JP2004075017A - Semi-trailing suspension - Google Patents

Semi-trailing suspension Download PDF

Info

Publication number
JP2004075017A
JP2004075017A JP2002241945A JP2002241945A JP2004075017A JP 2004075017 A JP2004075017 A JP 2004075017A JP 2002241945 A JP2002241945 A JP 2002241945A JP 2002241945 A JP2002241945 A JP 2002241945A JP 2004075017 A JP2004075017 A JP 2004075017A
Authority
JP
Japan
Prior art keywords
elastic body
vehicle
cross member
semi
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241945A
Other languages
Japanese (ja)
Inventor
Ichiro Takano
高野 一郎
Hiroshi Oi
大井 寛士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2002241945A priority Critical patent/JP2004075017A/en
Publication of JP2004075017A publication Critical patent/JP2004075017A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semi-trailing suspension for reducing noise and vibration during a harshness input from a wheel, and ensuring steering stability. <P>SOLUTION: The semi-trailing suspension 1 comprises a cross member 2 extending in the vehicle width direction Y, right and left front bushes 13 to fit the cross member to a vehicle body, and arm members 5 and 6 with one-end sides thereof supported by the cross member 2 and with wheels 7 rotatably supported on the other end sides. The bush 13 comprises an inner cylinder 15 fixed to the vehicle body, an outer cylinder 12 fixed to the cross member 2 side, a first elastic body 163 disposed forward of a vehicle with respect to the inner cylinder 15, and a second elastic body 164 backward of the vehicle with respect to the inner cylinder 15. The second elastic body 164 is formed harder than the first elastic body 163. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、車体の下部に配備したクロスメンバにアーム部材の前端部を揺動自在に取付け、同アーム部材の揺動端側に車輪を枢着したセミトレーリング式サスペンションに関し、特に、クロスメンバの左右端がブッシュを介して車体側に取付けられたセミトレーリング式サスペンションに関する。
【0002】
【従来の技術】
車体下部に取付け枠を介してアーム部材を揺動自在に取付け、同アーム部材の揺動端に車輪を枢着し、しかも、車輪からの路面反力をアーム部材と取付け枠との間に設けたコイルバネで受け、緩衝するようにしたセミトレーリング式サスペンションが知られている。
このセミトレーリング式サスペンションで用いる取付け枠100は、例えば図9に示すように、車体下部であるフロア下面に沿って車幅方向Yに延設されたクロスメンバ110と、そのクロスメンバ110に一部が溶着され、前後方向に延びるブラケット120とで形成される。このセミトレーリング式サスペンションにより車輪130の上下の揺動を許容すると共に車輪の整列状態を規制するようにし、操縦安定性を確保している。
【0003】
ここで取付け枠100の主要部を成すクロスメンバ110はその左右端がブッシュ140を介しフロア下面側の固定部に取付けられ、これにより車輪120からの振動騒音がアーム部材150やクロスメンバ110を介しフロアや車室内へ伝達されることを抑制している。
このようなセミトレーリング式サスペンションを装備した車両の直進定速走行時において、クロスメンバ110の左右のブッシュ140はクロスメンバ110側の外筒部160とボディー側にボルト止めされた内筒部170とがブッシュ本体を成す弾性体180を介してほぼ同心的に配置された状態に保持される。
【0004】
ところが走行車両が路面のつなぎ目を通過する時であるハーシュ入力時には、左右車輪130、130が直進走行のまま後向き力Fhを強く受け、図8(a)に示すように、左右の弾性体180が左右の各外筒部160の後方変位(矢視B)を許容する。即ち、クロスメンバ110側の外筒部160がボディー側の内筒部170に対してずれ量tnだけ後退変位し、この変位によってハーシュ入力時の騒音振動を低減させることができる。
このように、セミトレーリング式サスペンションのクロスメンバ110はその左右端の各ゴムブッシュ140が車体挙動により弾性変位し、車輪130からの振動騒音、特にハーシュ入力時の騒音振動を低減させることができる。
【0005】
ところで、車両旋回時には、車体側に対して左右のブッシュ140を介して連結されたクロスメンバ110側がねじり変位し、旋回方向外側(図9で右側)の車輪130が内向力Fiを受け、しかも、内側(図9で左側)の車輪130より回転量が増すことより、後向きに引かれて後向力Frを強く受け、クロスメンバの外側車輪130側は後方にずれ量tmだけ引かれ、クロスメンバ110が車体に対して旋回方向C1と逆方向C2に回転し、クロスメンバ110の内側車輪は前方にずれ量tpだけ押されるよう挙動する。
【0006】
【発明が解決しようとする課題】
ところが、車両旋回時におけるブッシュ本体の弾性変位であるずれ量tm、tpが過度に大きいと、車輪130の回転中心線が車体に対して過度に傾き、旋回半径が短くなる方向にずれ、結果としてオーバーステアを誘発し、操縦安定性を低下させることとなる。
逆に、ブッシュ本体を成す弾性体180のばね定数を大きくし、硬くすると、路面反力による振動を低減する効果が薄れ、特に、ハーシュ悪化を招くこととなり、操縦安定性とハーシュ抑制の両立が困難な状況にある。
【0007】
本発明は、以上のような課題に基づき、車輪からのハーシュ入力時の騒音振動を低減できると共に操縦安定性を確保できるセミトレーリング式サスペンションを提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1の発明は、車幅方向に延設されたクロスメンバと、同クロスメンバを車体に取付けるブッシュと、上記クロスメンバに一端側が支持され、他端側で車輪を回転自在に支持するアーム部材と、を備えたセミトレーリング式サスペンションにおいて、上記ブッシュは車体に対して固定される内筒部と、上記クロスメンバ側に固定された外筒部と、上記内筒に対して車両前方側に配設された第1弾性体と、上記内筒に対して車両後方側に配設された第2弾性体と、を有し、上記第2弾性体は上記第1弾性体よりも硬く形成されていることを特徴とする。
このように、第2弾性体は第1弾性体よりも硬いので、クロスメンバの左右端の後方変位に対して前方変位を十分抑制され、車両旋回時のクロスメンバの車体に対する変位が抑制され操縦安定性が確保され、しかも、クロスメンバの左右端の後方変位は十分に達せられるので、ハーシュ入力時の騒音振動を低減でき、操縦安定性確保とハーシュネス対策とを両立できる。
【0009】
請求項1記載のセミトレーリング式サスペンションにおいて、好ましくは、上記第1、第2弾性体がゴムであることが望ましい。この場合、容易に第1、第2弾性体を成形できる。
請求項1記載のセミトレーリング式サスペンションにおいて、好ましくは、上記ブッシュは円筒状で縦方向で使用されることが望ましい。この場合、車体側とクロスメンバとの結合構造を簡素化できる。
【0010】
請求項2の発明は、請求項1記載のセミトレーリング式サスペンションにおいて、上記第2弾性体はその内部にストッパ部材が配設されていることを特徴とする。
このように、ストッパ部材を後方側の第2弾性体に配置するだけでよいので、本発明の構成が簡素化される。
好ましくは、上記第1、第2弾性体を成すゴムは前後同一特性を示すことが望ましい。この場合、第1、第2弾性体を一種類の素材で容易に成形でき、生産性がよい。
ストッパ部材は第2弾性体を成すゴム内部に挿入されるよう一体成形されてもよく、又は後から挿入するようにしてもよい。また、ストッパ部材は樹脂、金属でよく、この場合も容易に成形でき、生産性がよい。
【0011】
請求項3の発明は、請求項1記載のセミトレーリング式サスペンションにおいて、上記第1弾性体と第2弾性体とは別体に構成される。
このように、第1弾性体と第2弾性体とが別体の場合、両者の高度を容易に代えて形成でき、しかも、この場合、ストッパ部材が不要となる。
好ましくは、上記内筒部と第1弾性体との間に隙間を形成してもよい。この場合、内筒部に対して車両前方側に配設された第1弾性体が肉薄に形成され、外筒部の前部が内筒部に接近する変位が容易化され、外筒部の後部が内筒部に接近する変位が抑制され、クロスメンバの左右端の後方変位に対して前方変位を十分抑制でき、操縦安定性確保とハーシュネス対策とを両立できる。
【0012】
【発明の実施の形態】
図1乃至図3には本発明の実施形態としてのセミトレーリング式サスペンション1を示した。
このセミトレーリング式サスペンション1は図示しない車両のフロア後部に配設され、クロスメンバ2及び中央ブラケット3を有した取付け枠4と、取付け枠4の左右端側に揺動自在に一端側が支持された左右アーム部材5,6と、左右アーム部材5,6の他端側である揺動端に回転自在に支持された左右の車輪7と、左右アーム部材5,6に下端が連結され、上端が左右サイドメンバ8側の上ばね受け9に連結された左右のコイルバネ11(図2参照)とを備える。
【0013】
取付け枠4の主要部を成すクロスメンバ2は車幅方向Yに延びるビーム材で形成され、その中央に板金製の中央ブラケット3の前端を溶着し、左右端の前向き面に縦向きの外筒部12を溶着している。中央ブラケット3はクロスメンバ2側の前端縁側より後方に延びる板状部材であり、後縁部側の左右端に縦向きの外筒部21(図1参照)を溶接により固定している。
クロスメンバ2の左右端に溶着された外筒部12は前左右ブッシュ13の要部を成し、中央ブラケット3の左右端の縦向きの外筒部21は後左右ブッシュ14の要部を成す。これら前左右ブッシュ13及び後左右ブッシュ14により取付け枠4が車体側のフロア下面に取付けられる。
【0014】
図4(a)、(b)に示すように、前左右ブッシュ13は外筒部12と内筒部15とそれらの間に充填される前弾性体16を有する。内筒部15は図示しない車両のフロア側の固定用ブラケット17に縦向きにボルト18で締め付け固定され、無負荷時においては、外筒部12と内筒部15は同心的に配設される。
前弾性体16は所定硬度のゴムで成形され、全体として円筒状を成し、外筒部12の内壁面と内筒部15の外壁面に加硫接合されている。
【0015】
前弾性体16は外筒部12と内筒部15間で内筒部15に対して車幅方向Yに配設された左右側部161,162と、内筒部15に対して車両前後方向Xで前方側に配設された前側部である第1弾性体163と、内筒部15に対して車両前後方向Xで後方側に配設された後側部である第2弾性体164とを備える。
前左右ブッシュ13の前弾性体16は均一のばね定数を有するゴム材で成形される。更に、左右側部161,162及び後側部である第2弾性体164は比較的大きな縦幅T2で成形され、前側部である第1弾性体163のみが比較的小さな縦幅T1で成形され、上下の凹部aによって小幅の肉厚に成形され、弾性変位、特に圧縮変位量が他部より増加するように形成されている。
【0016】
更に、前弾性体16は車体側の内筒部15に対してクロスメンバ2側の外筒部12の車両前後方向Xでの前部(図4(a)で左側部分)が後方移動すると、次のように変位する。
この場合、図4(a)、(b)に示すように、前弾性体16の前側部である第1弾性体163は比較的小さな縦幅T1の肉厚に成形されているので、第2弾性体164等と比較してその容量が比較的小さいことより荷重あたりの圧縮変形量を比較的容易に大きくできる。
【0017】
この時、逆に、第2弾性体164は引っ張り変位することとなる。
この場合、第2弾性体164の引っ張り変位が第1弾性体163の圧縮変位を規制する傾向にある。
しかし、図10に示すように、肉厚のゴムブロック材は、一般に、所定荷重を受けた場合、引っ張り変位量は圧縮変形量に比べると比較的大きい。このため、第2弾性体164の引っ張り変形は比較的容易に進むこととなり、ここでの第1弾性体163の圧縮変位量を確保するための機能に支障をきたさないように設定できる。
【0018】
このように、反対側に位置する後側部である第2弾性体164は比較的大きな縦幅T2の肉厚に成形されているがこの部位は確実に引っ張り変形を進めることとなる。このため、全体として、車体側の内筒部15に対してクロスメンバ2側の外筒部12が後方変位(矢視B参照)する際にその変位は容易化され、例えば、図3(a)に示す変位量tbは比較的大きくなる。
【0019】
逆に、車体側の内筒部15に対してクロスメンバ2側の外筒部12の後部が車両前後方向Xでの後部(図4(a)で右側部分)が前方移動すると、次のように変位する。
この時、前弾性体16の後側部である第2弾性体164は比較的大きな縦幅T2の肉厚に成形されるので、図10に示すように、肉厚のゴムブロック材は、一般に、所定荷重を受けた場合、圧縮変形量は比較的小さい。このため、内筒部15に対して外筒部12が前方変位(図4(a)の矢視A参照)する際に、圧縮変形量は極小さく抑制され、たとえ第1弾性体163が比較的容易に引っ張り変形可能であっても、ここでの前方変位は極小さく抑制され、ここでの第2弾性体164はストッパとして機能することとなる。
【0020】
ここで前弾性体16の左右側部161,162は外筒部12と内筒部15間を縦幅T2の肉厚で均一に充填することより、左右変位は確実に抑制される。
なお、後左右ブッシュ14は外筒部21と内筒部22とそれらの間に充填される後弾性体19を有した周知のブッシュ構造を成す。ここでも内筒部22は図示しない車両のフロア側の固定用ブラケットに縦向きにボルト止めされる。
後弾性体19は前弾性体16と同様のゴム材でその前後左右側部が縦幅T3(縦幅T1より小さい値:図示せず)の肉厚で均一に成形されるので、車体側の内筒部22に対して中央ブラケット3側の外筒部21が前後左右変位する際にその変位を方向性無く同等に許容でき、路面振動騒音の伝達を遮断できる。
【0021】
このようなセミトレーリング式サスペンション1を装備した車両が走行するとする。
直進定速走行時には、図4(a),(b)に示すように、クロスメンバ2側の前左右ブッシュ13及び中央ブラケット3側の後左右ブッシュ14は、それぞれが各外筒部12,21と各内筒部15,22とがほぼ同心的に配置された状態に保持される。このため車輪7からの振動騒音は前弾性体16及び後弾性体19により緩衝され、取付け枠4側よりフロアやその上の車室内に侵入することを抑制できる。
【0022】
次に、走行中の車両が路面のつなぎ目を通過するハーシュ入力時には、左右車輪7が直進走行のまま後向き力Fh(図3(b)参照)を強く受ける。この時、左右ブッシュ13の前弾性体16の前側部である第1弾性体163は比較的小さな肉厚T1のため、比較的容易に圧縮変形し、後側部である第2弾性体164は引っ張り変形し、全体として、内筒部15に対して外筒部12が比較的大きなずれ量tbで後方移動する。
【0023】
なお、後左右ブッシュ14の後弾性体19は一様に前弾性体16の縦幅T1より小さい縦幅T3の肉厚で成形されるので、前左右ブッシュ13のずれ量tbに順次外筒部12が容易に後方移動する。
このためハーシュ入力時において、前左右ブッシュ13の前弾性体16及び後左右ブッシュ14の後弾性体19は取付け枠4側の後方変位を比較的大きく許容でき、ハーシュ入力時の路面側からの振動騒音を緩衝でき、振動騒音がフロアやその上の車室内に侵入することを抑制できる。
【0024】
次に、図3(b)に示すように、車両が旋回方向C1に旋回するとする。この時、車体側と前左右ブッシュ13を介して連結されたクロスメンバ2側が相対的にねじれ変位する。即ち、クロスメンバ2側が車体に対して旋回方向C1と逆方向C2に回転する。
この時、旋回方向外側(図3(b)で右側)の車輪7が内向力Fiを受け、しかも、内側(図3(b)で左側)の車輪7より回転量が増すことより、後向きに引かれて後向力Frを強く受ける。このためクロスメンバ2の外側車輪7側が後方に引かれ(矢視B)、逆に、内側車輪7側が前に押される(矢視A)よう挙動する。
