JP2004075524A - Ceramic honeycomb structure, its manufacturing process and coating material - Google Patents

Ceramic honeycomb structure, its manufacturing process and coating material Download PDF

Info

Publication number
JP2004075524A
JP2004075524A JP2003171350A JP2003171350A JP2004075524A JP 2004075524 A JP2004075524 A JP 2004075524A JP 2003171350 A JP2003171350 A JP 2003171350A JP 2003171350 A JP2003171350 A JP 2003171350A JP 2004075524 A JP2004075524 A JP 2004075524A
Authority
JP
Japan
Prior art keywords
outer peripheral
honeycomb structure
peripheral wall
mass
colloidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003171350A
Other languages
Japanese (ja)
Inventor
Hirohisa Suwabe
諏訪部 博久
Shunji Okazaki
岡崎 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2003171350A priority Critical patent/JP2004075524A/en
Publication of JP2004075524A publication Critical patent/JP2004075524A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic honeycomb structure having a thermal shock resistance, strength and reliability by solving the problem that an external wall cracks when drying is performed by selecting an appropriate coating material for forming the external wall. <P>SOLUTION: In a process for manufacturing the ceramic honeycomb structure, an edge of the ceramic honeycomb structure is removed through processing, and the coating material is applied to the external surface to form the external wall part. Here, the coating material essentially comprises, by mass, 100 pts. cordierite particles and/or ceramic fibers and 3-35 pts. colloidal oxide in terms of solid content and further contains a colloidal oxide-dispersed substance. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はセラミックハニカム構造体の外周壁の製造方法に関するものである。
【0002】
【従来技術】
地域環境や地球環境の保全面から、自動車などのエンジンの排気ガスに含まれる有害物質を削減するため、セラミックハニカム構造体を使用した排気ガス浄化用の触媒コンバータや微粒子捕集用フィルターが使用されている。
図2はハニカム構造体の斜視図である。図2に示すように、通常、ハニカム構造体1は、外周壁3と、この外周壁3の内周側に各々直交するセル壁4により形成された多数のセル2を有する。そして、ハニカム構造体1は、金属製収納容器(図示せず)内で動かないように、収納容器内周面とハニカム構造体の外周壁外周面との間に配置された把持部材により強固に把持されて収納されている。
【0003】
ハニカム構造体1は、従来、以下の工程で製造されている。
コージェライト生成原料粉末と、成形助剤、造孔剤と水を、混合、混練して得たセラミック坏土を特殊金型を通じて押出成形することにより、外周壁3やセル壁4が形成されたハニカム構造を有する成形体を得る。次に、乾燥炉で、成形体中の水分などを蒸発乾燥させ、更に焼成炉により、成形体中のバインダ等の成形助剤等を除去した後、所定温度下で焼成して、所定の形状と強度を持ち、セル壁4に微細な細孔を持つハニカム構造体1を得ていた。
【0004】
ディーゼルエンジン用の、例えば、外径が150mm以上で長さが150mm以上の大型セラミックハニカム構造体や、セル壁4の厚さが0.2mm以下と薄いハニカム構造体1を製造する場合、押出成形時に、成形体の自重が大きすぎたり、成形体自身の強度が不十分であったりすることから、自重を支えきれず、外周壁3の周縁部のセル壁4が潰れたり変形し、焼成後に所定の強度が得られないという問題があった。
【0005】
この問題を解決するため、特許文献1に記載の発明では、図1(a)にその製造工程を示すように、コージェライト化原料に成形助剤及び/又は造孔材を加えて調合し、混合混練し押出成形可能に可塑化し、このセラミック杯土を押出成形、乾燥、焼成してハニカム構造を有する焼成体とした後、このハニカム構造を有する焼成体の外周壁3とその周縁部を研削加工によって所定寸法より小さくする除去加工を行い、除去加工した周縁にコーティング材を塗布、乾燥、硬化させて外壁部を形成する方法が開示されている。この発明によれば、ハニカム構造を有する焼成体の外周壁3とその周縁部を研削加工で除去しているので、外周壁の周縁部の変形したセルを除くことができるため、ハニカム構造体の機械的強度を高くできる、としている。またハニカム構造を有する焼成体全体の真円度が低い場合にも、研削加工により真円度を高めた後に外皮を形成することにより、寸法精度が向上される、としている。そしてこの従来の発明において使用される外壁部を形成するためのコーティング材として、セラミックファイバーと無機バインダーとを使用すると外壁部の強度を高くすることができ、更にコーティング材にハニカム構造体本体と同種の例えばコージェライト粉末を添加するとハニカム構造を有する焼成体との熱膨張係数差を少なくすることができるので好ましいとしている。
【0006】
更に、上記のような構成のハニカム構造体における、外壁部のハニカム構造体本体からの耐剥離性を改善して、耐熱性、耐熱衝撃性に優れたハニカム構造体を得るため、特許文献2では、外壁部(外殻層)がコージェライト粒子及び/又はセラミックファイバーと、それらの間に存在する、コロイダルシリカまたはコロイダルアルミナにて形成された非晶質酸化物マトリックスとから構成してなることを特徴とするセラミックハニカム構造体の発明が開示されている。この発明によれば、軸方向に伸びる凹部を外周面に有するハニカム本体を用い、この凹溝にコージェライト骨材と無機バインダーからなるコート材を充填して外殻層を設けていることから、ハニカム構造体に有効な補強をしつつ、使用中に外殻層であるコート層の剥離によるハニカム構造体の強度低下を防止し、且つハニカム構造体の補強の際に惹起されるハニカム構造体の熱衝撃強度の低下を効果的に抑制せしめることができるとしている。そしてこの発明で使用されるコート材は、外殻層とハニカム構造体本体の熱膨張係数差を小さくし、熱応力により外殻層にクラックが発生するのを防止するため、コージェライト粒子及び/又はセラミックファイバーと、コロイダルシリカまたはコロイダルアルミナからなるコロイド酸化物とを主成分として含み、且つコロイド状酸化物を、前記コージェライト粒子及び/又はセラミックファイバ−の100重量部に対して、固形分換算で3〜35重量部の割合で配合せしめている。
【0007】
【特許文献1】
特開平3−275309号公報
【特許文献2】
特開平5−269388号公報
【0008】
【発明が解決しようとする課題】
上記従来の特許文献2に記載の発明によれば、その基本構成から、外径が150mm以上で長さが150mm以上の大型セラミックハニカム構造体や、セル壁の厚さが0.2mm以下と薄いハニカム構造体を押出成形する際に発生する、外周壁の周縁部のセル壁が潰れたり変形したりする問題は解消できるものの、さらに以下のような問題点があった。
【0009】
ハニカム焼成体の周縁部を加工により予め除去し、外周面に凹溝が形成されたハニカム構造体本体の外周面にコート材を塗布する際には、コート材はコージェライト粒子及び/又はセラミックファイバーと、コロイダルシリカまたはコロイダルアルミナからなるコロイド状酸化物とを主成分として含み、ハニカム本体への被覆の作業性を考慮して、有機バインダ等の粘度調整剤等の助剤や水が適宜、必要に応じて配合せしめられた上で、はけ塗り、ディッピング法、スプレーコート等の方法でハニカム本体への塗布がなされる。その後、乾燥操作さらに必要に応じて焼成操作が行われ、外周壁がハニカム本体に固着されるのであるが、この乾燥操作の際に外周壁層に割れが発生するという問題があった。
【0010】
このように乾燥工程で外周壁に割れが発生すると、その後に焼成操作を行っても、一度開口した割れを塞ぐことはできず、ハニカム構造体の外周壁に割れが残留するのである。このような割れのある外周壁を有するハニカム構造体を、排気ガス浄化用触媒担体や微粒子捕集用フィルタとして使用すると、高温の排気ガスによる熱衝撃や、エンジン振動や路面振動等の機械的衝撃により、割れがハニカム構造体本体にまで進展し、ついにはセラミックハニカム構造体が金属製収納容器内で脱落し、排ガス浄化が出来なくなることもあり、実質的に使用できないのである。そのため、現実には、製品の工程内検査で不合格判定となり、廃棄される。
【0011】
従って本発明の目的は、外周壁を形成するコート材を適切に選択することで、乾燥時に外周壁に発生する割れの問題を解決し、強度、耐熱衝撃性、信頼性を併せ持つセラミックハニカム構造体の製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、上記乾燥時における外周壁の割れの発生原因につき、鋭意検討を行った。その結果、外周に塗布したコート層を乾燥する際に、外周壁厚さ方向中心部から外周面への水分の移動(蒸発)が起こり、その水分の移動に伴いコロイド状酸化物も、外周壁表面側に移動し、外周壁表面と外周壁厚さ方向中心部でコロイド状酸化物濃度に差が生じる。このコロイド状酸化物は水分を多量に含有しており、乾燥時に大幅に収縮を起すことから、外周壁内のコロイド状酸化物の濃度差に伴い、外周壁の収縮量に差が生じて、コロイド状酸化物の濃度の高い外周壁外表面の収縮が大きくなり、割れが発生することが主原因であることをつきとめた。本発明者らは、このコロイド状酸化物の移動を制御することができれば、このような外周壁の乾燥時の割れは生じにくいと考え、本発明に想到した。
【0013】
すなわち、本発明のセラミックハニカム構造体の製造方法は、セラミックハニカム構造体の周縁部を加工により除去した後、外周面にコート材を塗布して外周壁部を形成するセラミックハニカム構造体の製造方法において、前記コート材が骨材、コロイド状酸化物及びコロイド状酸化物分散物質を含むことを特徴とする。
【0014】
また本発明のセラミックハニカム構造体の製造方法において、前記コート材がコージェライト粒子及び/又はセラミックファイバー、コロイド状酸化物、及びコロイド状酸化物分散物質を主成分とし、前記コージェライト粒子及び/又はセラミックファイバー100質量部に対して、コロイド状酸化物を固形分換算で3〜35質量部を含有するとともに、コロイド状酸化物分散物質を前記コロイド状酸化物の固形分100質量部に対して5〜50質量部の割合で含むと良い。
更に、本発明のセラミックハニカム構造体の製造方法においてコロイド状酸化物分散物質は少なくとも50質量%以上が水溶性有機物質であると良い。
【0015】
本発明のコート材は、セラミックハニカム構造体の製造方法に用いられるコート材で骨材、コロイド状酸化物、及びコロイド状酸化物分散物質を含むことをその特徴とする。
また、本発明のコート材は、コージェライト粒子及び/又はセラミックファイバー、コロイド状酸化物、及びコロイド状酸化物分散物質を主成分とし、コージェライト粒子及び/又はセラミックファイバー100質量部に対して、コロイド状酸化物を固形分換算で3〜35質量部及びコロイド状酸化物分散物質を前記コロイド状酸化物の固形分100質量部に対して5〜50質量部の割合で含むと良い。
