASE NO 30: UNSTEADY CAVITATION IN A VENTURI TYPE SECTION (PN)
JP2012202915A (en) Gas-liquid two-phase flow simulation test method
Kondo et al. Development of Two-phase Flow Numerical Simulation Platform for Evaluating Boiling Heat Exchanger Design
Tan et al. Experimental investigation on hot water seal over an analogous U-shaped device
Gisler Automated analyses of the tri-lab verification test suite on uniform and adaptive grids for code project a
Kuhlmann et al. Influence of the volume of liquid on the onset of three-dimensional flow in thermocapillary liquid bridges
Seidel et al. Two-phase flow experiments in a model of the hot leg of a pressurised water reactor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101