【0025】
この際、右側(旋回方向外側)ブッシュ13の前弾性体16の第1弾性体163は圧縮変形し、第2弾性体164は引っ張り変形し、全体として、外筒部12と内筒部15の間の前部間隔t1が狭まり、後部間隔t2が広がり、後方変位する。これに対し、左側(旋回方向内側)ブッシュ13の前弾性体16の第2弾性体164は肉厚T2のため圧縮変形をほぼ抑制され、ストッパとして機能し、外筒部12の内筒部15に対する前方変位は極僅かなずれ量tfに止まる。
なお、後左右ブッシュ14の後弾性体19は前左右ブッシュ13のずれ量に近い変位を許容する。
【0026】
このため、車両旋回時の旋回方向内側(図3(b)で左側)のブッシュ13の内筒部15に対する外筒部12の前方変位を抑制でき、クロスメンバ2等の取付け枠4は旋回方向内側の前方変位(矢視A)が抑制されるので、車両の旋回方向C1に対するクロスメンバ2の逆方向C2の旋回は抑制される。この結果、図8(b)で説明したようなオーバーステアの誘発を防止でき、車両の操縦安定性が確保される。
【0027】
このように、図1のセミトレーリング式サスペンション1は、クロスメンバ2の左右端の後方変位に対して前方変位を十分抑制するという機能、即ち、クロスメンバ2の左右端に設けた前左右ブッシュ13が内筒部15に対する外筒部12の後方変位を許容し、内筒部15に対する外筒部12の前方変位を抑制するという機能を保持するので、ハーシュ入力時の騒音振動を低減でき、操縦安定性確保とハーシュネス対策とを両立できる。
更に、図4(a)に示す前左右ブッシュ13の前弾性体16は、内筒部15に対して車幅方向Yの左右側部161,162と、内筒部15に対して前後方向Xの第1、第2弾性体163、164とが同一のゴム素材で成形され、成形が容易化される利点もある。
【0028】
図1のセミトレーリング式サスペンション1で用いる前左右ブッシュ13に代えて、図5(a),(b)に示すような前左右ブッシュ13aを用いてもよい。この前左右ブッシュ13aは図1のセミトレーリング式サスペンション1に対して前左右ブッシュ13と同様に装着されることより、その他の重複説明を略す。
前左右ブッシュ13aは外筒部12と内筒部15とその間を充填する前弾性体16aとを備える。前弾性体16aは外筒部12と内筒部15間に左右側部161a,162aと、前側部である第1弾性体163aと、後側部である第2弾性体164aとを連続して備え、これらは均一の縦幅T4の肉厚に成形される。
【0029】
後側部である第2弾性体164aはその内部に硬度の比較的大きな硬質ゴムで成形したストッパ23を備え、これらは前弾性体16aのゴム成形時に埋め込み成形される。なお、ストッパ23は外筒部12内壁に一端が当接し、外筒部12と内筒部15との半径方向の間隔よりわずかに小さなストッパ幅t3に形成される。これによりクロスメンバ2側の外筒部12とボディー側の内筒部15の相対変位を許容しつつ、ボディー側の内筒部15に対するクロスメンバ2側の外筒部12の前方変位(矢視A)を阻止するようにしている。
【0030】
このような前左右ブッシュ13aを用いたセミトレーリング式サスペンション1を装備した車両が走行するとする。この場合、車両の直進定速走行時には、外筒部12と内筒部15とが相対変位を許容され、車輪7からの振動騒音がフロアや車室に侵入することを抑制できる。
次に、ハーシュ入力時において、前左右ブッシュ13aの前側部である第1弾性体163aは比較的容易に圧縮変形し、ストッパ23を埋め込む第2弾性体164a側は引っ張り変形でき、内筒部15に対して外筒部12が比較的大きなずれ量tb(図3(a)参照)で後方移動(矢視B)でき、ハーシュ入力時であっも、振動騒音がフロアやその上の車室内に侵入することを抑制できる。
【0031】
次に、車両旋回時にクロスメンバ2が車体に対して旋回方向C1と逆方向C2に回転し、クロスメンバ2の外側車輪7側が後方に引かれ、逆に、クロスメンバ2の内側車輪7側は前に押される(図3(b)参照)。
この際、右側(旋回方向外側)ブッシュ13aの第1弾性体163aは容易に圧縮変形し、内筒部15に対して外筒部12が後方変位する。左側(旋回方向内側)ブッシュ13aの第2弾性体164aはストッパ23により圧縮変形をほぼ阻止され、外筒部12の内筒部15に対する前方変位は極僅かなずれ量tf(図3参照)に止まる。
【0032】
このため旋回方向外側(図3(a)で右側)のブッシュ13aの内筒部15に対する外筒部12の後方変位が生じるが、旋回方向内側(図3(a)で左側)のブッシュ13aの内筒部15に対する外筒部12の変位がストッパ23で阻止されるので、クロスメンバ2の逆方向C2は抑制され、車両の操縦安定性が確保される。
上述のところにおいて、ストッパ23は第2弾性体164aに埋め込まれ一体成形されていたが、場合により成形後に第2弾性体164a内に挿入し、固定するようにしてもよい。更に、ストッパ23は硬質樹脂や金属でもよく、これらの場合も容易に成形でき、生産性がよい。
【0033】
図6(a),(b)には図1のセミトレーリング式サスペンション1で用いる前左右ブッシュ13と異なる他の前左右ブッシュ13bを示した。この前左右ブッシュ13bは図1の前左右ブッシュ13と同様に図1のセミトレーリング式サスペンション1で用いられ、重複説明を略す。
この前左右ブッシュ13bは外筒部12と内筒部15とその間を充填する前弾性体16bを有し、特に、前弾性体16bの一部が硬度を異にしている。
【0034】
即ち、前弾性体16bは左右側部161b,162bと、前側部である第1弾性体163bとが比較的バネ定数の低い第1ゴム素材で成形され、後側部である第2弾性体164bのみが比較的バネ定数の高い第2ゴム素材で成形され、これらは均一の縦幅T5の肉厚に成形される。
前弾性体16bの成形にあたっては、第1ゴム素材からなる左右側部161b,162b及び第1弾性体163b側と、第2ゴム素材からなる第2弾性体164b側との各成形を前後2工程に区分して順次成形することとなる。この前左右ブッシュ13bは第1弾性体163b側が低硬度のゴム材で、第2弾性体164b側が高硬度のゴム材で成形される。
【0035】
このため、車両の直進定速走行時には、車輪7からの振動騒音は緩衝され、フロアや車室に侵入することを抑制できる。ハーシュ入力時には、前側部である第1弾性体163bは低硬度のゴム材で成形され比較的容易に圧縮変形し、内筒部15に対して外筒部12が比較的大きなずれ量tb(図3(a)参照)で後方移動でき、ハーシュ入力時における振動騒音がフロアや車室内に侵入することを抑制できる。
【0036】
車両旋回時には、クロスメンバ2が車体に対して旋回方向C1と逆方向C2に回転する(図3(b)参照)。この際、右側(旋回方向外側)ブッシュ13bの低硬度のゴム材で成形された第1弾性体163bは容易に圧縮変形し、内筒部15に対して外筒部12が後方変位する。一方、左側(旋回方向内側)ブッシュ13bの高硬度のゴム材で成形された第2弾性体164bは圧縮変形を抑制し、ストッパと同様に機能し、外筒部12の内筒部15に対する前方変位は極僅かなずれ量tbに止まる。
【0037】
このため、旋回方向外側(図3(a)で右側)のブッシュ13bの内筒部15に対する外筒部12の後方変位が生じるが、旋回方向内側(図3(a)で左側)のブッシュ13bの内筒部15に対する外筒部12の変位が高硬度のゴム材で成形された第2弾性体164bで阻止されるので、クロスメンバ2の逆方向C2は抑制され、車両の操縦安定性が確保される。
上述のところにおいて、セミトレーリング式サスペンション1の用いる前左右ブッシュ13の前弾性体16はその円周方向において全域にゴム材が充填されていたが、これに代えて、内筒部と外筒部との間の一部に隙間を形成してもよい。
【0038】
例えば、図7(a),(b)に示すように、内筒部15と第1弾性体163cとの間に切り込み24を形成してもよい。この場合、内筒部15に対して車両前後方向Xでの前部(図7(a)で左側部分)に配設された第1弾性体163cが肉薄に形成され、外筒部12の前部(図7(a)で左側部分)が内筒部15に接近する後方変位(矢視B)が切り込み24によって容易化される。一方、ゴム材で一様に成形された第2弾性体164cにより外筒部12の後部が内筒部15に接近する前方変位(矢視A)を抑制できる。このため、クロスメンバ2の左右端の後方変位(矢視B)に対して前方変位(矢視A)を十分抑制でき、操縦安定性確保とハーシュネス対策とを両立できる。
【0039】
【発明の効果】
以上のように、本発明では、第2弾性体が第1弾性体よりも硬いので、クロスメンバの左右端の後方変位に対して前方変位を十分抑制され、車両旋回時のクロスメンバの車体に対する変位が抑制され操縦安定性が確保され、しかも、クロスメンバの左右端の後方変位は十分に達せられるので、ハーシュ入力時の騒音振動を低減でき、操縦安定性確保とハーシュネス対策とを両立できる。
【0040】
請求項2の発明では、ストッパ部材を後方側の第2弾性体に配置するだけでよいので、クロスメンバの左右端の後方変位に対して前方変位を十分抑制するという本発明の構成が簡素化される。
【0041】
請求項3の発明では、第1弾性体と第2弾性体とが別体の場合、両者の高度を容易に代えて形成でき、しかも、この場合、ストッパが不要となる。
【図面の簡単な説明】
【図1】本発明の一実施形態としてのセミトレーリング式サスペンションの全体簡略構成の平面図である。
【図2】図1のセミトレーリング式サスペンションの全体簡略構成の側面図である。
【図3】図1のセミトレーリング式サスペンションの要部を示し、(a)は前左右ブッシュの拡大平面図、(b)は要部の平面図である。
【図4】図1中のセミトレーリング式サスペンションで用いる前左右ブッシュを示し、(a)は平面図、(b)は側断面図である。
【図5】本発明の他の実施形態としてのセミトレーリング式サスペンションで用いる前左右ブッシュを示し、(a)は平面図、(b)は側断面図である。
【図6】本発明の他の実施形態としてのセミトレーリング式サスペンションで用いる前左右ブッシュを示し、(a)は平面図、(b)は側断面図である。
【図7】本発明の他の実施形態としてのセミトレーリング式サスペンションで用いる前左右ブッシュを示し、(a)は平面図、(b)は側断面図である。
【図8】従来のセミトレーリング式サスペンションで用いる前左右ブッシュを示し、(a)はハーシュ入力時、(b)は旋回時である。
【図9】従来のセミトレーリング式サスペンションのハーシュ入力時及び旋回時の挙動説明図である。
【図10】セミトレーリング式サスペンションで用いるブッシュの弾性部材の弾性変位特性線図である。
【符号の説明】
1        セミトレーリング式サスペンション
2        クロスメンバ
3        中央ブラケット
4        取付け枠
5,6      左右アーム部材
7        車輪
8        左右サイドメンバ
9        上ばね受け
11       コイルバネ
12       外筒部
13       前左右ブッシュ
15       内筒部
16       前弾性体
161,162  左右側部
163      第1弾性体
164      第2弾性体
X        前後方向
Y        車幅方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semi-trailing suspension in which a front end of an arm member is swingably attached to a cross member provided at a lower portion of a vehicle body, and wheels are pivotally mounted on the swing end side of the arm member. The present invention relates to a semi-trailing type suspension in which the left and right ends are attached to the vehicle body via bushes.
[0002]
[Prior art]
An arm member is swingably attached to the lower part of the vehicle body via a mounting frame, a wheel is pivotally attached to the swinging end of the arm member, and a road surface reaction force from the wheel is provided between the arm member and the mounting frame. There is known a semi-trailing suspension that receives and cushions a coil spring.
For example, as shown in FIG. 9, a mounting frame 100 used in this semi-trailing suspension includes a cross member 110 extending in the vehicle width direction Y along a floor lower surface, which is a lower portion of the vehicle body, and one of the cross members 110. The part is welded and formed with a bracket 120 extending in the front-rear direction. The semi-trailing suspension allows the wheels 130 to swing up and down and regulates the alignment of the wheels, thereby ensuring steering stability.
[0003]
The left and right ends of the cross member 110 forming the main part of the mounting frame 100 are attached to the fixed portion on the floor lower surface side via the bush 140, so that the vibration noise from the wheels 120 is transmitted through the arm member 150 and the cross member 110. The transmission to the floor and the passenger compartment is suppressed.
When a vehicle equipped with such a semi-trailing suspension travels straight at a constant speed, the right and left bushes 140 of the cross member 110 are connected to the outer cylinder 160 on the cross member 110 and the inner cylinder 170 bolted to the body. Are maintained substantially concentrically via an elastic body 180 forming a bush body.
[0004]
However, at the time of a harsh input when the traveling vehicle passes through the joint of the road surface, the left and right wheels 130, 130 receive a strong backward force Fh while traveling straight, and as shown in FIG. The rearward displacement (in the direction of arrow B) of each of the left and right outer cylinder portions 160 is allowed. That is, the outer cylinder part 160 on the cross member 110 side is displaced backward by the shift amount tn with respect to the inner cylinder part 170 on the body side, and this displacement can reduce noise and vibration at the time of inputting a harsh.
As described above, the rubber members 140 on the left and right ends of the cross member 110 of the semi-trailing suspension are elastically displaced by the behavior of the vehicle body, so that the vibration noise from the wheels 130, particularly, the noise and vibration at the time of inputting a harsh can be reduced. .