【0016】
本発明のセラミックハニカム構造体は、隔壁により仕切られた多数の流通孔を有するセラミックハニカム構造体の外周壁部がコージェライト粒子及び/又はセラミックファイバーと、それらの間に存在するコロイダルシリカにより形成されたシリカマトリックスからなるとともに、前記外周壁部の表面付近のシリコン濃度(So)と前記外周壁部の厚さ方向中心部のシリコン濃度(Sc)の比[So/Sc]が1.0〜1.20であることを特徴とする。
【0017】
また、本発明のセラミックハニカム構造体は、隔壁により仕切られた多数の流通孔を有するセラミックハニカム構造体の外周壁部がコージェライト粒子及び/又はセラミックファイバーと、それらの間に存在するコロイダルアルミナにより形成されたアルミナマトリックスからなるともに、前記外周壁部の表面付近のアルミニウム濃度(Ao)と前記外周壁の中心部のアルミニウム濃度(Ac)の比[Ao/Ac]が1.0〜1.20であることを特徴とする。
【0018】
【作用】
本発明の作用、効果について説明する。
本発明のセラミックハニカム構造体の外周壁を形成するためのコート材は、コロイド状酸化物を含んでいることから、セラミックス骨材の間を強固に結合して外周壁層を形成することにより、強固で熱衝撃にも強い外周壁が形成される。さらにコロイド状酸化物分散物質を含んでいることから、コート材塗布後の乾燥工程において外周壁部から水分が急激に蒸発する際にも、コロイド状酸化物分散物質が水分の移動に伴うコロイド状酸化物の外周壁部表面への移動を防止し、外周壁部外表面と外周壁部厚さ方向中心部のコロイド状酸化物の濃度差が大きくならないように作用するため、乾燥時の収縮量の差に伴いコート層に割れが発生することを防ぐことができる。更に、本発明のセラミックハニカム構造体の場合には、コロイド状酸化物から形成される酸化物マトリックスの外周壁部表面と外周壁部中心部の間の濃度差が小さいことから、耐熱衝撃性を改善させることができる。
【0019】
ここでコート材がコージェライト粒子及び/又はセラミックファイバー100質量部に対して、コロイド状酸化物を固形分換算で3〜35質量部を含有するとともに、コロイド状酸化物分散物質を前記コロイド状酸化物の固形分100質量部に対して5〜50質量部の割合で含む場合には、特に上記したように、コロイド状酸化物が外周壁部表面へ移動するのを防止し、乾燥時の割れを確実に防止できるのと共に、耐熱衝撃性を改善する効果が大きい。
【0020】
コート材がコージェライト粒子及び/又はセラミックファイバー100質量部に対して、コロイド状酸化物を固形分換算で3〜35質量部の割合で含むと良いのは3質量%未満では、コージェライト粒子及び/又はセラミックファイバーの骨材の間を強固に結合できないこともあるからであり、また35質量%を超えると、外周壁の熱特性が悪くなり、焼成時や使用中の熱衝撃により外周壁に亀裂が入りやすくなることもあるからである。より好ましいコロイド状酸化物の含有量は、コージェライト粒子及び/又はセラミックファイバー100質量部に対して、コロイド状酸化物を固形分換算で7〜20質量部の割合である。
【0021】
また、コロイド状酸化物分散物質を前記コロイド状酸化物の固形分100質量部に対して5〜50質量部の割合で含むと良いのは、コロイド状酸化物分散物質が5質量部未満では、コート材塗布後の乾燥時に、水分蒸発に伴うコロイド状酸化物の移動を抑制する効果が小さく、コロイド状酸化物から形成される酸化物マトリックスの外周壁部内での濃度差が大きくなり、耐熱衝撃性が低下し、熱衝撃試験時に外周壁部に割れが発生することもあるからである。コロイド状酸化物分散物質が50質量部を超えると、コート材の粘度が高くなり、コート材の塗布作業が難しくなり、ハニカム構造体の周縁部を加工により除去した後の、外周面に形成される、軸方向に伸びる凹部に、コート材を充填することが困難となり、強度が低下することもあるからである。更に好ましいコロイド状酸化物分散物質の含有量は前記コロイド状酸化物の固形分100質量部に対して7〜30質量部の割合である。尚、コロイド状酸化物分散物質としては、少なくとも50質量%以上が水溶性有機物質であるとコート材塗布の作業性の良好なコート材が得られ、且つ、外周壁部の乾燥時にも水分蒸発に伴うコロイド状酸化物の移動を抑制する効果が大きく、外周壁部に割れが入りにくいことから好ましい。より好ましくは20℃での2%水溶液粘度が20Pa・s以下の水溶性セルロース誘導体である。
【0022】
また、本発明のコート材には、コージェライト粒子及び/又はセラミックファイバーが用いられるとよいが、ハニカム本体がコージェライト質セラミックスの場合はコージェライト粒子が外周壁との熱膨張係数を小さくできることから適している。更には、コージェライト粒子がコージェライト質セラミックハニカム本体を粉砕して作製したものであると、更に熱膨張係数差が小さくできることから好ましい。その理由は、外周壁とハニカム本体の熱膨張係数の差が大きいと、ハニカム構造体が高温の排気ガスに曝された際に、外周壁とハニカム本体の間に熱膨張係数差に基づく熱応力が発生し、外周壁に亀裂の入ることがあるからである。
【0023】
また、コージェライト粒子からなる骨材に代えて、その一部に非晶質シリカ、アルミナ等からなるセラミックファイバーを用いると、アスペクト比の大きいセラミックファイバーで亀裂の進展が阻止できることから、外周壁の亀裂発生に対して、より効果的である。また本発明のセラミックハニカム構造体の製造方法は、コート材が骨材、コロイド状酸化物及びコロイド状酸化物分散物質を含んでいるがこれら以外にも、上記のセラミックファイバー、或いはセメント等の耐熱性を有する骨材を含有しても良いが、これらに限定されるものではない。
【0024】
本発明のセラミックハニカム構造体の製造方法は、上記したように本発明のコート材を用いる効果に加えて、ハニカム構造を有する焼成体の外周壁とその周縁部を加工により除去した後、外周面にコート材を塗布して外周壁部を形成することから、外周壁の周縁部の変形したセルを除くことができるため、ハニカム構造体の機械的強度を高くできる。またハニカム構造を有する焼成体全体の真円度が低い場合にも、加工により真円度を高めた後に外周壁部を形成することにより、寸法精度が向上される。
【0025】
更に、コート材塗布後の乾燥後に焼成操作を施すことにより、コージェライト粒子及び/又はセラミックファイバーとコロイド状酸化物が周縁部を加工により除去されたセラミックハニカム構造体本体の外周面の凹溝に固着され、強固で熱衝撃にも強い外周壁が形成される。
【0026】
更には、ハニカム本体がコージェライト質セラミックスで形成されると、コージェライト粒子及び/又はセラミックファイバーとコロイド状酸化物を主成分とするコート材から形成される外周壁との熱膨張係数差が小さくできることから好ましい。その理由は、外周壁とハニカム本体の熱膨張係数の差が大きいと、ハニカム構造体が高温の排気ガスに曝された際に、外周壁とハニカム本体の間に熱膨張係数差に基づく熱応力が発生し、外周壁に亀裂の入ることがあるからである。
【0027】
また、本発明のセラミックハニカム構造体は、隔壁により仕切られた多数の流通孔を有するセラミックハニカム構造体の外周壁部がコージェライト粒子及び/又はセラミックファイバーと、それらの間に存在するコロイダルシリカにより形成されたシリカマトリックスからなるとともに、前記外周壁部の表面付近のシリコン濃度(So)と前記外周壁部の厚さ方向中心部のシリコン濃度(Sc)の比[So/Sc]が1.00〜1.20であることから、乾燥時に外周壁に割れが生じにくく、外周壁のコージェライト粒子及び/又はセラミックファイバーからなる骨材が脱落しにくいセラミックハニカム構造体となる。ここで、[So/Sc]が1.20を超えると、外周壁を形成した後の乾燥の際に、外周壁部のコロイダルシリカの外周壁厚さ方向の含有量の差が大きくなり、コロイダルシリカの収縮量が外周壁部の厚さ方向で異なるために、特にコロイダルシリカの濃度が高い外周壁部表面において割れが生じ易くなる。一方[So/Sc]が1.00未満となると、シリカマトリックスの量が外周壁部厚さ方向中心部より外周壁部表面で少なくなるため、コージェライト粒子及び/又はセラミックファイバーが外周壁表面から脱落することもあるからである。コージェライト粒子及び/又はセラミックファイバーが外周壁表面から脱落し易いと、ハンドリングが難しく、作業効率が悪くなることから好ましくない。[So/Sc]のより好ましい範囲は1.01〜1.10である。
【0028】
また、本発明のセラミックハニカム構造体の外周壁部は、コージェライト粒子及び/又はセラミックファイバーと、それらの間に存在するコロイダルシリカにより形成されたシリカマトリックスからなることから、コージェライト粒子及び/又はセラミックファイバーの間を強固に結合して外周壁層を形成することにより、強固で熱衝撃にも強い外周壁が形成される。
【0029】
また、本発明のセラミックハニカム構造体は、隔壁により仕切られた多数の流通孔を有するセラミックハニカム構造体の外周壁部がコージェライト粒子及び/又はセラミックファイバーと、それらの間に存在するコロイダルアルミナにより形成されたアルミナマトリックスからなるともに、前記外周壁部の表面付近のアルミニウム濃度(Ao)と前記外周壁の厚さ方向中心部のアルミニウム濃度(Ac)の比[Ao/Ac]が1.00〜1.20であることから、乾燥時に外周壁に割れが生じにくく、骨材が脱落しにくいセラミックハニカム構造体となる。ここで、[Ao/Ac]が1.20を超えると、、外周壁を形成した後の乾燥の際に、外周壁部のコロイダルアルミナの外周壁厚さ方向の含有量の差が大きくなり、コロイダルアルミナの収縮量が厚さ方向で異なるために、特にコロイダルアルミナの濃度が高い外周壁表面において割れが生じ易くなる。一方[Ao/Ac]が1.00未満となると、アルミナマトリックスの量が外周壁部厚さ方向中心部より外周壁部表面で少なくなるため、コージェライト粒子及び/又はセラミックファイバーが外周壁部表面から脱落することもあるからである。コージェライト粒子及び/又はセラミックファイバーが外周壁部表面から脱落し易いと、ハンドリングが難しく、作業効率が悪くなることから好ましくない。[Ao/Ac]のより好ましい範囲は1.01〜1.10である。
【0030】
また、本発明のセラミックハニカム構造体の外周壁部は、コージェライト粒子及び/又はセラミックファイバーと、それらの間に存在するコロイダルアルミナにより形成されたアルミナマトリックスからなることから、コージェライト粒子及び/又はセラミックファイバーの間を強固に結合して外周壁層を形成することにより、強固で熱衝撃にも強い外周壁が形成される。
【0031】
ここで、前記外周壁部の表面付近のシリコン濃度(So)と前記外周壁部の厚さ方向中心部のシリコン濃度(Sc)の比[So/Sc]或いは、前記外周壁部の表面付近のアルミニウム濃度(Ao)と前記外周壁の厚さ方向中心部のアルミニウム濃度(Ac)の比[Ao/Ac]は、外周壁部から試験片を切り出し、外周壁の断面が観察できるように、研磨用埋め込み樹脂に埋め込み、研磨を行って観察用の試験片を作製した後に、この試験片を走査型電子顕微鏡に設置し、図3に示すような外周壁断面の表面近傍微小範囲12及び中心部微小範囲11の元素濃度をEDS(エネルギー分散型X線検出器)を用いて算出することができる。なお、外周壁部の表面付近とは、外周壁最表面から、ハニカム構造体の半径方向に100μm以内の領域を指す。
【0032】
【発明の実施の形態】
以下、本発明の実施の形態につき説明する。
(実施例1)
カオリン、タルク、シリカ、アルミナなどの粉末を調整して、質量比で、SiO :48〜52%、Al:33〜37%、MgO:12〜15%を含むようなコージェライト生成原料粉末とし、これにメチルセルロース、ヒドロキシプロピルメチルセルロース等のバインダー、潤滑剤、造孔材としてグラファイトを添加し、乾式で十分混合した後、規定量の水を添加、十分な混練を行って可塑化したセラミック杯土を作成した。
【0033】
次いで、坏土を公知の押出成形用口金を通過させることにより、外周壁3とセル壁4とが一体に形成されたハニカム構造を有する成形体とした後、乾燥、焼成操作を加えることにより、セル壁厚0.3mm、セル壁のピッチ1.5mm、外径寸法280mm、全長300mmの外周壁3とセル壁4とが一体に形成されたコージェライト質セラミックハニカム焼成体を得た。セル壁の気孔率は65%、平均細孔径は20μmであった。
【0034】
得られたコージェライト質セラミックハニカム焼成体の周縁部を円筒研削盤を用いて加工除去することにより、外周面に凹溝を有する、外径265.7mm、全長300mmのハニカム構造体本体を準備した。
【0035】
一方、コート材として、表1に示す材料特性のセラミック原料、表2に示すコロイド状酸化物分散物質を使用し、表3に示す配合比で調合し、更に水を加えて混練し、ハニカム構造体本体に塗布可能なペースト状になるように調整した。ここで塗布が容易にできたものを塗布性良好として表3に(○)で示し、ペーストの粘度が高いため、塗布は可能であるものの手間がかかったものを表3に(△)で示した。
【0036】
【表1】