[0005]
By the way, when the vehicle turns, the cross member 110 side connected to the vehicle body via the right and left bushes 140 is torsionally displaced, and the wheel 130 on the outer side in the turning direction (right side in FIG. 9) receives the inward force Fi. By increasing the rotation amount from the inner (left side in FIG. 9) wheel 130, it is pulled backward and strongly receives the rearward force Fr, and the outer wheel 130 side of the cross member is pulled rearward by the shift amount tm, and the cross member 110 rotates in the direction C2 opposite to the turning direction C1 with respect to the vehicle body, and the inner wheel of the cross member 110 behaves so as to be pushed forward by the shift amount tp.
[0006]
[Problems to be solved by the invention]
However, if the displacement amounts tm and tp, which are the elastic displacements of the bush body during turning of the vehicle, are excessively large, the rotation center line of the wheel 130 is excessively inclined with respect to the vehicle body, and is shifted in a direction in which the turning radius is shortened. This will cause oversteer and reduce steering stability.
Conversely, if the elastic constant of the elastic body 180 constituting the bush body is increased and hardened, the effect of reducing the vibration due to the road surface reaction force is diminished. In particular, the harsh is deteriorated, and both the steering stability and the suppression of the harsh are reduced. You are in a difficult situation.
[0007]
An object of the present invention is to provide a semi-trailing suspension that can reduce noise and vibration at the time of inputting a harsh from a wheel and ensure steering stability based on the above-described problems.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a cross member extending in a vehicle width direction, a bush for attaching the cross member to a vehicle body, and an arm having one end supported by the cross member and rotatably supporting a wheel at the other end. A bush, wherein the bush is an inner cylinder fixed to the vehicle body, an outer cylinder fixed to the cross member side, and a vehicle front side with respect to the inner cylinder. And a second elastic body disposed rearward of the vehicle with respect to the inner cylinder, wherein the second elastic body is formed to be harder than the first elastic body. It is characterized by having been done.
As described above, since the second elastic body is harder than the first elastic body, the forward displacement is sufficiently suppressed with respect to the rearward displacement of the left and right ends of the cross member, and the displacement of the cross member with respect to the vehicle body during turning of the vehicle is suppressed, so that the steering is performed. Stability is ensured, and the rearward displacement of the left and right ends of the cross member can be sufficiently achieved, so that noise and vibration at the time of inputting a harsh can be reduced, and both steering stability and harshness measures can be achieved.
[0009]
In the semi-trailing suspension according to the first aspect, preferably, the first and second elastic bodies are made of rubber. In this case, the first and second elastic bodies can be easily formed.
In the semi-trailing suspension according to claim 1, preferably, the bush is cylindrical and used in a vertical direction. In this case, the connection structure between the vehicle body and the cross member can be simplified.
[0010]
According to a second aspect of the present invention, in the semi-trailing suspension according to the first aspect, a stopper member is provided inside the second elastic body.
As described above, it is only necessary to dispose the stopper member on the second elastic body on the rear side, so that the configuration of the present invention is simplified.
Preferably, the rubbers forming the first and second elastic bodies preferably have the same characteristics before and after. In this case, the first and second elastic bodies can be easily formed from one kind of material, and the productivity is good.
The stopper member may be integrally formed so as to be inserted into the rubber constituting the second elastic body, or may be inserted later. Further, the stopper member may be made of resin or metal. In this case, the stopper member can be easily formed, and the productivity is good.
[0011]
According to a third aspect of the present invention, in the semi-trailing suspension according to the first aspect, the first elastic body and the second elastic body are configured separately.
As described above, when the first elastic body and the second elastic body are separate bodies, the heights of both can be easily changed, and in this case, a stopper member is not required.
Preferably, a gap may be formed between the inner cylinder and the first elastic body. In this case, the first elastic body disposed on the vehicle front side with respect to the inner cylinder portion is formed to be thin, so that the displacement of the front portion of the outer cylinder portion to approach the inner cylinder portion is facilitated, and Displacement of the rear portion approaching the inner cylinder portion is suppressed, forward displacement can be sufficiently suppressed with respect to rearward displacement of the left and right ends of the cross member, and both steering stability and harshness measures can be achieved.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 3 show a semi-trailing suspension 1 as an embodiment of the present invention.
The semi-trailing type suspension 1 is disposed at the rear of the floor of a vehicle (not shown), and has a mounting frame 4 having a cross member 2 and a central bracket 3, and one end of the mounting frame 4 swingably supported on the left and right ends. Left and right arm members 5 and 6; left and right wheels 7 rotatably supported by swinging ends at the other ends of the left and right arm members 5 and 6; Are provided with left and right coil springs 11 (see FIG. 2) connected to the upper spring receiver 9 on the left and right side members 8 side.
[0013]
A cross member 2 forming a main part of the mounting frame 4 is formed of a beam member extending in the vehicle width direction Y, and a front end of a central bracket 3 made of sheet metal is welded to the center of the cross member 2, and a vertical outer cylinder is formed on a front surface of the left and right ends. The part 12 is welded. The center bracket 3 is a plate-like member extending rearward from the front end side on the cross member 2 side, and has a vertically oriented outer tubular portion 21 (see FIG. 1) fixed to the left and right ends on the rear end side by welding.
The outer cylindrical portions 12 welded to the left and right ends of the cross member 2 form main parts of the front left and right bushes 13, and the vertical outer cylindrical parts 21 at the left and right ends of the central bracket 3 form main parts of the rear left and right bushes 14. . The mounting frame 4 is mounted on the lower surface of the floor on the vehicle body side by the front left and right bushes 13 and the rear left and right bushes 14.
[0014]
As shown in FIGS. 4A and 4B, the front left and right bush 13 has an outer tubular portion 12, an inner tubular portion 15, and a front elastic body 16 filled therebetween. The inner tube portion 15 is vertically fastened and fixed to a fixing bracket 17 on the floor side of the vehicle (not shown) with a bolt 18. When no load is applied, the outer tube portion 12 and the inner tube portion 15 are arranged concentrically. .
The front elastic body 16 is formed of rubber having a predetermined hardness, has a cylindrical shape as a whole, and is vulcanized and joined to the inner wall surface of the outer cylindrical portion 12 and the outer wall surface of the inner cylindrical portion 15.
[0015]
The front elastic body 16 includes left and right side portions 161 and 162 disposed in the vehicle width direction Y with respect to the inner cylinder portion 15 between the outer cylinder portion 12 and the inner cylinder portion 15, and a vehicle front-rear direction with respect to the inner cylinder portion 15. A first elastic body 163 which is a front side disposed at the front side at X; and a second elastic body 164 which is a rear side disposed at the rear side in the vehicle front-rear direction X with respect to the inner cylinder 15. Is provided.
The front elastic body 16 of the front left / right bush 13 is formed of a rubber material having a uniform spring constant. Further, the left and right sides 161 and 162 and the second elastic body 164 as the rear side are formed with a relatively large vertical width T2, and only the first elastic body 163 as the front side is formed with a relatively small vertical width T1. The upper and lower concave portions a are formed so as to have a small thickness, and are formed so that the amount of elastic displacement, particularly, the amount of compressive displacement is larger than that of other portions.
[0016]
Furthermore, when the front portion (the left portion in FIG. 4A) of the front elastic body 16 in the vehicle front-rear direction X of the outer cylinder portion 12 on the cross member 2 side moves rearward with respect to the inner cylinder portion 15 on the vehicle body side, The displacement is as follows.
In this case, as shown in FIGS. 4A and 4B, the first elastic body 163, which is the front side of the front elastic body 16, is formed to have a relatively small vertical thickness T1, and therefore the second elastic body 163 is formed. Since the capacity is relatively small as compared with the elastic body 164 or the like, the amount of compressive deformation per load can be relatively easily increased.
[0017]
At this time, on the contrary, the second elastic body 164 is pulled and displaced.
In this case, the tensile displacement of the second elastic body 164 tends to regulate the compressive displacement of the first elastic body 163.
However, as shown in FIG. 10, a thick rubber block material generally has a relatively large amount of tensile displacement when subjected to a predetermined load as compared with the amount of compressive deformation. For this reason, the tensile deformation of the second elastic body 164 proceeds relatively easily, and it can be set so as not to hinder the function for securing the amount of compressive displacement of the first elastic body 163 here.
[0018]
As described above, the second elastic body 164, which is the rear side portion located on the opposite side, is formed to have a relatively large vertical width T2, but this portion surely advances the tensile deformation. Therefore, as a whole, when the outer cylinder portion 12 on the cross member 2 side is displaced rearward (see arrow B) with respect to the inner cylinder portion 15 on the vehicle body side, the displacement is facilitated. ) Is relatively large.
[0019]
Conversely, when the rear part (the right part in FIG. 4A) of the rear part of the outer cylinder part 12 on the cross member 2 side moves forward with respect to the inner cylinder part 15 on the vehicle body side as follows, Is displaced.
At this time, the second elastic body 164, which is the rear side of the front elastic body 16, is formed to have a relatively large vertical width T2, so that as shown in FIG. When a predetermined load is applied, the amount of compressive deformation is relatively small. For this reason, when the outer cylinder part 12 is displaced forward with respect to the inner cylinder part 15 (see the arrow A in FIG. 4A), the amount of compressive deformation is suppressed to a very small value. Even if it can be easily pulled and deformed, the forward displacement here is suppressed to a very small value, and the second elastic body 164 here functions as a stopper.
[0020]
Here, the left and right sides 161 and 162 of the front elastic body 16 are uniformly filled with the thickness of the vertical width T2 between the outer cylinder part 12 and the inner cylinder part 15, so that the left and right displacement is reliably suppressed.
The rear left and right bushes 14 form a well-known bush structure having an outer cylindrical portion 21, an inner cylindrical portion 22, and a rear elastic body 19 filled between them. Also in this case, the inner cylindrical portion 22 is vertically bolted to a fixing bracket on the floor side of the vehicle (not shown).
The rear elastic body 19 is made of the same rubber material as the front elastic body 16 and its front, rear, left and right sides are uniformly formed with a thickness of a vertical width T3 (a value smaller than the vertical width T1: not shown). When the outer cylinder portion 21 on the side of the central bracket 3 is displaced in the front-rear and left-right directions with respect to the inner cylinder portion 22, the displacement can be equally allowed without any directionality, and transmission of road surface vibration noise can be cut off.
[0021]
It is assumed that a vehicle equipped with such a semi-trailing suspension 1 runs.
4A and 4B, the front left and right bush 13 on the cross member 2 and the rear left and right bush 14 on the center bracket 3 are respectively outer cylindrical portions 12 and 21 during straight traveling at a constant speed. And the respective inner cylindrical portions 15 and 22 are maintained in a state of being substantially concentrically arranged. For this reason, the vibration noise from the wheels 7 is buffered by the front elastic body 16 and the rear elastic body 19, and it is possible to prevent the noise from entering the floor or the vehicle interior above the floor from the mounting frame 4 side.
[0022]
Next, at the time of a harsh input in which the traveling vehicle passes through the joint of the road surface, the left and right wheels 7 receive the rearward force Fh (see FIG. 3B) strongly while traveling straight. At this time, the first elastic body 163 which is the front side of the front elastic body 16 of the left and right bushes 13 is relatively easily compressed and deformed due to the relatively small thickness T1, and the second elastic body 164 which is the rear side is The outer cylindrical portion 12 undergoes tensile deformation and moves rearward as a whole with a relatively large displacement amount tb with respect to the inner cylindrical portion 15.
[0023]
Since the rear elastic body 19 of the rear left and right bush 14 is uniformly formed with a thickness of a vertical width T3 smaller than the vertical width T1 of the front elastic body 16, the outer cylindrical portion is sequentially added to the displacement amount tb of the front left and right bush 13. 12 easily moves backward.
For this reason, at the time of the input of the harsh, the front elastic body 16 of the front left and right bushes 13 and the rear elastic body 19 of the rear left and right bush 14 can relatively allow the rearward displacement of the mounting frame 4 side, and the vibration from the road surface side at the time of the input of the harsh. Noise can be buffered, and vibration noise can be suppressed from entering the floor and the vehicle interior above it.
[0024]
Next, it is assumed that the vehicle turns in the turning direction C1 as shown in FIG. At this time, the cross member 2 connected to the vehicle body via the front left and right bushes 13 is relatively distorted. That is, the cross member 2 rotates in the direction C2 opposite to the turning direction C1 with respect to the vehicle body.