Figure 2004075524
【0037】
【表2】
Figure 2004075524
【0038】
【表3】
Figure 2004075524
【0039】
次いで、前記準備した外周部に凹溝を有するハニカム体の外周部に、表3に示す各種コート材を塗布したうえで、120℃2時間の熱風乾燥を行った後、外周壁の乾燥割れの状況を目視で確認した。ここで乾燥割れの目視観察結果を、乾燥割れがなかったものを(○)、乾燥割れが発生したものを(×)として表3に記載した。乾燥終了したセラミックハニカム体に対して、850℃2時間の焼成を行うことにより、コート材をハニカム体の外周に0.5mmの厚さで固着させた外径266.7mm、全長300mm、セル壁厚0.3mm、セル壁のピッチ1.5のハニカム構造体を作成した。
【0040】
次に作成したセラミックハニカム構造体を、社団法人自動車技術会発行の自動車規格(JASO)M505−87に基づき、アイソスタティック破壊強度の試験を行った。アイソスタティック破壊強度試験は、社団法人自動車技術会発行の自動車規格(JASO)M505−87に基づき、セラミックハニカム構造体の軸方向両端面に厚さ20mmのアルミ板を当接して両端を密閉するとともに、外壁部表面を厚さ2mmのゴムで密着したものを、圧力容器に入れ、圧力容器内に水を導入して、外壁部表面から静水圧を加え、破壊したときの圧力を測定して、アイソスタティック強度とした。 そして、アイソスタティック強度が1.5MPa以上の好ましい場合を合格(○)とし、さらに1.8MPa以上の好ましい場合を(◎)とし、1.5MPa未満の場合を不合格(×)で示した。
【0041】
また、得られたセラミックハニカム構造体に対して、耐熱衝撃性の評価を行った。耐熱衝撃性の評価試験は、一定温度(室温+450℃)に加熱された電気炉中にセラミックハニカム構造体を挿入して30分間保持し、その後室温に急冷し、目視観察でクラックの有無を確認した。また、クラックが発見されない場合は、電気炉の温度を25℃温度を上昇させ同様の試験を行い、クラックが発生するまで繰り返した。そしてクラックが発見されなかった最高温度差温度差(加熱温度−室温)を耐熱衝撃温度とした。そして、耐熱衝撃温度が500℃以上の場合を合格(△)とし、さらに550℃以上の好ましい場合を(○)とし、更に600℃以上のより好ましい場合を(◎)とし、500℃未満の場合を不合格(×)で示した。
【0042】
また、アイソスタティック試験を終了したセラミックハニカム構造体の外周壁部から試験片を切り出し、外周壁の断面が観察できるように、研磨用埋め込み樹脂に埋め込み、研磨を行って観察用の試験片を作製した。この試験片を走査型電子顕微鏡(日立製、S−4500)に設置し、図3に示すような外皮断面の表面近傍微小範囲12及び中心部微小範囲11(20μm×100μm)の元素濃度をEDS(エネルギー分散型X線検出器)を用いて求め、外周壁厚さ方向の濃度比[So/Sc]或いは[Ao/Ac]を算出した。
以上測定したアイソスタティック強度、耐熱衝撃温度の評価結果、外周壁厚さ方向の濃度比を表3に記載した。
【0043】
コート材NO.1〜8は、コージェライト粉末A100質量部に対してコロイダルシリカを固形分で7質量部添加し、さらにコロイド状酸化物分散物質Aをコロイダルシリカの固形分100質量部に対して0〜52質量部の割合で配合したものである。得られたハニカム構造体のうち、コロイド状分散物質Aの添加のなかったコート材NO.1のものは、乾燥割れが発生し、外周壁厚さ方向濃度比の[So/Sc]が1.20を超えており、外周壁表面と外周壁中心部のシリカ濃度差が大きかった。このため、乾燥割れが発生し、更に耐熱衝撃温度の判定は不合格(×)であった。一方、コロイド状分散物質Aが添加されたコート材NO.2〜8のハニカム構造体は、乾燥割れは発生せず、外周壁厚さ方向濃度比の[So/Sc]がの1.00〜1.20内であることから、耐熱衝撃温度は合格の(△)、(○)或いは(◎)であり、アイソスタティック強度も合格の(○)或いは(◎)であった。中でも、コート材NO.3〜7ハニカム構造体は、コロイド状酸化物の固形分100質量部に対するコロイド状酸化物分散物質の割合が5〜50質量部であることから、塗布性が良好(○)、耐熱衝撃温度は合格の(○)或いは(◎)で、アイソスタティック強度も合格の(○)或いは(◎)であった。コロイド状酸化物分散物質Aをコロイダルシリカの固形分100質量部に対して50質量部を越えて配合した、コート材NO.8のハニカム構造体は、塗布性の評価は(△)であった。更に、コート材NO.4〜6ハニカム構造体は、コロイド状酸化物の固形分100質量部に対するコロイド状酸化物分散物質の割合が7〜30質量部であることから、耐熱衝撃温度、アイソスタティック強度とも合格の(◎)であった。
【0044】
コート材NO.9〜14は、コージェライト粉末A100質量部に対してコロイダルシリカを固形分で2〜37質量部添加したものであり、コロイド状酸化物分散物質Aはコロイダルシリカの固形分100質量部に対して14質量部の割合で配合している。いずれのハニカム構造体も、コロイド状酸化物及び水溶性有機物質からなるコロイド状酸化物分散物質が適量添加されたコート材であることから、外周壁厚さ方向濃度比の[So/Sc]が1.00〜1.20であり、塗布性良好(○)、乾燥割れも発生せず、耐熱衝撃温度は合格の(△)、(○)或いは(◎)であり、アイソスタティック強度も合格の(○)或いは(◎)であった。中でも、コート材NO.10〜13のハニカム構造体は、コージェライト骨材100質量部に対するコロイド状酸化物の固形分の含有割合が好ましい範囲の5〜35質量部であり、コロイド状酸化物の固形分100質量部に対するコロイド状酸化物分散物質の割合がより好ましい範囲の14質量部であることから、耐熱衝撃温度、アイソスタティック強度とも、判定は合格(◎)であった
【0045】
コート材NO.15〜16は、コージェライト粉末A100質量部に対してコロイダルシリカを固形分で7質量部添加し、さらにコロイド状酸化物分散物質B、及びCをコロイダルシリカの固形分100質量部に対して14、及び28質量部の割合で配合したものである。両者ともコロイド状酸化物及び水溶性有機物質からなるコロイド状酸化物分散物質をコート材に含んでいることから、得られたハニカム構造体は、外周壁厚さ方向濃度比の[So/Sc]が1.00〜1.20であり、塗布性良好(○)、乾燥割れも発生せず、更に、耐熱衝撃温度、アイソスタティック強度とも合格の(◎)であった。
【0046】
コート材NO.17〜24はコージェライト粉末Bを使用した以外は、コート材NO.1〜8と同様に配合したもので、試験結果はコート材NO.1〜8と同様の結果が得られた。
得られたハニカム構造体のうち、コロイド状分散物質Aの添加のなかったコート材NO.17のものは、乾燥割れが発生し、外周壁厚さ方向濃度比の[So/Sc]が1.20を超えており、外周壁表面と外周壁中心部のシリカ濃度差が大きかった。このため、乾燥割れが発生し、更に耐熱衝撃温度の判定は不合格(×)であった。一方、コロイド状分散物質Aが添加されたコート材NO.18〜24のハニカム構造体は、乾燥割れは発生せず、外周壁厚さ方向濃度比の[So/Sc]がの1.00〜1.20内であることから、耐熱衝撃温度は合格の(△)、(○)或いは(◎)であり、アイソスタティック強度も合格の(○)或いは(◎)であった。中でも、コート材NO.19〜23ハニカム構造体は、コロイド状酸化物の固形分100質量部に対するコロイド状酸化物分散物質の割合が5〜50質量部であることから、塗布性が良好(○)、耐熱衝撃温度は合格の(○)或いは(◎)で、アイソスタティック強度も合格の(○)或いは(◎)であった。コロイド状酸化物分散物質Aをコロイダルシリカの固形分100質量部に対して50質量部を越えて配合した、コート材NO.24のハニカム構造体は、塗布性の評価は(△)であった。更に、コート材NO.20〜22ハニカム構造体は、コロイド状酸化物の固形分100質量部に対するコロイド状酸化物分散物質の割合が7〜30質量部であることから、耐熱衝撃温度、アイソスタティック強度とも合格の(◎)であった。
【0047】
またコート材NO.25及び26はコージェライト粉末A100質量部に対してコロイダルアルミナを固形分で5及び10質量部添加し、さらにコロイド状酸化物分散物質Aをコロイダルアルミナの固形分100質量部に対して30及び20質量部の割合で配合したものである。両者ともコロイド状酸化物及び水溶性有機物質からなるコロイド状酸化物分散物質をコート材に適量含んでいることから、コート材の塗布性良好(○)で、乾燥割れが発生せず、得られたハニカム構造体は、外周壁厚さ方向濃度比の[Ao/Ac]が1.00〜1.20であり、耐熱衝撃温度、アイソスタティック強度とも合格の(◎)であった。
【0048】
以上はコージェライト質セラミックハニカム焼成体の周縁部を加工除去することにより、外周面に凹溝を有する、ハニカム構造体の外周面に外周壁を形成する図1(a)の製造工程例で説明したが、本発明の作用効果からすれば、コージェライト質セラミックハニカム乾燥体の周縁部を加工除去した後、焼成をすることにより、外周面に凹溝を有する、ハニカム構造体の外周面に外周壁を形成する図1(b)の製造工程を採用しても同様の結果が得られることは言うまでもない。
【0049】
【発明の効果】
以上、説明のとおり、本発明のセラミックハニカム構造体の外周壁を形成するためのコート材によれば、コート材が骨材、コロイド状酸化物及びコロイド状酸化物分散物質を適切に含有していることから、乾燥工程において、外周壁厚さ方向の構成元素の濃度差が発生しにくくなり、乾燥工程で発生する外周壁の割れを防止することができるとともに、耐熱衝撃性、強度、信頼性を併せ持つセラミックハニカム構造体の外周壁部を形成出来るコート材を提供することができる。
また、本発明のセラミックハニカム構造体の製造方法を用いることにより、上記の本発明のコート材の効果に加えて、セラミックハニカム構造体の機械的強度を高くできるとともに、外周壁の寸法精度の向上したセラミックハニカム構造体を得ることが出来る。
さらに本発明のセラミックハニカム構造体によれば、外周壁の表面付近と中心部間で、コロイド状酸化物で形成された酸化物マトリックスの濃度差が小さいことから、乾燥時に外周壁に割れが生じにくく、耐熱衝撃性、強度、信頼性を併せ持つセラミックハニカム構造を得ることが出来る。
【図面の簡単な説明】
【図1】実施の形態の工程図である。
【図2】ハニカム構造体の斜視図である。
【図3】ハニカム構造体の外周壁の厚さ方向濃度比を算出する際の、分析箇所を示す略図である。
【符号の説明】
1:ハニカム構造体
2:セル
3:外周壁
4:セル壁
11:外周壁断面の中心部微小範囲
12:外周壁断面の表面近傍微小範囲[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an outer peripheral wall of a ceramic honeycomb structure.
[0002]
[Prior art]
In order to reduce the harmful substances contained in the exhaust gas of automobiles and other engines from the perspective of preserving the local environment and the global environment, catalytic converters for purifying exhaust gas and filters for collecting particulates using ceramic honeycomb structures are used. ing.
FIG. 2 is a perspective view of the honeycomb structure. As shown in FIG. 2, the honeycomb structure 1 usually has a large number of cells 2 formed by an outer peripheral wall 3 and cell walls 4 which are each orthogonal to the inner peripheral side of the outer peripheral wall 3. Then, the honeycomb structure 1 is firmly held by a gripping member disposed between the inner peripheral surface of the storage container and the outer peripheral surface of the outer peripheral wall of the honeycomb structure so as not to move in a metal storage container (not shown). It is grasped and stored.
[0003]
The honeycomb structure 1 is conventionally manufactured by the following steps.
The outer peripheral wall 3 and the cell wall 4 were formed by extruding a ceramic clay obtained by mixing and kneading the cordierite-forming raw material powder, a forming aid, a pore former, and water through a special mold. A molded article having a honeycomb structure is obtained. Next, in a drying furnace, moisture and the like in the molded body are evaporated to dryness, and further, in a firing furnace, molding aids such as a binder in the molded body are removed. Thus, the honeycomb structure 1 having high strength and having fine pores in the cell wall 4 was obtained.
[0004]
In the case of manufacturing a large-sized ceramic honeycomb structure having an outer diameter of 150 mm or more and a length of 150 mm or more, or a thin honeycomb structure 1 having a cell wall 4 having a thickness of 0.2 mm or less for a diesel engine, for example, extrusion molding is used. Occasionally, the weight of the molded body is too large or the strength of the molded body itself is insufficient, so that the weight of the molded body cannot be supported, and the cell wall 4 at the peripheral edge of the outer peripheral wall 3 is crushed or deformed, and after firing, There is a problem that a predetermined strength cannot be obtained.
[0005]
In order to solve this problem, in the invention described in Patent Literature 1, as shown in FIG. 1 (a), a manufacturing process is performed by adding a molding aid and / or a pore former to a cordierite forming raw material, The mixture is kneaded and plasticized to be extrudable, and the ceramic clay is extruded, dried and fired to obtain a fired body having a honeycomb structure. A method is disclosed in which an outer wall portion is formed by performing a removing process to make the size smaller than a predetermined size by processing, applying a coating material to the removed peripheral edge, drying and curing. According to the present invention, since the outer peripheral wall 3 of the fired body having the honeycomb structure and the peripheral edge thereof are removed by grinding, the deformed cells at the peripheral edge of the outer peripheral wall can be removed. It is said that the mechanical strength can be increased. Further, even when the roundness of the entire fired body having a honeycomb structure is low, dimensional accuracy is improved by forming the outer skin after increasing the roundness by grinding. When ceramic fibers and an inorganic binder are used as the coating material for forming the outer wall used in the conventional invention, the strength of the outer wall can be increased, and the coating material is made of the same type as the honeycomb structure body. For example, adding cordierite powder is preferable because the difference in thermal expansion coefficient from a fired body having a honeycomb structure can be reduced.
[0006]
Further, in the honeycomb structure having the above-described configuration, in order to improve the peeling resistance of the outer wall portion from the honeycomb structure body and obtain a honeycomb structure excellent in heat resistance and thermal shock resistance, Patent Document 2 discloses The outer wall portion (outer shell layer) is composed of cordierite particles and / or ceramic fibers and an amorphous oxide matrix formed of colloidal silica or colloidal alumina between them. The invention of a ceramic honeycomb structure characterized by the features is disclosed. According to the present invention, the outer shell layer is provided by using a honeycomb body having a concave portion extending in the axial direction on the outer peripheral surface, and filling the concave groove with a coating material comprising cordierite aggregate and an inorganic binder. While effectively reinforcing the honeycomb structure, preventing a decrease in the strength of the honeycomb structure due to peeling of the coat layer which is the outer shell layer during use, and reducing the strength of the honeycomb structure caused when the honeycomb structure is reinforced. It is said that a reduction in thermal shock strength can be effectively suppressed. The coating material used in the present invention reduces the difference in thermal expansion coefficient between the outer shell layer and the honeycomb structure body and prevents the outer shell layer from cracking due to thermal stress. Or a ceramic fiber and a colloidal oxide composed of colloidal silica or colloidal alumina as a main component, and the colloidal oxide is converted into a solid content based on 100 parts by weight of the cordierite particles and / or the ceramic fiber. In an amount of 3 to 35 parts by weight.
[0007]
[Patent Document 1]
JP-A-3-275309
[Patent Document 2]
JP-A-5-269388
[0008]
[Problems to be solved by the invention]
According to the invention described in Patent Document 2 described above, a large ceramic honeycomb structure having an outer diameter of 150 mm or more and a length of 150 mm or more and a thin cell wall having a thickness of 0.2 mm or less are obtained from the basic configuration. Although the problem that the cell wall at the peripheral edge of the outer peripheral wall is crushed or deformed when the honeycomb structure is extruded can be solved, there are the following problems.
[0009]
When the peripheral portion of the honeycomb fired body is removed in advance by processing and a coating material is applied to the outer peripheral surface of the honeycomb structure body having a concave groove formed on the outer peripheral surface, the coating material is cordierite particles and / or ceramic fibers. And a colloidal oxide composed of colloidal silica or colloidal alumina as a main component, and an auxiliary agent such as a viscosity modifier such as an organic binder and water are appropriately required in consideration of workability of coating the honeycomb body. And then applied to the honeycomb body by a method such as brushing, dipping, spray coating, or the like. Thereafter, a drying operation and, if necessary, a firing operation are performed, and the outer peripheral wall is fixed to the honeycomb body. However, there is a problem that a crack occurs in the outer peripheral wall layer during the drying operation.
[0010]
When cracks occur on the outer peripheral wall in the drying process in this way, even if a firing operation is performed thereafter, the cracks once opened cannot be closed, and cracks remain on the outer peripheral wall of the honeycomb structure. When the honeycomb structure having such a cracked outer peripheral wall is used as a catalyst carrier for purifying exhaust gas or a filter for collecting fine particles, a thermal shock due to high-temperature exhaust gas and a mechanical shock such as engine vibration or road surface vibration are caused. As a result, the cracks propagate to the honeycomb structure main body, and eventually, the ceramic honeycomb structure falls off in the metal storage container, and the exhaust gas cannot be purified. Therefore, in reality, the product is rejected in the in-process inspection and is discarded.
[0011]
Therefore, an object of the present invention is to solve the problem of cracks generated in the outer peripheral wall during drying by appropriately selecting a coating material forming the outer peripheral wall, and to obtain a ceramic honeycomb structure having both strength, thermal shock resistance, and reliability. It is to provide a manufacturing method of.
[0012]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the cause of the occurrence of cracks in the outer peripheral wall during drying. As a result, when the coat layer applied to the outer periphery is dried, the movement (evaporation) of moisture from the center in the thickness direction of the outer peripheral wall to the outer peripheral surface occurs. It moves to the surface side, and a difference occurs in the concentration of the colloidal oxide between the outer peripheral wall surface and the center in the thickness direction of the outer peripheral wall. Since this colloidal oxide contains a large amount of water and greatly shrinks during drying, the difference in the amount of shrinkage of the outer peripheral wall occurs due to the difference in the concentration of the colloidal oxide in the outer peripheral wall, It has been found that the main cause is that the outer surface of the outer peripheral wall having a high concentration of the colloidal oxide has a large shrinkage and cracks are generated. The present inventors have thought that if the movement of the colloidal oxide can be controlled, it is unlikely that such cracks in the outer peripheral wall will occur during drying, and have reached the present invention.
[0013]
That is, the method for manufacturing a ceramic honeycomb structure according to the present invention is a method for manufacturing a ceramic honeycomb structure in which after removing a peripheral portion of a ceramic honeycomb structure by processing, a coating material is applied to an outer peripheral surface to form an outer peripheral wall portion. Wherein the coating material comprises an aggregate, a colloidal oxide, and a colloidal oxide dispersion material.
[0014]
Further, in the method for manufacturing a ceramic honeycomb structure according to the present invention, the coating material contains cordierite particles and / or ceramic fibers, a colloidal oxide, and a colloidal oxide dispersion material as main components, and the cordierite particles and / or The colloidal oxide is contained in an amount of 3 to 35 parts by mass in terms of solid content with respect to 100 parts by mass of the ceramic fiber, and the colloidal oxide-dispersed substance is added in an amount of 5 to 100 parts by mass of the solid content of the colloidal oxide. It may be contained at a ratio of 50 parts by mass.
Further, in the method for manufacturing a ceramic honeycomb structure of the present invention, it is preferable that at least 50% by mass or more of the colloidal oxide dispersion material is a water-soluble organic substance.
[0015]
The coating material of the present invention is characterized in that the coating material used in the method for manufacturing a ceramic honeycomb structure includes an aggregate, a colloidal oxide, and a colloidal oxide dispersion material.
Further, the coating material of the present invention contains cordierite particles and / or ceramic fibers, colloidal oxide, and a colloidal oxide dispersion material as main components, and 100 parts by mass of cordierite particles and / or ceramic fibers. The colloidal oxide is preferably contained in an amount of 3 to 35 parts by mass in terms of solid content, and the colloidal oxide-dispersed substance in an amount of 5 to 50 parts by mass with respect to 100 parts by mass of the solid content of the colloidal oxide.
[0016]
In the ceramic honeycomb structure of the present invention, the outer peripheral wall of the ceramic honeycomb structure having a large number of flow holes partitioned by partition walls is formed of cordierite particles and / or ceramic fibers and colloidal silica present between them. And the ratio [So / Sc] of the silicon concentration (So) near the surface of the outer peripheral wall to the silicon concentration (Sc) at the center in the thickness direction of the outer peripheral wall is 1.0 to 1 .20.
[0017]
Further, in the ceramic honeycomb structure of the present invention, the outer peripheral wall portion of the ceramic honeycomb structure having a large number of flow holes partitioned by partition walls is made of cordierite particles and / or ceramic fibers and colloidal alumina present between them. A ratio [Ao / Ac] of the aluminum concentration (Ao) near the surface of the outer peripheral wall to the aluminum concentration (Ac) at the center of the outer peripheral wall is 1.0 to 1.20. It is characterized by being.
[0018]
[Action]
The operation and effect of the present invention will be described.
Since the coating material for forming the outer peripheral wall of the ceramic honeycomb structure of the present invention contains a colloidal oxide, by firmly bonding between the ceramic aggregates to form the outer peripheral wall layer, An outer peripheral wall that is strong and resistant to thermal shock is formed. In addition, since it contains a colloidal oxide-dispersed material, the colloidal oxide-dispersed material can be moved along with the movement of moisture even when moisture evaporates rapidly from the outer peripheral wall in the drying process after coating. It prevents the oxide from moving to the outer peripheral wall surface and acts so that the difference in the concentration of the colloidal oxide between the outer peripheral wall outer surface and the center in the thickness direction of the outer peripheral wall does not increase. It is possible to prevent the occurrence of cracks in the coat layer due to the difference between the two. Furthermore, in the case of the ceramic honeycomb structure of the present invention, since the concentration difference between the outer peripheral wall surface of the oxide matrix formed of the colloidal oxide and the outer peripheral wall center is small, the thermal shock resistance is reduced. Can be improved.
[0019]
Here, the coating material contains 3 to 35 parts by mass of the colloidal oxide in terms of solid content with respect to 100 parts by mass of the cordierite particles and / or the ceramic fibers, and the colloidal oxide-dispersed substance is converted into the colloidal oxide. When the content is 5 to 50 parts by mass with respect to 100 parts by mass of the solid content of the product, the colloidal oxide is prevented from moving to the outer peripheral wall surface as described above, and cracks during drying are prevented. And the effect of improving the thermal shock resistance is great.
[0020]
It is preferable that the coating material contains the colloidal oxide in a proportion of 3 to 35 parts by mass in terms of solid content based on 100 parts by mass of the cordierite particles and / or the ceramic fibers. This is because it may not be possible to firmly bond between the aggregates of the ceramic fibers, and if it exceeds 35% by mass, the thermal characteristics of the outer peripheral wall are deteriorated, and the outer wall may be damaged by thermal shock during firing or during use. This is because a crack may be easily formed. A more preferred content of the colloidal oxide is 7 to 20 parts by mass of the colloidal oxide in terms of solid content based on 100 parts by mass of the cordierite particles and / or the ceramic fibers.
[0021]
Further, it is good that the colloidal oxide-dispersed material is contained at a ratio of 5 to 50 parts by mass with respect to 100 parts by mass of the solid content of the colloidal oxide. The effect of suppressing the movement of the colloidal oxide due to moisture evaporation during drying after coating with the coating material is small, and the difference in concentration of the oxide matrix formed from the colloidal oxide in the outer peripheral wall increases, resulting in a thermal shock resistance. This is because the cracking may occur in the outer peripheral wall during the thermal shock test. When the amount of the colloidal oxide-dispersed substance exceeds 50 parts by mass, the viscosity of the coating material is increased, and the coating operation of the coating material becomes difficult, and is formed on the outer peripheral surface after the peripheral portion of the honeycomb structure is removed by processing. This is because it becomes difficult to fill the concave portion extending in the axial direction with the coating material, and the strength may be reduced. More preferably, the content of the colloidal oxide dispersion material is 7 to 30 parts by mass based on 100 parts by mass of the solid content of the colloidal oxide. When the colloidal oxide-dispersed substance is at least 50% by mass or more of a water-soluble organic substance, a coating material having good workability in coating the coating material can be obtained, and moisture can be evaporated even when the outer peripheral wall is dried. The effect of suppressing the movement of the colloidal oxide due to the above is great, and it is preferable because cracks hardly occur in the outer peripheral wall portion. More preferably, it is a water-soluble cellulose derivative having a 2% aqueous solution viscosity at 20 ° C. of 20 Pa · s or less.
[0022]
Further, in the coating material of the present invention, cordierite particles and / or ceramic fibers are preferably used. However, when the honeycomb body is made of cordierite ceramics, the cordierite particles can reduce the coefficient of thermal expansion with the outer peripheral wall. Are suitable. Further, it is preferable that the cordierite particles are produced by pulverizing the cordierite-based ceramic honeycomb body, because the difference in thermal expansion coefficient can be further reduced. The reason is that if the difference in the thermal expansion coefficient between the outer peripheral wall and the honeycomb body is large, when the honeycomb structure is exposed to high-temperature exhaust gas, the thermal stress based on the difference in the thermal expansion coefficient between the outer peripheral wall and the honeycomb body is increased. This may cause cracks in the outer peripheral wall.
[0023]
In addition, when ceramic fibers made of amorphous silica, alumina or the like are partially used instead of aggregates made of cordierite particles, the growth of cracks can be prevented by the ceramic fibers having a large aspect ratio, so that the outer peripheral wall can be prevented from cracking. More effective against crack initiation. In the method for manufacturing a ceramic honeycomb structure according to the present invention, the coating material contains an aggregate, a colloidal oxide and a colloidal oxide dispersion material. Aggregates having properties may be included, but the invention is not limited thereto.