At this time, the wheels 7 on the outer side in the turning direction (right side in FIG. 3B) receive the inward force Fi, and the amount of rotation is larger than the wheels 7 on the inner side (left side in FIG. 3B). It is pulled and strongly receives a rearward force Fr. For this reason, the outer wheel 7 side of the cross member 2 is pulled rearward (arrow B), and conversely, the inner wheel 7 side is pushed forward (arrow A).
[0025]
At this time, the first elastic body 163 of the front elastic body 16 of the right side (outward in the turning direction) bush 13 is compressed and deformed, and the second elastic body 164 is tensilely deformed. The front interval t1 between them narrows, the rear interval t2 widens, and displaces rearward. On the other hand, the second elastic body 164 of the front elastic body 16 of the left side (inward in the turning direction) bush 13 is substantially suppressed in compressive deformation due to the thickness T2, functions as a stopper, and functions as a stopper. Is limited to an extremely small deviation amount tf.
The rear elastic body 19 of the rear left and right bushes 14 allows a displacement close to the amount of displacement of the front left and right bushes 13.
[0026]
For this reason, the forward displacement of the outer cylinder portion 12 with respect to the inner cylinder portion 15 of the bush 13 inside the turning direction (left side in FIG. 3B) when turning the vehicle can be suppressed, and the mounting frame 4 such as the cross member 2 can turn in the turning direction. Since the inside forward displacement (view A) is suppressed, the turning of the cross member 2 in the reverse direction C2 with respect to the turning direction C1 of the vehicle is suppressed. As a result, induction of oversteer as described with reference to FIG. 8B can be prevented, and steering stability of the vehicle is ensured.
[0027]
As described above, the semi-trailing suspension 1 of FIG. 1 has a function of sufficiently suppressing the forward displacement with respect to the backward displacement of the left and right ends of the cross member 2, that is, the front left and right bushes provided at the left and right ends of the cross member 2. 13 allows the rear displacement of the outer cylinder portion 12 with respect to the inner cylinder portion 15 and holds the function of suppressing the forward displacement of the outer cylinder portion 12 with respect to the inner cylinder portion 15, so that noise and vibration at the time of inputting a harsh can be reduced, Maneuvering stability and harshness measures can both be achieved.
Further, the front elastic body 16 of the front left and right bush 13 shown in FIG. 4A includes left and right side portions 161 and 162 in the vehicle width direction Y with respect to the inner cylinder portion 15 and a front and rear direction X with respect to the inner cylinder portion 15. The first and second elastic members 163 and 164 are formed of the same rubber material, and there is also an advantage that molding is facilitated.
[0028]
Instead of the front left and right bushes 13 used in the semi-trailing suspension 1 of FIG. 1, front left and right bushes 13a as shown in FIGS. 5A and 5B may be used. The front left and right bushes 13a are mounted on the semi-trailing suspension 1 of FIG. 1 in the same manner as the front left and right bushes 13, so that other duplicate explanations are omitted.
The front left and right bushes 13a include an outer tube portion 12, an inner tube portion 15, and a front elastic body 16a filling the space therebetween. The front elastic body 16a includes left and right side parts 161a and 162a between the outer cylinder part 12 and the inner cylinder part 15, a first elastic body 163a as a front side part, and a second elastic body 164a as a rear side part. These are formed to have a uniform vertical thickness T4.
[0029]
The second elastic body 164a, which is the rear side, has a stopper 23 formed of a hard rubber having relatively high hardness inside thereof, and these are embedded and molded at the time of rubber molding of the front elastic body 16a. The stopper 23 has one end abutting on the inner wall of the outer cylinder portion 12 and is formed to have a stopper width t3 slightly smaller than the radial distance between the outer cylinder portion 12 and the inner cylinder portion 15. Thus, while allowing the relative displacement between the outer cylinder portion 12 on the cross member 2 side and the inner cylinder portion 15 on the body side, the forward displacement of the outer cylinder portion 12 on the cross member 2 side with respect to the inner cylinder portion 15 on the body side (as viewed from the arrow). A) is prevented.
[0030]
It is assumed that a vehicle equipped with such a semi-trailing suspension 1 using the front left and right bushes 13a travels. In this case, when the vehicle is traveling straight ahead at a constant speed, the relative displacement between the outer cylinder portion 12 and the inner cylinder portion 15 is allowed, and it is possible to suppress the vibration noise from the wheels 7 from entering the floor or the passenger compartment.
Next, at the time of harsh input, the first elastic body 163a, which is the front side portion of the front left and right bush 13a, is relatively easily compressed and deformed, and the second elastic body 164a side in which the stopper 23 is embedded can be pulled and deformed. In contrast, the outer cylinder portion 12 can move backward (arrow B) with a relatively large displacement amount tb (see FIG. 3A), and even when a harsh signal is input, vibration noise is generated on the floor and the vehicle interior above it. Intrusion can be suppressed.
[0031]
Next, when the vehicle turns, the cross member 2 rotates in a direction C2 opposite to the turning direction C1 with respect to the vehicle body, and the outer wheel 7 side of the cross member 2 is pulled backward, and conversely, the inner wheel 7 side of the cross member 2 It is pushed forward (see FIG. 3B).
At this time, the first elastic body 163a of the right side (outside in the turning direction) bush 13a is easily compressed and deformed, and the outer cylinder 12 is displaced rearward with respect to the inner cylinder 15. The second elastic body 164a of the left side (inward in the turning direction) bush 13a is substantially prevented from being compressed and deformed by the stopper 23, and the forward displacement of the outer cylinder portion 12 with respect to the inner cylinder portion 15 is very small displacement amount tf (see FIG. 3). Stop.
[0032]
This causes a rearward displacement of the outer cylindrical portion 12 with respect to the inner cylindrical portion 15 of the bush 13a on the outer side in the turning direction (right side in FIG. 3A), but the bush 13a on the inner side in the turning direction (left side in FIG. 3A). Since the displacement of the outer cylinder portion 12 with respect to the inner cylinder portion 15 is prevented by the stopper 23, the reverse direction C2 of the cross member 2 is suppressed, and the steering stability of the vehicle is ensured.
In the above description, the stopper 23 is embedded in the second elastic body 164a and is integrally molded. However, the stopper 23 may be inserted into the second elastic body 164a and fixed after molding in some cases. Further, the stopper 23 may be made of a hard resin or a metal. In these cases, the stopper 23 can be easily molded, and the productivity is good.
[0033]
FIGS. 6A and 6B show another front left and right bush 13b different from the front left and right bush 13 used in the semi-trailing suspension 1 of FIG. The front left and right bush 13b is used in the semi-trailing suspension 1 of FIG. 1 similarly to the front left and right bush 13 of FIG. 1, and a duplicate description will be omitted.