[0024]
The method for manufacturing a ceramic honeycomb structure of the present invention is characterized in that, in addition to the effect of using the coating material of the present invention as described above, the outer peripheral surface of the fired body having the honeycomb structure and its peripheral edge are removed by processing, and then the outer peripheral surface is removed. Since the outer peripheral wall is formed by applying a coating material on the outer peripheral wall, the deformed cells at the peripheral edge of the outer peripheral wall can be removed, so that the mechanical strength of the honeycomb structure can be increased. In addition, even when the roundness of the entire fired body having the honeycomb structure is low, the dimensional accuracy is improved by forming the outer peripheral wall portion after increasing the roundness by processing.
[0025]
Further, by performing a baking operation after drying after applying the coating material, the cordierite particles and / or the ceramic fibers and the colloidal oxide are formed in the concave grooves on the outer peripheral surface of the main body of the ceramic honeycomb body whose peripheral edge is removed by processing. An outer peripheral wall that is fixed and strong and resistant to thermal shock is formed.
[0026]
Furthermore, when the honeycomb body is formed of cordierite ceramics, the difference in thermal expansion coefficient between the cordierite particles and / or the ceramic fiber and the outer peripheral wall formed of the coating material mainly containing a colloidal oxide is small. It is preferable because it can be performed. The reason is that if the difference in the thermal expansion coefficient between the outer peripheral wall and the honeycomb body is large, when the honeycomb structure is exposed to high-temperature exhaust gas, the thermal stress based on the difference in the thermal expansion coefficient between the outer peripheral wall and the honeycomb body is increased. This may cause cracks in the outer peripheral wall.
[0027]
Further, in the ceramic honeycomb structure of the present invention, the outer peripheral wall portion of the ceramic honeycomb structure having a large number of flow holes partitioned by partition walls is made of cordierite particles and / or ceramic fibers and colloidal silica present between them. In addition to the silica matrix formed, the ratio [So / Sc] of the silicon concentration (So) near the surface of the outer peripheral wall to the silicon concentration (Sc) at the center in the thickness direction of the outer peripheral wall is 1.00. Since it is 1.21.20, the ceramic honeycomb structure has a structure in which the outer peripheral wall is less likely to be cracked during drying, and an aggregate made of cordierite particles and / or ceramic fibers on the outer peripheral wall is less likely to fall off. Here, when [So / Sc] exceeds 1.20, the difference in the content of colloidal silica in the outer peripheral wall in the thickness direction of the outer peripheral wall increases during drying after the outer peripheral wall is formed, and the Since the amount of silica shrinkage varies in the thickness direction of the outer peripheral wall, cracks are likely to occur particularly on the outer peripheral wall surface where the concentration of colloidal silica is high. On the other hand, when [So / Sc] is less than 1.00, the amount of the silica matrix is smaller at the outer peripheral wall surface than at the outer peripheral wall thickness direction center, so that the cordierite particles and / or the ceramic fibers are reduced from the outer peripheral wall surface. This is because they may fall off. If the cordierite particles and / or the ceramic fibers easily fall off from the outer peripheral wall surface, it is not preferable because handling becomes difficult and work efficiency deteriorates. A more preferable range of [So / Sc] is 1.01 to 1.10.
[0028]
Further, since the outer peripheral wall portion of the ceramic honeycomb structure of the present invention is composed of cordierite particles and / or ceramic fibers and a silica matrix formed of colloidal silica existing therebetween, the cordierite particles and / or By firmly connecting the ceramic fibers to form the outer peripheral wall layer, an outer peripheral wall that is strong and resistant to thermal shock is formed.
[0029]
Further, in the ceramic honeycomb structure of the present invention, the outer peripheral wall portion of the ceramic honeycomb structure having a large number of flow holes partitioned by partition walls is made of cordierite particles and / or ceramic fibers and colloidal alumina present between them. The ratio [Ao / Ac] of the aluminum concentration (Ao) near the surface of the outer peripheral wall portion and the aluminum concentration (Ac) at the center in the thickness direction of the outer peripheral wall portion is 1.00 to 1.00. Since the ratio is 1.20, the ceramic honeycomb structure is less likely to crack on the outer peripheral wall during drying, and the aggregate is less likely to fall off. Here, if [Ao / Ac] exceeds 1.20, the difference in the content of colloidal alumina in the outer peripheral wall in the thickness direction of the outer peripheral wall at the time of drying after forming the outer peripheral wall increases, Since the amount of shrinkage of the colloidal alumina differs in the thickness direction, cracks tend to occur particularly on the outer peripheral wall surface where the concentration of colloidal alumina is high. On the other hand, when [Ao / Ac] is less than 1.00, the amount of the alumina matrix is smaller at the outer peripheral wall surface than at the center in the thickness direction of the outer peripheral wall. Because they can fall off from If the cordierite particles and / or ceramic fibers easily fall off from the outer peripheral wall surface, it is not preferable because handling becomes difficult and work efficiency deteriorates. A more preferable range of [Ao / Ac] is 1.01 to 1.10.
[0030]
Further, since the outer peripheral wall portion of the ceramic honeycomb structure of the present invention is made of cordierite particles and / or ceramic fibers and an alumina matrix formed by colloidal alumina present therebetween, the cordierite particles and / or By firmly connecting the ceramic fibers to form the outer peripheral wall layer, an outer peripheral wall that is strong and resistant to thermal shock is formed.
[0031]
Here, the ratio [So / Sc] of the silicon concentration (So) near the surface of the outer peripheral wall portion and the silicon concentration (Sc) at the center in the thickness direction of the outer peripheral wall portion, or the ratio near the surface of the outer peripheral wall portion. The ratio [Ao / Ac] between the aluminum concentration (Ao) and the aluminum concentration (Ac) at the center in the thickness direction of the outer peripheral wall is determined by cutting a test piece from the outer peripheral wall and polishing the specimen so that the cross section of the outer peripheral wall can be observed. After embedding in a resin for embedding and polishing to prepare a test piece for observation, this test piece was set on a scanning electron microscope, and a minute area 12 near the surface of the cross section of the outer peripheral wall as shown in FIG. The element concentration in the minute range 11 can be calculated using EDS (energy dispersive X-ray detector). Note that the vicinity of the surface of the outer peripheral wall portion refers to a region within 100 μm from the outermost surface of the outer peripheral wall in the radial direction of the honeycomb structure.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
(Example 1)
By adjusting the powder of kaolin, talc, silica, alumina, etc., the mass ratio of SiO 2 : 48-52%, Al 2 O 3 : 33 to 37%, MgO: 12 to 15% as a cordierite-forming raw material powder, and a binder such as methylcellulose, hydroxypropylmethylcellulose, a lubricant, and graphite as a pore-forming material are added thereto, and thoroughly mixed in a dry system. After that, a specified amount of water was added, and the mixture was sufficiently kneaded to prepare plasticized ceramic clay.
[0033]
Next, by passing the kneaded material through a well-known extrusion molding die to form a formed body having a honeycomb structure in which the outer peripheral wall 3 and the cell wall 4 are integrally formed, by performing drying and firing operations, A cordierite ceramic honeycomb fired body having a cell wall thickness of 0.3 mm, a cell wall pitch of 1.5 mm, an outer diameter of 280 mm, and a total length of 300 mm, in which an outer peripheral wall 3 and a cell wall 4 are integrally formed, was obtained. The porosity of the cell wall was 65%, and the average pore diameter was 20 μm.
[0034]
A peripheral portion of the obtained cordierite ceramic honeycomb fired body was processed and removed using a cylindrical grinder to prepare a honeycomb structure body having an outer diameter of 265.7 mm and a total length of 300 mm, having a concave groove on the outer peripheral surface. .
[0035]
On the other hand, as a coating material, a ceramic raw material having the material characteristics shown in Table 1 and a colloidal oxide dispersion material shown in Table 2 were used, and were blended at the compounding ratio shown in Table 3, and further kneaded by adding water to obtain a honeycomb structure. The paste was adjusted so that it could be applied to the body. Here, those that could be easily applied are shown as good coatability in Table 3 by (○), and those that could be applied because of the high viscosity of the paste are shown in Table 3 (△). Was.
[0036]
[Table 1]
Figure 2004075524
[0037]
[Table 2]
Figure 2004075524
[0038]
[Table 3]
Figure 2004075524
[0039]
Then, after applying the various coating materials shown in Table 3 to the outer peripheral portion of the prepared honeycomb body having a concave groove on the outer peripheral portion, the resultant was subjected to hot-air drying at 120 ° C. for 2 hours. The situation was checked visually. Here, the results of the visual observation of the dry cracks are shown in Table 3 as those without dry cracks (○) and those with dry cracks as (x). The dried ceramic honeycomb body is fired at 850 ° C. for 2 hours, so that a coating material is fixed to the outer periphery of the honeycomb body at a thickness of 0.5 mm, an outer diameter of 266.7 mm, a total length of 300 mm, and a cell wall. A honeycomb structure having a thickness of 0.3 mm and a cell wall pitch of 1.5 was prepared.
[0040]
Next, the produced ceramic honeycomb structure was subjected to an isostatic fracture strength test based on the automotive standard (JASO) M505-87 issued by the Japan Society of Automotive Engineers of Japan. The isostatic fracture strength test is based on the automotive standard (JASO) M505-87 issued by the Japan Society of Automotive Engineers of Japan. What put the outer wall surface in close contact with 2 mm thick rubber was put into a pressure vessel, water was introduced into the pressure vessel, hydrostatic pressure was applied from the outer wall surface, and the pressure at the time of breaking was measured. The isostatic strength was used. A case where the isostatic strength was 1.5 MPa or more was evaluated as pass ((), a case where the isostatic strength was 1.8 MPa or more was evaluated as (◎), and a case where the isostatic strength was less than 1.5 MPa was evaluated as failed (×).
[0041]
Further, the obtained ceramic honeycomb structure was evaluated for thermal shock resistance. In the thermal shock resistance evaluation test, the ceramic honeycomb structure was inserted into an electric furnace heated to a certain temperature (room temperature + 450 ° C), held for 30 minutes, then rapidly cooled to room temperature, and visually observed for cracks. did. If no crack was found, the same test was performed by increasing the temperature of the electric furnace by 25 ° C., and the test was repeated until a crack occurred. The maximum temperature difference at which no crack was found (heating temperature-room temperature) was defined as the thermal shock temperature. A case where the thermal shock temperature is 500 ° C. or higher is regarded as acceptable (△), a case where the thermal shock temperature is 550 ° C. or higher is regarded as (○), a case where the thermal shock temperature is 600 ° C. or higher is more favorable (◎), and a case where the thermal shock temperature is lower than 500 ° Was indicated by rejection (x).
[0042]
In addition, a test piece was cut out from the outer peripheral wall of the ceramic honeycomb structure after the isostatic test was completed, embedded in a resin for polishing so that the cross section of the outer peripheral wall could be observed, and polished to prepare a test specimen for observation. did. The test piece was set on a scanning electron microscope (S-4500, manufactured by Hitachi), and the element concentration in the microscopic area 12 near the surface and the microscopic area 11 in the center (20 μm × 100 μm) of the outer skin cross section as shown in FIG. (Energy dispersive X-ray detector), and the concentration ratio [So / Sc] or [Ao / Ac] in the thickness direction of the outer peripheral wall was calculated.
Table 3 shows the evaluation results of the isostatic strength and the thermal shock temperature measured as described above, and the concentration ratio in the thickness direction of the outer peripheral wall.
[0043]
Coating material NO. 1 to 8 are obtained by adding 7 parts by mass of colloidal silica to 100 parts by mass of cordierite powder A in solid content, and further adding 0 to 52 parts by mass of colloidal oxide dispersion material A to 100 parts by mass of solid content of colloidal silica. Parts. Among the obtained honeycomb structures, the coating material NO. In the case of No. 1, dry cracking occurred, the [So / Sc] of the concentration ratio in the thickness direction of the outer peripheral wall exceeded 1.20, and the difference in silica concentration between the outer peripheral wall surface and the central portion of the outer peripheral wall was large. For this reason, dry cracking occurred, and the determination of the thermal shock temperature was rejected (x). On the other hand, the coating material NO. Dry cracking did not occur in the honeycomb structures of Nos. 2 to 8, and the [So / Sc] of the concentration ratio in the thickness direction of the outer peripheral wall was within 1.00 to 1.20. (△), (○) or (◎), and the isostatic strength was also acceptable (○) or ()). Among them, the coating material NO. Since the ratio of the colloidal oxide-dispersed substance to the solids content of the colloidal oxide is 5 to 50 parts by mass with respect to the solid content of the colloidal oxide, the 3 to 7 honeycomb structure has good coatability (○) and a thermal shock temperature of The pass (() or (◎) was acceptable, and the isostatic strength was also pass (○) or (◎). The coating material No. 1 containing the colloidal oxide dispersion material A in an amount exceeding 50 parts by mass with respect to 100 parts by mass of the solid content of colloidal silica. With regard to the honeycomb structure of No. 8, the applicability was evaluated as (△). Further, the coating material NO. Since the ratio of the colloidal oxide-dispersed substance to the solids content of the colloidal oxide is 7 to 30 parts by mass for the 4 to 6 honeycomb structures, both the thermal shock temperature and the isostatic strength are acceptable (◎). )Met.
[0044]
Coating material NO. 9 to 14 are obtained by adding 2 to 37 parts by mass of colloidal silica as solids to 100 parts by mass of cordierite powder A, and the colloidal oxide dispersion material A is added to 100 parts by mass of solids of colloidal silica. It is blended at a ratio of 14 parts by mass. Since any of the honeycomb structures is a coating material to which a proper amount of a colloidal oxide dispersion material composed of a colloidal oxide and a water-soluble organic substance is added, the [So / Sc] of the concentration ratio in the thickness direction of the outer peripheral wall is obtained. 1.00 to 1.20, good applicability (○), no dry cracking, thermal shock temperature is acceptable (△), (○) or (◎), and isostatic strength is acceptable. (○) or (◎). Among them, the coating material NO. In the honeycomb structures of 10 to 13, the content ratio of the solid content of the colloidal oxide to 100 parts by mass of cordierite aggregate is in a preferable range of 5 to 35 parts by mass, and the solid content of the colloidal oxide is 100 parts by mass. Since the ratio of the colloidal oxide-dispersed substance was in the more preferable range of 14 parts by mass, the judgment was acceptable (◎) for both the thermal shock temperature and the isostatic strength.
[0045]
Coating material NO. In Nos. 15 and 16, 7 parts by mass of colloidal silica is added to 100 parts by mass of cordierite powder A in solid content, and the colloidal oxide dispersion materials B and C are further added to 14 parts by mass of 100 parts by mass of colloidal silica solid. , And 28 parts by mass. Since both contain a coating material containing a colloidal oxide-dispersed substance composed of a colloidal oxide and a water-soluble organic substance, the obtained honeycomb structure has an outer peripheral wall thickness direction concentration ratio [So / Sc]. 1.00 to 1.20, good applicability ((), no dry cracking, and acceptable thermal shock temperature and isostatic strength (◎).
[0046]
Coating material NO. Coating materials Nos. 17 to 24 except that cordierite powder B was used. No. 1 to 8 were blended in the same manner, and the test results were Results similar to 1 to 8 were obtained.
Among the obtained honeycomb structures, the coating material NO. In the case of No. 17, dry cracking occurred, and the [So / Sc] of the concentration ratio in the thickness direction of the outer peripheral wall exceeded 1.20, and the silica concentration difference between the outer peripheral wall surface and the central portion of the outer peripheral wall was large. For this reason, dry cracking occurred, and the determination of the thermal shock temperature was rejected (x). On the other hand, the coating material NO. In the honeycomb structures of Nos. 18 to 24, dry cracking did not occur, and the [So / Sc] of the concentration ratio in the thickness direction of the outer peripheral wall was within 1.00 to 1.20. (△), (○) or (◎), and the isostatic strength was also acceptable (○) or ()). Among them, the coating material NO. Since the ratio of the colloidal oxide-dispersed material to 100 parts by mass of the solid content of the colloidal oxide is 5 to 50 parts by mass, the 19 to 23 honeycomb structure has good coatability (() and a thermal shock temperature of The pass (() or (◎) was acceptable, and the isostatic strength was also pass (○) or (◎). The coating material No. 1 containing the colloidal oxide dispersion material A in an amount exceeding 50 parts by mass with respect to 100 parts by mass of the solid content of colloidal silica. The applicability of the honeycomb structure of No. 24 was evaluated as (△). Further, the coating material NO. Since the ratio of the colloidal oxide-dispersed substance to the solid content of the colloidal oxide is 7 to 30 parts by mass in the 20 to 22 honeycomb structure, both the thermal shock temperature and the isostatic strength are acceptable ((). )Met.
[0047]
The coating material NO. In Nos. 25 and 26, 5 and 10 parts by mass of colloidal alumina were added to 100 parts by mass of cordierite powder A in solid content, and the colloidal oxide dispersion material A was added in 30 and 20 parts by mass to 100 parts by mass of colloidal alumina solid. It is blended in a ratio of parts by mass. In both cases, the coating material contains an appropriate amount of a colloidal oxide-dispersed material composed of a colloidal oxide and a water-soluble organic material, so that the coating material has good coatability (O) and does not cause dry cracking, and is obtained. In the honeycomb structure obtained, [Ao / Ac] of the concentration ratio in the thickness direction of the outer peripheral wall was 1.00 to 1.20, and both the thermal shock temperature and the isostatic strength were acceptable (◎).
[0048]
The above is described with reference to the example of the manufacturing process in FIG. 1A in which the peripheral portion of the cordierite-based ceramic honeycomb fired body is processed and removed to form a peripheral wall on the peripheral surface of the honeycomb structure having a concave groove on the peripheral surface. However, from the viewpoint of the operation and effect of the present invention, after the peripheral portion of the dried cordierite ceramic honeycomb body is processed and removed, it is baked, so that the outer peripheral surface of the honeycomb structure having a concave groove on the outer peripheral surface is formed. It goes without saying that the same result can be obtained even if the manufacturing process of FIG. 1B for forming the wall is adopted.
[0049]
【The invention's effect】
As described above, according to the coating material for forming the outer peripheral wall of the ceramic honeycomb structure of the present invention, the coating material appropriately contains an aggregate, a colloidal oxide and a colloidal oxide dispersion material. Therefore, in the drying step, a difference in the concentration of the constituent elements in the thickness direction of the outer peripheral wall is less likely to occur, and it is possible to prevent cracks in the outer peripheral wall generated in the drying step, as well as thermal shock resistance, strength, and reliability. It is possible to provide a coating material capable of forming an outer peripheral wall portion of a ceramic honeycomb structure having both of the above.
Further, by using the method for manufacturing a ceramic honeycomb structure of the present invention, in addition to the effect of the coating material of the present invention, the mechanical strength of the ceramic honeycomb structure can be increased, and the dimensional accuracy of the outer peripheral wall can be improved. The obtained ceramic honeycomb structure can be obtained.
Further, according to the ceramic honeycomb structure of the present invention, since the difference in concentration of the oxide matrix formed of the colloidal oxide is small between the vicinity of the surface of the outer peripheral wall and the central portion, cracks occur in the outer peripheral wall during drying. It is difficult to obtain a ceramic honeycomb structure having both thermal shock resistance, strength and reliability.
[Brief description of the drawings]
FIG. 1 is a process chart of an embodiment.
FIG. 2 is a perspective view of a honeycomb structure.
FIG. 3 is a schematic diagram showing an analysis location when calculating a concentration ratio in a thickness direction of an outer peripheral wall of a honeycomb structure.
[Explanation of symbols]
1: Honeycomb structure
2: cell
3: Outer wall
4: Cell wall
11: Minute area at the center of the cross section of the outer peripheral wall
12: Small area near the surface of the outer peripheral wall cross section