The front left and right bush 13b has an outer cylinder portion 12, an inner cylinder portion 15, and a front elastic body 16b filling the space therebetween, and in particular, a part of the front elastic body 16b has a different hardness.
[0034]
That is, the front elastic body 16b has left and right sides 161b and 162b and a first elastic body 163b as a front side formed of a first rubber material having a relatively low spring constant, and a second elastic body 164b as a rear side. Only the second rubber material having a relatively high spring constant is formed, and these are formed to have a uniform vertical width T5.
In molding the front elastic body 16b, the left and right side portions 161b, 162b and the first elastic body 163b side made of the first rubber material and the second elastic body 164b side made of the second rubber material are formed in two steps before and after. And molded sequentially. The front left and right bush 13b is formed of a low-hardness rubber material on the first elastic body 163b side, and formed of a high-hardness rubber material on the second elastic body 164b side.
[0035]
For this reason, when the vehicle travels straight ahead at a constant speed, the vibration noise from the wheels 7 is buffered, and it is possible to prevent the vehicle from entering the floor or the passenger compartment. At the time of the input of the harsh, the first elastic body 163b, which is the front side, is formed of a low-hardness rubber material and is relatively easily compressed and deformed. 3 (a)), it is possible to prevent the vibration noise at the time of the input of the harsh from entering the floor or the passenger compartment.
[0036]
During turning of the vehicle, the cross member 2 rotates in a direction C2 opposite to the turning direction C1 with respect to the vehicle body (see FIG. 3B). At this time, the first elastic body 163b formed of a low-hardness rubber material of the right side (outward in the turning direction) bush 13b is easily compressed and deformed, and the outer cylinder 12 is displaced rearward with respect to the inner cylinder 15. On the other hand, the second elastic body 164b formed of a high-hardness rubber material of the left (inward in the turning direction) bush 13b suppresses the compressive deformation, functions in the same manner as a stopper, and is provided in front of the outer cylinder portion 12 with respect to the inner cylinder portion 15. The displacement stops at a very small deviation amount tb.
[0037]
Therefore, the rear displacement of the outer cylinder portion 12 with respect to the inner cylinder portion 15 of the bush 13b on the outer side in the turning direction (right side in FIG. 3A) occurs, but the bush 13b on the inner side in the turning direction (left side in FIG. 3A). The displacement of the outer cylinder portion 12 with respect to the inner cylinder portion 15 is prevented by the second elastic body 164b formed of a high-hardness rubber material, so that the reverse direction C2 of the cross member 2 is suppressed, and the steering stability of the vehicle is improved. Secured.
In the above description, the front elastic body 16 of the front left and right bushes 13 used in the semi-trailing suspension 1 has been filled with rubber material in the entire circumferential direction. A gap may be formed in a part between the first and second portions.
[0038]
For example, as shown in FIGS. 7A and 7B, the cut 24 may be formed between the inner cylindrical portion 15 and the first elastic body 163c. In this case, the first elastic body 163c disposed at a front portion (the left side portion in FIG. 7A) of the inner cylinder portion 15 in the vehicle front-rear direction X is formed to be thin, and The notch 24 facilitates the rearward displacement (the arrow B) of the portion (the left portion in FIG. 7A) approaching the inner cylindrical portion 15. On the other hand, with the second elastic body 164c uniformly formed of the rubber material, the forward displacement (the arrow A) in which the rear part of the outer cylinder part 12 approaches the inner cylinder part 15 can be suppressed. For this reason, the forward displacement (arrow A) can be sufficiently suppressed with respect to the rearward displacement (arrow B) of the left and right ends of the cross member 2, and both steering stability and harshness measures can be achieved.
[0039]
【The invention's effect】
As described above, in the present invention, since the second elastic body is harder than the first elastic body, the forward displacement is sufficiently suppressed with respect to the rearward displacement of the left and right ends of the cross member, and the cross member with respect to the vehicle body at the time of turning of the vehicle. Displacement is suppressed and steering stability is ensured. Moreover, since the rearward displacement of the left and right ends of the cross member can be sufficiently achieved, noise and vibration at the time of input of a harsh can be reduced, and both steering stability and harshness measures can be achieved.
[0040]
According to the second aspect of the present invention, since the stopper member only needs to be disposed on the second elastic body on the rear side, the configuration of the present invention for sufficiently suppressing the forward displacement with respect to the rear displacement of the left and right ends of the cross member is simplified. Is done.
[0041]
According to the third aspect of the present invention, when the first elastic body and the second elastic body are separate bodies, the heights of both can be easily changed, and in this case, no stopper is required.
[Brief description of the drawings]
FIG. 1 is a plan view of an overall simplified configuration of a semi-trailing suspension as one embodiment of the present invention.
FIG. 2 is a side view of the entire simplified configuration of the semi-trailing suspension of FIG. 1;
3A and 3B show main parts of the semi-trailing suspension of FIG. 1, wherein FIG. 3A is an enlarged plan view of front left and right bushes, and FIG. 3B is a plan view of main parts.
FIGS. 4A and 4B are front left and right bushes used in the semi-trailing suspension shown in FIG. 1, wherein FIG. 4A is a plan view and FIG.
FIGS. 5A and 5B are front and left and right bushes used in a semi-trailing suspension according to another embodiment of the present invention, wherein FIG. 5A is a plan view and FIG.
FIGS. 6A and 6B are front and left and right bushes used in a semi-trailing suspension according to another embodiment of the present invention, wherein FIG. 6A is a plan view and FIG.
FIGS. 7A and 7B show front and left and right bushes used in a semi-trailing suspension according to another embodiment of the present invention, wherein FIG. 7A is a plan view and FIG.
8A and 8B show front and left and right bushes used in a conventional semi-trailing suspension. FIG. 8A shows a state where a harsh is input, and FIG.
FIG. 9 is an explanatory diagram of behavior of a conventional semi-trailing suspension at the time of inputting a harsh and at the time of turning.
FIG. 10 is an elastic displacement characteristic diagram of an elastic member of a bush used in a semi-trailing suspension.
[Explanation of symbols]
1 Semi-trailing suspension
2 Cross member
3 center bracket
4 Mounting frame
5,6 left and right arm members
7 wheels
8 Left and right side members
9 Upper spring support
11 Coil spring
12 outer cylinder
13 Front left and right bush
15 Inner cylinder
16 Front elastic body
161,162 Left and right side
163 First elastic body
164 second elastic body
X front and rear direction
Y Vehicle width direction