Claims (7)

セラミックハニカム構造体の周縁部を加工により除去した後、外周面にコート材を塗布して外周壁部を形成するセラミックハニカム構造体の製造方法において、前記コート材が骨材、コロイド状酸化物及びコロイド状酸化物分散物質を含むことを特徴とするセラミックハニカム構造体の製造方法。After removing the peripheral portion of the ceramic honeycomb structure by processing, a method of manufacturing a ceramic honeycomb structure in which a coating material is applied to an outer peripheral surface to form an outer peripheral wall portion, wherein the coating material is an aggregate, a colloidal oxide and A method for producing a ceramic honeycomb structure, comprising a colloidal oxide dispersion material. 前記コート材がコージェライト粒子及び/又はセラミックファイバー、コロイド状酸化物、及びコロイド状酸化物分散物質を主成分として、前記コージェライト粒子及び/又はセラミックファイバー100質量部に対して、コロイド状酸化物を固形分換算で3〜35質量部を含有するとともに、コロイド状酸化物分散物質を前記コロイド状酸化物の固形分100質量部に対して5〜50質量部の割合で含むことを特徴とする請求項1に記載のセラミックハニカム構造体の製造方法。The coating material contains cordierite particles and / or ceramic fibers, a colloidal oxide, and a colloidal oxide dispersion material as main components, and 100 parts by mass of the cordierite particles and / or ceramic fibers, and a colloidal oxide. Is contained in an amount of 3 to 35 parts by mass in terms of solid content, and the colloidal oxide-dispersed substance is contained at a ratio of 5 to 50 parts by mass with respect to 100 parts by mass of the solid content of the colloidal oxide. A method for manufacturing the ceramic honeycomb structure according to claim 1. 前記コロイド状酸化物分散物質の少なくとも50質量%以上が水溶性有機物質であることを特徴とする請求項1又は請求項2に記載のセラミックハニカム構造体の製造方法。The method for producing a ceramic honeycomb structure according to claim 1 or 2, wherein at least 50% by mass or more of the colloidal oxide dispersion material is a water-soluble organic substance. 骨材、コロイド状酸化物及びコロイド状酸化物分散物質を含むことを特徴とするセラミックハニカム構造体の外周壁を形成するためのコート材。A coating material for forming an outer peripheral wall of a ceramic honeycomb structure, comprising an aggregate, a colloidal oxide, and a colloidal oxide dispersion material. コージェライト粒子及び/又はセラミックファイバー、コロイド状酸化物、及びコロイド状酸化物分散物質を主成分として、コージェライト粒子及び/又はセラミックファイバー100質量部に対して、コロイド状酸化物を固形分換算で3〜35質量部及びコロイド状酸化物分散物質を前記コロイド状酸化物の固形分100質量部に対して5〜50質量部の割合で含むことを特徴とする請求項4に記載のセラミックハニカム構造体の外周壁を形成するためのコート材。Based on cordierite particles and / or ceramic fibers, colloidal oxides, and colloidal oxide dispersion materials, colloidal oxides are converted to solids with respect to 100 parts by mass of cordierite particles and / or ceramic fibers. 5. The ceramic honeycomb structure according to claim 4, comprising 3 to 35 parts by mass and 5 to 50 parts by mass of the colloidal oxide dispersed material with respect to 100 parts by mass of the solid content of the colloidal oxide. Coating material for forming the outer peripheral wall of the body. 隔壁により仕切られた多数の流通孔を有するセラミックハニカム構造体の外周壁部がコージェライト粒子及び/又はセラミックファイバーと、それらの間に存在するコロイダルシリカにより形成されたシリカマトリックスからなるとともに、前記外周壁部の表面付近のシリコン濃度(So)と前記外周壁部の厚さ方向中心部のシリコン濃度(Sc)の比[So/Sc]が1.00〜1.20であることを特徴とするセラミックハニカム構造体。The outer peripheral wall of the ceramic honeycomb structure having a large number of flow holes partitioned by partition walls is made of cordierite particles and / or ceramic fibers, and a silica matrix formed of colloidal silica present therebetween, The ratio [So / Sc] of the silicon concentration (So) near the surface of the wall to the silicon concentration (Sc) at the center in the thickness direction of the outer peripheral wall is 1.00 to 1.20. Ceramic honeycomb structure. 隔壁により仕切られた多数の流通孔を有するセラミックハニカム構造体の外周壁部がコージェライト粒子及び/又はセラミックファイバーと、それらの間に存在するコロイダルアルミナにより形成されたアルミナマトリックスからなるともに、前記外周壁部の表面付近のアルミニウム濃度(Ao)と前記外周壁の中心部のアルミニウム濃度(Ac)の比[Ao/Ac]を1.00〜1.20としていることを特徴とするセラミックハニカム構造体。The outer peripheral wall portion of the ceramic honeycomb structure having a large number of flow holes partitioned by partition walls is made of cordierite particles and / or ceramic fibers and an alumina matrix formed of colloidal alumina present therebetween, A ceramic honeycomb structure, wherein a ratio [Ao / Ac] of an aluminum concentration (Ao) near a surface of a wall portion and an aluminum concentration (Ac) at a central portion of the outer peripheral wall is 1.00 to 1.20. .
JP2003171350A 2002-06-17 2003-06-16 Ceramic honeycomb structure, its manufacturing process and coating material Pending JP2004075524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003171350A JP2004075524A (en) 2002-06-17 2003-06-16 Ceramic honeycomb structure, its manufacturing process and coating material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002175373 2002-06-17
JP2003171350A JP2004075524A (en) 2002-06-17 2003-06-16 Ceramic honeycomb structure, its manufacturing process and coating material

Publications (1)

Publication Number Publication Date
JP2004075524A true JP2004075524A (en) 2004-03-11

Family

ID=32032398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003171350A Pending JP2004075524A (en) 2002-06-17 2003-06-16 Ceramic honeycomb structure, its manufacturing process and coating material

Country Status (1)

Country Link
JP (1) JP2004075524A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005025720A1 (en) * 2003-09-12 2005-03-24 Ngk Insulators, Ltd. Honeycomb structural body and method of manufacturing the same
WO2005068048A1 (en) * 2004-01-15 2005-07-28 Ngk Insulators, Ltd. Cell structure and method of manufacturing the same
EP1702909A1 (en) * 2005-03-16 2006-09-20 Ngk Insulators, Ltd. Ceramic honeycomb structure
EP1704920A1 (en) * 2005-03-24 2006-09-27 Ngk Insulators, Ltd. Method for manufacturing honeycomb structure and the honeycomb structure
WO2008078748A1 (en) 2006-12-27 2008-07-03 Hitachi Metals, Ltd. Ceramic honeycomb structure and process for producing the same
US7591918B2 (en) * 2002-06-17 2009-09-22 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method and coating material used therefor
JP2010132538A (en) * 2008-11-10 2010-06-17 Ngk Insulators Ltd Method for manufacturing ceramic honeycomb structure and coating material for the ceramic honeycomb structure
US7820278B2 (en) * 2007-12-27 2010-10-26 Ngk Insulators, Ltd. Refractory mortar cured material
EP2366876A2 (en) 2010-03-12 2011-09-21 NGK Insulators, Ltd. Outer periphery-coating material, outer periphery-coated honeycomb structure and process for production thereof
JP2016069218A (en) * 2014-09-30 2016-05-09 日立金属株式会社 Ceramic honeycomb structure, manufacturing method therefor, and coat material
JP2016179930A (en) * 2015-03-25 2016-10-13 日本碍子株式会社 Outer peripheral coat material, joint material, honeycomb structure and method for manufacturing honeycomb structure
DE102017011777A1 (en) 2016-12-26 2018-06-28 Ngk Insulators, Ltd. Circumferential coating material and circumferentially coated honeycomb structure

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591918B2 (en) * 2002-06-17 2009-09-22 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method and coating material used therefor
WO2005025720A1 (en) * 2003-09-12 2005-03-24 Ngk Insulators, Ltd. Honeycomb structural body and method of manufacturing the same
US7695796B2 (en) 2003-09-12 2010-04-13 Ngk, Insulators, Ltd. Honeycomb structural body and method of manufacturing the same
US7615273B2 (en) 2004-01-15 2009-11-10 Ngk Insulators, Ltd. Cell structure and method of manufacturing the same
WO2005068048A1 (en) * 2004-01-15 2005-07-28 Ngk Insulators, Ltd. Cell structure and method of manufacturing the same
EP1702909A1 (en) * 2005-03-16 2006-09-20 Ngk Insulators, Ltd. Ceramic honeycomb structure
JP2006255542A (en) * 2005-03-16 2006-09-28 Ngk Insulators Ltd Ceramic honeycomb structure
EP1704920A1 (en) * 2005-03-24 2006-09-27 Ngk Insulators, Ltd. Method for manufacturing honeycomb structure and the honeycomb structure
US7560154B2 (en) 2005-03-24 2009-07-14 Ngk Insulators, Ltd. Method for manufacturing honeycomb structure and the honeycomb structure
WO2008078748A1 (en) 2006-12-27 2008-07-03 Hitachi Metals, Ltd. Ceramic honeycomb structure and process for producing the same
JP5532606B2 (en) * 2006-12-27 2014-06-25 日立金属株式会社 Ceramic honeycomb structure and manufacturing method thereof
EP2098497A1 (en) * 2006-12-27 2009-09-09 Hitachi Metals, Ltd. Ceramic honeycomb structure and process for producing the same
CN101573310B (en) * 2006-12-27 2012-09-26 日立金属株式会社 Ceramic honeycomb structure and process for producing the same
EP2098497A4 (en) * 2006-12-27 2013-09-11 Hitachi Metals Ltd Ceramic honeycomb structure and process for producing the same
US8728607B2 (en) 2006-12-27 2014-05-20 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
US7820278B2 (en) * 2007-12-27 2010-10-26 Ngk Insulators, Ltd. Refractory mortar cured material
JP2010132538A (en) * 2008-11-10 2010-06-17 Ngk Insulators Ltd Method for manufacturing ceramic honeycomb structure and coating material for the ceramic honeycomb structure
EP2366876A2 (en) 2010-03-12 2011-09-21 NGK Insulators, Ltd. Outer periphery-coating material, outer periphery-coated honeycomb structure and process for production thereof
JP2016069218A (en) * 2014-09-30 2016-05-09 日立金属株式会社 Ceramic honeycomb structure, manufacturing method therefor, and coat material
JP2016179930A (en) * 2015-03-25 2016-10-13 日本碍子株式会社 Outer peripheral coat material, joint material, honeycomb structure and method for manufacturing honeycomb structure
US10472527B2 (en) 2015-03-25 2019-11-12 Ngk Insulators, Ltd. Circumference coating material, bonding material, honeycomb structure, and method of producing honeycomb structure
DE102017011777A1 (en) 2016-12-26 2018-06-28 Ngk Insulators, Ltd. Circumferential coating material and circumferentially coated honeycomb structure
US10300475B2 (en) 2016-12-26 2019-05-28 Ngk Insulators, Ltd. Circumferential coating material and circumferential coating honeycomb structure

Similar Documents

Publication Publication Date Title
EP2077155B1 (en) Ceramic honeycomb structure
US7939157B2 (en) Honeycomb structure and method for manufacturing the same
JP6028735B2 (en) Method for manufacturing ceramic honeycomb structure and ceramic honeycomb structure
US9028946B2 (en) Ceramic honeycomb structure with applied inorganic skin
JP5532606B2 (en) Ceramic honeycomb structure and manufacturing method thereof
US8642137B2 (en) Ceramic honeycomb structure and its production method
US8551579B2 (en) Method for producing ceramic honeycomb structure
EP2668990B1 (en) Honeycomb structure
JP2004075524A (en) Ceramic honeycomb structure, its manufacturing process and coating material
JP2015171981A (en) honeycomb structure
EP2008987A1 (en) Honeycomb structure body
JP4457338B2 (en) Ceramic honeycomb structure, manufacturing method thereof, and coating material therefor
JP2004261623A (en) Honeycomb structure
JP4474633B2 (en) Method for manufacturing ceramic honeycomb structure
CA2766653A1 (en) Process for producing cemented and skinned acicular mullite honeycomb structures
JP3529051B1 (en) Ceramic honeycomb structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070507