Claims (3)

車幅方向に延設されたクロスメンバと、
同クロスメンバを車体に取付けるブッシュと、
上記クロスメンバに一端側が支持され、他端側で車輪を回転自在に支持するアーム部材と、
を備えたセミトレーリング式サスペンションにおいて、
上記ブッシュは
車体に対して固定される内筒部と、
上記クロスメンバ側に固定された外筒部と、
上記内筒に対して車両前方側に配設された第1弾性体と、
上記内筒に対して車両後方側に配設された第2弾性体と、
を有し、
上記第2弾性体は上記第1弾性体よりも硬く形成されていることを特徴とするセミトレーリング式サスペンション。
A cross member extending in the vehicle width direction;
A bush for attaching the cross member to the vehicle body,
An arm member having one end supported by the cross member and rotatably supporting the wheel at the other end;
In a semi-trailing suspension with
The bush has an inner cylinder fixed to the vehicle body,
An outer cylinder fixed to the cross member,
A first elastic body disposed on the vehicle front side with respect to the inner cylinder;
A second elastic body disposed on the vehicle rear side with respect to the inner cylinder;
Has,
The semi-trailing suspension according to claim 1, wherein the second elastic body is formed harder than the first elastic body.
請求項1記載のセミトレーリング式サスペンションにおいて、
上記第2弾性体はその内部にストッパ部材が配設されていることを特徴とする。
The semi-trailing suspension according to claim 1,
The second elastic body is characterized in that a stopper member is provided inside the second elastic body.
請求項1記載のセミトレーリング式サスペンションにおいて、
上記第1弾性体と第2弾性体とは別体に構成されることを特徴とする。
The semi-trailing suspension according to claim 1,
The first elastic body and the second elastic body are configured separately.
JP2002241945A 2002-08-22 2002-08-22 Semi-trailing suspension Pending JP2004075017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241945A JP2004075017A (en) 2002-08-22 2002-08-22 Semi-trailing suspension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241945A JP2004075017A (en) 2002-08-22 2002-08-22 Semi-trailing suspension

Publications (1)

Publication Number Publication Date
JP2004075017A true JP2004075017A (en) 2004-03-11

Family

ID=32024280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241945A Pending JP2004075017A (en) 2002-08-22 2002-08-22 Semi-trailing suspension

Country Status (1)

Country Link
JP (1) JP2004075017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107685776A (en) * 2016-08-03 2018-02-13 奥迪股份公司 Body structure for double rut vehicles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107685776A (en) * 2016-08-03 2018-02-13 奥迪股份公司 Body structure for double rut vehicles

Similar Documents

Publication Publication Date Title
US4723791A (en) Suspension of vehicle
JP4293221B2 (en) Vehicle body support structure
KR101109823B1 (en) Suspension device for a wheel and method for supporting a wheel
JP3688028B2 (en) Twist beam suspension
JP2007177820A (en) Bush
JP2010101385A (en) Bush
JP2016132322A (en) Sub-frame structure for vehicle
JP6195069B2 (en) Mounting structure for vehicle suspension
US6022034A (en) Twist beam suspension
JPH0986127A (en) Reinforcing structure of front suspension member
JP2004075017A (en) Semi-trailing suspension
TW438693B (en) Sub-frame structure for vehicle
JP3284494B2 (en) Car rear wheel suspension
JPH1016526A (en) Torque arm type rear suspension
JP6875679B2 (en) Rear suspension structure of automobile
JP4109601B2 (en) Torsion beam suspension
JP4647279B2 (en) Rear suspension
KR102681386B1 (en) Apparatus for inducing understeer of vehicle
JP2000326714A (en) Toe correcting suspension bush
JPH02286410A (en) Suspension device with a combination of spring and frp arm
JP2002225527A (en) Torsion beam suspension
JP3925689B2 (en) Hollow member
JPH0533435Y2 (en)
JP3714504B2 (en) Steering gear mounting structure
JP2005255068A (en) Suspension cross-member of automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041125

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070223

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724